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Abstract. We provide generic and black box transformations from any
chosen plaintext secure Attribute-Based Encryption (ABE) or One-sided
Predicate Encryption system into a chosen ciphertext secure system. Our
transformation requires only the IND-CPA security of the original ABE
scheme coupled with a pseudorandom generator (PRG) with a special
security property.
In particular, we consider a PRG with an n bit input s ∈ {0, 1}n and
n · ` bit output y1, . . . , yn where each yi is an ` bit string. Then for a
randomly chosen s the following two distributions should be computa-
tionally indistinguishable. In the first distribution rsi,i = yi and rs̄i,i is
chosen randomly for i ∈ [n]. In the second distribution all rb,i are chosen
randomly for i ∈ [n], b ∈ {0, 1}.
We show that such PRGs can be built from either the computational
Diffie-Hellman assumption (in non-bilinear groups) or the Learning with
Errors (LWE) assumption (and potentially other assumptions). Thus,
one can transform any IND-CPA secure system into a chosen ciphertext
secure one by adding either assumption. (Or by simply assuming an
existing PRG is hinting secure.) In addition, our work provides a new
approach and perspective for obtaining chosen ciphertext security in the
basic case of public key encryption.

1 Introduction

In Attribute-Based Encryption [42] (ABE) every ciphertext CT that encrypts a
message m is associated with an attribute string x, while each secret, as issued by
an authority, will be associated with a predicate function C. A user with a secret
key sk that is associated with function C will be able to decrypt a ciphertext
associated with x and recover the message if and only if C(x) = 1. Additionally,
security of ABE systems guarantees that an attacker with access to several keys
cannot learn the contents of an encrypted message so long as none of them are
so authorized.
? Supported by NSF CNS-1908611, CNS-1414082, DARPA SafeWare and Packard
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Since the introduction of Attribute-Based Encryption and early construc-
tions [26] over a decade ago, there have been many advances in the field rang-
ing from supporting expressive functionality [23,6], to techniques for adaptive
security[44,30,37,32,1,45,12], short sized ciphertexts[2], multi-authority [10,11,31]
and partially hiding attributes [24,25,46] to name just a few. In almost all of
these cases and in most other papers, the treatment of ABE focused on the
chosen plaintext (IND-CPA) definition of ABE. This is despite the fact that
chosen ciphertext security [36,40,13] — where the attacker can make oracle de-
cryption queries to keys it does not have — is arguably the right definition of
security for the same reasons it is the right definition for standard public key
cryptography[43]. Likely, most of these works target IND-CPA security since the
authors already have their hands full with putting forth new concepts and tech-
niques in manuscripts that often run for many pages. In these circumstances
it seems reasonable for such works to initially target chosen plaintext defini-
tions and then for later works to circle back and build toward chosen ciphertext
security.

Unfortunately, closing the loop to chosen ciphertext security can be tricky
in practice. First, there are a rather large and growing number of ABE con-
structions. Writing papers to address moving each of these to chosen ciphertext
security seems burdensome to authors and program committees alike. One line of
work [26,47,34,4] to mediate this problem is to identify features in ABE construc-
tions, which if present mean that CPA security implies chosen ciphertext security.
Yamada et. al [47] showed that certain delegability or verifiability properties
in ABE systems imply chosen ciphertext security by the Canetti-Halevi-Katz[9]
transformation.

Their generality, however, is limited by the need to manually inspect and
prove that each construction has such a property. In fact, many schemes might
not have these properties. Recent trends for both functionality and proofs tech-
niques might actually work against these properties. For example, an ABE
scheme has the verification property roughly if it is possible to inspect a ci-
phertext and determine if it is well formed and what keys can decrypt it. This
property emerged naturally in many of the pairing-based schemes prominent at
the time, but is less obvious to prove in LWE-based constructions and actu-
ally can run contrary to the predicate encryption goal of hiding an attribute
string x from users that cannot decrypt. See for example the one-sided predicate
encryption constructions of [24,25,46].

If we desire a truly generic transformation to chosen ciphertext security, then
there are essentially two pathways available. The first option is to apply some
variant of the Fujisaki-Okamoto [20] transformation (first given for transforming
from IND-CPA to IND-CCA security in public key encryption). Roughly, the en-
cryption algorithm will encrypt as its message the true message m appended with
a random bitstring r using the random coins H(r) where H is a hash function
modeled as a random oracle. The CCA-secure decryption algorithm will apply
the original decryption algorithm to a ciphertext CT and recover m′|r′. Next, it
re-encrypts the ciphertext under H(r′) to get a ciphertext CT′ and outputs the
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message if CT = CT′; otherwise it rejects. The upside of this approach is that
the added overhead is fairly low as it just adds one additional call to encryption
as part of the decryption routine. On the downside the security analysis of this
technique appears intrinsically tied to the random oracle model [3].

The second option is to augment encryption by appending a non-interactive
zero knowledge proof [5] that a ciphertext was well formed. This approach has
been well studied and explored in the context of standard public key encryp-
tion [36] and should translate to the ABE context. Additionally, there are stan-
dard model NIZK proof assumptions under factoring and pairing-based and lat-
tice based [38] assumptions.3 A drawback of this approach is that applying any
generic gate by gate NIZK to an encryption system will be quite expensive in
terms of computational overhead— this will be needed for any generic conver-
sion.

1.1 Our Contribution

In this work we provide a black box transformation for chosen ciphertext security
of any ABE or one-sided predicate encryption system.4

Our transformation requires only the existence of a IND-CPA secure ABE
system as well as a pseudorandom generator (PRG) with a special security prop-
erty which we call the hinting property. This special security property can either
be assumed for an “ordinary” (e.g., AES-based) PRG or provably obtained from
either the Computational Diffie-Hellman assumption or the Learning with Errors
assumption. Our transformation increases ciphertext size by roughly a factor of
the security parameter — it requires 2 · n sub-ciphertexts for a parameter n.
Additionally, it requires about 2n additional encryptions of the original system
for both the new encryption and decryption routines. While this overhead is an
increase over the original CPA system and will likely incur more overhead than
hand-tailored CCA systems, it is a significant performance improvement over
NIZKs that operate gate by gate over the original encryption circuit.

We also wish to emphasize that our transformation applies to ordinary pub-
lic key encryption as well as ABE. While chosen ciphertext security for PKE
has been known for sometime from the CDH and LWE assumptions, we believe
that our work provides new insights into the problem and might lead to further-
ing the understanding of whether IND-CPA security ultimately implies chosen
ciphertext security.

3 The realization of NIZKs from the Learning with Errors assumption is a very recent
and exciting development[38] and occured after the initial posting of this work.

4 The original definition of predicate encryption [7,27] required hiding whether an
attribute string of a challenge ciphertext was x0 or x1 from an attacker that had a
key C where C(x0) = C(x1). A weaker form of predicate encryption is where this
guarantee is given only if C(x0) = C(x1) = 0, but not when C(x0) = C(x1) = 1.
This weaker form has been called predicate encryption with one-sided security and
anonymous Attribute-Based Encryption. For this paper we will use the term one-
sided predicate encryption.
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Hinting Property for PRGs : Let PRG be a function that maps n bits to (n+1)·n
bits (output to be parsed as n + 1 strings, each of length n). Consider the
following experiment between a challenger and an adversary. The challenger
chooses an n bit string s, computes PRG(s) = z0z1z2 . . . zn (each zi ∈ {0, 1}n).
Next, it chooses n uniformly random strings v1, v2, . . . , vn each from {0, 1}n.
It then constructs a 2 × n matrix M as follows: if the ith bit of s is 0, then
M0,i = zi,M1,i = vi, else M0,i = vi,M1,i = zi.

5 Finally, the challenger either
outputs z0 together with M , or it outputs 2n + 1 uniformly random strings. A
pseudorandom generator is said to satisfy the hinting property if any polynomial
time adversary has negligible advantage in this experiment. Note that the seed
s is used at two places : first to compute the strings z0, z1, z2, . . . , zn, and then
to decide where to place each zi in the matrix M . Hence, the second piece
of information (i.e. the position of zi strings serves as an extra hint on the
PRG). One could simply assume this property of a particular pseudo random
generator. Indeed, this seems rather plausible that ordinary types of PRGs would
have it. Alternately, we show how to construct PRGs that provably have this
property under either the Computational Diffie-Hellman assumption or the LWE
assumption. Our constructions of these PRGs use techniques that closely follow
previous works [15,14,8,16,22] for a related group of primitives going under a
variety of names: Chameleon Encryption, One-Time Signature with Encryption,
Batch Encryption, One Way Function with Encryption. We note that while the
technical innards for the CDH and LWE realizations of our PRG are similar
to the above works, (unlike the above examples) our definition itself does not
attach any new functionality requirements to PRG; it simply demands a stronger
security property.

Next, we present an overview of our CCA construction. As a warm-up, we
will first show how to use any CPA-secure public key encryption (PKE) scheme,
together with hinting PRGs to construct a CCA-1 secure PKE scheme. Recall,
CCA-1 security is a weaker variant of the CCA security game where the adver-
sary is allowed decryption queries only before sending the challenge messages.
After sending the challenge messages, the adversary receives the challenge ci-
phertext, and must send its guess.

CCA-1 secure PKE from CPA-secure PKE and hinting PRGs The construction
also uses a (standard) pseudorandom generator G with sufficiently long stretch.
Let (Setup,Enc,Dec) be any CPA secure scheme, and H : {0, 1}n → {0, 1}(n+1)·n

a hinting PRG. We require the CPA scheme to have two properties which can
be obtained ‘for free’. First, we require that the scheme should have perfect
decryption correctness for most public/secret keys. This can be obtained via the
transformation of [17]. Next, we require that any ciphertext can be decrypted
given the encryption randomness. This is also easily obtained by choosing a
random string r during encryption, and appending a one-time pad of the message
using r.

