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Abstract. We present an improved version of the one-way to hiding
(O2H) Theorem by Unruh, J ACM 2015. Our new O2H Theorem gives
higher flexibility (arbitrary joint distributions of oracles and inputs,
multiple reprogrammed points) as well as tighter bounds (removing
square-root factors, taking parallelism into account). The improved O2H
Theorem makes use of a new variant of quantum oracles, semi-classical
oracles, where queries are partially measured. The new O2H Theorem
allows us to get better security bounds in several public-key encryption
schemes.
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1 Introduction

Ever since it was first introduced in [6] as a proof technique for cryptographic
proofs, the random oracle model has been widely used to analyze cryptographic
schemes, especially when highly efficient, practical solutions are desired. In the
post-quantum setting, however, we need to be careful how the random oracle is
modeled. When the adversary makes a query, the input to the random oracle
should not be measured [8]. That is, queries should be possible in superposi-
tion between different inputs (we then speak of a “quantum random oracle”).
Otherwise, the random oracle model would be a very unrealistic idealization of
the real world since a quantum adversary can evaluate, say, a hash function in
superposition.

Unfortunately, proving the security in the quantum random oracle model
is considerably more difficult than in the classical random oracle model. One
example of a classical proof technique that is not easy to mimic is programming
of the random oracle. In this technique, we run the adversary with access to a
random oracle but we change the answer to certain queries during the execution.
In a nutshell, as long as we can show that the probability of changing a value
that the adversary has already queried is negligible, the adversary will not notice
the programming, and the proof goes through. In the quantum setting, this does
not make sense. The adversary could query the superposition of all inputs in its
first query. Then any programming would change a value that has already been
queried.



A technique that can solve this problem (at least in certain situations) is
the One-Way to Hiding (O2H) Theorem from [33]. The O2H Theorem solves
the reprogramming problem by showing, roughly speaking, that we can bound
the probability that the adversary distinguishes between two oracles G and H
(the original and the reprogrammed oracle) in terms of the probability that the
adversary can guess the location where the oracle is reprogrammed (we speak
of the “guessing game”). This conceptually simple theorem has proven powerful
in a number of security proofs for post-quantum secure encryption schemes and
other constructions (see our overview in Section 1.2). However, the O2H Theorem
has a number of limitations that limit its applicability, or give bad bounds in
concrete security proofs.

In this work, we present a new version of the O2H Theorem that improves on
the state of the art in a number of aspects:

– Non-uniform random oracles. The random oracle that is reprogrammed
does not have to be a uniformly random function. We allow any distribution
of oracles, e.g., invertible permutations, ideal ciphers, etc.

– Multiple reprogrammed points. We can reprogram the oracle in more
than a single point. That is, we can reprogram the random oracle at a set of
positions S and then bound the probability that the adversary detects this
reprogramming with a single application of the O2H Theorem.

– Arbitrary joint distributions. We allow the distribution of reprogrammed
locations and of the adversary’s input to be arbitrarily correlated with
the distribution of the random oracle. This is especially important if the
reprogrammed location depends on the random oracle (e.g., reprogramming
H(x) where x := H(r) for random r).

– Tighter bounds for guessing games. Our O2H Theorem bounds the
difference of the square-roots of the adversary probabilities between two
games. In many cases involving guessing games (i.e., where we intend to show
that the probability of a certain event is negligible) this leads to bounds that
are quadratically better.

– Tighter bounds using semi-classical oracles. We introduce a new tech-
nique, called semi-classical oracles. By applying the O2H Theorem to games
involving semi-classical oracles, we can again get better bounds in some cases.
(Whether some advantage is gained depends very much on the specific proof
in which the O2H Theorem is used.)

– Query depth. Our O2H Theorem distinguishes query number q and query
depth d. Thus, for cases in which the adversary has a high parallelism, we
get better bounds (and for sequential adversaries nothing is lost by setting
d := q).

One crucial novelty in our O2H Theorem is the use of “semi-classical oracles”.
In a nutshell, a semi-classical oracle is an oracle that only measures whether the
adversary queried a given “forbidden” input, but does not measure anything
beyond that. (In contrast, a quantum oracle does not measure anything, and a
classical oracle measures everything.) So, for example, if the adversary queries a
superposition of non-measured inputs, nothing is measured.



Our O2H Theorem bounds the distinguishing probability between two oracles
G and H again in terms of the success probability in a “guessing game” where
the adversary has to query an oracle on one of the forbidden inputs on which G
and H differ. But in contrast to the original O2H Theorem, the adversary is given
a semi-classical oracle in the guessing game! (In the original O2H Theorem, the
adversary is given a quantum oracle.) Using a semi-classical oracle, the guessing
game can be expressed more simply since it is well-defined whether the forbidden
input has been queried or not. (In the original O2H Theorem, we instead have to
stop at a random query and measure whether that particular query queries the
forbidden input. This makes the description of the game more complex, and the
random selection of a single query is the reason why the original O2H Theorem
gives worse bounds.)

We stress that the semi-classical oracles are purely a proof technique and
occur in intermediate games in proofs involving the new O2H Theorem. The
final security results still hold in the quantum random oracle model, not in some
“semi-classical random oracle model”.

In this work, we introduce semi-classical oracles, state and prove the new
O2H Theorem (together with a query complexity result about searching in semi-
classical oracles), and demonstrate its usefulness by elementary examples and by
exploring the impact on the security bounds of existing encryption schemes.

Organization. In Section 1.1 we shortly discuss some related work, and in
Section 1.2 we discuss the impact of our result on existing cryptographic schemes.
Section 2 presents basic notation. Our notion of semi-classical oracles is introduced
in Section 3. We also state our main theorems in Section 3, the proofs are deferred
to Section 5 (after the examples). We present examples how to use the new
technique in Section 4.

1.1 Related work

Variants of the O2H Theorem. Variants of the O2H Theorem were introduced
in [33,31,32,22,14], see the beginning of Section 1.2 for more details.

Other proof techniques for the quantum random oracle model. [10]
showed that Grover search is optimal with respect to worst-case complexity
([36] when parallelism is considered). [32,21] generalized this to the average-case
which implies that finding preimages of the random oracle is hard. [8] introduced
“history-free reductions” which basically amounts to replacing the random oracle
by a different function right from the start. [38] showed that random oracles can
be simulated using 2q-wise independent functions. Based on this, [32] introduces a
technique for extracting preimages of the random oracle. [38] introduces the “semi-
constant distributions” technique that allows us to program the random oracle in
many random locations with a challenge value without the adversary noticing. [37]
improves on this with the “small-range distribution” technique that allows us to
simulate random oracles using random looking functions with a small range. [39]
shows that random oracles are indistinguishable from random permutations, and



as a consequence that random oracles are collision resistant (this is generalized by
[29,15,4] to the case of non-uniformly distributed functions). Collision-resistance
of the random oracle is generalized to the “collapsing property” which allows us
to show that measuring the output of the random oracle effectively measures the
input. More general methods for problems in quantum query complexity (not
limited to random oracles) include the polynomial method [5] and the adversary
method [1]. [3] shows that the difficulties of using the quantum random oracle are
not just a matter of missing proof techniques, but that in certain cases classically
secure schemes are not secure in the quantum random oracle model.

Cryptosystems whose security proof is based on O2H Theorems. See
Section 1.2.

1.2 Impact on existing cryptosystems

Above, we explained why our new O2H Theorem can lead to better bounds. We
will also illustrate that point with a few simple examples in Section 4. However,
to better judge the impact on realistic cryptosystems, we need to ask the question
how the bounds achieved by existing security proofs improve.

