
Zero-Knowledge Proofs on Secret-Shared Data
via Fully Linear PCPs

Dan Boneh1, Elette Boyle2, Henry Corrigan-Gibbs1,
Niv Gilboa3, and Yuval Ishai4

1 Stanford University, {dabo,henrycg}@cs.stanford.edu
2 IDC Herzliya, Israel, eboyle@alum.mit.edu

3 Ben-Gurion University, Israel, gilboan@bgu.ac.il
4 Technion, Israel, yuvali@cs.technion.ac.il

Abstract. We introduce and study the notion of fully linear probabilistically
checkable proof systems. In such a proof system, the verifier can make a
small number of linear queries that apply jointly to the input and a proof
vector.

Our new type of proof system is motivated by applications in which the input
statement is not fully available to any single verifier, but can still be efficiently
accessed via linear queries. This situation arises in scenarios where the input
is partitioned or secret-shared between two or more parties, or alternatively
is encoded using an additively homomorphic encryption or commitment
scheme. This setting appears in the context of secure messaging platforms,
verifiable outsourced computation, PIR writing, private computation of
aggregate statistics, and secure multiparty computation (MPC). In all these
applications, there is a need for fully linear proof systems with short proofs.

While several efficient constructions of fully linear proof systems are implicit
in the interactive proofs literature, many questions about their complexity
are open. We present several new constructions of fully linear zero-knowledge
proof systems with sublinear proof size for “simple” or “structured” languages.
For example, in the non-interactive setting of fully linear PCPs, we show
how to prove that an input vector x ∈ Fn, for a finite field F, satisfies a single
degree-2 equation with a proof of size O(

√
n) and O(

√
n) linear queries,

which we show to be optimal. More generally, for languages that can be
recognized by systems of constant-degree equations, we can reduce the proof
size to O(logn) at the cost of O(logn) rounds of interaction.

We use our new proof systems to construct new short zero-knowledge proofs
on distributed and secret-shared data. These proofs can be used to improve
the performance of the example systems mentioned above.

Finally, we observe that zero-knowledge proofs on distributed data provide a
general-purpose tool for protecting MPC protocols against malicious parties.
Applying our short fully linear PCPs to “natural” MPC protocols in the
honest-majority setting, we can achieve unconditional protection against
malicious parties with sublinear additive communication cost. We use this
to improve the communication complexity of recent honest-majority MPC
protocols. For instance, using any pseudorandom generator, we obtain a
3-party protocol for Boolean circuits in which the amortized communication
cost is only one bit per AND gate per party (compared to 10 bits in the
best previous protocol), matching the best known protocols for semi-honest
parties.

1

1 Introduction

In this work, we develop new techniques for proving in zero knowledge statements
that are distributed (i.e., partitioned or secret-shared) across two or more verifiers.
Recall that in a standard interactive proof system [8,10,14,55] a verifier holds an
input x ∈ {0, 1}∗ and a prover tries to convince the verifier that x is a member
of some language L ⊆ {0, 1}∗. We consider instead the setting in which there
are multiple verifiers, and each verifier holds only a piece of the input, such as a
share of x generated using a linear secret-sharing scheme. Critically, no single
verifier holds the entire input x. The prover, who holds the entire input x, must
convince the verifiers, who only hold pieces of x, that x ∈ L. At the same time,
we require that the proof system be strongly zero knowledge: every proper subset
of the verifiers should learn nothing about x, apart from the fact that x ∈ L.

Special cases of this type of proof system appear in existing systems for
anonymous messaging [40], verifiable function secret sharing [32], and systems
for the private computation of aggregate statistics [39]. We observe that such
proof systems also provide a powerful tool for protecting protocols for secure
multiparty computation over point-to-point channels against malicious parties,
analogous to the role that standard zero-knowledge proofs play in the GMW
compiler [52]. Indeed, in protocols that involve point-to-point communication,
the task of proving compliance with the protocol exactly requires executing a
zero-knowledge proof on distributed data.

We introduce the central new abstraction of a fully linear proof system.
Such proof systems apply not only to efficiently proving (in zero-knowledge)
statements on distributed or secret-shared data, but also to data that is encrypted
or committed using a linearly homomorphic system. While several efficient
constructions of fully linear proof systems are implicit in the literature on
interactive and probabilistically checkable proofs (in particular, the linear PCPs
from [6, 51] and the interactive proofs from [54, 78] can be cast as such proof
systems), many questions about their complexity are open. We present several new
constructions of fully linear zero-knowledge proof systems that achieve sublinear
proof size for “simple” or “structured” languages. Finally, we present several
applications of such proof systems in the context of the motivating applications
discussed above.

We now give a more detailed overview of our contributions.

Contribution I: Fully linear proof systems. We begin by introducing the
notion of a fully linear proof system, which captures the information-theoretic
object at the core of all of our constructions. We consider the non-interactive
variant of such proof systems, called fully linear PCPs, and then we describe a
natural extension to the interactive setting.

A fully linear PCP is a refinement of linear PCPs [6, 25, 60]. Recall that in
a standard linear PCP over a finite field F, a polynomial-time verifier holds
an input x ∈ Fn and a prover produces a proof π ∈ Fm to the assertion that
x ∈ L, for some language L ⊆ Fn. The verifier checks the proof by reading x and
making linear queries (i.e., inner-product queries) to the proof π. In particular,

2

the verifier can make a bounded number of queries to the proof of the form
qj ∈ Fm, and receives answers aj = 〈qj , π〉 ∈ F.

In a fully linear PCP, we further restrict the verifier: the verifier cannot
read the entire input x directly, but only has access to it via linear queries.
Concretely, the verifier in a fully linear PCP makes linear queries qj to the
concatenated input-proof vector (x‖π) ∈ Fn+m and must accept or reject the
assertion that x ∈ L based on the answers aj to these linear queries. Motivated
by the applications we consider, we would also like fully linear PCPs to satisfy
the following strong zero-knowledge requirement: the queries qj together with
the answers aj reveal no additional information about x other than the fact that
x ∈ L. This is stronger than the standard notion of zero-knowledge proofs in
which x is essentially public and the interaction need not hide x. See Section 3 for
formal definitions of fully linear PCPs and their strong zero knowledge variant.

The full linearity restriction is naturally motivated by applications in which
the input statement is not fully available to any single verifier, but can still be
efficiently accessed via linear queries. This situation arises in scenarios where the
input x is distributed or secret-shared between two or more parties, or alternatively
is encoded using an additively homomorphic encryption or commitment scheme.
In these scenarios, verifiers can readily compute answers to public linear queries
via local computations on their view of x. While fully linear PCPs can be
meaningfully applied in all of the above scenarios, we will primarily focus on
their applications to proofs on distributed or secret-shared data.

We stress again that in a fully linear PCP, the verifier only has linear query
access to x. An interesting consequence is that even if L is an easy language that
can be decided in polynomial time, a verifier making a bounded (e.g., constant)
number of such queries typically cannot decide whether x ∈ L without the
aid of a proof, even if the verifier can run in unbounded time. This makes the
existence of fully linear proof systems with good parameters meaningful even for
finite languages and even if, say, P = PSPACE.1 The same fact makes possible a
connection between fully linear PCPs and communication complexity [3, 66,68].
Using this connection, we prove unconditional lower bounds on the efficiency
properties of fully linear PCPs.

Different kinds of linear PCPs were used, either explicitly or implicitly, in the
vast literature on succinct arguments for NP (see [24,25,27,31,51,57,60,70,77,79,
80,85,88] and references therein). These linear PCPs, including the “Hadamard
PCP” [6, 60] and ones obtained from quadratic span programs or quadratic
arithmetic programs [25,51,76], can be cast into the fully linear framework. This
fact was implicitly used in previous proof systems on committed or secret-shared

1 This is akin to proofs of proximity [22], which place a more stringent restriction on
the verifier’s access to the input. However, unlike proofs of proximity, in fully linear
PCPs the verifier is guaranteed that the input is actually in the language rather
than being “close” to some input the language. Another related notion is that of a
holographic proof [9, 59], where the verifier gets oracle access to an encoding of the
input using an arbitrary error-correcting code.

3

data [11,39,41]. Our notion of fully linear PCPs provides a convenient abstraction
of the properties on which such systems can be based.

Contribution II: Shorter proofs for structured and simple languages.
When using fully linear PCPs to build zero-knowledge proof systems on distributed
or secret-shared data, as discussed in Contribution IV below, the proof length
determines the number of bits that the prover must send to the verifiers. As
such, we aim to design short proofs. This goal is especially important when many
different assertions are proved about the same input statement x. In such a
scenario, the initial setup cost of distributing x is amortized away. Having short
fully linear PCPs yields similar efficiency benefits in the settings of encryption
and commitments.

These applications motivate the need for fully linear PCPs with short proofs.
For general NP relations, all known linear PCPs have size at least linear in the
size of an arithmetic circuit recognizing the relation. In Section 4, we achieve
significant length savings by designing new sublinear sized fully linear PCPs
for languages recognized by deterministic circuits with repeated sub-structures
(Theorem 11) or by a degree-2 polynomial (Corollary 13). In the latter case, we
can even prove that the O(

√
n) complexity of our construction is optimal up to

low-order terms (see full version). These and other proof systems constructed in
this work satisfy the notion of strong zero knowledge discussed above.

Theorem 1 (Informal - short fully linear PCP for a degree-2 polyno-
mial). If membership in L ⊆ Fn can be recognized by a single degree-2 polynomial,
then L admits a fully linear PCP with strong zero knowledge that has proof length
and query complexity Õ(

√
n) and soundness error O(

√
n/|F|). Furthermore, there

exists a language L as above such that the sum of the proof length and query
complexity must be Ω(

√
n), even when we allow constant soundness error and do

not require zero knowledge.

See Corollary 13 for a more precise and general statement.