5 More compactly, Msi,i = zi and Msi,i = vi.
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The setup of our CCA-1 scheme runs the PKE setup 2n times, obtaining 2n
public key/secret key pairs

{
pkb,i, skb,i

}
i∈[n],b∈{0,1}. It also chooses a uniformly

random tag t = t1t2 . . . tn, where each ti is a sufficiently long string. The new
public key consists of the 2n public keys

{
pkb,i

}
i∈[n],b∈{0,1} and tag t, while the

new secret key includes only of n out of the 2n secret keys, namely {sk0,i}i∈[n]
(this secret hiding principle[18] has been used in many CCA constructions, in-
cluding the initial CCA systems [36,13]). To encrypt a message m, the encryption
algorithm first chooses a seed s ← {0, 1}n and computes H(s) = z0z1 . . . zn. It
uses z0 to mask the message m; that is, it computes c = m⊕ z0. The remaining
ciphertext will contain n ‘signals’ that help the decryption algorithm to recover
s bit by bit, which in turn will allow it to compute z0 and hence unmask c.

The ith signal (for each i ∈ [n]) has three components c0,i, c1,i, c2,i. If the ith

bit of s is 0, then c0,i is an encryption of a random string xi using the public
key pk0,i and randomness zi, c1,i is an encryption of 0n using pk1,i (encrypted

using true randomness), and c2,i = G(xi). If the ith bit of s is 1, then c0,i is an
encryption of 0n using public key pk0,i (encrypted using true randomness), c1,i is
an encryption of a random string xi using public key pk1,i and randomness zi, and

c2,i = G(xi)+ti (recall ti is the ith component in the tag). So half the ciphertexts
are encryptions of zero, while the remaining are encryptions of random strings
(with blocks of the hinting PRG output being used as randomness), and the
positioning of the zero/random encryptions reveals the seed s.

The final ciphertext includes the ‘main’ component c, and n signals (c0,i, c1,i, c2,i).
A noteworthy point about the ciphertext: first, the components {c2,i}i serve as
a perfectly-binding commitment to the seed s.

To decrypt, the decryption algorithm first decrypts each c0,i (recall the secret
key is {sk0,i}i∈[n]) to obtain y1y2 . . . yn. It then checks if G(yi) = c2,i. If so, it

guesses that si = 0, else it guesses that si = 1. With this estimate for s, the
decryption algorithm can compute H(s) = z0z1 . . . zn and then compute c ⊕ z0
to learn the message m. While this decryption procedure works correctly, we
would like to prevent malicious decryption queries (made during the CCA/CCA-
1 experiment), and hence the decryption algorithm needs to enforce additional
checks. In particular, the decryption algorithm therefore needs to check that
the guess for s is indeed correct. If the ith bit of s is guessed to be 0, then
the decryption algorithm checks that c0,i is a valid ciphertext - it simply re-
encrypts yi and checks if this equals c0,i. If the ith bit of s is guessed to be 1,
then the decryption algorithm first recovers the messaage underlying ciphertext
c1,i. Note that c1,i should be encrypted using randomness zi, hence using zi, one
can recover message ỹi from c1,i (using the randomness recovery property of the
PKE scheme). It then re-encrypts ỹi and checks if it is equal to c1,i, and also
checks that c2,i = G(ỹi) + ti. Finally, if all these checks pass, the decryption
algorithm outputs z0 ⊕ c.

To summarize, at a very high level, we build a partial trapdoor where the
decryption algorithm will recover some of the coins used for encryption. These are
then used to partially re-encrypt the ciphertext and test for validity. Influenced
by Garg and Hajiabadi[22], we will prove security not by removing the signals
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for each bit position, but by adding misinformation that drowns out the original
signal. Note that to prove security, we need to remove the information of z0 (and
hence information of s) from two places - first, from the commitment {c2,i}i;
second, from the positions where the zi values are used for encrypting. For
the first one, in the proof, we set the challenge tag t∗ such that the signal is
ambiguous at each index. More formally, in the challenge ciphertext c∗0,i is an
encryption of yi, c

∗
1,i is encryption of ỹi, and G(yi) = G(ỹi) + t∗i . Replacing the

encryptions of zeroes with encryptions of these carefully chosen strings involves a
delicate argument, which crucially relies on the perfect correctness of our scheme
(see discussion in Section 4 for more details).

When this is done for all indices, all information about s will be lost from
the message space and we are almost done; however, one loose end remains.
Each ciphertext at position (si, i) will be encrypted under randomness ri which
came from running the pseudorandom generator on s; whereas each ciphertext
at position (s̄i, i) will be encrypted under fresh random coins. To complete the
proof we need a computational assumption that will allow us to change all the
encryption coins to being chosen freshly at random. Here, we use the security of
hinting PRGs, and that completes our proof.

CCA Security To achieve CCA security, we need to make a few tweaks to the
above scheme. The setup algorithm also chooses n pairwise independent hash
functions h1, h2, . . . , hn. The encryption algorithm chooses a signing/verification
key for a (one-time) signature scheme. Next, instead of using the tag t from
the public key, it sets ti = hi(vk) (where vk is the verification key). Finally, the
encryption algorithm computes a signature on all the ciphertext components, and
the final ciphertext consists of all these components together with the signature
and the verification key. This idea of using signatures to go from ‘tag-based’
security to CCA security has been used in several previous CCA constructions,
starting with the work of [28]. To prove security, we first ensure that none of the
decryption queries correspond to the challenge ciphertext’s verification key (this
follows from the security of the signature scheme). After this point, the proof
follows along the lines of the CCA-1 scheme.

Moving to Attribute Based Encryption/Predicate Encryption - For ABE/PE,
the scheme is altered as follows. First, the public key consists of n ABE/PE
public keys and n PKE public keys. Let pk0,i denote the ith ABE/PE public

key, and pk1,i the ith PKE public key. The master secret key only consists of the
n ABE/PE master secret keys. The main difference in the encryption algorithm
is that the ciphertexts c0,i are now ABE/PE ciphertexts. Suppose we want to
encrypt message m for attribute x. Then m is masked using z0 as before, and the
c0,i component is an encryption of zero/random message for attribute x using
public key pk0,i and randomness being truly random/zi, depending on the ith

bit of seed s.
We conclude by remarking that while this work focuses on Attribute-Based

Encryption and One-sided Predicate Encryption, we believe our transformation
could apply to other specialized forms of encryption. For example, we believe
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it should immediately translate to any secure broadcast encryption [19] sys-
tem. As another example, we believe our technique should also apply to ABE
systems that are IND-CPA secure under a bounded number of key generation
queries. Our technique, however, does not appear to apply to standard predi-
cate encryption as defined in [7,27] (notions very similar to full blown functional
encryption). The core issue is that to test the validity of a ciphertext our decryp-
tion algorithm needs to obtain the attribute string x to perform re-encryption.
In one-sided predicate encryption, if a user has a secret key for C and C(x) = 1
we essentially give up on hiding x and allow this to be recovered; whereas for
full hiding we might want to still hide information about x even if C(x) = 1.

Finally, we note that even if we cast the notions of ABE aside our work might
provide another path to exploring the longstanding open problem of achieving
chosen ciphertext security from chosen plaintext security. The primary barrier
is in how to achieve a PRG with this hinting security.

1.2 Constructions of Hinting PRGs

Our realizations of hinting PRG largely follow in line with recent works [15,14,8,16,22].
In particular, our CDH realization follows closely to [15] and our LWE realiza-
tion to [8,16]. It may have been possible to build our hinting PRG from one
of the previous abstractions, but we chose to provide direct number theoretic
realizations. We believe that one important distinction is that our hinting PRG
is simply a PRG with stronger security properties; unlike the above abstractions
our definition in of itself does not ask for expanded functionality. An intrigu-
ing open question is if this can be leveraged to obtain further instances with
provable security. Below, we provide a high level description of our hinting PRG
construction based on the DDH assumption.

In this work, we construct hinting PRG with setup. The setup algorithm
outputs public parameters, which are then used for evaluating the PRG. For
simplicity, here we assume the PRG maps n bits to n2 bits. Let p be an n bit
prime, and G a group of order p. The setup algorithm first chooses 2n random
group elements {gi,b} and 2n random integers {ρi,b} from Zp. Next, it uses these
group elements and integers to publish 2n tables, and each table has 2n entries.
Let us consider the (i, b)− th table. In this table, the (i, b)− th entry is ⊥; and
for all (k, β) 6= (i, b), the (k, b)th entry is g

ρi,b
k,β .

Let us now consider the evaluation procedure. The PRG evaluation on input
x = x1x2 . . . xn wil output n group elements, where the ith one is derived from
the (i, xi)thtable as follows - compute product of elements (in table (i, xi)) at po-
sition (k, xk). More formally, the ith group element in the output is (

∏
gk,xk

)
ρi,b .