We are aware of the following results in the quantum random oracle model
that employ some variant of the original O2H Theorem from [33]: [33] introduced
the O2H Theorem to build revocable timed-release encryption schemes, [31]
introduced an “adaptive” version of the O2H Theorem4 to analyze a quantum
position verification protocol, [32] made the O2H Theorem even more adaptive
and used this for the design of non-interactive zero-knowledge proof systems and
signature schemes (and this in turn is the basis for various follow-up schemes
such as [35,18,11,13,12,9]). [34] uses the O2H variant from [32] to prove security
of Fiat-Shamir [16], both as a proof system and as a signature scheme. [14] uses
a variant of the O2H Theorem for proving security of Leighton-Micali signatures
[25] (their variant generalizes [33] in some aspects but only works when the
position where the oracle is programmed is information-theoretically hidden).
[28] uses the O2H Theorem for constructing PRFs and MACs. [30] was the first
paper to employ the O2H Theorem for designing public key encryption schemes:
it proved the security of variants of the Fujisaki-Okamoto transform [17] and
the OAEP transform [7] (introducing one extra hash value in the ciphertext for
“key confirmation”). [19] modularized and improved the Fujisaki-Okamoto variant
from [30], also using key confirmation. [27] proved security of a construction
without key confirmation, still using the O2H Theorem. [22] introduced a variant
of the O2H Theorem that allows some of the oracles and inputs given to the
adversary to be non-uniformly distributed, subject to the independence and
uniformity of certain random variables, and uses it to prove the security of
further public-key encryption schemes. (Since our O2H Theorem can also handle
non-uniform inputs, it might be that it can serve as a drop-in replacement in the
proofs in [22] removing the necessity to check the independence conditions.) [24]

4 Which allows to reprogram the random oracle at a location that is influenced by the
adversary.



proves security of public-key encryption schemes with explicit rejection; an earlier
version [23] of [24] used the O2H Theorem from [22], the current version uses our
new O2H Theorems. [20] analyzes public-key encryption and authenticated key
exchange schemes, using the original O2H Theorem from [33] in the first revision,
but improving the bounds using our new O2H Theorem.

Thus, O2H Theorems might be one of the most widely used proof tech-
nique for cryptosystems involving quantum random oracles. We expect that our
improvement of the O2H Theorem allows us to derive better security bounds
for most of the above schemes. To give some evidence to this hypothesis, we
report on the advantages gained by using our improvement in three of the works
above, namely Targhi-Unruh [30], Hövelmanns-Kiltz-Schäge-Unruh [20], and
Jiang-Zhang-Ma [24].

In case of [24], an earlier draft [23] used the O2H variant from [22], while the
current version [24] already uses our new O2H Theorem. Since the O2H variant
from [22] was introduced to handle the case where not all oracles and adversary
inputs are independent, this demonstrates that our O2H Theorem can handle
this case, too. (Besides giving tighter bounds.) Similarly, the first eprint version
of [20] used the original O2H Theorem from [33], while the second version was
updated to use our new O2H Theorem.

The old and new bounds are are summarized in Figure 1. The figure lists the
advantages against IND-CCA security for different settings. Since it is difficult
to compare the various formulas, in the column “queries”, we summarize the
relationship between query number and attack probability: Assuming that the
terms involving ε, the advantage against the underlying public-key encryption
scheme, dominate all other terms, how many queries does one have to make to
break the scheme (with constant probability)? E.g., given an advantage q

√
ε, we

need q ≈ ε−1/2 queries for a successful attack, so we write q2 ≈ 1/ε in that case.

Furthermore, in the full version [2], we reprove the security of the Fujisaki-
Okamoto variant from [30] using our O2H Theorem. That result is particularly
interesting because of its heavy use of the O2H Theorem. This allows us to make
use of several of the new features of our O2H Theorem.

– It uses “nested invocations” of the O2H Theorem. That is, first the O2H
Theorem is applied as usual to a pair of games, leading to a guessing game in
which we need to show that the guessing probability Pguess of the adversary
is negligible. But then the O2H Theorem is applied again to prove this. Since
the bound obtained by the O2H Theorem contains a square root over Pguess,
the nested application of the O2H Theorem introduces nested square roots,
i.e., a forth root. This leads to a particularly bad bound in [30].
In contrast, our new O2H Theorem allows us to directly bound the difference
of the square roots of the success probabilities of the adversary in two games.
This means that in a nested invocation, when we analyze Pguess, the O2H
Theorem directly tells us how

√
Pguess changes (instead of how Pguess changes).

This avoids the nested square root.
– It uses the adaptive version of the O2H Theorem (from [31]). While our O2H

Theorem is not adaptive (in the sense that the input where the oracle is



Setting Bound Queries

Targhi-Unruh [30]

old O2H, one-way εsym + q9/52−γ/5 + q3/2ε1/4 + q3/22−n1/4 q6 ≈ 1/ε

new O2H, IND-CPA εsym + q9/52−γ/5 + qq
1/2
dec ε

1/2 + q3/2qdec2−n/2 q2qdec ≈ 1/ε

new O2H, one-way εsym + q9/52−γ/5 + q3/2qdecε
1/2 q3q2dec ≈ 1/ε

Hövelmanns-Kiltz-Schäge-Unruh [20]

old O2H, IND-CPA qε1/2 + q2−n/2 q2 ≈ 1/ε

new O2H, IND-CPA q1/2ε1/2 + q2−n/2 q ≈ 1/ε

Jiang-Zhang-Ma [24]

old O2H, one-way qε1/2 q2 ≈ 1/ε

new O2H, one-way qε1/2 q2 ≈ 1/ε

new O2H, IND-CPA q1/2ε1/2 + q2−n/2 + q2−n
′

q ≈ 1/ε

The “setting” column says whether the proof uses the old/new O2H and whether it is
based on one-wayness or IND-CPA security of the underlying public-key encryption
scheme.
The “bound” column gives the bound on the advantage of the adversary against
IND-CCA security, up to constant factor. (In the case of [30] a hybrid public-key
encryption scheme is constructed, in the other cases a KEM.) ε is the advantage of
the reduced adversary against the one-wayness or IND-CPA security of the underlying
public-key scheme, respectively. (A complete description would contain the runtime of
that adversary. For this overview this is not relevant since in all cases, that runtime did
not change when switching to the new O2H Theorem.) εsym is the advantage against the
underlying symmetric encryption scheme. q is the number of queries (random oracle +
decryption queries), qdec only the decryption queries. γ is the min-entropy of ciphertexts,
n the plaintext length of the underlying public-key scheme, and n′ is the length of the
additional hash appended to the ciphertext in [24].
The “queries” column summarizes the effect of queries compared to the security of
the underlying public-key scheme (see the explanation in the text, higher exponent is
worse).
For simplicity, we give the bounds for the case where no decryption errors occur.

Fig. 1. Security bounds of different Fujisaki-Okamoto variants with new and old O2H
Theorems.

reprogrammed has to be fixed at the beginning of the game), it turns out
that in the present case our new O2H Theorem can replace the adaptive one.
This is because our new O2H Theorem allows us to reprogram the oracle
at a large number of inputs (not just a single one). It turns out we do not
need to adaptively choose the one input to reprogram, we just reprogram all
potential inputs. At least in the proof from [30], this works without problems.

We restate (in [2]) the proof from [30] both under the assumption that the
underlying public-key encryption scheme is one-way and under the assumption
that it is IND-CPA secure. While in the original proof, we get essentially the
same bound no matter which of the two assumptions we use, with the new O2H
Theorem, the resulting bounds are much better when using IND-CPA security
(but there is also an improvement in the one-way case).



The resulting bounds are given in Figure 1 as well. We see that the biggest
improvement is in the case of IND-CPA security, where the dependence on the
query number changed from the sixth power to cubic.

We also noticed a mistake in the proof,5 which we fixed in our proof. (We do
not know if the fix carries over to the original proof.)