Contribution III: Reducing proof size by interaction. To further drive
down the proof length, we consider a generalization of fully linear PCPs that
allows multiple rounds of interaction between the prover and verifier. These fully
linear interactive oracle proofs, or fully linear IOPs, are the linear analogue of
interactive oracle proofs (IOP) [21], also known as probabilistically checkable
interactive proofs [78]. We note that without the zero-knowledge requirement,
several existing interactive proof systems from the literature, including the GKR
protocol [53], the CMT protocol [37], and the RRR protocol [78] can be viewed
as fully linear IOPs.

For the case of “well-structured” languages, we show in Section 5 that interac-
tion can dramatically shrink the proof size, while maintaining the required strong
zero-knowledge property. In particular, any language whose membership can be
verified by a system of constant-degree equations over a finite field admits a
fully linear IOP with strong zero-knowledge in O(log n) rounds and only O(log n)
proof length, provided that the underlying field is sufficiently large. Even for

4

degree-2 languages, this provably gives an exponential reduction in proof size
over the non-interactive case.

Theorem 2 (Informal - fully linear zero-knowledge IOPs for low-degree
languages). Suppose L ⊆ Fn can be recognized by a system of constant-degree
equations. Then, L admits a fully linear IOP with strong zero knowledge, O(log n)
rounds, and proof length and query complexity O(log n).

See Theorem 15 for a more precise and general statement, including an
extension to rings.

Contribution IV: Zero-knowledge proofs on distributed or secret-shared
data. The primary motivation for our new types of proof systems is the fact that
in many cases, data can be efficiently accessed via linear queries. This includes
several different scenarios, but our main focus in this work is on the case of
distributed or secret-shared data. (See full version for application to proofs on
encrypted or committed data.) More precisely, the prover knows x in its entirety
and each of k verifiers V1, . . . , Vk only has a piece (or a secret share) of x.

In the full version we show that any fully linear PCP and IOP can be compiled
into a zero-knowledge proof system on distributed or secret-shared data in the
following natural way. Instead of sending a proof vector π to a single verifier, the
prover P secret-shares the proof vector π between the k verifiers using a linear
secret-sharing scheme. The verifiers can now locally apply each linear query to
the concatenation of their share of the input x and their share of π, and exchange
the resulting answer shares with the other verifiers. The verifiers then reconstruct
the answers to the linear queries and apply the decision predicate to decide to
accept or reject x. We present different variants of this compiler that further
optimize this approach and that achieve zero-knowledge even when up to k − 1
verifiers are malicious.

Theorem 3 (Informal - distributed zero-knowledge proofs for low-degree
languages on secret-shared data: malicious prover or verifiers). Suppose
L ⊆ Fn can be recognized by a system of constant-degree equations. Then, as-
suming ideal coin-tossing, there is an O(log n)-round distributed zero-knowledge
protocol for proving that x ∈ L, where x is additively shared between k veri-
fiers, with communication complexity O(k log n). The protocol is sound against
a malicious prover and is strongly zero-knowledge against t = k − 1 malicious
verifiers.

We also give a Fiat-Shamir-style compiler that uses a random oracle to collapse
multiple rounds of interaction into a single message sent by P to each Vj over a
private channel, followed by a single message by each Vj .

Given a robust encoding (or robust secret sharing) of the input x, we present
distributed zero-knowledge protocols that maintain their soundness even when
a malicious prover colludes with t < k/2 malicious verifiers. In contrast, we
note that previous sublinear proof systems on secret-shared data either do not
attempt to protect against malicious verifiers [32], or assume a majority of honest

5

verifiers [40]. Neither considers soundness against a malicious prover colluding
with malicious verifiers.

Table 1 summarizes the communication and round complexity of the proof
systems on secret-shared data for languages that frequently come up in practice,
for example in the Prio system [39] for privately aggregating data, and in the
Riposte [40] system for anonymous communication. The table illustrates the
strong benefits of interactive fully linear proof systems over non-interactive ones.

We note that interactive proofs with distributed verifiers were recently studied
in [67, 73] for the purpose of proving properties of a communication graph
connecting a large number of verifiers. The relevance of the interactive proofs
of GKR [53] and RRR [78] to this setting has been observed in [73]. Our focus
here is quite different; we are motivated by the goal of proving in zero knowledge
simple properties of data distributed among a small set of verifiers. As a result,
our abstractions, constructions, and applications are very different from those in
prior work [67,73].

Language Proof system Comm. complexity Rounds

Hamming weight 1: Prio [39] O(n) 1
x̄ ∈ Fn,weight(x̄) = 1 Theorem 15 O(

√
n) 2

Theorem 15 O(logn) O(logn)
Implicit in [43] O(1) 2
Riposte∗∗ [40] O(

√
n) 1

Verifiable FSS∗∗ [32] O(1) 1

x̄ ∈ {0, . . . , B}n ⊆ Fn Prio [39] O(B · n) 1
Theorem 15 O(B ·

√
n) 2

Theorem 15 O(B · logn) O(logn)

n Beaver triples: Prio [39] O(n) 1
x̄, ȳ, z̄ ∈ Fn where Theorem 15 O(

√
n) 2

xi · yi = zi for all i ∈ [n] GKR [54] O(log2 n) O(log2 n)
Theorem 15 O(logn) O(logn)

Arbitrary circuit C, C(x̄) = 1 Prio [39] O(n) 1
(size n, depth d, fan-in 2) GKR [54] O(d logn) O(d logn)

Table 1: Communication and round complexity for proof systems where the input data
is secret shared among a number of parties. We assume the proofs are over a finite field F
with |F| � n. Prio [39] is a system for private data aggregation that uses proofs on secret
shared data for data integrity. Riposte [40] is a system for anonymous communication
that uses proofs on secret shared data to prevent data corruption. Verifiable function
secret sharing (FSS) [32] enables secret sharing of simple functions.
∗∗ All systems in the table, except Riposte, verifiable FSS, and GKR, maintain zero
knowledge when all but one of the verifiers are malicious. In contrast, 3-server Riposte
tolerates only one corruption. Verifiable FSS tolerates only semi-honest verifiers and
GKR does not provide zero-knowledge.

6

Contribution V: Applications to honest-majority MPC. We next demon-
strate applications of our zero-knowledge fully linear proof systems for protecting
protocols for secure multiparty computation (MPC) in the honest-majority setting
against malicious parties, with vanishing amortized communication overhead, and
without resorting to the heavy machinery of succinct (two-party) zero-knowledge
argument systems for NP.

Compiling “natural” honest-majority protocols. Dating back to the
work of Goldreich, Micali, and Wigderson (GMW) [52], the standard approach
to secure protocol design begins by attaining semi-honest (passive) security,
then compiling the protocol in some way to enforce semi-honest behavior. The
GMW compiler relies on standard zero-knowledge proofs, which apply to public
statements. As a result, it does not apply directly to the case of protocols that
employ communication over secure point-to-point channels. To get around this
limitation, we employ our distributed zero-knowledge proofs in the following way.

As observed in recent works, the vast majority of semi-honest MPC protocols
from the literature share the following natural form:

– Up to the final exchange of messages, the protocol reveals no information about
parties’ inputs, even if parties act maliciously.

– The messages sent by a party Pi in each round are degree-2 functions (or, more
generally, low-degree functions) of messages received in previous rounds.

The first property means that parties can safely execute all but the final round
of the underlying protocol unchanged, and then simultaneously verify that in all
prior rounds the parties acted semi-honestly. The second property means that
this verification can be expressed as satisfaction of a collection of several degree-2
constraints on parties’ incoming and outgoing messages. More concretely, each
party Pi must convince the remaining parties in zero knowledge that the statement
Mi consisting of all his round-by-round incoming and outgoing messages—and
which is distributed across the remaining parties—is indeed contained within
some appropriate language Li verifiable by a degree-2 circuit. This is precisely
the setting of our zero knowledge proofs on distributed data.

We demonstrate an approach for compiling semi-honest protocols of the above
“natural” form (formally defined in the full version) in the honest-majority setting,
to malicious security with abort, with sublinear additive communication overhead.
This is achieved by adding a phase in the penultimate round of the base protocol,
in which each party Pi executes a single interactive proof on distributed data
that the entire interaction thus far has been performed honestly. The necessary
zero-knowledge protocols that we develop induce communication that is sublinear
in the circuit size.

Note that while many efficient MPC protocols from the literature implement
batch-verification of shared secrets by revealing random linear combinations, this
technique only applies to checking linear relations between the secrets. Fully linear
proof systems provide a powerful extension of this approach to batch-verification
of non-linear relations with sublinear communication cost.

7

The case of 3-party computation. A specific motivated setting is that of
3-party computation with 1 malicious corruption (and security with abort). The
task of minimizing communication in such protocols has attracted a significant
amount of research effort (e.g., [4, 5, 36,46,50,56,69,72,74]). To date, the best
protocols communicate: 2 field elements per multiplication gate per party over
large fields (size comparable to 2σ for statistical security parameter σ) [36,74], or
alternatively 10 bits per multiplication gate per party over Boolean circuits [50].

Applying our compiler to a 3-party semi-honest protocol of Katz et al. [64]2
(see also [5, 42, 45]), we obtain a 3-party protocol guaranteeing security with
abort against 1 malicious party, with 1 ring element communicated per party per
multiplication (amortized over large circuit size). Our result holds over any finite
field or modular arithmetic ring Zw; in particular, also for Boolean circuits.

Theorem 4 (Informal - Malicious 3PC, 1 ring element/gate/party).
There exists a 3-party protocol for securely computing any R-arithmetic circuit C
(for R field of arbitrary size or R = Zw) with the following features:
– The protocol makes black-box use of any pseudorandom generator. If R is a

field, it also makes a black-box use of R.
– The protocol is computationally secure with abort against one malicious party.
– The communication complexity is |C|+ o(|C|) elements of R per party, where
|C| denotes the number of multiplication and input gates in C.