To prove security, we use the DDH assumption to argue that given all the
2n tables in the public parameters, it will still be hard to learn g

ρi,b
i,b , for all

(i, b). There are a few subtleties though; in particular, we also need a ‘lossiness’
argument for the proof to work. We refer the reader to the full version of our
paper.
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1.3 Additional Comparisons

It is instructive to take a closer look at how our work relates to and builds upon
the trapdoor function construction of Garg and Hajiabadi[22]. Briefly and in
our terminology, Garg and Hajiabadi gave a framework where the evaluation
algorithm chooses an input s ∈ {0, 1}n and use this to first produces a value y
that produces part of the output. Next, for each position (si, i) the evaluation
algorithm produces a signal using s and the public parameters of the TDF using
a primitive called “one way function with encryption”. At the opposite position
(s̄i, i) the evaluation algorithm outputs a random string ri of sufficient length.
With very high probability the random string zi will not correspond to the
valid signal for y at position (s̄i, i). The inversion algorithm will use knowledge
of the TDF secret key plus y to go recover the input s bit by bit. At each
position i if a signal is present at (0, i) it records si = 0 and sets si = 1 if
the signal is at (1, i). If the signal is at both 0 and 1, then recovery fails. One
can observe that for almost all choices of public parameters there exist some
valid inputs that will cause failure on inversion. To prove security the reduction
algorithm at each position change the string zi from random to a signal under
y. The security properties of the one way function with encryption make this
undetectable. Once, this is done the only information about s will be contained
in y. Since many choices of s will map to y, inverting to the chosen s at this
point will be statistically infeasible.

Our work as described above follows a similar approach in that a seed s is
signaled bit by bit. And that a step of proving security is to add misinformation
in by adding a counter signal in at positions (s̄i, i). An important distinction is
that in the work of Garg and Hajiabadi the signaling and inversion process is very
tightly coupled in the one way function with encryption primitive. One could
imagine trying to build an Attribute-Based version of one way function with
encryption and then try to yield a CCA encryption from the resulting trapdoor.
This runs into two problems. First, it would require a tailored construction for
each type of ABE scheme that we want and then we are back to hacking CCA
into each type of ABE variant. Second, since the GH scheme allows for ambiguous
inputs, it can be difficult for mapping into chosen ciphertext secure schemes. In
particular, this issue caused GH to need an adaptive version of one way function
with encryption to bridge from TDFs to CCA security and this adaptive version
was not realizable from the CDH assumption.

In our work the signaling strategy is decoupled from the recovery of the
signals. In particular, the form of the signals comes from our computation of
the (non-hinting) PRG, while recovery is realized from simply invoking the ABE
decryption algorithm. We also get perfect correctness since a non-signal will be
an encryption of the all 0’s string. Also, with high probability our setup algorithm
will choose parameters for which it is (information theoretically) impossible to
create ambiguous signals. So once the ABE parameters are setup by an honest
party (and with overwhelming probability, land in a good spot), there will be no
further opportunity to take advantage of conflicting signals by an attacker via a
decryption query.

8



We also believe that it might be interesting to swing some of our techniques
back to the trapdoor function regime. For example, consider the GH TDF, but
where we added values a1, . . . , an to the public parameters. We could modify
the evaluation algorithm such that at position i, the algorithm gives the one-
way function with encryption output ei if si = 0 and gives ei ⊕ ai if si = 1.
This modification would allow us to drop the additional zi values from the GH
construction and make the output of the TDF shorter. In addition, while there
would still be a negligible correctness error, it could be possible to rest this error
solely in the choice of public parameters and for a “good” choice of parameters
there would be no further error from evaluation. This last claim would require
making sure that the ai values were sufficiently long relative to y. We believe
the techniques from [41] can be used here to achieve CCA security.

Independent Work Independently, Garg, Gay and Hajiabadi [21] recently built
upon the work of [22] to build trapdoors from one way function with encryption
that has improved correctness properties. In particular, the base construction of
[21] generates parameters that with high probability will allow inversion on all
inputs, whereas any parameters generated from the [22] construction will always
have inversion failure on some small fraction of inputs. They then build upon
using erasure codes and a “smoothness” property to get CCA secure determinstic
encryption with shorter ciphertexts. In addition, they show a modification to the
Peikert-Waters [39] DDH-based Lossy TDF that gets a better ciphertext rate.
The initial direction of getting better correctness in TDFs is similar to our
“swinging techniques back” comment above, but otherwise the works pursue
separate goals and techniques.

Subsequent Work Subsequent to our work Kitagawa, Matsuda and Tanaka[29]
proposed a variant of our CCA transformation for public key encryption. Their
transformation had two significant differences (along with some minor ones) from
ours. The first is that they showed how to execute the transformation with using
just two public/private key pairs as opposed to the 2n public/private key pairs in
our transformation. In our construction setup we generate (cpa.skb,i, cpa.pkb,i)←
CPA.Setup(1λ) for each b ∈ {0, 1}, i ∈ [n]. They essentially show that one can
replace this with a pair of calls to generate (cpa.skb, cpa.pkb) ← CPA.Setup(1λ)
for each b ∈ {0, 1} where the ‘i’ subscript can be dropped in the construction
and the keys essentially reused. Doing this requires a modified analysis where
the hybrids are reordered. One will first change about half of the ciphertext
components using IND-CPA security of the PKE scheme. Next, the decryption
algorithm will be (undetectably) modified. Finally, IND-CPA security will be
invoked a second time to change the other half of the ciphertexts.

The second major difference is that for the final “tie-off” step in the proof
they will use a symmetric key encryption schem with key-dependent message se-
curity as opposed to a hinting PRG. Like hinting PRGs these encryption schemes
are also realizable from DDH, CDH and LWE, but also contain realizations from
the Learning Parity with Noise (LPN) assumption for certain parameters. We
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remark that these two modifications (shorter keys and using key-dependent mes-
sage security) appear to be orthogonal and one could choose adopt one without
the other.

In other work Lombardi, Quach, Rothblum, Wichs and Wu[33] showed how
to adapt our transformation to achieve a single key secure Attribute-Based En-
cryption scheme with a function hiding property. Suppose that a user has a secret
key for a function f in an ABE system. The function hiding property roughly
states that an attacker with access to decryption oracle cannot learn any more
about what that user’s function f is beyond what must be inherently learnable.
The authors show that this property is sufficient for achieving designated verifier
non-interactive zero knowledge proofs.

1.4 Toward Bridging Chosen Ciphertext Security in PKE

One classical open problem in cryptography is whether chosen plaintext security
implies chosen ciphertext security in standard public key encryption. From a
cursory glance one can see that it is easy to swap out the ABE system from our
construction for a plain old public key encryption system and the same proof
will go through — this time for obtaining chosen ciphertext secure public key
encryption. Thus the “only” barrier for moving from IND-CPA to IND-CCA
security is in the hinting PRG.

An interesting open question is just how strong this barrier is. From our
viewpoint, the hinting security is something that most natural PRGs would
likely have. In trying to understand whether it or something similar could be
built from general assumptions (e.g. PKE or one way functions) it could be useful
to first try to build a separation from our hinting PRG and a standard one. Do
there exist PRGs that do not meet the security definition of hinting PRG?

As a first stab at the problem, one might consider PRGs where there is an
initial trusted setup algorithm that produces a set of public parameters, which
are then used for every subsequent evaluation. In this setting one could imagine
a counterexample where the public parameters produced by the setup algorithm
include an obfuscated program which will assist in breaking the hinting security,
but not be helpful enough to break standard security. Using obfuscation in a
similar manner has been useful for achieving other separation results. If we
consider PRGs that do not allow for such setup, the task appears to be more
challenging. One could try to embed such an obfuscated program in the first
block of the PRG output, but this block would need to still look random for
standard PRG security.

However, as it turns out there is a much simpler way to achieve a separation.
Consider the case where ` = 1 then the identity function on the seed will be a
pseudorandom function for the trivial reason that it does not expand. However,
this function will not be hinting secure. To get a separation with expansion
one can consider a PRG G that takes as input an n bit seed s and outputs
z0z1 . . . zn . . . z2n. Now, let G′ be a function that takes 2n bits as input, and
maps (s′, s) to (z0, s

′
1z1, . . . , s

′
nzn, zn+1, . . . , z2n. One can check thatG′ is a secure

PRG, but is not a hinting PRG.

10



Altogether we believe that our work opens up a new avenue for exploring the
connection of chosen plaintext and ciphertext security.

2 One-sided Predicate Encryption

A predicate encryption (PE) scheme PE , for set of attribute spaces X = {Xλ}λ∈N,
predicate classes C = {Cλ}λ∈N and message spaces M = {Mλ}λ∈N, consists of
four polytime algorithms (Setup,Enc,KeyGen,Dec) with the following syntax.

Setup(1λ) → (pp,msk). The setup algorithm takes as input the security pa-
rameter λ and a description of attribute space Xλ, predicate class Cλ and
message space Mλ, and outputs the public parameters pp and the master
secret key msk.

Enc(pp,m, x)→ ct. The encryption algorithm takes as input public parameters
pp, a message m ∈Mλ and an attribute x ∈ Xλ. It outputs a ciphertext ct.

KeyGen(msk, C) → skC . The key generation algorithm takes as input master
secret key msk and a predicate C ∈ Cλ. It outputs a secret key skC .

Dec(skC , ct) → m or ⊥. The decryption algorithm takes as input a secret key
skC and a ciphertext ct. It outputs either a message m ∈ Mλ or a special
symbol ⊥.

Correctness. A key-policy predicate encryption scheme is said to be correct if
for all λ ∈ N, (pp,msk) ← Setup(1λ), for all x ∈ Xλ, C ∈ Cλ, m ∈ Mλ,
skC ← KeyGen(msk, C), ct← Enc(pp,m, x), the following holds

Correctness for decryptable ciphertexts : C(x) = 1⇒ Pr [Dec(skC , ct) = m] = 1,

Correctness for non-decryptable ciphertexts : C(x) = 0⇒ Pr [Dec(skC , ct) = ⊥] ≥ 1− negl(λ),

where negl(·) are negligible functions, and the probabilities are taken over the
random coins used during key generation and encryption procedures.