But our analysis also shows some potential for future research on the O2H
Theorem. The proof from [30] constructs a plaintext extractor Dec∗∗ that is
relatively inefficient because it iterates through a large number of possible can-
didate keys. Thus the number of oracle queries performed by Dec∗∗ (namely,
O(qqdec)) by far outweighs the number of oracle queries performed by the ad-
versary (namely, O(q)). This large number of queries negatively influences the
bounds obtained when applying the new O2H Theorem. However, the O(qqdec)
queries performed by Dec∗∗ are all classical, only O(q) quantum queries are made.
Our O2H Theorem treats classical and quantum queries the same. A variant of
the O2H Theorem that gives better bounds when only a small fraction of the
queries are quantum would lead to improvements in the bounds obtained here.
We leave this as a problem for future work.

2 Preliminaries

For basics of quantum computing, we refer to a standard textbook such as [26].

Given a function f : X → Y , we model a quantum-accessible oracle O for f as
a unitary transformation Uf operating on two registers Q,R with spaces CX and
CY , respectively, where Uf : |q, r〉 7→ |q, r ⊕ f(x)〉, where ⊕ is some involutive
group operation (e.g., XOR if Y is a set of bitstrings).

A quantum oracle algorithm is an algorithm that can perform classical and
quantum computations, and that can query classical and/or quantum-accessible
oracles. We allow an oracle algorithm A to perform oracle queries in parallel. We
say A is a q-query algorithm if it performs at most q oracle queries (counting
parallel queries as separate queries), and has query depth d if it invokes the
oracle at most d times (counting parallel queries as one query). For example, if
A performs 5 parallel queries followed by 7 parallel queries, we have q = 12 and
d = 2.

The distinction between query number and query depth is important because
realistic brute-force attacks are highly parallel. It’s easy to do 264 hash queries on
parallel machines — the Bitcoin network does this several times a minute — but
it would take millennia to do them sequentially. Query depth is also important
because early quantum computers are likely to lose coherency quickly, limiting
them to shallow circuits. Our model does not capture this limitation because it
does not differentiate between a deep quantum computation and several shallow

5 In Game 7 in [30], a secret δ∗ is encrypted using a one-time secure encryption scheme,
and the final step in the proof concludes that therefore δ∗ cannot be guessed. However,
Game 7 contains an oracle Dec∗∗ that in turn accesses δ∗ directly, invalidating that
argument.



ones with measurements between. But we hope that future work can account for
coherency using a notion of query depth.

We will make use of the well-known fact that any quantum oracle algorithm
AO(z) can be transformed into a unitary quantum oracle algorithm with constant
factor computational overhead and the same query number and query depth. Such
an algorithm has registers QA (for its state), and Q1, . . . , Qn and R1, . . . , Rn for
query inputs and outputs, respectively. It starts with an initial state |Ψ〉 (that may
depend on the input z). Then, A alternatingly applies a fixed unitary U on all
registers (independent of z and O), and performs parallel queries. Parallel queries
apply the oracle O to Qi, Ri for each i = 1, . . . , n. (I.e., if O is implemented by
Uf , we apply Uf ⊗ · · · ⊗Uf between U -applications.) Finally, the classical output
of AO(z) is the result of a projective measurement on the final state of A. This
implies that in many situations, we can assume our algorithms to be unitary
without loss of generality.

3 Semi-classical oracles

Classical oracles measure both their input and their output, whereas quantum-
accessible oracles measure neither. We define semi-classical oracles, which measure
their output but not their input. Formally, a semi-classical oracle OSC

f for a
function f with domain X and codomain Y is queried with two registers: an
input register Q with space CX and an output register R with space CY .

When queried with a value |x〉 in Q, the oracle performs a measurement of
f(x). Formally, it performs the measurements corresponding to the projectors
My : y ∈ Y where My :=

∑
x∈S:f(x)=y|x〉〈x|. The oracle then initializes the R

register to |y〉 for the measured y.
In this paper, the function f is always the indicator function fS for a set S,

where fS(x) = 1 if x ∈ S and 0 otherwise. For brevity, we overload the notation
OSC

S to be the semiclassical oracle for this index function.
To illustrate this, let us see what happens if the adversary performs the same

query with a quantum oracle, a classical oracle, and a semi-classical oracle imple-
menting the indicator function for S, respectively: Say the adversary sends the
query

∑
x 2−n/2|x〉|0〉, and say S = {x0}. When querying a quantum oracle, the

oracle returns the state
∑

x 2−n/2|x〉|fS(x)〉 = 2−n/2|x〉|1〉+
∑

x 6=x0
2−n/2|x〉|0〉.

When querying a classical oracle, the resulting state will be |x〉|fS(x)〉 for a
uniformly random x. But when querying a semi-classical oracle, with probabil-
ity 1− 2−n, the resulting state is

∑
x 6=x0

1√
2n−1

|x〉|0〉, and with probability 2−n,

the resulting state is |x0〉|1〉. In particular, the superposition between all |x〉 that
are not in S is preserved!

In the execution of a quantum algorithm AO
SC
S , let Find be the event that

OSC
S ever returns |1〉. This is a well-defined classical event because OSC

S measures
its output. This event is called Find because if it occurs, the simulator could
immediately stop execution and measure the input register Q to obtain a value
x ∈ S. If H is some other quantum-accessible oracle with domain X and codomain
Y , we define H \ S (“H punctured on S”) as an oracle which, on input x, first



queries OSC
S (x) and then H(x). We call this “puncturing” for the following reason:

when Find does not occur, the outcome of AH\S is independent of H(x) for all
x ∈ S. Those values are effectively removed from H’s domain. The following
lemma makes this fact formal.

Lemma 1. Let S ⊆ X be random. Let G,H : X → Y be random functions
satisfying ∀x /∈ S. G(x) = H(x). Let z be a random bitstring. (S,G,H, z may
have arbitrary joint distribution.)

Let A be a quantum oracle algorithm (not necessarily unitary).
Let E be an arbitrary (classical) event.
Then Pr[E ∧ ¬Find : x← AH\S(z)] = Pr[E ∧ ¬Find : x← AG\S(z)].

Unruh’s “one-way to hiding” (O2H) Theorem [33] is a key ingredient in most
post-quantum security analyses. This theorem bounds how much a quantum
adversary’s behavior can change when the random oracle changes on a set S,
based on the probability that measuring a random query would give a result in S,
which we call the “guessing probability”. Semi-classical oracles allow us to split
the O2H Theorem into two parts. The first part bounds how much a quantum
adversary’s behavior changes when a random oracle is punctured on S based on
Pr [Find]:

Theorem 1 (Semi-classical O2H). Let S ⊆ X be random. Let G,H : X → Y
be random functions satisfying ∀x /∈ S. G(x) = H(x). Let z be a random bitstring.
(S,G,H, z may have arbitrary joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).
Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)] (1)

Pfind := Pr[Find : AG\S(z)]
Lem. 1
= Pr[Find : AH\S(z)]

Then

|Pleft − Pright| ≤ 2
√

(d+ 1) · Pfind and
∣∣∣√Pleft −

√
Pright

∣∣∣ ≤ 2
√

(d+ 1) · Pfind

The theorem also holds with bound
√

(d+ 1)Pfind for the following alternative
definitions of Pright:

Pright := Pr[b = 1 : b← AH\S(z)], (2)

Pright := Pr[b = 1 ∧ ¬Find : b← AH\S(z)], (3)

Pright := Pr[b = 1 ∧ ¬Find : b← AG\S(z)], (4)

Pright := Pr[b = 1 ∨ Find : b← AH\S(z)], (5)

Pright := Pr[b = 1 ∨ Find : b← AG\S(z)]. (6)



In this theorem, we give A only access to a single oracle (G or H). In many
settings, there may be additional oracles that A has access to. It may not be
obvious at the first glance, but Theorem 1 applies in that case, too. Since there
is no assumption on the runtime of A, or on the size of z, nor on the number of
queries made to the additional oracles, additional oracles can simply be encoded
as part of z. That is, if we want to consider an adversary AH,F (), we can instead
write AH(F ) where F is a complete (exponential size) description of F .