We also describe an application of a variant of our compiler in the more general
honest majority case where t < n/2 for constant n, building from a semi-honest
protocol à la Damgård and Nielsen [44]. Overall, our resulting protocol achieves
malicious security with 3t/(2t+ 1) (always ≤ 1.5) ring elements communicated
per gate per party.

2 A Taxonomy of Information-Theoretic Proof Systems

One of the contributions of this work is to introduce and formalize the notions of
fully linear PCPs and IOPs. To situate these new types of proof systems in the
context of prior work, we briefly survey the landscape of existing systems. This
discussion will be relatively informal; see Section 3 for formal definitions of linear
and fully linear proof systems.

A tremendously successful paradigm for the construction of cryptographic
proof systems is the following: First, construct a proof system that provides secu-
rity guarantees (soundness and possibly zero-knowledge) against computationally
unbounded parties. We will refer to this as an “information-theoretic proof system,”
or sometimes as a probabilistically checkable proof (PCP). This information-
theoretic system is often useless as a standlone object, since it typically makes
2 Our compiler can analogously apply to the 3-party semi-honest protocol of Araki et
al. [5]. We build on the protocol from [64] since its dealer-party structure offers a
slightly simpler description within our framework and the advantage of lower online
(input-dependent) cost.

8

idealized assumptions (such as independence between two messages or restricted
access to the proof) that are difficult to enforce. Next, use cryptographic as-
sumptions and/or an augmented model of computation (e.g., the random-oracle
model [12]) to “compile” the information-theoretic proof system into one that
can be directly implemented. This compiler may also provide extra desirable
properties, such eliminating interaction, improved communication complexity, or
sometimes even an extra zero knowledge property, at the possible cost of security
against computationally bounded prover and/or verifier. We refer to this type of
compiler as a “cryptographic compiler.”

Different kinds of information-theoretic proof systems call for different cryp-
tographic compilers. The main advantage of this separation is modularity:
information-theoretic proof systems can be designed, analyzed and optimized
independently of the cryptographic compilers, and their security properties
(soundness and zero-knowledge) do not depend on any cryptographic assump-
tions. It may be beneficial to apply different cryptographic compilers to the same
information-theoretic proof system, as different compilers may have incomparable
efficiency and security features. For instance, they may trade succinctness for
better computational complexity or post-quantum security or, more relevant to
this work, apply to different representations of the input statement.

To give just a few examples of this methodology: Micali [71] uses a random
oracle to compile any classical PCP into a succinct non-interactive argument
system for NP. As another example, Ben-Or et al. [13] compile any interactive
proof system into a zero-knowledge interactive proof system using cryptographic
commitments. Finally, Bitansky et al. [25] compile a linear PCP into a succinct
non-interactive argument of knowledge (SNARK) using either a “linear-only
encryption” for the designated-verifier setting or a “linear-only one-way encoding,”
instantiated via bilinear groups, for the public verification setting.3 In this work
we compile fully linear PCPs and IOPs into proofs on distributed, secret-shared,
encrypted, or committed data.

2.1 Comparison with Other Proof Systems

In the following we survey some information-theoretic proof systems used in prior
work. For simplicity, we ignore the zero-knowledge feature that is typically added
to all proof systems.

Let L ⊆ {0, 1}∗ be a language. Speaking informally, a proof system for L is a
pair of (possibly interactive) algorithms (P, V). Both the prover P and verifier V
take a string x ∈ {0, 1}∗ as input (e.g., a SAT formula), and the prover’s task is
to convince the verifier that x ∈ L (e.g., that x is satisfiable). We sometimes view
x as a vector over a finite field F. We require the standard notions of completeness
and soundness.
3 For instantiating the publicly verifiable variant with bilinear groups, the linear PCP
needs to have a verification predicate of algebraic degree 2. Such linear PCPs can
be obtained either directly or via quadratic span programs or quadratic arithmetic
programs [25,51,76].

9

In the simplest such proof system, the prover sends the verifier a single proof
string π of size poly(|x|), the verifier reads x and π, and accepts or rejects. When
the verifier is randomized and efficient, this setting corresponds to a Merlin-Arthur
proof system [8]. There are a number of modifications to this basic paradigm
that yield interesting alternative proof systems. In particular, we can:

– Allow interaction between the prover and verifier. In an interactive proof, the
prover and verifier exchange many messages, after which the verifier must
accept or reject. Allowing interaction may increase the power of the proof
system [83] and makes it possible to provide zero-knowledge [55] in the plain
model. (Alternatively, a common reference string is sufficient [26].)

– Restrict the verifier’s access to the proof. Another way to modify the basic
paradigm is to restrict the means by which the verifier interacts with the proof.
In particular, we can view the proof as an oracle, and only allow the verifier to
make a bounded (e.g., constant) number of queries to the proof oracle.
In the classical PCP model [7, 47,48], the proof is a string π ∈ Σm, for some
finite alphabet Σ, and the verifier can only read a small number of symbols
from the proof. On input i, the oracle returns the ith bit of the proof string π.
(We call these “point queries.”)
In the linear PCP model [25,60], the proof is a vector π ∈ Fm, for some finite
field F, and the verifier can can only make a small number of “linear queries” to
the proof. That is, the proof oracle takes as input a vector q ∈ Fm and returns
the inner-product 〈π, q〉 ∈ F.

– Restrict the verifier’s access to the input. Yet another way to modify the basic
paradigm is to restrict the verifier’s access to the input x. In particular, we
can view the input as an oracle, and only allow the verifier to make a bounded
(e.g., constant) number of queries to the input oracle. The strong motivation
for this is explained later in this section. We consider two variants.
The model in which we view the input as a string, and only allow the verifier
to make a limited number of point queries to the input, corresponds to a PCP
of proximity [22]. With a few point queries, it is not possible to distinguish
between an input x ∈ L, and an input x “close to L” (in Hamming distance).
For this reason, PCPs of proximity necessarily provide only a relaxed notion
of soundness: if x is “far from L,” then the verifier will likely reject.
Alternatively, we can view the input as a vector x ∈ Fn, for some finite field
F, and only allow the verifier to make a small number of linear queries to the
input x. That is, the input oracle takes as input a vector q ∈ Fn and returns
the inner-product 〈x, q〉 ∈ F. We show that this notion, introduced and studied
in this work, is sufficient to provide a standard notion of soundness (unlike the
relaxed notion of soundness provided by PCPs of proximity).

We now have three attributes by which we can classify information-theoretic
proof systems: interactivity (yes/no), proof query type (read all/point/linear),
and input query type (read all/point/linear). Taking the Cartesian product of
these attributes yields 18 different possible proof systems, and we list ten of
particular interest in Table 2.

10

Queries Queries
Proof type to input to proof Representative compilers

N
on

-i
nt

er
ac

ti
ve Classical (MA) [8] Read all Read all

PCP [6,7] Read all Point Kilian [65], Micali [71]
Linear PCP [60] Read all Linear IKO [60], Pepper [82], GGPR [51],

PHGR [76,77], BCIOP [25]

PCP of proximity [23] Point Point Kalai & Rothblum [62]
Fully linear PCP Linear Linear This paper

In
te

ra
ct

iv
e

Interactive proof (IP) [55] Read all Read all Ben Or et al. [13]
IOP [21] Read all Point BCS [21]
Linear IOP Read all Linear

IOP of proximity [16,17] Point Point
Fully linear IOP Linear Linear This paper, Hyrax [85], vSQL [87,88]

Table 2: A comparison of information-theoretic proof systems. The bolded proof system
models are ones that we introduce explicitly in this work. “Read all” refers to reading
the entire data field, “Point” refers to reading a small number of cells of the data, and
“Linear” refers to a small number of linear queries to the data.

For example, interactive oracle proofs (IOPs) are interactive proofs in which
the verifier has unrestricted access to the input but may make only point queries
to proof strings [21]. Ben-Sasson et al. [21] show how to compile such proofs into
SNARGs in the random-oracle model and recent hash-based SNARGs, including
Ligero [2], STARK [15], and Aurora [20] are built using this technique.

Why fully linear proof systems? It is often the case that the verifier only
has access to an additively homomorphic encoding of a statement x, and the
prover convinces the verifier that the encoded statement is true. For example the
verifier may be given an additively homomorphic commitment or encryption of
the statement x. Or the verifier may be implemented as a set of two or more
servers who have a linear secret sharing of the statement x, or who hold different
parts of x.

In all these settings, the verifiers can easily compute an encoding of the inner
product of the statement x with a known query vector q. In some cases (such as
the case of encrypted or committed data), the verifiers may need the prover’s
help help to “open” the resulting inner products.

When we compile fully linear PCPs into proof systems on shared, encrypted,
or committed data, our compilers have the same structure: the prover sends an
additively homomorphic encoding of the proof to the verifier. The verifier makes
linear queries to the proof and input, and (if necessary) the prover provides
“openings” of these linear queries to the verifier. The verifier checks that the
openings are consistent with the encodings it was given, and then runs the fully
linear PCP verifier to decide whether to accept or reject the proof.

11

The need for new constructions. In current applications of PCPs and linear
PCPs, the length of the proof is not a complexity metric of much relevance.
For example, in the BCIOP compiler [25] for compiling a linear PCP into a
succinct non-interactive argument of knowledge (SNARK), the size of the proof
corresponds to the prover’s running time.

If the language L in question is decided by circuits of size |C|, then having
proofs of size |C| is acceptable, since the prover must run in time Ω(|C|) no
matter what. A similar property holds for Micali’s CS proofs [71], Kilian’s PCP
compiler [65], the BCS compiler [21] of interactive oracle proofs, and so on.

In our compilers, the prover must materialize the entire fully linear PCP
proof, encode it, and send it to the verifier. For us, the size of the fully linear
PCP proof not only dictates the running time of the prover, but also dictates
the number of bits that the prover must communicate to the verifier. For this
reason, in our setting, minimizing the proof size is an important goal.