Recovery from Randomness Property. A key-policy predicate encryption scheme
is said to have recovery from randomness property if there is an additional algo-
rithm Recover that takes as input public parameters pp, ciphertext ct, string r
and outputs y ∈ (Mλ ×Xλ) ∪ {⊥} and satisfies the following condition: for all
λ ∈ N, (pp,msk) ← Setup(1λ), for all x ∈ Xλ, m ∈ Mλ, ct = Enc(pp,m, x; r),
Recover(pp, ct, r) = (m,x). If there is no (m,x, r) tuple such that ct = Enc(pp,m, x; r),
then Recover(pp, ct, r) =⊥.

Security. In this work, we will be considering predicate encryption systems with
one-sided security. One can consider both security against chosen plaintext at-
tacks and chosen ciphertext attacks. First, we will present one-sided security
against chosen plaintext attacks.
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Definition 1 (One-Sided Security against Chosen Plaintext Attacks).
A predicate encryption scheme PE = (Setup,Enc,KeyGen,Dec) is said to be one-
sided secure against chosen plaintext attacks if for every stateful PPT adversary
A, there exists a negligible function negl(·), such that the following holds:∣∣∣∣∣∣Pr

AKeyGen(msk,·)(ct) = b :
(pp,msk)← Setup(1λ)

((m0, x0), (m1, x1))← AKeyGen(msk,·)(pp)
b← {0, 1}; ct← Enc(pp,mb, xb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) ora-
cle, must satisfy the condition that C(x0) = C(x1) = 0.

The notion of one-sided security against chosen plaintext attacks could al-
ternatively be captured by a simulation based definition [24]. Goyal et al. [25]
showed that if a PE scheme satisfies Definition 1, then it also satisfies the sim-
ulation based definition of [24].

Next, we present the definition for capturing chosen ciphertext attacks on
predicate encryption schemes. Here, we will assume that the key generation
algorithm is deterministic.

Definition 2 (One-Sided Security against Chosen Ciphertext Attacks).
A predicate encryption scheme PE = (Setup,Enc,KeyGen,Dec) with determinis-

tic key generation is said to be one-sided secure against chosen ciphertext attacks
if for every stateful PPT adversary A, there exists a negligible function negl(·),
such that the following event’s probability is at most 1/2 + negl(λ):AKeyGen(msk,·),ODec(msk,·,·)(ct∗) = b :

(pp,msk)← Setup(1λ)
((m0, x0), (m1, x1))← AKeyGen(msk,·),ODec(msk,·,·)(pp)

b← {0, 1}; ct∗ ← Enc(pp,mb, xb)

 .
– the oracle ODec(msk, ·, ·) takes as input a ciphertext ct and a circuit C. It

computes skC = KeyGen(msk, C) and outputs Dec(skC , ct).
– every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle,

must satisfy the condition that C(x0) = C(x1) = 0.
– every post-challenge query (C, ct) made by the adversary A to ODec must

satisfy the condition that either ct 6= ct∗ or if ct = ct∗, then C(x0) = C(x1) =
0.

Remark 1. Note that the above definition addresses chosen ciphertext attacks
against systems with deterministic key generation. An analogous definition for
general schemes (that is, with randomized key generation) would involve main-
taining key handles and allowing the adversary to choose the key to be used
for the decryption queries. We choose the simpler definition since any scheme’s
key generation can be made deterministic by using a pseudorandom function.
In particular, the setup algorithm chooses a PRF key K which is included as
part of the master secret key. To derive a key for circuit C, the algorithm first
computes r = PRF(K,C) and then uses r as randomness for the randomized
key generation algorithm.
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2.1 PE schemes with ‘recovery from randomness’ property

Any PE scheme satisfying one-sided CPA security can be transformed into an-
other PE scheme that is also one-sided CPA secure, and has the ‘recovery from
randomness’ property. The encryption algorithm simply uses part of the ran-
domness to compute a symmetric key encryption of the message and attribute,
with part of the randomness as the encryption key.

More formally, let E = (Setup,Enc,KeyGen,Dec) be a PE scheme that satis-
fies one-sided CPA security (see Definition 1), and let (SKE.Setup,SKE.Enc,SKE.Dec)
be a symmetric key CPA secure encryption schceme. consider the following
scheme E′ = (Setup′,Enc′,KeyGen′,Dec′,Recover), where Setup′ = Setup and
KeyGen′ = KeyGen.

Enc′(pk,m, x): The encryption algorithm first samples three random strings
r1, r2, r3. It computes ct1 = Enc(pk,m, x; r1). Next, it computes ske.sk =
SKE.Setup(1λ; r2). Finally, it computes ct2 = SKE.Enc(ske.sk, (m,x); r3)
and outputs (ct1, ct2).

Dec′(sk, (ct1, ct2)): The decryption algorithm simply decrypts ct1 using sk, and
ignores ct2. It outputs Dec(sk, ct1).

Recover((ct1, ct2), r = (r1, r2, r3)): The recovery algorithm first computes ske.sk =
SKE.Setup(1λ; r2). It outputs y ← SKE.Dec(ske.sk, ct2).

Assuming the symmetric key encryption scheme satisfies perfect correctness,
this PE scheme has perfect recovery from randomness property. To argue CPA
security, we can first use the security of the SKE scheme to switch ct2 to an
encryption of 0|m|+|x|. Then, we can use the one-sided CPA security.

3 Hinting PRGs

A hinting PRG scheme is a PRG with a stronger security guarantee than stan-
dard PRGs. A hinting PRG takes n bits as input, and outputs n · ` output bits.
In this security game, the challenger outputs 2n strings, each of ` bits. In one
scenario, all these 2n strings are uniformly random. In the other case, half the
strings are obtained from the PRG evaluation, and the remaining half are uni-
formly random. Moreover, these 2n strings are output as a 2× n matrix, where
in the ith column, the top entry is pseudorandom if the ith bit of the seed is 0,
else the bottom entry is pseudorandom. As a result, these 2n strings give a ‘hint’
about the seed, and hence this property is stronger than regular PRGs. Note,
if this hint is removed and the top entries in each column were pseudorandom
(and the rest uniformly random), then this can be achieved using regular PRGs.

Below, we define this primitive formally. The informal description above had
two simplifications. First, the definition below considers PRGs with setup (al-
though one can analogously define such a primitive without setup). Second, we
assume the PRG outputs (n + 1) · ` bits, where the first ` bits do not contain
any extra hint about the seed. Finally, for our CCA application, we introduce
some notation in order to represent the n+ 1 blocks of the PRG output. Instead
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of describing the PRG as a function that outputs (n + 1) · ` bits, we have an
evaluation algorithm that takes as input an index i ∈ {0, 1, . . . , n}, and outputs
the ith block of the PRG output.

Let n(·, ·) be a polynomial. A n-hinting PRG scheme consists of two PPT
algorithms Setup,Eval with the following syntax.

Setup(1λ, 1`): The setup algorithm takes as input the security parameter λ,
and length parameter `, and outputs public parameters pp and input length
n = n(λ, `).

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as input the
public parameters pp, an n bit string s, an index i ∈ [n] ∪ {0} and outputs
an ` bit string y.

Definition 3. A hinting PRG scheme (Setup,Eval) is said to be secure if for
any PPT adverasry A, polynomial `(·) there exists a negligible function negl(·)
such that for all λ ∈ N, the following event’s probability is at most 1/2+negl(λ):β ← A

(
pp,

(
yβ0 ,
{
yβi,b

}
i∈[n],b∈{0,1}

))
:

(pp, n)← Setup(1λ, 1`(λ)), s← {0, 1}n,
β ← {0, 1}, y00 ← {0, 1}`, y10 = Eval(pp, s, 0),

y0i,b ← {0, 1}` ∀ i ∈ [n], b ∈ {0, 1},
y1i,si = Eval(pp, s, i), y1i,si ← {0, 1}

` ∀ i ∈ [n]



4 CCA Secure Public Key Encryption Scheme

Let PKECPA = (CPA.Setup, CPA.Enc, CPA.Dec) be a IND-CPA secure public key
encryption scheme with randomness-decryptable ciphertexts and perfect decryp-
tion correctness, S = (ss.Setup, ss.Sign, ss.Verify) a strongly unforgeable one time
signature scheme and HPRG = (HPRG.Setup,HPRG.Eval) a hinting PRG scheme.
We will assume that our encryption scheme has message space {0, 1}λ+1. Let
`PKE(·) be a polynomial repesenting the number of bits of randomness used by
CPA.Enc, and `vk(·) the size of verification keys output by ss.Setup. For sim-
plicity of notation, we will assume `(·) = `PKE(·), `out(λ) = `vk(λ) + 3λ and
PRGλ : {0, 1}λ → {0, 1}`out(λ) a family of secure pseudorandom generators.

We will now describe our CCA secure public key encryption scheme PKECCA

= (CCA.Setup, CCA.Enc, CCA.Dec) with message space Mλ = {0, 1}`(λ). For
simplicity of notation, we will skip the dependence of ` and `out on λ.

CCA.Setup(1λ): The setup algorithm performs the following steps.

1. It chooses (HPRG.pp, 1n)← HPRG.Setup(1λ, 1`).
2. It chooses 2n different PKECPA keys. Let (cpa.skb,i, cpa.pkb,i)← CPA.Setup(1λ)

for each b ∈ {0, 1}, i ∈ [n].
3. It then chooses ai ← {0, 1}`out for each i ∈ [n] and B ← {0, 1}`out .
4. It sets cca.pk =

(
HPRG.pp, B,

(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
and cca.sk =

(cpa.sk0,i)i∈[n].
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CCA.Enc(cca.pk,m, x): Let cca.pk =
(
HPRG.pp, B,

(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
.