The proof of Theorem 1 is given in Section 5.2.
The second part relates Pr [Find] to the guessing probability:

Theorem 2 (Search in semi-classical oracle). Let A be any quantum oracle
algorithm making some number of queries at depth at most d to a semi-classical
oracle with domain X. Let S ⊆ X and z ∈ {0, 1}∗. (S, z may have arbitrary joint
distribution.)

Let B be an algorithm that on input z chooses i
$← {1, . . . , d}; runs AO

SC
∅ (z)

until (just before) the i-th query; then measures all query input registers in the
computational basis and outputs the set T of measurement outcomes.

Then
Pr[Find : AO

SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)] (7)

The proof is given in Section 5.3.
In the simple but common case that the input of A is independent of S, we

get the following corollary:

Corollary 1. Suppose that S and z are independent, and that A is a q-query
algorithm. Let Pmax := maxx∈X Pr[x ∈ S]. Then

Pr[Find : AO
SC
S (z)] ≤ 4q · Pmax. (8)

For example, for uniform x ∈ {1, . . . , N}, AO
SC
{x} finds x with probability

≤ 4q/N .

Proof. Since the query depth of A does not occur in the lemma, we can assume
that A does not perform parallel queries. Then the output T of B in Theorem 2
has |T | ≤ 1, and d = q. Thus Pr[S ∩ T 6= ∅ : T ← B(z)] is simply the probability
that B(z) outputs an element of S. Hence Pr[S ∩ T 6= ∅ : T ← B(z)] ≤ Pmax.

Then by Theorem 2, Pr[Find : AO
SC
S (z)] ≤ 4q · Pmax. �

Note that Corollary 1 is essentially optimal (we cannot improve on the factor 4,
see Appendix A). Thus, searching in a semi-classical oracle is still slightly easier
than in a classical one.

4 Examples how to use the O2H Theorems

To illustrate the use of the theorems from the previous section, we give two
illustrative examples: hardness of searching in a sparse random function, and
hardness of inverting a random oracle with leakage (in the sense that an only
computationally secret encryption of the preimage is given to the adversary).



4.1 Hardness of searching in a sparse random function

Consider the following setting: H : X → {0, 1} is a random function where for
each x, H(x) = 1 with probability ≤ λ (not necessarily independently). What is
the probability to find x with H(x) = 1 in q queries? We will prove an upper
bound.

We solve this problem using the semi-classical O2H technique introduced
by Theorem 1. Let A be a q-query algorithm with depth d. We want to bound
Pr[H(x) = 1 : x← AH()]. We do this by a series of games.

Game 1 x← AH(). Measure x. Then A wins if H(x) = 1.

We would like to apply Theorem 1 to this game. But it doesn’t work well to
apply it to AH because H is also used outside of A. Therefore, we use a different
but obviously equivalent game:

Game 2 Define ÂH() to run x ← AH(); measure x; and return b := H(x).
Game 2 runs b← ÂH(). Then A wins if b = 1.

Note that Â is a (q + 1)-query algorithm with depth d+ 1.
We can apply the semi-classical O2H Theorem (Theorem 1), variant (4)6 to

this game, where G := 0 (the constant zero function) and S := {x : H(x) = 1}.
This gives us:∣∣∣√Pr[b = 1 : Game 2]︸ ︷︷ ︸

Pleft

−
√

Pr[b = 1 ∧ ¬Find : Game 3]︸ ︷︷ ︸
Pright

∣∣∣
≤
√

(d+ 2) Pr[Find : Game 3]︸ ︷︷ ︸
Pfind

(9)

with

Game 3 Run b← ÂG\S(). Then A wins if b = 1 and not Find.

which is equivalent to

Game 4 x← AG\S(); set b← (G \ S)(x). Then A wins if b = 1 and not Find.

What has happened so far? We have used the O2H Theorem to rewrite a
game with access to an oracle H (Game 1) into the same game with a different
oracle G = 0 (Game 4) (“right game”). The new oracle is considerably simpler: in

6 Theorem 1 gives us different options how to define the right game. Conceptually
simplest is variant (1) (it does not involve a semi-classical oracle in the right game),
but it does not apply in all situations. The basic idea behind all variants is the same,
namely that the adversary gets access to an oracle G that behaves differently on the
set S of marked elements.

In the present proof, we use specifically variant (4) because then Game 4 will be
of a form that is particularly easy to analyze (the adversary has winning probability
0 there).



this specific case, it is all zero. The difference between the two games is bounded
by (9) in terms of how hard it is to find an element in the set S (the “marked
elements”), i.e., a position where G and H differ (the “finding game”). This is
the typical way of applying an O2H Theorem: Replace the oracle H by something
simpler, continue the game-based proof from the right game, and additionally
perform a second game-based proof to bound the probability of finding a marked
element in the finding game.

However, there are several crucial differences to the use of prior O2H lemmas
(e.g., [33]). First, prior O2H Theorems required G and H to be uniformly random
functions, and to differ only at a single location x. But here H is not assumed to
be uniform, and it differs from G at more than a single input (i.e. at the entire
set S). This allows us to analyze search problems with multiple targets.

Second, (9) has square roots on the left-hand side. This is optional: Theorem 1
also gives a bound without square roots. In our example, since Pright is very
small, the square-root variant gives smaller bounds for Pleft.

Third, the finding game is expressed using semi-classical oracles. This is
never a limitation because we can always replace the semi-classical oracles by
quantum-accessible ones using Theorem 2 (which then gives bounds comparable
to the O2H from [33]). However, as we will see in the next section, in some cases
semi-classical oracles give better bounds.

In our case, we trivially have Pr[G(x) = 1∧¬Find : Game 4] = 0 since G = 0.
However, analyzing Pr[Find : Game 3] is less trivial. At the first glance, it

seems that having access to the oracle G = 0 yields no information about S,
and thus finding an element of S is down to pure luck, and cannot succeed with
probability greater than (q+1)λ. But in fact, computing G\S requires measuring
whether each query is in S. The measurement process can leak information about
S. Section A shows that at least in some cases, it is possible to find elements of
S with greater probability than (q + 1)λ. Fortunately, we have a result for this
situation, namely Corollary 1, which shows that Pr[Find : Game 4] ≤ 4(q + 1)λ.

Plugging this into (9), we get

Pr[H(x) = 1 : Game 1] ≤ 4(d+ 2)(q + 1)λ.

Without the square roots on the left-hand side of (9), we would get only the
bound

√
4(d+ 2)(q + 1)λ.

We summarize what we have proven in the following lemma:

Lemma 2 (Search in unstructured function). Let H be a random function,
drawn from a distribution such that Pr[H(x) = 1] ≤ λ for all x. Let A be a q-query
adversary with query depth d. Then Pr[H(x) = 1 : b← AH()] ≤ 4(d+ 2)(q + 1)λ.

While this is a simple consequence of our O2H technique, we are not aware that
this bound was already presented in the literature. While [36] already showed a
trade-off between parallelism and query number in unstructured quantum search.
However, our result gives an explicit (and tight) success probability and applies
even to functions whose outputs are not i.i.d. For the special case of no-parallelism
(d = q) and i.i.d. functions, the best known bound was [21, Theorem 1] which



we improve upon by a factor of 2. Additionally, our lemma allows the different
outputs of H to be correlated while prior results require them to be independent.

4.2 Hardness of inverting a random oracle with leakage

The previous example considered a pure query-complexity problem, searching
in a random function. It can easily be solved with other techniques (giving
slightly different bounds). Where O2H Theorems shine is the combination of
computational hardness and random oracles. The following example illustrates
this.