Furthermore, when compiling linear PCPs into SNARKs using the existing
compilers [25,58,77] it is critical that the linear PCP verifier be expressible as
an arithmetic circuit of degree two. This is because the linear PCP verification
checks are essentially run “in the exponent” of a bilinear group. In contrast, the
settings we consider allow for more flexibility: the arithmetic degree of the verifier
typically does not play a role in the final applications, except perhaps for a
possible influence on proof verification time.

Relating fully linear PCPs to streaming proof systems. The setting of
stream annotations [35], introduced by Chakrabarti, Cormode, McGregor, and
Thaler, restricts not only the verifier’s access to the input and proof, but also
the space usage of the verifier. In this model, the verifier is a space-bounded
streaming algorithm: it may take a single pass over the input and proof, and must
decide whether to accept or reject. For example, the verifier might be allowed
only O(

√
n) bits of working space to decide inputs of length n. The streaming

interactive proof model [38] is a generalization in which the prover and verifier
may interact.

Fully linear interactive proofs naturally give rise to stream annotation proof
systems. The reason is that if a fully linear PCP verifier makes qπ linear proof
queries and qx linear input queries, then the verifier can compute the responses
to all of its queries by taking a single streaming pass over the input and proof
while using (qx + qπ) log2 |F| bits of space. Thus, fully linear PCPs with small
proof size and query complexity give rise to stream annotation proof systems
with small proof and space requirements. Similarly, fully linear IOPs give rise to
streaming interactive proofs.

The implication in the other direction does not always hold, however, since
stream annotation systems do not always give rise to fully linear PCPs with good
parameters. The reason is that a streaming verifier may, in general, compute
some non-linear function of the input that is difficult to simulate with linear
queries.

Other proof systems. We briefly mention a number of other important classes
of proof systems in the literature that are out of scope of this discussion. Linear

12

interactive proofs are a model of interactive proof in which each message that the
prover sends is an affine function of all of the verifier’s previous messages (but is
not necessarily an affine function of the input) [25].

The fully linear PCP model is well matched to the problem of proving
statements on data encoded with an additively homomorphic encoding, such
as Paillier encryption [75] or a linear secret-sharing scheme. A different type of
encoding is a succinct encoding, in which the prover can commit to a vector
in Fm with a string of size sublinear in m [34, 63]. Bootle et al. [30] introduce
the “Ideal Linear Commitment” (ILC) model as an abstraction better suited
to this setting. In the ILC proof model, the prover sends the verifier multiple
proofs vectors π1, . . . , πk ∈ Fm in each round. The verifier is given a proof
oracle that takes as input a vector q ∈ Fk and returns the linear combination
qT · (π1 . . . πk) ∈ Fm. It is possible to translate linear IOP proofs into ILC proofs
(and vice versa) up to some looseness in the parameters. A linear IOP in which
the prover sends a length-m proof in each round implies an ILC proof with the
same query complexity in which the prover sends m proofs of length 1 in each
round. An ILC proof in which the prover sends k proofs of length m and makes
` queries in each round implies a linear IOP with proof length k ·m and query
complexity ` ·m. ILC-type proofs underlie the recent succinct zero-knowledge
arguments of Bootle et al. [29] and Bünz et al. [33], whose security is premised
on the hardness of the discrete-log problem.

Finally, another related notion from the literature is that of a holographic
proof [9,59], where the verifier gets oracle access to an encoding of the input using
an arbitrary error-correcting code, typically a Reed-Muller code. Our notion of
fully linear PCPs can be viewed as a variant of this model where the input is
(implicitly) encoded by the Hadamard code and the proof can be accessed via
linear queries (as opposed to point queries). In fact, our model allows a single
linear query to apply jointly to the input and the proof.

We have not discussed multi-prover interactive proofs [14], in which multiple
non-colluding provers interact with a single verifier, or more recently, multi-
prover proofs in which a verifier gets access to multiple (possibly linear) proof
oracles [28,60].

“Best-of-both-worlds” proof systems. To conclude this section, we point to
an interesting direction for future work on proof systems. A very desirable type
of proof system, which is not listed in Table 2, would be one in which the verifier
makes linear queries to the input and point queries to the proof. This type of
proof system, which we call a strongly linear proof, achieves in some sense the
“best of both worlds:” the verifier has restricted access to the input (as in a
PCP of proximity or fully linear PCP) and yet achieves the standard notion of
soundness (as in a classical PCP). While it is possible in principle to construct
such strongly linear PCPs and IOPs by combining standard PCPs or IOPs of
proximity [18, 22] with linear error-correcting codes, this generic combination
may not yield the best achievable parameters.

13

3 Definitions

Notation. For n ∈ N, let [n] = {1, . . . , n}. Let ‖ denote concatenation, 〈·, ·〉
inner product and ⊥ the empty string. When C is an arithmetic circuit over
a finite field F, we use |C| to denote the number of multiplication gates in the
circuit. When |F| > n, we let 1, 2, . . . , n denote distinct nonzero field elements.

On concrete vs. asymptotic treatment. Since our new types of proof sys-
tems are meaningful even when all of algorithms involved are computationally
unbounded, our definitions refer to languages and NP-relations as finite objects
and do not refer to running time of algorithms. All of our definitions can be
naturally extended to the standard asymptotic setting of infinite languages and re-
lations with polynomial-time verifiers, honest provers, simulators, and knowledge
extractors. Our positive results satisfy these asymptotic efficiency requirements.

Fully linear PCPs. Our new notion of fully linear PCPs build upon the
definitions of standard linear PCPs from Ishai et al. [60] and Bitansky et al. [25].
We start by recalling the original notion.

Definition 5 (Linear PCP). Let F be a finite field and let R ⊆ Fn × Fh be
a binary relation. A linear probabilistically checkable proof system for R over
F with proof length m, soundness error ε, and query complexity ` is a pair of
algorithms (PLPCP, VLPCP) with the following properties:
– For every (x,w) ∈ R, the prover PLPCP(x,w) outputs a proof π ∈ Fm.
– The verifier VLPCP consists of a query algorithm QLPCP and a decision algorithm
DLPCP. The query algorithm QLPCP takes no input and outputs ` queries
q1, . . . , q` ∈ Fm and state information st. The decision algorithm DLPCP takes
as input the state st, the statement x, and the ` answers 〈π, q1〉, . . . , 〈π, q`〉 ∈ F
to QLPCP’s queries. It outputs “accept” or “reject.”

The algorithms additionally satisfy the following requirements:
– Completeness. For all (x,w) ∈ R, the verifier accepts a valid proof:

Pr
[
DLPCP(st, x, 〈π, q1〉, . . . , 〈π, q`〉) = “accept” :

π ← PLPCP(x,w)
(st, q1, . . . , q`)← QLPCP()

]
= 1.

– Soundness. For all x∗ 6∈ L(R), and for all false proofs π∗ ∈ Fm, the probability
that the verifier accepts is at most ε:

Pr
[
DLPCP(st, x∗, 〈π∗, q1〉, . . . , 〈π∗, q`〉) = “accept” : (st, q1, . . . , q`)← QLPCP()

]
≤ ε.

In some applications, one also needs a knowledge property [25]: there exists
an extractor ELPCP such that if VLPCP(x) accepts a proof π, then ELPCP on input
π outputs a witness w such that (x,w) ∈ R. The linear PCPs we introduce in this
work satisfy this property, though we only prove the simpler soundness property.

14

Remark (Linear PCPs for languages). On occasion we refer to linear PCPs
for a language L ⊆ Fn, rather than for a binary relation R ⊆ Fn × Fh. This
will typically be the case when L is efficiently recognizable, in which case the
prover does not require an additional witness w. Essentially the same notions of
completeness and soundness apply in this setting: if x ∈ L, the verifier always
accepts and for all x 6∈ L the verifier rejects except with at most ε probability.

We now define our main new notion of fully linear PCPs and their associated
strong zero knowledge property.

Definition 6 (Fully linear PCP - FLPCP). We say that a linear PCP is
fully linear if the decision predicate DLPCP makes only linear queries to both the
statement x and to the proof π. More formally, the query algorithm QLPCP outputs
queries q1, . . . , q` ∈ Fm+n, and state information st. The decision algorithmDLPCP
takes as input the query answers a1 = 〈(x‖π), q1〉, . . . , a` = 〈(x‖π), q`〉, along
with the state st, and outputs an accept/reject bit.

Remark. If we do not restrict the running time of the linear PCP verifier and
we do not restrict the manner in which the verifier can access the statement x,
then all relations have trivial a linear PCPs: an inefficient linear PCP verifier
can simply iterate over every possible witness w and test whether (x,w) ∈ R.
To make the definition non-trivial, the standard notion of PCPs [84] (and also
linear PCPs [25, 60]) restricts the verifier to run in polynomial time. In contrast,
a fully linear PCP restricts the verifier’s access to the statement x by permitting
the verifier to make a bounded number of linear queries to x. This restriction
makes the definition non-trivial: even if the verifier can run in unbounded time,
it cannot necessarily decide whether x ∈ L(R) without the help of a proof π.

Definition 7 (Strong zero-knowledge fully linear PCPs). A fully linear
PCP is strong honest-verifier zero knowledge (strong HVZK) if there exists a
simulator SLPCP such that for all (x,w) ∈ R, the following distributions are
identical:

SLPCP() ≡
{

(q1, . . . , q`)(
〈(x‖π), q1〉, . . . , 〈(x‖π), q`〉

) :
π ← PLPCP(x,w)

(q1, . . . , q`)← QLPCP()

}
.

Remark. The strong zero-knowledge property here departs from the traditional
zero-knowledge notion in that it essentially requires that an honest verifier
learn nothing about the statement x by interacting with the prover, except that
x ∈ L(R). This notion is meaningful in our applications, since the statement x
could be encrypted or secret-shared (for example), and thus it makes sense for a
verifier to learn that x ∈ L(R) without learning anything else about x.