The encryption algorithm does the following:

1. It first chooses s← {0, 1}n. It sets c = HPRG.Eval(HPRG.pp, s, 0)⊕m.

2. Next, it chooses signature keys (ss.sk, ss.vk)← ss.Setup(1λ).

3. For each i ∈ [n], it chooses vi ← {0, 1}λ and ri ← {0, 1}`, sets r̃i =
HPRG.Eval(HPRG.pp, s, i).

4. Next, for each i ∈ [n], it does the following:

– If si = 0, it sets c0,i = CPA.Enc(cpa.pk0,i, 1|vi; r̃i), c1,i = CPA.Enc(cpa.pk1,i, 0
λ+1; ri)

and c2,i = PRG(vi).
– If si = 1, it sets c0,i = CPA.Enc(cpa.pk0,i, 0

λ+1; ri), c1,i = CPA.Enc(cpa.pk1,i, 1|vi; r̃i)
and c2,i = PRG(vi) + ai +B · ss.vk.6.

5. Finally, it setsM =
(
c, (c0,i, c1,i, c2,i)i∈[n]

)
, computes σ ← ss.Sign(ss.sk,M)

and outputs (ss.vk,M, σ) as the ciphertext.

CCA.Dec(cca.sk, cca.pk, cca.ct): Let the ciphertext cca.ct be parsed as
(
ss.vk,M =

(
c, (c0,i, c1,i, c2,i)i∈[n]

)
, σ
)

and cca.sk =
(

(cpa.sk0,i)i∈[n]

)
. The decryption algorithm does the following:

1. It first verifies the signature σ. It checks if ss.Verify(ss.vk,M, σ) = 1, else
it outputs ⊥.

2. Next, the decryption algorithm computes d = PKE.Find(cca.pk, cca.sk,
cca.ct) (where PKE.Find is defined in Figure 1), and outputs PKE.Check(cca.pk,
cca.ct, d) (where PKE.Check is defined in Figure 2).

PKE.Find(cca.pk, cca.sk, cca.ct)

Inputs: Public Key cca.pk =
(

HPRG.pp, B,
(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
Secret Key cca.sk = (cpa.sk0,i)i∈[n]

Ciphertext cca.ct =
(

ss.vk,M =
(
c, (c0,i, c1,i, c2,i)i∈[n]

)
, σ
)

Output: d ∈ {0, 1}n

– For each i ∈ [n], do the following:
1. Let mi = CPA.Dec(cpa.sk0,i, c0,i).
2. If mi = 1|vi and PRG(vi) = c2,i, set di = 0. Else set di = 1.

– Output d = d1d2 . . . dn.

Fig. 1. Routine PKE.Find

6 Here, we assume the verification key is embedded in F2`out , and the addition and
multiplication are performed in F2`out . Also, the function h(x) = ai +B ·x serves as
a pairwise independent hash function.
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PKE.Check(cca.pk, cca.ct, d)

Inputs: Public Key cca.pk =
(

HPRG.pp, B,
(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
Ciphertext cca.ct =

(
ss.vk,M =

(
c, (c0,i, c1,i, c2,i)i∈[n]

)
, σ
)

d ∈ {0, 1}n

Output: msg ∈ {0, 1}`

– Let flag = true. For i = 1 to n, do the following:
1. Let r̃i = HPRG.Eval(HPRG.pp, d, i).
2. If di = 0, let m ← CPA.Recover(cpa.pk0,i, c0,i, r̃i). Perform

the following checks. If any of the checks fail, set flag = false
and exit loop.
• m 6=⊥.
• CPA.Enc(cpa.pk0,i,m; r̃i) = c0,i.
• m = 1|v and PRG(v) = c2,i.

3. If di = 1, let m ← CPA.Recover(cpa.pk1,i, c1,i, r̃i). Perform
the following checks. If any of the checks fail, set flag = false
and exit loop.
• m 6=⊥.
• CPA.Enc(cpa.pk1,i,m; r̃i) = c1,i.
• m = 1|v and c2,i = PRG(v) + ai +B · ss.vk.

– If flag = true, output c ⊕ HPRG.Eval(HPRG.pp, d, 0). Else output
⊥.

Fig. 2. Routine PKE.Check

4.1 Discussion

We will now make a few observations about our construction and then proceed
to give a brief overview our proof that appears in the next subsection.

First, for each i ∈ [n] if si = 0 the encryption algorithm will choose a random
vi and ‘signal’7 that this bit is a 0 by encrypting 1|vi to the position (0, i) and
giving c2,i = PRG(vi) in the clear. In the opposite position of (1, i) it will encrypt
the all 0’s string. Likewise, if si = 1 it will signal a 1 by encrypting 1|vi to the
position (1, i) and giving c2,i = PRG(vi) + ai + B · ss.vk in the clear. With all
but negligible probability it is impossible to signal both 0 and 1 simultaneously
for an index i. This follows from the fact that ai is chosen randomly and that
the space of verification keys is much smaller than 2`out(λ). We observe that this
argument has some flavor of Naor’s bit commitment scheme [35].

Second, we observe that even though one is supposed to encrypt the all
0’s string to position (s̄i, i) the PKE.Find routine will not immediately quit if
discovers something else. Instead it simply sets di = 0 if decryption outputs 1|vi
and c2,i = PRG(vi); otherwise it sets di = 1. Thus, the decryption routine may

7 By signaling, we mean that any party that has the secret key for decryption can learn
the bits of s one after another, by using the ciphertext components c0,i, c1,i, c2,i.
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refrain from immediately aborting even though when it “knows” the ciphertext
was not formed entirely correctly. This will be critical to a proof step.

Our proof of security will be organized as a sequence of security games which
we show to be indistinguishable. In the first proof step we apply a standard
argument using strongly unforgeable signatures to change the decryption oracle
to reject all ciphertexts corresponding to ss.vk∗ where ss.vk∗ is the verification
key used by the challenge ciphertext.

Next, for each i we choose the public parameter values ai such that it is
possible for one to signal both 0 and 1 at index i, but that this ambiguity is only
possible for a ciphertext corresponding to ss.vk∗. To do this it chooses uniformly
random wi ← {0, 1}λ, and sets ai = PRG(v∗i ) − PRG(wi) − ss.vk∗ · B if s∗i = 0,
else ai = PRG(wi) − PRG(v∗i ) − ss.vk∗ · B. This change can be shown to be
undetectable by a standard pseudorandom generator argument. The effect of
this change is that it allows the possibility of ambiguous signaling at both 0 and
1 in the challenge ciphertext. However, for all possible decryption queries where
ss.vk 6= ss.vk∗ this remains impossible.

Our next goal will be to use the IND-CPA security of the underlying PKE
scheme to introduce signals on the opposite path s∗. To do this, however, for all
i where s∗i = 1 we must first change the decryption routine to use cpa.sk1,i to
decrypt the sub-ciphertext at position (1, i) instead of using cpa.sk0,i (at position
(0, i)). Consider a particular ciphertext query and let di be the bit reported by
the original find algorithm on that ciphertext query and d′i be the bit reported
by a the new decryption procedure on that same ciphertext. We want to argue
that if di 6= d′i then the PKE.Check procedure will abort and output ⊥ on both
encryptions. The first possibility is that di = 0 and d′i = 1; however, that should
be information theoretically impossible as it would entail signaling both a 0
and 1 for a query with ss.vk 6= ss.vk∗. The other possibility is that di = 1 and
d′i = 0; i.e. that there is not a signal present at either side. In this case the first
decryption routine will have di = 1, but then when running PKE.Check it will
fail to find a signal at position (1, i) and abort. Likewise, the second decryption
routine will have d′i = 0, but then fail to find a signal at position (0, i), so both
routines will behave identically in this case as well.

Once the oracle decryption is set to follow the seed s∗ we can straightfor-
wardly use CPA security to introduce ambiguous signals in the messages for all
positions (s∗i, i). Once this change is made we can change the oracle decryption
routine again. This time it will only decrypt at positions (1, i) for all i ∈ [n]
and only use cpa.sk1,i. A similar argument to before can be applied to make this
change.

All information about s is gone except to the lingering amount in the random
coins used to encrypt. We can immediately apply the hinting PRG to change
to a game where these values can be moved to be uniformly at random. At this
point the message will be hidden.
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4.2 Security Proof

We will now show that the above construction satisfies the CCA security defi-
nition. Our proof proceeds via a sequence of hybrids. First, we will describe all
hybrids, and then show that the hybrids are computationally indistinguishable.

Hybrids

Hybrid H0 : This corresponds to the original security game.

– Setup Phase

1. The challenger first chooses (HPRG.pp, 1n)← HPRG.Setup(1λ, 1`).
2. Next it chooses 2n different PKECPA keys. Let (cpa.skb,i, cpa.pkb,i) ←

CPA.Setup(1λ) for each i ∈ [n], b ∈ {0, 1}.
3. The challenger chooses s∗ ← {0, 1}n, v∗i ← {0, 1}λ for each i ∈ [n], and

(ss.sk∗, ss.vk∗) ← ss.Setup(1λ). It sets r̃i
∗ = HPRG.Eval(HPRG.pp, s∗, i).

(These components will be used during the challenge phase.)
4. It then chooses ai ← {0, 1}`out for each i ∈ [n] and B ← {0, 1}`out .
5. It sends cca.pk =

(
HPRG.pp, B,

(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
to A, and sets

the secret key cca.sk = (cpa.sk0,i)i∈[n].

– Pre-challenge Query Phase

• Decryption Queries

1. For each query
(
ct =

(
ss.vk,M =

(
c, (c0,i, c1,i, c2,i)i

)
, σ
))

, the chal-
lenger first checks the signature σ.