Let E be a randomized algorithm taking input from a space X, such that it
is difficult to distinguish the distributions

D1 := {(x,E(x)) : x
$← X} and D0 := {(x1, E(x2)) : x1, x2

$← X}

For a quantum algorithm B, define its E-distinguishing advantage as

AdvIND−E(B) :=

∣∣∣∣∣Pr
[
1← B(x, e) : (x, e)← D1

]
− Pr

[
1← B(x, e) : (x, e)← D0

] ∣∣∣∣∣
For example, E could be IND-CPA-secure encryption. Let H : X → Y be a
random oracle which is independent of E. How hard is it to invert H with a
leakage of E? That is, given a quantum oracle algorithm A, we want to bound

AdvOW-LEAK-E(A) := Pr
[
AH(H(x), E(x)) = x : x

$← X
]

We can do this using a series of games. For brevity, we will go into slightly less
detail than in Section 4.1. Let wi be the probability that the adversary wins
Game i.

Game 0 (Original) x
$← X;x′ ← AH(H(x), E(x)). The adversary wins if

x′ = x.

Now choose a random y
$← Y , and set a different random oracle G := H(x := y)

which is the same as H on every input except S := {x}. We can define a new
game where the adversary has access to G \ S:

Game 1 (Punctured, first try) x
$← X;x′ ← AG\{x}(H(x), E(x)). The ad-

versary wins if x′ = x and not Find.

Applying Theorem 1 variant (4),7 we find that∣∣∣∣∣∣∣
√

Pr[x′ = x : Game 0]︸ ︷︷ ︸
Pleft=w0

−
√

Pr[x′ = x ∧ ¬Find : Game 1]︸ ︷︷ ︸
Pright=w1

∣∣∣∣∣∣∣
≤
√

(d+ 1)Pr [Find : Game 1]︸ ︷︷ ︸
Pfind

7 Choosing a different variant here would slightly change the formula below but lead
to the same problems.



Unlike in Section 4.1, this time we do not have a trivial bound for w1. We could
bound it in terms of distinguishing advantage against E. But let’s instead try to
make this game more like the ones in Section 4.1: we can cause the adversary
to Find instead of winning. To do this, we just apply an extra hash operation.
Let ÂH(y, e) be the algorithm which runs x′ ← AH(y, e); computes H(x′) and
ignores the result; and then returns x′. Then Â performs q + 1 queries at depth
d+ 1. This gives us a new game:

Game 2 (Original with extra hash) x
$← X;x′ ← ÂH(H(x), E(x)). The

adversary wins if x′ = x.

Clearly w2 = w0. The new punctured game is also similar:

Game 3 (Punctured, extra hash) x
$← X;x′ ← ÂG\{x}(H(x), E(x)). The

adversary wins if x′ = x and not Find.

Applying Theorem 1 variant (4)8 as before gives

|
√
w3 −

√
w2| ≤

√
(d+ 2)Pr [Find : Game 3] (10)

But the adversary cannot win Game 3: the extra hash query triggers Find if
x′ = x, and the adversary does not win if Find. Therefore w3 = 0. Plugging this
into (10) and squaring both sides gives:

w0 = w2 ≤ (d+ 2)Pr [Find : Game 3] (11)

It remains to bound the right-hand side. We first note that in Game 3, the value
H(x) is only used once, since the adversary does not have access to H(x): it only
has access to G, which is the same as H everywhere except x. So Game 3 is the
same as if H(x) is replaced by a random value:

Game 4 (No H(x)) Set x
$← X; y

$← Y ; ÂG\{x}(y,E(x)). We do not care about
the output of Â, but only whether it Finds.

Clearly Pr [Find : Game 4] = Pr [Find : Game 3]. Finally, we apply the indistin-
guishability assumption by comparing to the following game:

Game 5 (IND-E challenge) (x1, x2)
$← X; y

$← Y ; ÂG\{x1}(y,E(x2)).

Let B(x, e) be an algorithm which chooses y
$← Y ; runs ÂG\{x}(y, e); and returns 1

if Find and 0 otherwise. Then B runs in about the same time as A plus (q + 1)
comparisons. If (y, e) are drawn from D1, then this experiment is equivalent to
Game 4, and it they are drawn from D0 then it is equivalent to Game 5. Therefore
B is a distinguisher for E with advantage exactly

AdvIND−E(B) = |Pr [Find : Game 5]− Pr [Find : Game 4]| (12)

8 The reason for choosing this particular variant is that same as in footnote 6.



Furthermore, in Game 5, the oracle G is punctured at x1, which is uniformly
random and independent of everything else in the game. So by Theorem 2,

Pr [Find : Game 5] ≤ 4(q + 1)/card (X)

Combining this with (11) and (12), we have

AdvOW-LEAK-E(A) ≤ (d+ 2)AdvIND−E(B) +
4(d+ 2)(q + 1)

card (X)

This is a much better bound than we would have gotten without using semi-
classical oracles (i.e., the O2H Theorem from [33]). In front of AdvIND−E(B),
we only have the factor d+ 2. In contrast, if we had applied Theorem 2 directly
after using Theorem 1, then we would have gotten a factor of O(qd) in front of
AdvIND−E(B). If we had used the O2H from [33], then we would have gotten an
even greater bound of O(q

√
AdvIND−E(B) + 1/card (X)). However, this bound

with semi-classical oracles assumes indistinguishability, whereas an analysis with
the original O2H Theorem would only require E to be one-way.

5 Proofs

5.1 Auxiliary lemmas

The fidelity F (σ, τ) between two density operators is tr
√√

στ
√
σ, the trace

distance TD(σ, τ) is defined as 1
2 tr|σ − τ |, and the Bures distance B(τ, σ) is√

2− 2F (τ, σ).

Lemma 3. For states |Ψ〉, |Φ〉 with ‖|Ψ〉‖ = ‖|Φ〉‖ = 1, we have

F (|Ψ〉〈Ψ |, |Φ〉〈Φ|) ≥ 1− 1

2
‖|Ψ〉 − |Φ〉‖2

so that
B(|Ψ〉〈Ψ |, |Φ〉〈Φ|) ≤ ‖|Ψ〉 − |Φ〉‖

Proof. We have

‖|Ψ〉 − |Φ〉‖2 = (〈Ψ | − 〈Φ|)(|Ψ〉 − |Φ〉) = ‖|Ψ〉‖2 + ‖|Φ〉‖2 − 〈Ψ |Φ〉 − 〈Φ|Ψ〉

= 2− 2<(〈Ψ |Φ〉) ≥ 2− 2|〈Ψ |Φ〉| (∗)= 2− 2F (|Ψ〉〈Ψ |, |Φ〉〈Φ|)

where < denotes the real part, and (∗) is by definition of the fidelity F (for
pure states). Thus F (|Ψ〉〈Ψ |, |Φ〉〈Φ|) ≥ 1− 1

2‖|Ψ〉 − |Φ〉‖
2 as claimed. The second

inequality follows from the definition of Bures distance. �

Lemma 4 (Distance measures vs. measurement probabilities). Let
ρ1, ρ2 be density operators (with tr ρi = 1). Let M be a binary measurement
(e.g., represented as a POVM). Let Pi be the probability that M returns 1 when
measuring ρi.



Then √
P1P2 +

√
(1− P1)(1− P2) ≥ F (ρ1, ρ2) (13)

Also, ∣∣∣√P1 −
√
P2

∣∣∣ ≤ B(ρ1, ρ2). (14)

Furthermore,

|P1 − P2| ≤ TD(ρ1, ρ2) ≤ B(ρ1, ρ2). (15)

Proof. In this proof, given a probability P , let P̄ := 1 − P . Let E be the
superoperator that maps ρ to the classical bit that contains the result of measuring

ρ using M . That is, for every density operator ρ with tr ρ = 1, E(ρ) =
(
p 0
0 p̄

)
where p is the probability that M returns 1 when measuring ρ.