Fully Linear Interactive Oracle Proofs. In a linear PCP, the interaction
between the prover and verifier is “one-shot:” the prover produces a proof π,
the verifier makes queries to the proof, and the verifier either accepts or rejects
the proof. We define fully linear interactive oracle proofs (“fully linear IOPs”),

15

generalizing linear PCPs to several communication rounds. This sort of linear
proof system is inspired by the notion of IOPs from [21, 78] (generalizing an
earlier notion of interactive PCPs [61]) that use point queries instead of linear
queries.

In the ith round of a linear IOP interaction, the prover sends the verifier
a proof πi ∈ Fm, where F is a finite field and m is a proof length parameter.
The verifier issues linear queries to the proof πi and then sends a challenge
ri ∈ {0, 1}∗ to the prover. The verifier’s queries in round i, along with the
challenges it produces, may depend on all of the messages it has seen thus far.
The prover’s next proof πi+1 may depend on the challenge ri, and all of the
messages it has seen so far.

As with a linear PCP, we also introduce the notion of fully linear IOPs, in
which the verifier makes only linear queries to the input, and define the strong
zero-knowledge property in a natural way. The fully linear IOPs constructed in
this work are all public-coin in the following sense.

Definition 8 (Public-coin fully linear IOP). We say that a t-round `-query
fully linear IOP is public coin if it satisfies the following additional properties:
1. In every round i ∈ {1, . . . , t} of interaction, first the prover provides a proof πi

and then a public random challenge ri is picked uniformly at random from a
finite set Si. (The choice of ri is made independently of the proof πi of the same
round.) The public randomness ri can influence all proofs generated by the
prover in the following rounds. Following the final round, ` queries (q1, . . . , q`)
(made to x‖π1‖ . . . ‖πt) are determined by the random challenges (r1, . . . , rt).

2. The verifier’s decision predicate is a function only of the public random
challenges (r1, . . . , rt) and the answers to the verifier’s queries (q1, . . . , q`).

When the first round does not involve a proof but only a random challenge πi,
we deduct 1/2 from the number of rounds. In particular, a 1.5-round public-coin
fully linear IOP is one that involves (in this order): a random challenge r, a proof
π (that may depend on r), queries (q1, . . . , q`) to x‖π that may depend on fresh
public randomness r′, and decision based on r, r′ and the answers to the queries.

4 Constructions: Fully linear PCPs

In this section we first show how to construct fully linear PCPs from existing
linear PCPs. Next, we introduce a new fully linear PCP that yields shorter proofs
for languages that are recognized by arithmetic circuits with certain repeated
structure; the only cost is an increase in the algebraic degree of the verifier, which
is irrelevant for the main applications we consider. This new fully linear PCP is
used by our fully linear IOP constructions in Section 5.

We begin by observing that the Hadamard [6, 25] and GGPR-style linear
PCPs [19,25,51,81], as described in the work of Bitansky et al. [25, Appendix
A], satisfy our new notions of full linearity and strong zero knowledge.

16

Linear PCP Proof length Queries Verifier deg. Soundness error

Hadamard LPCP [6,25] O(|C|2) 3 2 O(1)/|F|
GGPR-style [51] O(|C|) 4 2 O(|C|)/|F|
G-gates (Thm. 11) M · degG L+ 2 degG M · degG/(|F| −M)

Degree-two (Cor. 13) O(
√
|C|) O(

√
|C|) 2 O(

√
|C|)/|F|

Table 3: A comparison of existing and new fully linear PCP constructions for satisfiability
of an arithmetic circuit C : Fn → F. Proof length measures the number of field elements
in F. For the G-gates construction, G : FL → F is an arithmetic circuit of degree degG
and M is the number of G-gates in the circuit C.

Claim 9 (Informal). The Hadamard linear PCP and the GGPR-based linear
PCP are constant-query fully linear PCPs, in the sense of Definition 6. Moreover,
they yield fully linear PCPs with strong HVZK.

We now describe a fully linear PCP for arithmetic circuit satisfiability, for
circuits C with a certain type of repeated structure. When applied to arithmetic
circuits of size |C|, it can yield proofs of length o(|C|) field elements. In contrast,
the existing general-purpose linear PCPs in Claim 9 have proof size Ω(|C|).

This new linear PCP construction applies to circuits that contain many
instances of the same subcircuit, which we call a “G-gate.” If the arithmetic
degree of the G-gate is small, then the resulting linear PCP is short. More
formally, we define:

Definition 10 (Arithmetic circuit with G-gates). We say that a gate in
an arithmetic circuit is an affine gate if (a) it is an addition gate, or (b) it is a
multiplication gate in which one of the two input is a constant. Let G : FL → F
be an arithmetic circuit composed of affine gates and multiplication gates. An
arithmetic circuit with G-gates is an arithmetic circuit composed of affine gates
and G-gates.

The following theorem is the main result of this section. Recall that |G| refers
to the number of non-constant multiplication gates in the arithmetic circuit for G.

Theorem 11. Let C be an arithmetic circuit with G-gates over F such that:
(a) the gate G : FL → F has arithmetic degree degG,
(b) the circuit C consists of M instances of a G-gate and any number of affine

gates, and
(c) the field F is such that |F| > M degG.
Then, there exists a fully linear PCP with strong HVZK for the relation RC =
{(x,w) ∈ Fn × Fh | C(x,w) = 0} that has:
– proof length h+ L+M degG+ 1 elements of F, where h is the witness length
and L is the arity of the G-gate,

– query complexity L+ 2,
– soundness error M degG/(|F| −M), and

17

– a verification circuit of degree degG containing |G| multiplication gates.
Furthermore, if we require a fully linear PCP that is not necessarily strong HVZK,
then the proof length decreases to h+ (M − 1) degG+ 1 elements of F and the
soundness error decreases to M degG/|F|.

The proof of Theorem 11 uses the following simple fact about the linearity of
polynomial interpolation and evaluation.

Fact 12. Let F be a finite field and let π ∈ Fm. For some integer n < |F|, let
A1, . . . , An be affine functions that map Fm to F. Define f to be the polynomial
of lowest-degree such that f(i) = Ai(π) for all i ∈ {1, . . . , n}. Then for all r ∈ F
and all choices of the Ai, there exists a vector λr ∈ Fm and scalar δr ∈ F, such
that f(r) = 〈λr, π〉+ δr for all π ∈ Fm.

Fact 12 says that given the values of a polynomial f at the points 1, . . . , n
as affine functions of a vector π ∈ Fm, we can express f(r) as an affine function
of π, and this affine function is independent of π. This follows from the fact
that polynomial interpolation applied to the n points

{
(i, Ai(π))

}n
i=1

followed by
polynomial evaluation at the point r is an affine function of π.

Proof of Theorem 11. The construction that proves Theorem 11 is a generaliza-
tion of the linear PCP implicit in the construction used in the Prio system [39]
and is closely related to a Merlin-Arthur proof system of Williams for batch
verification of circuit evaluation [86]. Figure 4 gives an example of the proof
construction, applied to a particular simple circuit.

Label the G-gates of the circuit C in topological order from inputs to outputs;
there are M such gates in the circuit. Without loss of generality, we assume that
the output of the circuit C is the value on the output wire of the last G-gate in
the circuit.

FLPCP prover. On input (x,w) ∈ Fn × Fh, the prover evaluates the circuit
C(·, ·) on the pair (x,w). The prover then defines L polynomials f1, . . . , fL ∈ F[X]
such that, for every i ∈ {1, . . . , L},

(i) the constant term fi(0) is a value chosen independently and uniformly at
random from F, and

(ii) for all j ∈ {1, . . . ,M}, fi(j) ∈ F is the value on the i-th input wire to the j-th
G-gate when evaluating the circuit C on the input-witness pair (x,w).

Furthermore, the prover lets f1, . . . , fL be the polynomials of lowest degree that
satisfy these relations. Observe that each of the polynomials f1, . . . , fL has degree
at most M .

Next, the prover constructs a proof polynomial p = G(f1, . . . , fL) ∈ F[X].
By construction of p, we know that, for j ∈ {1, . . . ,M}, p(j) is the value on
the output wire from the j-th G-gate in the evaluation of C(x,w). Moreover,
p(M) = C(x,w). Let d be the degree of the polynomial p and let cp ∈ Fd+1 be
the vector of coeffcients of p ∈ F[X]. By construction, the degree of p satisfies
d ≤M degG.

18

The prover outputs π = (w, f1(0), . . . , fL(0), cp) ∈ Fh+L+d+1 as the linear
PCP proof.

(Note: If we do not require strong HVZK to hold, then the prover need not
randomize the constant terms of the polynomials f1, . . . , fL. In this case, the
prover does not include the values f1(0), . . . , fL(0) in the proof, and the degree
of the polynomial p decreases to (M − 1) degG. Thus, if we do not require strong
HVZK, the proof length falls to h+ (M − 1) degG+ 1.)

FLPCP queries. We can parse the (possibly maliciously crafted) proof π ∈
Fh+L+d+1 as: a purported witness w′ ∈ Fh, the values (z′1, . . . , z

′
L) ∈ FL repre-

senting the constant terms of some polynomials f ′1, . . . , f ′L, and the coefficients
c′p ∈ Fd+1 of a polynomial p′ ∈ F[X] of degree at most d. If the proof is well-
formed, the polynomial p′ is such that p′(j) encodes the output wire of the jth
G-gate in the circuit C(·, ·) when evaluated on the pair (x,w′).

Given p′, we define L polynomials f ′1, . . . , f ′L ∈ F[X] such that:
(i) the constant term satisfies f ′i(0) = z′i, where z′i is the value included in the

proof π′, and
(ii) f ′i(j) ∈ F is the value on the i-th input wire to the j-th G-gate in the circuit,

under the purported assignment of values to the output wires of the G-gates
implied by the polynomial p′ and witness w′.
More precisely, we define f ′i(j) inductively: The value on the ith input wire

to the jth G-gate in the circuit C(x,w′) is some affine function Aij of
– the input x ∈ Fn,
– the purported witness w′ ∈ Fh, and
– the purported outputs of the first j − 1 G-gates in the circuit: p′(1), . . . , p′(j −

1) ∈ F.
So, for all i ∈ {1, . . . , L}, we define f ′i to be the polynomial of least degree
satisfying:

f ′i(0) = z′i

f ′i(j) = Aij(x,w
′, p′(1), ..., p′(j − 1)) for 1 ≤ j ≤M,

where Aij is a fixed affine function defined by the circuit C.