2. Next, the challenger first computes d = PKE.Find (cca.pk, cca.sk, cca.ct).
3. It outputs PKE.Check (cca.pk, cca.ct, d).

– Challenge Phase
1. The adversary sends two challenge messages (m∗0,m

∗
1).

2. The challenger chooses a bit β ∈ {0, 1}.
3. It sets c∗ = HPRG.Eval(HPRG.pp, s, 0)⊕m∗β .
4. It sets (c∗0,i, c

∗
1,i, c

∗
2,i) as follows.

• If s∗i = 0, it sets c∗0,i = CPA.Enc(cpa.pk0,i, 1|v∗i ; r̃i
∗), c∗1,i ← CPA.Enc(cpa.pk1,i, 0

λ+1)
and c∗2,i = PRG(v∗i ).

• If s∗i = 1, it sets c∗0,i ← CPA.Enc(cpa.pk0,i, 0
λ+1), c∗1,i = CPA.Enc(cpa.pk1,i, 1|v∗i ; r̃i

∗)
and c∗2,i = PRG(v∗i ) + ai +B · ss.vk∗.

5. Finally, it computes a signature σ∗ on M∗ =
(
c∗,
(
c∗0,i, c

∗
1,i, c

∗
2,i

))
using

ss.sk∗ and sends (ss.vk∗,M∗, σ∗) to A.
– Post-challenge Query Phase

• Decryption Queries These are handled as in the pre-challenge phase,
with the restriction that all queries (ct, C) must satisfy that ct 6= ct∗.

– Finally, the adversary sends its guess b.

Hybrid H1 : This hybrid is similar to the previous one, except that during the
decryption queries, the challenger checks if ss.vk = ss.vk∗. If so, it rejects.
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Hybrid H2 : In this hybrid, the challenger changes Step 4 of the setup phase. It
chooses uniformly random wi ← {0, 1}λ, and sets ai = PRG(v∗i ) − PRG(wi) −
ss.vk∗ ·B if s∗i = 0, else ai = PRG(wi)− PRG(v∗i )− ss.vk∗ ·B.

Hybrid H3 : This hybrid is similar to the previous one, except that the challenger
modifies the way decryption queries are handled. Instead of using PKE.Find, the
challenger uses PKE.Find-1 (defined in Figure 3). The PKE.Find routine decrypts
only the c0,i values. If decryption works, it guesses di = 0, else it guesses di = 1.
The PKE.Find-1 routine decrypts either c0,i or c1,i, depending on the ith bit of
s∗. Note that the PKE.Check routine is identical in both experiments.

PKE.Find-1(cca.pk,
(
cpa.sks∗i ,i

)
b∈{0,1},i∈[n]

, cca.ct, s∗)

Inputs: Public Key cca.pk =
(

HPRG.pp, B,
(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
Secret Keys

(
cpa.sks∗i ,i

)
i∈[n]

Ciphertext cca.ct =
(

ss.vk,
(
c,M = (c0,i, c1,i, c2,i)i∈[n]

)
, σ
)

String s∗ ∈ {0, 1}n

Output: d ∈ {0, 1}n

– For each i ∈ [n], do the following:
• If s∗i = 0,

1. Let mi = CPA.Dec(cpa.sk0,i, c0,i).
2. If mi = 1|vi and PRG(vi) = c2,i, set di = 0. Else set

di = 1.
• Else if s∗i = 1,

1. Let mi = CPA.Dec(cpa.sk1,i, c1,i).
2. If mi = 1|vi and PRG(vi) + ai + B · ss.vk∗ = c2,i, set

di = 1. Else set di = 0.
– Output d = d1d2 . . . dn.

Fig. 3. Routine PKE.Find-1

Hybrid H4 : In this step, the challenger modifies the challenge ciphertext. For
all i ∈ [n] such that s∗i = 0, the challenger sets c∗1,i ← CPA.Enc(cpa.pk1,i, 1|wi).

Hybrid H5 : In this step, the challenger modifies the challenge ciphertext. For
all i ∈ [n] such that s∗i = 1, the challenger sets c∗0,i ← CPA.Enc(cpa.pk0,i, 1|wi).
8

8 Note that hybrids H4 and H5 could have been clubbed into a single hybrid. We
chose this distinction so that the hybrids for the PKE CCA proof are similar to the
hybrids for our Predicate Encryption security proof.
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Hybrid H6 : This step is similar to the previous one, except for the decryption
queries in the pre-challenge/post-challenge phase. Instead of using PKE.Find-1,
the challenger uses PKE.Find-2 (defined in Figure 4). 9

PKE.Find-2(cca.pk, (cpa.sk1,i)i∈[n] , cca.ct)

Inputs: Public Key cca.pk =
(

HPRG.pp, B,
(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
Secret Keys (cpa.sk1,i)i∈[n]

Ciphertext cca.ct =
(

ss.vk,
(
c,M = (c0,i, c1,i, c2,i)i∈[n]

)
, σ
)

Output: d ∈ {0, 1}n

– For each i ∈ [n], do the following:
1. Let mi = CPA.Dec(cpa.sk1,i, c1,i).
2. If mi = 1|vi and PRG(vi) + ai + B · ss.vk∗ = c2,i, set di = 1.

Else set di = 0.
– Output d = d1d2 . . . dn.

Fig. 4. Routine PKE.Find-2

Hybrid H7 : This hybrid is identical to the previous one, and the only difference
here is change of variable names. In particular, we will swap the variable names
v∗i and wi if s∗i = 1. This change affects the setup phase (where the ai values are
set), and the challenge phase (where we set c∗0,i and c∗1,i). Also, we rename the
r̃i
∗ and r∗i variables to r∗i,0 and r∗i,1, depending on s∗i . For clarity, we present the

entire setup and challenge phase in the full version of our paper.

Hybrid H8 : In this hybrid, the challenger chooses both r∗i,b uniformly at random

from {0, 1}`. It also chooses c∗ uniformly at random.

Analysis Let advxA denote the advantage of an adversary A in Hybrid Hx.

Lemma 1. Assuming ss is a strongly unforgeable one-time signature scheme,
for any PPT adversary A, there exists a negligible function negl(·) such that for
all λ ∈ N, |adv0A − adv1A| ≤ negl(λ).

Proof. This proof follows from the security of ss. The only difference between
these two hybrids is that the challenger, on receiving a decryption query, re-
jects if it contains ss.vk∗. Suppose there exists a PPT adversary A such that

9 We could have simplified this step by using PKE.Find instead of using PKE.Find-2.
However, looking ahead, our proof for ABE/PE systems will require an analogous
PKE.Find-2 routine. Hence, we chose to add this minor additional complication here
as well.
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|adv0A − adv1A| is non-negligible. We can use A to break the security of ss. The
reduction algorithm B receives a verification key vk∗ from the signature scheme’s
challenger. The reduction algorithm chooses all other components by itself. Next,
during the pre-challenge decryption queries, if any decryption query has vk∗ in
it and the signature verification passes, then the reduction algorithm outputs
this as a forgery.

During the challenge phase, the reduction algorithm receives (m∗0,m
∗
1). It

chooses β, and computes M∗ =
(
c∗0,
(
c∗0,i, c

∗
1,i, c

∗
2,i

))
as in H0. Finally, it sends

M∗ to the challenger, and receives signature σ∗. It sends (vk∗,M∗, σ∗) to A.
The adversary then makes polynomially many decryption/key generation

queries. If there exists some decryption query with verification key vk∗ that
verifies, then the reduction algorithm outputs the corresponding message and
signature as a forgery.

Clearly, B′s advantage is at least adv1A − adv2A.

Lemma 2. Assuming PRG is a secure pseudorandom generator, for any PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
|adv1A − adv2A| ≤ negl(λ).

Proof. The proof of this lemma follows from the security of PRG. The only
difference between the two hybrids is the choice of ai. In H1, all ai are chosen
uniformly at random. In H2, the challenger chooses wi ← {0, 1}λ for each i, and
sets ai as either PRG(v∗i )−PRG(wi)− ss.vk∗ ·B or PRG(wi)−PRG(v∗i )− ss.vk∗ ·
B, depending on si. Since wi is not used anywhere else in both these hybrid
experiments, we can use PRG security to argue that any PPT adversary has
nearly identical advantage in H1 and H2.

Lemma 3. Assuming correctness for decryptable ciphertexts for PKE scheme,
for any adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, |adv2A − adv3A| ≤ negl(λ).

Proof. This is an information-theoretic step, and holds for all adversaries (not
necessarily polynomial time). The only difference between these two hybrids is
with respect to the decryption queries. In H2, the challenger uses the routine
PKE.Find to get a string d, and then checks if d is valid (using PKE.Check). In H3,
the challenger uses PKE.Find-1 to compute the string d. In fact, one can prove a
more general statement: note that PKE.Find corresponds to PKE.Find-1 with last
input set to be 0n. We can show that for any two strings s∗ and s′, decryption
using PKE.Find-1(·, ·, ·, s∗) is statistically indistinguishable from decryption using
PKE.Find-1(·, ·, ·, s′). For simplicity, we will present indistinguishability ofH2 and
H3, where in H2, the challenger uses PKE.Find for decryption queries.