Then ρ′i := E(ρi) =
(
Pi 0
0 P̄i

)
for i = 1, 2. We then have

F (ρ1, ρ2)
(∗)

≤ F (ρ′1, ρ
′
2)

(∗∗)
=
∥∥∥√ρ′1√ρ′2∥∥∥

tr

= tr

(√
P1P2 0

0
√
P̄1P̄2

)
=
√
P1P2 +

√
P̄1P̄2

where (∗) is due to the the monotonicity of the fidelity [26, Thm. 9.6], and (∗∗)
is the definition of fidelity. This shows (13). To prove (14), we compute:(√

P1 −
√
P2

)2

= P1 + P2 − 2
√
P1P2

≤ P1 + P2 − 2
√
P1P2 +

(√
P̄1 −

√
P̄2

)2

= 2− 2
√
P1P2 − 2

√
P̄1P̄2

(13)

≤ 2− 2F (ρ1, ρ2)
(∗)
= B(ρ1, ρ2)2

where (∗) is by definition of the Bures distance. This implies (14).
The first inequality in (15) is well-known (e.g., [26, Thm. 9.1]). For the second

part, we calculate

TD(ρ, τ)
(∗)

≤
√

1− F (ρ, τ)2 =

√
1 + F (ρ, τ)

2
·
√

2− 2F (ρ, τ)

=

√
1 + F (ρ, τ)

2
·B(ρ, τ)

(∗∗)

≤ B(ρ, τ)

Here the inequality marked (∗) is shown in [26, (9.101)], and (∗∗) is because
0 ≤ F (ρ, τ) ≤ 1. �

5.2 Proof of Theorem 1

In the following, let H : X → Y , S ⊆ X, z ∈ {0, 1}∗.



Lemma 5 (O2H in terms of pure states). Fix H,S, z. Let AH(z) be a
unitary quantum oracle algorithm of query depth d. Let QA denote the register
containing all of A’s state.

Let L be a quantum register with space C2d

(for the “query log”).
Let BH,S(z) be the unitary algorithm on registers QA, L that operates like

AH(z), except:
– It initializes the register L with |0 . . . 0〉.
– When A performs its i-th set of parallel oracle queries on input/output

registers (Q1, R1), . . . , (Qn, Rn) that are part of QA, B instead first applies
US on (Q1, . . . , Qn, L) and then performs the oracle queries. Here US is
defined by:

US |x1, . . . , xn〉|l〉 :=

{
|x1, . . . , xn〉|l〉 (every xj /∈ S),

|x1, . . . , xn〉|flipi(l)〉 (any xj ∈ S)

Let |Ψleft〉 denote the final state of AH(z), and |Ψright〉 the final state of
BH,S(z).

Let P̃find be the probability that a measurement of L in the state |Ψright〉 returns

6= 0. (Formally,
∥∥(I ⊗ (I − |0〉〈0|))|Ψright〉

∥∥2
.)

Then ∥∥|Ψleft〉 ⊗ |0〉 − |Ψright〉
∥∥2 ≤ (d+ 1)P̃find.

Proof. We first define a variant Bcount of the algorithm B that, instead of keeping
a log of the successful oracle queries (as B does in L), just counts the number of
successful oracle queries (in a register C). Specifically:

Let C be a quantum register with space C{0,...,d}, i.e., C can store states
|0〉, . . . , |d〉. Let BH,S

count(z) be the unitary algorithm on registers QA, S that oper-
ates like AH(z), except:
– It initializes the register C with |0〉.
– When A performs its i-th set of parallel oracle queries on input/output

registers ((Q1, R1), . . .) that are part of QA, B instead first applies U ′S on
(Q1, . . . , Qn), C and then performs the oracle queries. Here U ′S is defined by:

U ′S |x1, . . . , xn〉|c〉 :=

{
|x1, . . . , xn〉|c〉 (every xj /∈ S),

|x1, . . . , xn〉|c+ 1 mod d+ 1〉 (any xj ∈ S)

Note that the mod d+1 part of the definition of U ′S has no effect on the behavior
of B̃ because US is applies only d times. However, the mod d+ 1 is required so
that US is unitary.

Consider the state |Ψcount〉 at the end of the execution BH,S
count(z). This may

be written

|Ψcount〉 =

d∑
i=0

|Ψ ′i〉|i〉C . (16)

for some (non-normalized) states |Ψ ′i〉 on QA.



Consider the linear (but not unitary) map N ′ : |x〉|y〉 7→ |x〉|0〉. Obviously,
N ′ commutes with the oracle queries and with the unitary applied by A between
queries (since those unitaries do not operate on C.) Furthermore N ′U ′S = N ′,
and the initial state of Bcount is invariant under N ′. Thus N ′|Ψcount〉 is the same
as the state we get if we execute Bcount without the applications of U ′S . But
that state is |Ψleft〉|0〉C because the only difference between Bcount and A is that
Bcount initializes C with |0〉 and applies U ′S to it.

So we have
d∑

i=0

|Ψ ′i〉|0〉C = N ′|Ψcount〉 = |Ψleft〉|0〉C

and hence

|Ψleft〉 =

d∑
i=0

|Ψ ′i〉. (17)

The state |Ψright〉 is a state on QA, L and thus can be written as

|Ψright〉 =
∑

l∈{0,1}q
|Ψl〉|l〉L (18)

for some (non-normalized) states |Ψl〉 on QA.

Furthermore, both |Ψcount〉 and |Ψright〉, when projected onto |0〉 in register
C/L, respectively, result in the same state, namely the state corresponding to
no query to OSC

S succeeding. By (16) and (18), the result of that projection is
|Ψ0〉|0〉L and |Ψ ′0〉|0〉C , respectively. Hence

|Ψ0〉 = |Ψ ′0〉. (19)

Furthermore, the probability that no query succeeds is the square of the norm of
that state. Hence ∥∥|Ψ0〉

∥∥2
= 1− P̃find. (20)

We have

d∑
i=0

∥∥|Ψ ′i〉∥∥2
=

d∑
i=0

∥∥|Ψ ′i〉|i〉C∥∥2
=
∥∥∥ d∑
i=0

|Ψ ′i〉|i〉C
∥∥∥2

(16)
=
∥∥|Ψcount〉

∥∥2
= 1.

∑
l∈{0,1}d

∥∥|Ψl〉
∥∥2

=
∑

l∈{0,1}d

∥∥∥|Ψl〉|l〉L
∥∥∥2

=
∥∥∥∑
l∈{0,1}d

|Ψl〉|l〉L
∥∥∥2

(18)
=
∥∥|Ψright〉

∥∥2
= 1.

Thus

d∑
i=1

∥∥|Ψ ′i〉∥∥2
= 1−

∥∥|Ψ ′0〉∥∥2 (20)
= P̃find,

∑
l∈{0,1}d

l 6=0

∥∥|Ψl〉
∥∥2

= 1−
∥∥|Ψ0〉

∥∥2 (20)
= P̃find. (21)



Therefore

∥∥∥|Ψright〉 − |Ψleft〉|0〉L
∥∥∥2

(18)
=

∥∥∥(|Ψ0〉 − |Ψleft〉
)
|0〉+

∑
l∈{0,1}d

l 6=0

|Ψl〉|l〉
∥∥∥2

=
∥∥∥|Ψ0〉 − |Ψleft〉

∥∥∥2

+
∑

l∈{0,1}d
l 6=0

∥∥|Ψl〉
∥∥2 (21)

=
∥∥∥|Ψ0〉 − |Ψleft〉

∥∥∥2

+ P̃find

(19),(17)
=

∥∥∥ d∑
i=1

|Ψ ′i〉
∥∥∥2

+ P̃find

(∗)

≤
( d∑
i=1

∥∥∥|Ψ ′i〉∥∥∥)2

+ P̃find

(∗∗)

≤ d ·
d∑

i=1

∥∥∥|Ψ ′i〉∥∥∥2

+ P̃find

(21)
= dP̃find + P̃find = (d+ 1)P̃find.