The verifier’s goal is to check that:
1. p′ = G(f ′1, . . . , f

′
L), and,

2. the circuit output p′(M) satisfies p′(M) = 0.
As we argue below, the first condition ensures that p′(M) is equal to the output
of the circuit C(x,w′). The second check ensures that the output is 0.

To implement the first check, the verifier samples a random point r ←R
F \ {1, . . . ,M} and outputs query vectors that allow evaluating p′ and f ′1, . . . , f ′L
at the point r. (For the honest-verifier zero knowledge property to hold, it
is important that we exclude the set {1, . . . ,M} from the set of choices for
r.) The verifier has linear access to the input x, witness w′, constant terms
z′ = (z′1, . . . , z

′
L), and the coefficients c′p ∈ Fd+1 of the polynomial p′. Hence, using

19

Fact 12, it follows that the query algorithm can compute vectors λ1, . . . , λL ∈
Fn+h+L+d+1 and scalars δ1, . . . , δL ∈ F such that f ′i(r) = 〈λi, (x‖w′‖z′‖c′)〉+ δi
for i = 1, . . . , L, where r ∈ F is the random point chosen above. Similarly,
the query algorithm can compute a vector λ ∈ Fn+h+L+d+1 such that p′(r) =
〈λ, (x‖w′‖z′‖c′)〉.

The verifier can execute the second check, to ensure that p′(M) = 0, with a
single linear query.

FLPCP decision. The decision algorithm takes as input the state value r ∈
F \ {1, . . . ,M}, along with the query answers a, a1, . . . , aL, b ∈ F, where a =
p′(r), ai = f ′i(r) for i ∈ {1, . . . , `}, and b = p′(M). The verifier accepts if
a = G(a1, . . . , aL) and b = 0.

Security arguments. We show completeness, soundness, and strong HVZK.

Completeness. If the prover is honest, then p′ = G(f ′1, . . . , f
′
L) and p′(M) = 0 by

construction. The verifier will always accept in this case.

Soundness. Fix a circuit C, a statement x ∈ Fn, and a proof π′ ∈ Fh+L+d+1.
We show that if x 6∈ L(RC) then the verifier accepts with probability at most
M degG/(|F| −M).

As in the description of the query algorithm, we can view:
– the first h elements of the proof as a witness w′ ∈ Fh,
– the next L elements of the proof as constant terms z′1, . . . , z′L ∈ F, and
– the latter elements as the coefficients of a polynomial p′ of degree at most
d ≤M degG.

We may assume that p′(M) = 0, since otherwise the verifier always rejects. In
the discussion that follows, let the polynomials f ′1, . . . , f ′L be the ones defined in
the description of the linear PCP query algorithm.

We claim that if for all j ∈ {1, . . . ,M}, it holds that p′(j) = G(f ′1(j), . . . , f ′L(j)),
then for all j ∈ {1, . . . ,M}, p′(j) encodes the value of the output wire of the jth
G-gate in the circuit C when evaluated on input (x,w′).

We prove this claim by induction on j:
– Base case (j = 1). The values (f ′1(1), . . . , f ′L(1)) depend only on the pair

(x,w′). By construction, the values (f ′1(1), . . . , f ′L(1)) are exactly the values
of the input wires to the first G-gate in the evaluation of C(x,w′). Then if
p′(1) = G(f ′1(1), . . . , f ′L(1)), p′(1) encodes the value on the output wire of the
first G-gate.

– Induction step. Assume that, for all k ∈ {1, . . . , j−1}, p′(k) = G(f ′1(k), . . . , f ′L(k)).
Then, by the induction hypothesis, (p′(1), . . . , p′(j − 1)) are the values on the
output wires of the first j − 1 G-gates of C, when evaluated on (x,w′).
The values (f ′1(j), . . . , f ′L(j)) are affine functions of x, w′ and the values
p′(1), . . . , p′(j − 1). Then, by construction of the polynomials (f ′1, . . . , f

′
L),

the values (f ′1(j), . . . , f ′L(j)) encode the values on the input wires to the j-th
G-gate in the evaluation of the circuit C(x,w′). Finally, if we assume that

20

p′(j) = G(f ′1(j), . . . , f ′L(j)), then p′(j) must be the value on the output wire
of the jth G-gate.
We have thus proved the induction step.

This completes the proof of the claim.
If p′(M) = 0 (as we have assumed), but there exists no witness w′ such that

C(x,w′) = 0, then p′(M) does not encode the output value of the Mth G-gate in
the evaluation of the circuit C(x,w′). By the claim just proved, this implies that
for some j∗ ∈ {1, . . . ,M}, p′(j∗) 6= G(f ′1(j∗), . . . , f ′L(j∗)). Thus, when we view
p′, f ′1, . . . , f

′
L ∈ F[X] as univariate polynomials, we have that p′ 6= G(f ′1, . . . , f

′
L).

Now, if p′ 6= G(f ′1, . . . , f
′
L) then p′ − G(f ′1, . . . , f

′
L) ∈ F[X] is a non-zero

univariate polynomial of degree at most M degG. Such a polynomial can have at
most M degG roots over F. Therefore the probability, over the verifier’s random
choice of r ←R F \ {1, . . . ,M}, that p′(r) − G(f ′1(r), . . . , f ′L(r)) = 0 is at most
M degG/(|F| −M). We conclude that the verifier accepts a false proof with
probability at most M degG/(|F| −M).

See full version for a proof that the construction satisfies strong HVZK.

If we define the G-gate to be a multiplication gate, so that degG = 2, then
the construction of Theorem 11 matches the complexity of the GGPR-based
linear PCP [51,81] and provides what is essentially an alternative formulation
of that proof system. In contrast, if degG � |G|, then this construction can
yield significantly shorter proofs than the GGPR-based linear PCP, at the cost
of increasing the algebraic degree of the verifier from 2 to degG.

Remark. We can generalize Theorem 11 to handle circuits with many distinct
repeated subcircuits G1, . . . , Gq with Mi instances of each gate Gi : FLi → F, for
i ∈ {1, . . . , q}. The resulting fully linear PCP with strong HVZK has proof length
at most h+ (

∑q
i=1 Li) + (

∑q
i=1Mi degGi) + q elements of F, query complexity

1 +
∑q
i=1(Li + 1), a verifier of algebraic degree maxi degGi, and soundness error∑q

i=1

(
Mi degGi/(|F| −Mi)

)
.

Remark. To get good soundness when applying the proof system of Theorem 11,
the field F must be such that |F| � M degG. In many applications, the input
x ∈ Fn is a vector in a small field, such as the binary field F2. In this case, we
apply Theorem 11 by lifting x into an extension field F̃ of F, and carrying out
the linear PCP operations in the extension.

The randomization technique we use to achieve honest-verifier zero-knowledge
in Theorem 11 is inspired by the one that appears in the work of Bitansky et
al. [25] for achieving HVZK in the Hadamard linear PCP construction.

Application: Short Proofs for Degree-Two Relations. As an application
of Theorem 11 we demonstrate a special-purpose fully linear PCP for relations
recognized by arithmetic circuits of degree two. When applied to an arithmetic
circuit C : Fn × Fh → F, we obtain a proof that consists of only O(h+

√
n) field

elements and whose query complexity is only O(
√
n+ h). For general-purpose

21

Circuit. An example cir-
cuit C(x1, x2, x3, w) us-
ing an arbitrary three-
input G-gate. The circuit
takes as input the vector
(x1, x2, x3) ∈ F3, and a
witness w ∈ F. The cir-
cuit C outputs v2, the
value on the output wire
of the topologically last
G-gate.

Linear PCP proof. Using Theorem 11, we construct
a fully linear PCP proof π that the input (x1, x2, x3) ∈
F3 is in the language recognized by C. That is, the
prover asserts that there exists a witness w ∈ F such
that C(x1, x2, x3, w) = 0 ∈ F.

The prover first constructs three polynomials f1, f2, f3.
The value fi(j) encodes the value on the i-th input
to the j-th G-gate, in topological order from inputs
to outputs. The constant terms are random elements
z1, z2, z3 ←R F. That is:

f1(0)=z1 f2(0)=z2 f3(0)=z3

f1(1)=x1 f2(1)=x2 f3(1)=x3

f1(2)=v1=G(x1,x2,x3) f2(2)=x3 f3(2)=x3+w+7

Next, the prover constructs the polynomial p, which
satisfies p = G(f1, f2, f3), and which has degree at
most d = 2 degG. Notice that for j ∈ {1, 2}, p(j)
is the value on the output wire of the j-th G-gate.
Letting d = 3 degG, we can write the values of p as:

p(0)=G(f1(0),f2(0),f3(0))=G(z1,z2,z3)

p(1)=G(f1(1),f2(1),f3(1))=v1=G(x1,x2,x3)

p(2)=G(f1(2),f2(2),f3(2))=v2=G(v1,x3,x3+w+7)

p(3)=G(f1(3),f2(3),f3(3))

...
p(d)=G(f1(d),f2(d),f3(d)).

The linear PCP proof π consists of the elements:
(w, z1, z2, z3, p̄) ∈ FL+d+2, where p̄ ∈ Fd+1 is the vec-
tor of coefficients of the polynomial p.

Fig. 4: An example of the fully linear PCP proof of Theorem 11.

22

linear PCPs, such as the Hadamard or GGPR-based linear PCPs, the proof
length plus query complexity is much larger: Ω(n+ h).