We will argue that with overwhelming probability, for any decryption query
ct, either PKE.Find and PKE.Find-1 output the same d, or they output d and d′

respectively but PKE.Check rejects both. In particular, it suffices to show that
there exists a negligible function negl(·) such that for all λ ∈ N, s∗ ∈ [n] and
ss.vk∗, the following event’s probability (denoted by p, parameterized by s∗ and
ss.vk∗) is at most negl(λ):

21




∃ct s.t.

ct = (ss.vk, (c0, (c0,i, c1,i, c2,i)) , σ) , ss.vk 6= ss.vk∗

PKE.Find(pk, sk, ct) = d
PKE.Find-1(pk, sk′, ct, s∗) = d′

PKE.Check(pk, ct, d) 6= PKE.Check(pk, ct, d′)

HPRG.pp← HPRG.Setup(1λ, 1`), B ← {0, 1}`out
v∗i , wi ← {0, 1}λ,

ai = (PRG(v∗i )− PRG(wi)) · (−1)s
∗
i −B · ss.vk∗,

(cpa.pkb,i, cpa.skb,i)← CPA.Setup(1λ)
sk = (cpa.sk0,i)i , sk

′ =
(
cpa.sks∗i ,i

)
i


where the probability is over the random coins used in CCA.Setup. Now, p ≤
p0 + p1, where pb is defined as the following event’s probability:


∃ct s.t.

ct = (ss.vk, (c0, (c0,i, c1,i, c2,i)) , σ) , ss.vk 6= ss.vk∗

PKE.Find(pk, sk, ct) = d
PKE.Find-1(pk, sk′, ct, s∗) = d′

i : first index s.t. s∗i = 1, di = b, d′i = b
PKE.Check(pk, ct, d) 6= PKE.Check(pk, ct, d′)

HPRG.pp← HPRG.Setup(1λ, 1`), B ← {0, 1}`out
v∗i , wi ← {0, 1}λ,

ai = (PRG(v∗i )− PRG(wi)) · (−1)s
∗
i −B · ss.vk∗,

(cpa.pkb,i, cpa.skb,i)← CPA.Setup(1λ)
sk = (cpa.sk0,i)i , sk

′ =
(
cpa.sks∗i ,i

)
i


We will show that pb ≤ negl(·) for both b ∈ {0, 1}. To prove this, let us first

consider the following event:

pPRG = Pr
[
∃ α1, α2 ∈ {0, 1}λ, i ∈ [n], ss.vk s.t. PRG(α1) = PRG(α2) + ai +B · ss.vk

]
where the probability is over the choice of B ← {0, 1}`out and v∗i , wi ← {0, 1}λ.
Then pb ≤ pPRG + p′b, where p′b is like p′b, except for an additional condition that
∀γ, δ,PRG(γ) 6= PRG(δ) + ai + B · ss.vk. It is formally defined as the following
event’s probability:

∃ct s.t.
ct = (ss.vk, (c0, (c0,i, c1,i, c2,i)) , σ) , ss.vk 6= ss.vk∗

PKE.Find(pk, sk, ct) = d
PKE.Find-1(pk, sk′, ct, s∗) = d′

i : first index s.t. s∗i = 1, di = b, d′i = b
∀γ, δ,PRG(γ) 6= PRG(δ) + ai +B · ss.vk

PKE.Check(pk, ct, d) 6= PKE.Check(pk, ct, d′)

HPRG.pp← HPRG.Setup(1λ, 1`), B ← {0, 1}`out
v∗i , wi ← {0, 1}λ,

ai = (PRG(v∗i )− PRG(wi)) · (−1)s
∗
i −B · ss.vk∗,

(cpa.pkb,i, cpa.skb,i)← CPA.Setup(1λ)
sk = (cpa.sk0,i)i , sk

′ =
(
cpa.sks∗i ,i

)
i


Hence, it suffices to show that pPRG ≤ negl(λ), p′0 ≤ negl(λ) and p′1 ≤ negl(λ).

Claim 1 pPRG ≤ negl(λ).

Proof. We will prove a stronger statement: for all ss.vk∗,s∗ and {vi, wi}i∈[n], the

following probability is at most n · 2−λ:

Pr

[
∃ γ, δ ∈ {0, 1}λ, i ∈ [n], ss.vk 6= ss.vk∗ s.t.

PRG(γ) = PRG(δ) + (PRG(vi)− PRG(wi)) · (−1)s
∗
i +B · ss.vk

]
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where the probability is over the choice of B. Fix any integer i ∈ [n]. Consider
the following sets.

S =
{
PRG(x) : x ∈ {0, 1}λ

}
S− =

{
PRG(x)− PRG(y)− (PRG(vi)− PRG(wi)) · (−1)s

∗
i : x, y ∈ {0, 1}λ

}
S−vk = {

(
PRG(x)− PRG(y)− (PRG(vi)− PRG(wi)) · (−1)s

∗
i

)
/(ss.vk− ss.vk∗) :

x, y ∈ {0, 1}λ, ss.vk ∈ {0, 1}`vk}

The set S has size at most 2λ. As a result, the set S− has size at most 22λ. Finally,
the set S−vk has size at most 22λ+`vk . If we choose a uniformly random element
from {0, 1}`out ≡ {0, 1}3λ+`vk , then this element falls in S−vk with probability at
most 2−λ. This concludes our proof.

Claim 2 p′0 = 0.

Proof. This follows from the definitions of PKE.Find, PKE.Find-1 and p′0. Note
that PKE.Find sets di = 0 only if the decrypted value 1|vi satisfies PRG(vi) = c2,i,
and PKE.Find-1 sets di = 1 only if the decrypted value 1|wi satisfies PRG(wi) +
ai + B · ss.vk = c2,i. This, together with the requirement in p′0 that ∀ γ, δ,
PRG(γ) 6= PRG(δ) + ai +B · ss.vk, implies that p′0 = 0.

Claim 3 Assuming correctness for decryptable ciphertexts , p′1 = 0.

Proof Intuition. We will first present an overview of the proof, and discuss a
subtle but important point in the construction/proof.

Let E′1 denote the event corresponding to p′1. For this event to happen, there
exists an index i such that s∗i = 1, and the ith iteration of both PKE.Find
and PKE.Find-1 fail to find a signal (that is, either the decryption fails, or the
PRG check fails). Let d be the string output by PKE.Find, and d′ the string
output by PKE.Find-1 (therefore di = d′i = 1). We need to show that PKE.Check
outputs ⊥ for both d and d′. Suppose PKE.Check does not output ⊥ for d. Then,
this means that there exists a v such that c1,i is a PKE encryption of 1|v and
PRG(v) +ai+B · ss.vk = c2,i. In this case, the ith iteration of PKE.Find-1 should
set d′i = 1, which is a contradiction.

The other case, where PKE.Check does not output ⊥ for d′, is similar. This
means there exists v, x such that c0,i is an encryption of 1|v for attribute x,
C(x) = 1 and PRG(v) = c2,i. Using perfect correctness of the PKE scheme, we
can argue that PKE.Find should have set di = 0, which is a contradiction.

Proof. Suppose s∗i = 1, di = 1, d′i = 0, and PKE.Check outputs different value for
both d and d′. Let r̃i = HPRG.Eval(HPRG.pp, d, i), r̃i

′ = HPRG.Eval(HPRG.pp, d′, i),
m← CPA.Recover(cpa.pk1,i, c1,i, r̃i), m

′ ← CPA.Recover(cpa.pk0,i, c0,i, r̃i
′). Since

PKE.Check outputs different values for d and d′, it does not output ⊥ for at least
one of them in the ith iteration. We will consider two cases.

Case 1: PKE.Check does not output ⊥ for d in the ith iteration: As a result,
m = 1|v, c1,i = CPA.Enc(cpa.pk1,i, m; r̃i) and PRG(v) + ai + B · ss.vk = c2,i.
This means that CPA.Dec(sk1,i, c1,i) = 1|v (by perfect correctness of the PKE
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decryption algorithm). However, this means d′i = 1 (by definition of PKE.Find-1).
Hence Case 1 cannot occur.

Case 2: PKE.Check does not output ⊥ for d′ in the ith iteration: As a result,
m = 1|v, c0,i = CPA.Enc(cpa.pk0,i, m; r̃i), and PRG(v) = c2,i. This means
that CPA.Dec(cpa.sk0,i, c0,i) = 1|v (since we have perfect correctness for PKE
decryption).However, by definition of PKE.Find, di = 0. Hence Case 2 cannot
occur.

Lemma 4. Assuming PKE is IND-CPA secure, for any PPT adversary A, there
exists a negligible function negl(·) such that for all λ ∈ N, |adv3A − adv4A| ≤
negl(λ).

Proof. The only difference in the two hybrids is with respect to the challenge
ciphertext. In H3, the challenger sets c∗1,i to be encryption of 0λ+1 for all i ∈ [n]
such that s∗i = 0. In H4, the challenger sets c∗1,i to be encryption of 1|wi. Note
that the decryption queries require cpa.sk1,i only if s∗i = 1. As a result, using the
IND-CPA security of PKE, it follows that the two hybrids are computationally
indistinguishable.

Lemma 5. Assuming PKE is IND-CPA secure, for any PPT adversary A, there
exists a negligible function negl(·) such that for all λ ∈ N, |adv4A − adv5A| ≤
negl(λ).

Proof. The proof of this lemma is similar to the proof of the previous lemma
(Lemma 4). In H4, the challenger sets c∗0,i to be encryption of 0λ+1 for all i ∈ [n]
such that s∗i = 1. In H5, the challenger sets c∗0,i to be encryption of 1|wi. Note
that the decryption queries require cpa.sk0,i only if s∗i = 0. As a result, using the
IND-CPA security of PKE, it follows that the two hybrids are computationally
indistinguishable.

Lemma 6. Assuming correctness for decryptable ciphertexts for PKE scheme,
for any adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, |adv5A − adv6A| ≤ negl(λ).

Proof. This proof is similar to the proof of Lemma 3. In particular, recall that
the proof of Lemma 3 works for any s∗, s′, and note that PKE.Find-2 simply
corresponds to PKE.Find-1(·, ·, ·, 1n).