Here (∗) uses the triangle inequality, and (∗∗) the AM-QM (or Jensen’s) inequality.
This is the inequality claimed in the lemma. �

Theorem 1 follows mechanically from Lemma 5 by applying Lemma 4 and
Lemma 3 to each case.

Lemma 6 (O2H in terms of mixed states). Let X,Y be sets, and let H :
X → Y, S ⊂ X, z ∈ {0, 1}∗ be random. (With some joint distribution.)

Let A be an algorithm which queries H at depth d. Let Pfind be as in Theorem 1.

Let ρleft denote the final state of AH(z).

Let ρright denote the final state of AH\S. This is the state of the registers QA

and L, where QA is the state of A itself, and L is a register that contains the
log of the responses of OSC

S . If the i-th query to OSC
S returns `i, then L contains

|`1 . . . `q〉 at the end of the execution of B.

Then F (ρleft ⊗ |0〉〈0|, ρright) ≥ 1− 1
2 (d+ 1)Pfind and B(ρleft ⊗ |0〉〈0|, ρright) ≤√

(d+ 1)Pfind.

Proof. Without loss of generality, we can assume that A is unitary: If A is not
unitary, we can construct a unitary variant of A that uses an extra auxiliary
register Z, and later trace out that register again from the states ρleft and ρright.

Let
∣∣ΨHSz

left

〉
be the state

∣∣Ψleft

〉
from Lemma 5 for specific values of H,S, z.

And analogously for
∣∣ΨHSz

right

〉
and P̃HSz

find .

Then ρleft = ExpHSz[
∣∣ΨHSz

left

〉〈
ΨHSz

left

∣∣]
Furthermore, if we define ρ′right := ExpHSz[|ΨHSz

right 〉〈ΨHSz
right |], then ρright =

EL(ρ′right) where EL is the quantum operation that performs a measurement in
the computational basis on the register L.

And Pfind = ExpHSz[P̃HSz
find ].



Then

F (ρleft ⊗ |0〉〈0|, ρright)

= F
(
EL(ρleft ⊗ |0〉〈0|), EL(ρ′right)

)
(∗)

≥ F
(
ρleft ⊗ |0〉〈0|, ρ′right

)
= F

(
Exp
HSz

[∣∣ΨHSz
left

〉〈
ΨHSz

left

∣∣⊗ |0〉〈0|],Exp
HSz

[∣∣ΨHSz
right

〉〈
ΨHSz

right

∣∣])
(∗∗)

≥ Exp
HSz

[
F
(∣∣ΨHSz

left

〉〈
ΨHSz

left

∣∣⊗ |0〉〈0|, ∣∣ΨHSz
right

〉〈
ΨHSz

right

∣∣)]
Lem. 3

≥ 1− 1
2 Exp

HSz

[∥∥|ΨHSz
left 〉 ⊗ |0〉 − |ΨHSz

right 〉
∥∥2
]

Lem. 5

≥ 1− 1

2
Exp
HSz

[
(d+ 1)P̃HSz

find

]
= 1− 1

2 (d+ 1)Pfind.

Here (∗) follows from the monotonicity of the fidelity [26, Thm. 9.6], and (∗∗)
follows from the joint concavity of the fidelity [26, (9.95)]. This shows the first
bound from the lemma.

The Bures distance B is defined as B(ρ, τ)2 = 2(1− F (ρ, τ)). Thus

B(ρleft ⊗ |0〉〈0|, ρright)
2 = 2(1− F (ρleft ⊗ |0〉〈0|, ρright))

≤ 2(1− (1− 1
2 (d+ 1)Pfind)) = (d+ 1)Pfind,

hence B(ρleft ⊗ |0〉〈0|, ρright) ≤
√

(d+ 1)Pfind. �

Theorem 1 (Semi-classical O2H – restated). Let S ⊆ X be random. Let
G,H : X → Y be random functions satisfying ∀x /∈ S. G(x) = H(x). Let z be a
random bitstring. (S,G,H, z may have arbitrary joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).
Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)] (1)

Pfind := Pr[Find : AG\S(z)]
Lem. 1
= Pr[Find : AH\S(z)]

Then

|Pleft − Pright| ≤ 2
√

(d+ 1) · Pfind and
∣∣∣√Pleft −

√
Pright

∣∣∣ ≤ 2
√

(d+ 1) · Pfind

The theorem also holds with bound
√

(d+ 1)Pfind for the following alternative
definitions of Pright:

Pright := Pr[b = 1 : b← AH\S(z)], (2)

Pright := Pr[b = 1 ∧ ¬Find : b← AH\S(z)], (3)

Pright := Pr[b = 1 ∧ ¬Find : b← AG\S(z)], (4)

Pright := Pr[b = 1 ∨ Find : b← AH\S(z)], (5)

Pright := Pr[b = 1 ∨ Find : b← AG\S(z)]. (6)



Proof. We first prove the theorem using the definition of Pright from (2).
Let M be the measurement that measures, given the the register QA, L, what

the output b of A is. Here QA is the state space of A, and L is the additional
register introduced in Lemma 6. (Since A obtains b by measuring QA, such a
measurement M exists.)

Let PM (ρ) denote the probability that M returns 1 when measuring a state ρ.
Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright) where ρleft and ρright

are defined in Lemma 6.
Then ∣∣∣Pleft − Pright

∣∣∣ =
∣∣∣PM (ρleft ⊗ |0〉〈0|)− PM (Pright)

∣∣∣
Lem. 4

≤ B(ρleft ⊗ |0〉〈0|, ρright)
Lem. 6

≤
√

(d+ 1)Pfind∣∣∣√Pleft −
√
Pright

∣∣∣ =
∣∣∣√PM (ρleft ⊗ |0〉〈0|)−

√
PM (Pright)

∣∣∣
Lem. 4

≤ B(ρleft ⊗ |0〉〈0|, ρright)
Lem. 6

≤
√

(d+ 1)Pfind.

This shows the theorem with the definition of Pright from (2).

Now we show the theorem using the definition of Pright from (3). Let M instead
be the measurement that measures whether b = 1 and L contains |0〉 (this means
Find did not happen). Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright),
and the rest of the proof is as in the case of (2).

Now we show the theorem using the definition of Pright from (5). Let M
instead be the measurement that measures whether b = 1 or L contains |x〉
for x 6= 0 (this means Find did happen). Then Pleft = PM (ρleft ⊗ |0〉〈0|) and
Pright = PM (ρright), and the rest of the proof is as in the case of (2).

Now we show the theorem using the definition of Pright from (4). This follows
immediately by case (3), and the fact that Pr[b = 1 ∧ ¬Find : b ← AH\S(z)] =
Pr[b = 1 ∧ ¬Find : b← AG\S(z)] by Lemma 1.

Now we show the theorem using the definition of Pright from (6). By Lemma 1,

Pr[b = 1 ∧ ¬Find : b← AH\S(z)] = Pr[b = 1 ∧ ¬Find : b← AG\S(z)] (22)

Pr[true ∧ ¬Find : b← AH\S(z)] = Pr[true ∧ ¬Find : b← AG\S(z)]. (23)

From (23), we get (by considering the complementary event):

Pr[Find : b← AH\S(z)] = Pr[Find : b← AG\S(z)]. (24)

Adding (22) and (24), we get

Pr[b = 1 ∨ Find : b← AH\S(z)] = Pr[b = 1 ∨ Find : b← AG\S(z)]. (25)



Then case (6) follows from case (5) and the fact (25).