A special case of this proof yields a linear PCP for the language of vectors
whose inner product is equal to a certain value. To give one application of such a
proof system: Given encryptions of two sets, represented by their characteristic
vectors, this proof system would allow a prover to succinctly show that the sets
are disjoint.

This construction also reveals the close connection between fully linear PCPs
and communication complexity. Without zero knowledge, this proof protocol
boils down to the Merlin-Arthur communication complexity protocol of Aaronson
and Wigderson [1]. Furthermore, as we show in the full version of this work, we
can use lower bounds on the communication complexity of inner-product to show
that this fully linear PCP construction has essentially optimal parameters.

Corollary 13 (FLPCP for degree-two circuits). Let F be a finite field, let
C : Fn × Fh → F be an arithmetic circuit of degree two, and let RC = {(x,w) ∈
Fn × Fh | C(x,w) = 0}. There is a fully linear PCP with strong HVZK for RC
that has proof length h+O(

√
n+ h) elements of F, query complexity O(

√
n+ h),

a verifier of algebraic degree 2, and soundness error O(
√
n+h)

|F|−d
√
n+he .

The idea of Corollary 13 is that any degree-two circuit C : Fn → F can be
expressed as a circuit that computes an inner-product of dimension-n vectors,
along with some number of affine gates. This property is special to degree-two
circuits—the idea does not easily generalize to circuits of higher constant degree.

Proof of Corollary 13. Without loss of generality we can assume that C im-
plements a quadratic form C(x,w) = (x‖w)T · A · (x‖w) for some matrix
A ∈ F(n+h)×(n+h). Indeed, a proof system for quadratic forms yields a proof
system for any circuit of degree 2. We can re-write C(x,w) as the inner-product
of the vectors y = (x‖w) and z = A · (x‖w) in Fn+h. Hence, it suffices to design
a fully linear PCP for the inner-product relation R′C =

{
(x,w) ∈ Fn × Fh |〈

(x‖w) , A · (x‖w)
〉

= 0
}
.

Let L2 be the closest perfect square greater than or equal to n+ h, and pad
the vectors y = (x‖w) and z = A(x‖w) with zeros so that both are in F(L2).
Next, arrange the vector y into a matrix Y ∈ FL×L, and arrange z into a matrix
Z ∈ FL×L in the same way. Then C(x,w) = 〈y, z〉 = trace(Y · ZT).

Because the trace is a linear function, we can compute C(x,w) using a circuit
C ′ consisting of only addition gates and a total of L gates G : FL × FL → F
defined as G(u, v) = 〈u, v〉 for u, v ∈ FL. Clearly degG = 2 and L = O(

√
n+ h).

Applying Theorem 11 to this G-gate circuit gives a fully linear PCP for RC′ with
strong HVZK with the parameters stated in the corollary, as required. The proof
needs at most 2L additional linear queries to verify that the padding in y and z
is all zero, but this does not change the parameters in the corollary.

Remark. A simple extension of Corollary 13 yields a two-round (in fact, 1.5-
round) fully linear IOP for relations recognized by general degree-two circuits

23

C : Fn × Fh → Fk, for k ≥ 1. To sketch the idea behind this extension, write
the circuit C as C(x) = (C1(x), C2(x), . . . , Ck(x)) ∈ Fk, where each Ci is a
degree-two circuit. In the first round of the protocol, the verifier sends a random
value r ∈ F. Then the prover and verifier define the degree-two circuit Cr(x) =∑k

i=1 r
i ·Ci(x) ∈ F. The prover then uses the fully linear PCP of Corollary 13 to

convince the verifier that Cr accepts the input x ∈ Fn. The efficiency parameters
match those of the corollary, except that the soundness error increases by an
additive term k/|F| to account for the failure event that some Ci(x) outputs a
non-zero value and yet the sum Cr(x) is zero. See Theorem 15 for a more general
version of this protocol.

Application: Short Proofs for Parallel-Sum Circuits. As a second appli-
cation of Theorem 11, we give a special-purpose fully linear PCP for languages
recognized by circuits that take as input a vector x ∈ Fn and:
– apply an affine transformation to the input,
– apply the same sub-circuit C : FL → F in parallel to each block of L values,
– sum the outputs of the C circuits.
More formally, let C : FL → F be an arithmetic circuit. Let A : Fn → F and
A1, . . . , AM : Fn → FL be affine functions. This linear PCP construction applies
to the language of values x ∈ Fn such that

∑M
i=1 C(Ai(x)) = A(x).

Corollary 14 (FLPCP for parallel-sum circuits). Let C : FL → F be an
arithmetic circuit over F that has arithmetic degree degC. Let A : Fn → F and
A1, . . . , AM ∈ Fn → FL be affine functions. Then, there exists a strong HVZK
fully linear PCP for the language LC,A,A1,...,AM

= {x ∈ Fn |
∑M
i=1 C(Ai(x)) =

A(x)} that has:
– proof length O(

√
M · (L+ degC)) elements of F,

– query complexity O(
√
M · L),

– soundness error
√
M ·degC
|F|−
√
M

, and

– an arithmetic verification circuit of degree degC containing O(
√
M · |C|)

multiplication gates.

Proof of Corollary 14. We define an appropriate G-gate and then invoke Theo-
rem 11. Assume that M is a perfect square, since otherwise we can pad M up
to the nearest square. The gadget G : F

√
ML → F applies the circuit C to

√
M

blocks of L inputs. So, on input (x̄1, . . . , x̄√M) ∈ F
√
ML, where x̄j ∈ FL for all

j ∈ {1, . . . ,
√
M}, the G-gate outputs:

G(x̄1, . . . , x̄√M) =def

√
M∑

j=1

C(x̄j) ∈ F. (1)

Then the language LC,A,A1,...,AM
is recognized by a circuit containing M ′ =

√
M

instances of the G-gate, along with some number of affine gates. Applying
Theorem 11 using this G-gate yields a fully linear PCP as required.

24

5 Constructions: Fully Linear Interactive Oracle Proofs

In this section, we describe an extension of our fully linear PCPs to fuller linear
interactive oracle proofs (linear IOPs). These extra rounds of interaction can buy
efficiency improvements in total proof length and verifier time.

For example, a corollary of our general construction gives an O(log n) round
strong HVZK fully linear IOP for proving that a vector x ∈ Fn consists entirely
of 0/1 entries, where the proof size is only O(log n) field elements. In comparison,
linear PCPs yield proofs of size Ω(n).

Several protocols from the literature, including notably the “Muggles” protocol
of Goldwasser, Kalai, and Rothblum [53,54] are implicitly linear IOPs. See full
version for connections between our notion and these protocols.

A Recursive Linear IOP for Parallel-Sum Circuits. Corollary 14 gives a
linear PCP for “parallel-sum” circuits whose length grows as the square root of
the degree of parallelism. Here, we show that by increasing the number of rounds
between the prover and verifier, we can decrease the proof size to logarithmic in
the degree of parallelism. The key observation is that in Corollary 14, the linear
PCP verifier is itself a parallel-sum circuit. So rather than having the verifier
evaluate this circuit on its own, the verifier can outsource the work of evaluating
the verification circuit to the prover. The prover then uses a secondary linear
PCP to convince the verifier that it executed this step correctly.

To get the optimal bounds we rebalance the parameters used in the proof of
Corollary 14. Instead of a G-gate containing

√
M copies of C, as in (1), we use a

G-gate containing M/2 copies of C, and then recursively verify one input/output
pair for that G-gate.

A useful application of this technique is to the case of “low-degree languages,”
namely languages in which membership can be checked by a system of low-
degree equations. The following theorem, whose proof appears in the full version,
describes fully linear IOPs for such low-degree languages, over both finite fields
and rings of the form R = Zw.

Theorem 15 (ZK-FLIOP for low-degree languages). Let R be a ring, let
C : Rn → Rm be an arithmetic multi-output circuit of degree d defined by
C(x) = (C1(x), . . . , Cm(x)) and let M be the number of distinct monomials in
the representation of C1, . . . , Cm as polynomials. Let LC = {x ∈ Rn | C(x) = 0m}
and let ε be a required soundness error bound. Then, there is a fully linear IOP Π
over R with strong HVZK for the language LC that has the following efficiency
features.
– Degree d = 2, constant rounds: If d = 2 then Π has 1.5 rounds, proof
length O(η

√
n), challenge length O(η), and query complexity O(

√
n), where

η = log|R|((m +
√
n)/ε) if R is a finite field or η = log2((m +

√
n)/ε) if

R = Z2k . The computational complexity is Õ(M)

– Degree d, logarithmic rounds: If d ≥ 2 then Π has O(logM) rounds, proof
length O(ηd logM), challenge length O(η), and query complexity O(logM),

25

where η = log|R|((m + d logM)/ε) if R is a finite field or η = log2((m +

d logM)/ε) if R = Z2k . The computational complexity is Õ(dM).

Trading communication for computation. Most of our motivating applica-
tions involve low-degree verification circuits that have constant output locality.
For instance, this is the case for checking that x ∈ {0, 1}n or for languages corre-
sponding to standard MPC protocols (e.g., checking Beaver triples). In this case,
we can reduce computational cost while maintaining sublinear communication
via the following simple tradeoff technique. Chop the m outputs into blocks of
size `, viewing each block as a low-degree circuit with O(`) inputs and ` outputs,
and apply a separate FLIOP to each block. This gives a smooth tradeoff be-
tween communication and computation, which may be useful for tuning concrete
efficiency depending on the available bandwidth and computational power.

6 Conclusions

We have demonstrated that fully linear proof systems capture many existing
techniques for zero-knowledge proof on secret-shared, encrypted, or committed
data. We presented new constructions of zero-knowledge fully linear PCPs and
IOPs for “simple” languages with sublinear proof size, and demonstrated the
usefulness of such proof systems to protecting secret-sharing based MPC protocols
against malicious parties with low communication overhead.

Despite some progress obtained in this work and in prior related works, there
is a lot more to understand about the power of (fully) linear PCPs and their
interactive variants. We mention a couple of concrete open questions:
– To what extent are the tradeoffs we obtain for low-degree languages optimal?