Lemma 7. adv6A = adv7A.

Proof. This follows from the definition of the two hybrids. The only difference
between H6 and H7 is that the variable names v∗i and wi are swapped if s∗i = 1.
As a result, any adversary has identical advantage in both hybrids.

Lemma 8. Assuming HPRG satisfies Definition 3, for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, |adv7A− adv8A| ≤
negl(λ).
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Proof. Suppose there exists a PPT adversary A such that |adv7A − adv8A| = ε.
We will use A to build a PPT reduction algorithm B that breaks the security of
HPRG.

The reduction algorithm first receives HPRG.pp and

(
r∗0 ,
(
r∗b,i

)
i∈[n],b∈{0,1}

)
from the challenger. It chooses {v∗i , wi}, (ss.sk∗, ss.vk∗), sets {ai}, chooses B ←
{0, 1}`out ,

{
(cpa.pkb,i, cpa.skb,i)← CPA.Setup(1λ)

}
and sends

(
HPRG.pp, B,

(
ai, cpa.pkb,i

))
to A. Next, it receives decryption queries, which can be handled using {cpa.sk1,i}
(as in H6/H7). For the challenge ciphertext, it chooses β ← {0, 1}, sets c∗0 = m∗b⊕
r∗0 , computes c∗0,i = CPA.Enc(cpa.pk0,i, 1|v∗i ; r∗0,i), c

∗
1,i = CPA.Enc(cpa.pk1,i, 1|wi; r∗1,i),

c∗2,i = PRG(v∗i ) = PRG(w∗i ) + ai +B · ss.vk∗ and finally computes a signature on(
c∗,
(
c∗0,i, c

∗
1,i, c

∗
2,i

))
. It sends the ciphertext to the adversary. The post-challenge

queries are handled as the pre-challenge queries. Finally, the adversary sends its
guess β′. If β 6= β′, the reduction algorithm guesses that all r∗b,i are uniformly
random. This reduction algorithm has advantage ε in the hinting PRG security
game.

Lemma 9. For any adversary A, adv8A = 0.

Proof. Note that in hybrid H8, there is no information about mβ in the challenge
ciphertext, since c∗0 is uniformly random.

5 CCA Secure Predicate Encryption Scheme

Let PredE = (PredE.Setup, PredE.Enc, PredE.KeyGen, PredE.Dec) be a predicate
encryption scheme with randomness-decryptable ciphertexts and one-sided se-
curity against chosen plaintext attacks, PKE = (CPA.Setup, CPA.Enc, CPA.Dec)
an IND-CPA secure public key encryption scheme with randomness-decryptable
ciphertexts, S = (ss.Setup, ss.Sign, ss.Verify) a strongly unforgeable one time sig-
nature scheme and HPRG = (HPRG.Setup,HPRG.Eval) a hinting PRG scheme.
We will assume both our encryption schemes have message space {0, 1}λ+1.
Let `PredE(·) be a polynomial repesenting the number of bits of randomness
used by PredE.Enc, `PKE(·) the number of random bits used by CPA.Enc, and
`vk(·) the size of verification keys output by ss.Setup. For simplicity of nota-
tion, we will assume `(·) = `PredE(·) = `PKE(·),10 `out(λ) = `vk(λ) + 3λ and
PRGλ : {0, 1}λ → {0, 1}`out(λ) a family of secure pseudorandom generators.

We will now describe our CCA-one-sided secure predicate encryption scheme
PredECCA = (PredECCA.Setup, PredECCA.Enc, PredECCA.KeyGen, PredECCA.Dec)
with message spaceMλ = {0, 1}`(λ). For simplicity of notation, we will skip the
dependence of ` and `out on λ.

PredECCA.Setup(1λ): The setup algorithm first chooses (HPRG.pp, 1n)← HPRG.Setup(1λ, 1`).
Next it chooses n different PredE keys and PKE keys. Let (pred.mski, pred.pki)←
PredE.Setup(1λ), (cpa.ski, cpa.pki)← CPA.Setup(1λ) for each i ∈ [n]. It then

10 Alternatively, we could set ` to be max of these two polynomials.
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chooses ai ← {0, 1}`out for each i ∈ [n] and B ← {0, 1}`out . It sets pe.cca.pk =(
HPRG.pp, B, (ai, pred.pki, cpa.pki)i∈[n]

)
and pe.cca.msk = (pred.mski, cpa.ski)i∈[n].

PredECCA.Enc(pe.cca.pk,m, x): Let pe.cca.pk =
(
HPRG.pp, B, (ai, pred.pki, cpa.pki)i∈[n]

)
.

The encryption algorithm first chooses s← {0, 1}n. It sets c0 = HPRG.Eval(HPRG.pp, s, 0)⊕
m. Next, it chooses signature keys (ss.sk, ss.vk)← ss.Setup(1λ). For each i ∈
[n], it chooses vi ← {0, 1}λ and ri ← {0, 1}`, sets r̃i = HPRG.Eval(HPRG.pp, s, i)
and does the following:
– If si = 0, it sets c0,i = PredE.Enc(pred.pki, 1|vi, x; r̃i), c1,i = CPA.Enc(cpa.pki, 0

λ+1; ri)
and c2,i = PRG(vi).

– If si = 1, it sets c0,i = PredE.Enc(pred.pki, 0
λ+1, x; ri), c1,i = CPA.Enc(cpa.pki, 1|vi; r̃i)

and c2,i = PRG(vi) + ai +B · ss.vk.11.

Finally, it sets M =
(
c0, (c0,i, c1,i, c2,i)i∈[n]

)
, computes σ ← ss.Sign(ss.sk,M)

and outputs (ss.vk,M, σ) as the ciphertext.
PredECCA.KeyGen(pe.cca.msk, C): Let pe.cca.msk = (pred.mski, cpa.ski)i∈[n]. The

key generation algorithm computes pred.ski ← PredE.KeyGen(pred.mski, C)

and outputs pe.cca.sk =
(
C, (pred.ski)i∈[n]

)
.

PredECCA.Dec(pe.cca.sk, pe.cca.pk, pe.cca.ct): Let the ciphertext pe.cca.ct be parsed

as
(
ss.vk,M =

(
c0, (c0,i, c1,i, c2,i)i∈[n]

)
, σ
)

and pe.cca.sk =
(
C, (pred.ski)i∈[n]

)
.

The decryption algorithm first verifies the signature σ. It checks if ss.Verify(ss.vk,M, σ) =
1, else it outputs ⊥.
Next, the decryption algorithm computes d = Find(pe.cca.pk, pe.cca.sk,
pe.cca.ct) (where Find is defined in Figure 5), and outputs Check(pe.cca.pk,
pe.cca.ct, C, d) (where Check is defined in Figure 6).

Find(pe.cca.pk, pe.cca.sk, pe.cca.ct)

Inputs: Public Key pe.cca.pk =
(

HPRG.pp, B, (ai, pred.pki, cpa.pki)i∈[n]

)
Secret Key pe.cca.sk = (pred.ski)i∈[n]

Ciphertext pe.cca.ct =
(

ss.vk,M =
(
c0, (c0,i, c1,i, c2,i)i∈[n]

)
, σ
)

Output: d ∈ {0, 1}n

– For each i ∈ [n], do the following:
1. Let mi = PredE.Dec(pred.ski, c0,i).
2. If mi = 1|vi and PRG(vi) = c2,i, set di = 0. Else set di = 1.

– Output d = d1d2 . . . dn.

Fig. 5. Routine Find

11 Here, we assume the verification key is embedded in F2`out , and the addition and
multiplication are performed in F2`out .
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Check(pe.cca.pk, pe.cca.ct, C, d)

Inputs: Public Key pe.cca.pk =
(

HPRG.pp, B, (ai, pred.pki, cpa.pki)i∈[n]

)
Ciphertext pe.cca.ct =

(
ss.vk,M =

(
c0, (c0,i, c1,i, c2,i)i∈[n]

)
, σ
)

Circuit C ∈ Cλ
d ∈ {0, 1}n

Output: msg ∈ {0, 1}`

– Let flag = true. For i = 1 to n, do the following:
1. Let r̃i = HPRG.Eval(HPRG.pp, d, i).
2. If di = 0, let y ← PredE.Recover(pred.pki, c0,i, r̃i). Perform

the following checks. If any of the checks fail, set flag = false
and exit loop.
• y = (m,x) 6=⊥.
• C(x) = 1.
• PredE.Enc(pred.pki,m, x; r̃i) = c0,i.
• m = 1|v and PRG(v) = c2,i.

3. If di = 1, let m← CPA.Recover(cpa.pki, c1,i, r̃i). Perform the
following checks. If any of the checks fail, set flag = false and
exit loop.
• m 6=⊥.
• CPA.Enc(cpa.pki,m; r̃i) = c1,i.
• m = 1|v and c2,i = PRG(v) + ai +B · ss.vk.

– If flag = true, output c0⊕HPRG.Eval(HPRG.pp, d, 0). Else output
⊥.

Fig. 6. Routine Check

5.1 Security Proof

The security proof works via a sequence of hybrid experiments, and the hybrid
experiments are very similar to the ones used for the PKE construction. Due
to space constraints, the proof of security is included in the full version of our
paper.

References

1. Attrapadung, N.: Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In: Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings. pp. 557–577 (2014)

2. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Public Key Cryptography - PKC
2011 - 14th International Conference on Practice and Theory in Public Key Cryp-
tography, Taormina, Italy, March 6-9, 2011. Proceedings. pp. 90–108 (2011)

27



3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security. pp. 62–73 (1993)
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