Now we show the theorem using the definition of Pright from (1). Let

Pmid := Pr[b = 1 ∧ ¬Find : b← AH\S(z)],

P ′mid := Pr[b = 1 ∧ ¬Find : b← AG\S(z)],

P ′find := Pr[Find : AG\S(z)].

By the current lemma, case (3) (which we already proved), we have

|Pleft − Pmid| ≤
√

(d+ 1)Pfind, |Pleft − Pmid| ≤
√

(d+ 1)Pfind,

and by case (4), we also get

|Pright − P ′mid| ≤
√

(d+ 1)P ′find, |Pright − P ′mid| ≤
√

(d+ 1)P ′find,

Note that in the second case, we invoke the current lemma with G and H
exchanged, and our Pright is their Pleft.

By Lemma 1, Pmid = P ′mid and by (24), Pfind = P ′find. With this and the
triangle inequality, we get

|Pleft − Pright| ≤ 2
√

(d+ 1)Pfind, |Pleft − Pright| ≤ 2
√

(d+ 1)Pfind.

as required. �

5.3 Proof of Theorem 2

In the following, let S ⊆ X, z ∈ {0, 1}∗.

Lemma 7. Fix S, z (S, z are not randomized in this lemma.) Let AH(z) be a
unitary oracle algorithm with query depth d.

Let B be an oracle algorithm that on input z does the following: pick i
$←

{1, . . . , d}, runs AO
SC
∅ (z) until (just before) the i-th query, measure all query input

registers in the computational basis, output the set T of measurement outcomes.
Then

Pr[Find : AO
SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)].

Proof. Let |Ψi〉 be the (non-normalized) state of AO
SC
S (z) right after the i-th query

in the case that the first i queries return 0. That is, ‖|Ψi〉‖2 is the probability
that the first i queries return 0, and |Ψi〉/‖|Ψi〉‖ is the state conditioned on that

outcome. Let |Ψ ′i〉 be the corresponding state of AO
SC
∅ (z), that is, |Ψ ′i〉 is the state

just after the ith query (or before, since queries to OSC
∅ do not affect the state).

Note that |Ψ0〉 = |Ψ ′0〉 is the initial state of A(z) (independent of the oracle).
From the state |Ψi〉, the algorithm A first applies a fixed unitary U that

depends only on A. Then it queries the semi-classical oracle OSC
S .



Let PS be the orthogonal projector projecting the query input registers
Q1, . . . , Qn onto states |T 〉 with S ∩ T 6= ∅, formally PS :=

∑
T s.t.S∩T 6=∅|T 〉〈T |.

Thus ‖PSU |Ψi〉‖2 is the probability of measuring T with S ∩ T 6= ∅ in registers
Q1, . . . , Qn given the state U |Ψi〉.

Then the i-th query to OSC
S applies I − PS to |Ψi〉. Therefore |Ψi+1〉 =

(I − PS)U |Ψi〉.
Let pi = 1−‖|Ψi〉‖2 be the probability that one of the first i queries returns 1,

and let

ri := pi + 2‖|Ψi〉 − |Ψ ′i〉‖2 = 1− ‖|Ψi〉‖2 + 2‖|Ψi〉‖2 − 4<〈Ψ ′i |Ψi〉+ 2 ‖|Ψ ′i〉‖2︸ ︷︷ ︸
=1

= 3− 4<〈Ψ ′i |Ψi〉+ ‖|Ψi〉‖2. (26)

Notice that r0 = 0 since |Ψ0〉 = |Ψ ′0〉 and ‖|Ψ0〉‖ = 1. During the (i+ 1)-st query,
U |Ψi〉 is changed to U |Ψi〉 − PSU |Ψi〉, and U |Ψ ′i〉 stays the same, so that

|Ψi+1〉 = U |Ψi〉 − PSU |Ψi〉
|Ψ ′i+1〉 = U |Ψ ′i〉

Therefore,

‖|Ψi+1〉‖2 = ‖U |Ψi〉‖2 −
〈
Ψi

∣∣U†PSU
∣∣Ψi

〉
−
〈
Ψi

∣∣U†P †SU ∣∣Ψi

〉
+
〈
Ψi

∣∣U†P †SPSU
∣∣Ψi

〉
= ‖|Ψi〉‖2 −

〈
Ψi

∣∣U†PSU
∣∣Ψi

〉
(27)

because PS is a projector and thus P †SPS = P †S = PS . Likewise,

〈Ψ ′i+1|Ψi+1〉 =
〈
Ψ ′i
∣∣U†U ∣∣Ψi

〉
−
〈
Ψ ′i
∣∣U†PSU

∣∣Ψi

〉
= 〈Ψ ′i |Ψi〉 −

〈
Ψ ′i
∣∣U†PSU

∣∣Ψi

〉
(28)

Let
gi := 〈Ψ ′i−1|U†PSU |Ψ ′i−1〉 =

∥∥PSU |Ψ ′i−1〉
∥∥2
.

Then gi is the probability that the algorithm B returns T with S ∩ T 6= ∅ when
measured at the i-th query.

We calculate

ri+1 − ri
(26)
= −4<〈Ψ ′i+1|Ψi+1〉+ ‖|Ψi+1〉‖2 + 4<〈Ψ ′i |Ψi〉 − ‖|Ψi〉‖2

(27),(28)
= 4<〈Ψ ′i |U†PSU |Ψi〉 − 〈Ψi|U†PSU |Ψi〉
= 4〈Ψ ′i |U†PSU |Ψ ′i〉 − 〈2Ψ ′i − Ψ |U†PSU |2Ψ ′i − Ψi〉︸ ︷︷ ︸

≥0

≤ 4〈Ψ ′i |U†PSU |Ψ ′i〉 = 4gi+1

Since r0 = 0, by induction we have

Pr[Find : AO
SC
S (z)] = pd ≤ rd ≤ 4

d∑
i=1

gi = 4d · Pr
[
S ∩ T 6= ∅ : T ← B(z)

]
as claimed. �



Theorem 2 (Search in semi-classical oracle – restated). Let A be any
quantum oracle algorithm making some number of queries at depth at most d to
a semi-classical oracle with domain X. Let S ⊆ X and z ∈ {0, 1}∗. (S, z may
have arbitrary joint distribution.)

Let B be an algorithm that on input z chooses i
$← {1, . . . , d}; runs AO

SC
∅ (z)

until (just before) the i-th query; then measures all query input registers in the
computational basis and outputs the set T of measurement outcomes.

Then
Pr[Find : AO

SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)] (7)

Proof. Immediate from Lemma 7 by using the fact that A can always be trans-
formed into a unitary oracle algorithm, and by averaging. �
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A Optimality of Corollary 1

Lemma 8. If S = {x} where x
$← {1, . . . , N}, then there is a q-query algorithm

AO
SC
S such that

Pr[Find : AO
SC
S ()] ≥ 4q − 3

N
− 8q(q − 1)

N2

Proof. The algorithm is as follows:

– Make the first query with amplitude 1/
√
N in all positions.

– Between queries, transform the state by the unitary U := 2E/N − I where
E is the matrix containing 1 everywhere. That U is unitary follows since
U†U = 4E2/N2 − 4E/N + I = I using E2 = NE.

One may calculate by induction that the final non-normalized state has amplitude(
1− 2

N

)q−1

· 1√
N

in all positions except for the xth one (where the amplitude is 0), so its squared
norm is

1− Pr[Find] =

(
1− 2

N

)2q−2

· 1

N
· (N − 1) =

(
1− 2

N

)2q−2

·
(

1− 1

N

)



As a function of 1/N , this expression’s derivatives alternate on [0, 1/2], so it is
below its second-order Taylor expansion:

1− Pr[Find] ≤ 1− 4q − 3

N
+

8q(q − 1)

N2

This completes the proof. �
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