In particular, is there a linear PCP of size o(n) for the language L{0,1}n =def

{x ∈ Fn | x ∈ {0, 1}n}? Our sublinear constructions require interaction.
– Are there linear PCPs for general arithmetic circuit satisfiability with constant

query complexity and proof size sublinear in the circuit size? In the full version,
we show a lower bound result that unconditionally rules out such succinct fully
linear PCPs. Standard PCPs with succinctness properties cannot exist unless
the polynomial hierarchy collapses [49]. Does the same restriction apply to
general linear PCPs?

Acknowledgements. We thank Shai Halevi, Ariel Nof, Ron Rothblum, David
J. Wu, and Eylon Yogev for helpful discussions and comments. Justin Thaler gave
us many useful references to related work on sum-check-based proof protocols
and helped us understand the relationship between those protocols and our own.

E. Boyle, N. Gilboa, and Y. Ishai supported by ERC grant 742754 (project
NTSC). E. Boyle additionally supported by ISF grant 1861/16 and AFOSR Award
FA9550-17-1-0069. N. Gilboa additionally supported by ISF grant 1638/15, and
a grant by the BGU Cyber Center. Y. Ishai additionally supported by ISF grant
1709/14, NSF-BSF grant 2015782, and a grant from the Ministry of Science and

26

Technology, Israel and Department of Science and Technology, Government of
India. D. Boneh and H. Corrigan-Gibbs are supported by NSF, ONR, DARPA,
the Simons Foundation, CISPA, and a Google faculty fellowship.

References

1. Aaronson, S., Wigderson, A.: Algebrization: A new barrier in complexity theory. ACM Transac-
tions on Computation Theory (TOCT) 1(1), 2 (2009)

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear argu-
ments without a trusted setup. In: CCS (2017)

3. Andrew, C.C.Y.: Some complexity questions related to distributed computing. In: STOC (1979)
4. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K., Watzman,

A., Weinstein, O.: Optimized honest-majority MPC for malicious adversaries - breaking the 1
billion-gate per second barrier. In: IEEE Symposium on Security and Privacy (2017)

5. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure
three-party computation with an honest majority. In: ACM CCS (2016)

6. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness
of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

7. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. Journal of
the ACM 45(1), 70–122 (1998)

8. Babai, L.: Trading group theory for randomness. In: STOC (1985)
9. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic

time. In: STOC (1991)
10. Babai, L., Moran, S.: Arthur-merlin games: a randomized proof system, and a hierarchy of

complexity classes. Journal of Computer and System Sciences 36(2), 254–276 (1988)
11. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-

preserving proofs on authenticated data. In: 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015 (2015)

12. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient pro-
tocols. In: CCS (1993)

13. Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rogaway, P.: Ev-
erything provable is provable in zero-knowledge. In: CRYPTO (1988)

14. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to
remove intractability assumptions. In: STOC (1988)

15. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum
secure computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018)

16. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., , Spooner, N.: On probabilis-
tic checking in perfect zero knowledge. In: Electronic Colloquium on Computational Complexity
(ECCC). No. 156 (2016)

17. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive oracle proofs
with constant rate and query complexity. In: ICALP (2017)

18. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive oracle proofs with
constant rate and query complexity. In: 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland (2017)

19. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In: CRYPTO (2013)

20. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Trans-
parent succinct arguments for R1CS. Cryptology ePrint Archive, Report 2018/828 (2018),
https://eprint.iacr.org/2018/828

21. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Theory of Cryptography
Conference (2016)

22. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs of proximity,
shorter PCPs, and applications to coding. SIAM Journal on Computing 36(4), 889–974 (2006)

23. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs of proximity,
shorter PCPs, and applications to coding. SIAM Journal on Computing 36(4), 889–974 (2006)

24. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to suc-
cinct non-interactive arguments of knowledge, and back again. In: Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012 (2012)

25. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive argu-
ments via linear interactive proofs. In: Theory of Cryptography (2013)

26. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended
abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2-4, 1988, Chicago, Illinois, USA (1988)

27. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more
efficient obfuscation. In: EUROCRYPT (2017)

27

https://eprint.iacr.org/2018/828

28. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-prover inter-
active proofs. In: EUROCRYPT (2018)

29. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting. In: EUROCRYPT (2016)

30. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-
knowledge proofs for arithmetic circuit satisfiability. In: ASIACRYPT (2017)

31. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree polynomials. In:
Proc. of Public-Key Cryptography (2018)

32. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and extensions. In: CCS
(2016)

33. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Efficient
range proofs for confidential transactions. Cryptology ePrint Archive, Report 2017/1066 (2017)

34. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC (2013)
35. Chakrabarti, A., Cormode, G., McGregor, A., Thaler, J.: Annotations in data streams. ACM

Transactions on Algorithms 11(1), 7 (2014)
36. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof, A.: Fast large-

scale honest-majority MPC for malicious adversaries. In: CRYPTO (2018)
37. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming in-

teractive proofs. In: ITCS (2012)
38. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive proofs. Pro-

ceedings of the VLDB Endowment 5(1), 25–36 (2011)
39. Corrigan-Gibbs, H., Boneh, D.: Prio: Private, robust, and scalable computation of aggregate

statistics. In: NSDI (2017)
40. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An anonymous messaging system handling

millions of users. In: Symposium on Security and Privacy (2015)
41. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Za-

hur, S.: Geppetto: Versatile verifiable computation. In: 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015 (2015)

42. Couteau, G.: A note on the communication complexity of multiparty computation in the corre-
lated randomness model. IACR Cryptology ePrint Archive 2018, 465 (2018)

43. Damgård, I., Luo, J., Oechsner, S., Scholl, P., Simkin, M.: Compact zero-knowledge proofs of
small Hamming weight. In: PKC (2018)

44. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In:
CRYPTO 2007 (2007)

45. Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for 2-party secure
computation, or: Gate-scrambling revisited. In: CRYPTO (2017)

46. Eerikson, H., Orlandi, C., Pullonen, P., Puura, J., Simkin, M.: Use your brain! arithmetic 3pc
for any modulus with active security. IACR Cryptology ePrint Archive 2019, 164 (2019)

47. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost
NP-complete. In: FOCS (1991)

48. Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive protocols. Theo-
retical Computer Science 134(2), 545–557 (1994)

49. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP.
In: STOC (2008)

50. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computa-
tion for malicious adversaries and an honest majority. In: EUROCRYPT (2017)

51. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs
without PCPs. In: CRYPTO (2013)

52. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness
theorem for protocols with honest majority. In: STOC (1987)

53. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for
muggles. In: STOC (2008)

54. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive proofs for
Muggles. Journal of the ACM 62(4), 27 (2015)

55. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems.
SIAM Journal on Computing 18(1), 186–208 (1989)

56. Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communication from cross-
checking. IACR Cryptology ePrint Archive 2018, 216 (2018)

57. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Advances in Cryp-
tology - ASIACRYPT 2010 - 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings (2010)

58. Groth, J.: On the size of pairing-based non-interactive arguments. In: EUROCRYPT (2016)
59. Gur, T., Rothblum, R.D.: A hierarchy theorem for interactive proofs of proximity. In: 8th Inno-

vations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley,
CA, USA (2017)

60. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Conference
on Computational Complexity (2007)

61. Kalai, Y.T., Raz, R.: Interactive PCP. In: ICALP (2008)
62. Kalai, Y.T., Rothblum, R.D.: Arguments of proximity. In: CRYPTO (2015)

28

63. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their
applications. In: ASIACRYPT (2010)

64. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications
to post-quantum signatures. Tech. rep., Cryptology ePrint Archive, Report 2018/475 (2018)

65. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC (1992)
66. Klauck, H.: Rectangle size bounds and threshold covers in communication complexity. In: Con-

ference on Computational Complexity (2003)
67. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: Proceedings of the 2018

ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, United King-
dom, July 23-27, 2018 (2018)

68. Kushilevitz, E.: Communication complexity. In: Advances in Computers, vol. 44 (1997)
69. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with ma-

licious adversaries and an honest-majority. In: ACM SIGSAC Conference on Computer and
Communications Security, CCS (2017)

70. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In: Theory of Cryptography Conference (2012)

71. Micali, S.: CS proofs. In: FOCS (1994)
72. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: The garbled

circuit approach. In: ACM SIGSAC Conference on Computer and Communications Security,
CCS (2015)

73. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. https:
//arxiv.org/abs/1812.10917 (2018)

74. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority MPC by batchwise
multiplication verification. In: ACNS (2018)

75. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EURO-
CRYPT (1999)

76. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable computa-
tion. In: Symposium on Security and Privacy (2013)

77. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computa-
tion. Commun. ACM 59(2), 103–112 (2016)

78. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegat-
ing computation. In: Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing (2016)

79. Rothblum, G.N., Vadhan, S.P.: Are PCPs inherent in efficient arguments? Computational Com-
plexity 19(2), 265–304 (2010)

80. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash:
Decentralized anonymous payments from Bitcoin. In: Symposium on Security and Privacy (2014)

81. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the conflict
between generality and plausibility in verified computation. In: EuroSys (2013)

82. Setty, S.T., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems for out-
sourced computation practical (sometimes). In: NDSS (2012)

83. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)
84. Sudan, M.: Probabilistically checkable proofs. Communications of the ACM 52(3), 76–84 (2009)
85. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without

trusted setup (2018)
86. Williams, R.: Strong ETH breaks with Merlin and Arthur: Short non-interactive proofs of batch

evaluation. arXiv preprint arXiv:1601.04743 (2016)
87. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Verifying arbitrary

SQL queries over dynamic outsourced databases. In: Symposium on Security and Privacy (2017)
88. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-knowledge version

of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017)

29

https://arxiv.org/abs/1812.10917
https://arxiv.org/abs/1812.10917

	Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs

