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Abstract. Murphy, Murky, Mopey, Moody, and Morose decide to write
a paper together over the Internet and submit it to the prestigious
CRYPTO’19 conference that has the most amazing PC. They encounter
a few problems. First, not everyone is online every day: some are lazy
and go skiing on Mondays; others cannot use git correctly and they are
completely unaware that they are losing messages. Second, a small subset
of the co-authors may be secretly plotting to disrupt the project (e.g.,
because they are writing a competing paper in stealth).
Suppose that each day, sufficiently many honest co-authors are online
(and use git correctly); moreover, suppose that messages checked into git
on Monday can be correctly received by honest and online co-authors on
Tuesday or any future day. Can the honest co-authors successfully finish
the paper in a small number of days such that they make the CRYPTO
deadline; and perhaps importantly, can all the honest co-authors, includ-
ing even those who are lazy and those who sometimes use git incorrectly,
agree on the final theorem?

1 Introduction

The “synchronous” model is one of the most commonly studied models in the
past 30 years of distributed computing and cryptography literature. In the syn-
chronous model, it is assumed that whenever an honest node sends a message,
an honest recipient is guaranteed to have received it within a bounded delay ∆,
and the protocol is aware of the maximum delay ∆.

We love the synchronous model because it allows us to achieve robustness
properties that would otherwise be impossible. For example, assuming synchrony,
we can achieve distributed consensus even when arbitrarily many nodes may
be malicious [8]. In comparison, it is well-known that if message delays can
be arbitrarily long [9], consensus is impossible in the presence of 1

3 fraction of
corrupt nodes. On the other hand, the synchrony assumption has been criticized
for being too strong [3,19]: if an honest node ever experiences even a short outage
(e.g., due to network jitter) during which it is not able to receive honest messages
within ∆ delay, this node is now considered as corrupt. From this point on, a
consensus protocol proven secure under a synchronous model is not obliged to
provide consistency and liveness to that node any more, even if the node may
wake up shortly afterwards and wish to continue participating in the protocol.
Similarly, as soon as P has even a short-term outage, a multi-party computation



(MPC) protocol proven secure under a synchronous model is not obliged to
provide privacy for party P ’s inputs — for example, some protocols that aim
to achieve fairness and guaranteed output would now have the remaining online
parties reconstruct P ’s secret-shared input and thus P loses its privacy entirely.

We stress that this is not just a theoretical concern. Our work is in fact
directly motivated by conversations with real-world blockchain engineers who
were building and deploying a fast cryptocurrency and pointed out what seems
to be a fatal flaw in a blockchain protocol [20] that was proven secure in the
classical synchronous model: even when all nodes are benign and only a few
crash in a specific timing pattern, transactions that were “confirmed” can be
“undone” from the perspective of an honest node who just experienced short-
term jitter possibly unknowingly (see the online full version [14] for a detailed
description of this real-world example).

Not only so, in fact to the best of our knowledge, all known classical-style, syn-
chronous consensus protocols [2, 15, 18] are underspecified and unimplementable
in practice: if a node ever experiences even a short-term outage and receives
messages out of sync, these protocols [2, 15, 18] provide no explicit instructions
for such nodes to join back and continue to enjoy consistency and liveness!

Of course, one known solution to this problem is to simply adopt a partially
synchronous [9] or asynchronous [6] model. In a partially synchronous or asyn-
chronous model, a short-term outage would be treated in the same way as a long
network delay, and a node that is transiently offline will not be penalized. For
this reason, partially synchronous (or asynchronous) protocols are known to be
arbitrarily partition tolerant; while synchronous protocols are not. Unfortunately,
as mentioned, partially synchronous or asynchronous protocols can tolerate only
1/3 fraction of corruptions!

Can we achieve the best of both worlds, i.e., design distributed computing
protocols that resist more than 1/3 corruption and meanwhile achieve a practical
notion of partition tolerance?

1.1 Definitional Contribution: A “Weak Synchronous” Network

At a very high level, we show that synchrony and partition tolerance are not
binary attributes, and that we can guarantee a notion called “best-possible par-
tition tolerance” under a quantifiable measure of synchrony. To this end, we
propose a new model called a χ-weakly-synchronous network.

A natural but overly restrictive notion. One natural way to quantify the degree
of synchrony is to count the fraction of nodes that always respect the synchrony
assumption. For example, we may want a distributed computing protocol to
satisfy desired security properties (e.g., consistency, liveness, privacy), as long
as more than χ fraction of nodes are not only honest but also always have good
connectivity (i.e., bounded ∆ delay) among themselves. This model, however, is
overly restrictive especially in long-running distributed computing tasks such as
a blockchain: after all, no node can guarantee 100% up-time [1], and over a few
years duration, it could be that every node was at some point, offline.
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χ-weak-synchrony. We thus consider a more general model that allows us to
capture network churn. We now require only the following:

[χ-weakly-synchronous assumption:] In every round, more than χ fraction
nodes are not only honest but also online; however, the set of honest and
online nodes in adjacent rounds need not be the same.

Throughout the paper we use the notation Or to denote a set of at least bχnc+1
honest nodes who are online in round r — henceforthOr is also called the “honest
and online set of round r”. Note that the remaining set [n]\Or may contain a
combination of honest or corrupt nodes and an honest node in [n]\Or is said to
be offline in round r.

We assume that the network delivery respects the following property where
multicast means “send to everyone”:

[network assumption:] when a node in Or multicasts a message in round r,
every node in Ot where t ≥ r+∆ must have received the message in round t.

We allow the adversary to choose the honest and online set of each round
(even after observing the messages that honest nodes want to send in the present
round), and delay or erase honest messages, as long as the above χ-weak-synchrony
and network delivery constraints are respected. For example, the adversary may
choose to delay an honest but offline node’s messages (even to online nodes) for
as long as the node remains offline. The adversary can also selectively reveal an
arbitrary subset of honest messages to an honest and offline node.

Therefore, our weak synchrony notion can be viewed as a generalization of
the classical synchronous notion (henceforth also called strong synchrony). In a
strongly synchronous network, it is required that the honest and online set of
every round must contain all honest nodes.

We ask whether we can achieve secure distributed computing tasks under
such a χ-weakly-synchronous network. With the exception of liveness (or guar-
anteed output) which we shall discuss shortly, we would like to guarantee all
security properties, including consistency and privacy, for all honest nodes, re-
gardless of whether or when they are online/offline. Defining liveness (or guar-
anteed output) in the χ-weakly-synchronous model, however, is more subtle.
Clearly we cannot hope to guarantee liveness for an honest but offline node for
as long as it remains offline. Therefore, we aim to achieve a “best-effort” notion
of liveness: a protocol has T -liveness iff for any honest node that becomes online
in some round r ≥ T , it must have produced output by the end of round r.

The challenges. We are faced with a few apparent challenges when designing
distributed protocols secure under χ-weak-synchrony. First, the online nodes
may change rapidly in adjacent rounds. For example, if χ = 0.5 and everyone is
honest, the honest and online sets belonging to adjacent rounds can be almost
disjoint. Second, we stress that offline nodes may not be aware they are offline,
e.g., a DoS attack against a victim’s egress router clearly will not announce itself
in advance. Further, the adversary can selectively reveal a subset of messages
to offline nodes such that they cannot detect they are offline from the protocol
messages they receive either. Because of these facts, designing protocols in our
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χ-weakly-synchronous model is significantly more challenging than the classical
synchronous model (or even the above restrictive model where we may assume
a sufficiently large set of honest and persistently online nodes).

1.2 Results: Consensus in a Weakly Synchronous Network

We consider the feasibility and infeasibility of achieving Byzantine Agreement
(BA) in a χ-weakly-synchronous network. In a BA protocol, a designated sender
has an input bit that it wants to convey to all other nodes. We would like to
achieve the following guarantess for all but a negligible fraction of executions: 1)
consistency, i.e., all honest nodes must output the same bit; 2) validity, i.e., if the
designated sender is honest and online in the starting round (i.e., round 0) of the
protocol, every honest node’s output (if any) must agree with the sender’s input
bit; and 3) T -liveness, i.e., every node in Or where r ≥ T must have produced
an output by the end of round r. Note that if the designated sender is honest but
offline initially, the protocol cannot make up for the time lost when the sender
is offline — thus validity requires that the sender not only be honest but also
online in the starting round.

As mentioned, we are primarily interested in protocols that tolerate more
than 1/3 corruptions since otherwise one could adopt a partially synchronous or
asynchronous model and achieve arbitrary partition tolerance. To avoid a well-
known lower bound by Lamport et al. [17], throughout the paper we will assume
the existence of a public-key infrastructure (PKI).

Impossibility when minority are honest and online. Unfortunately, we show
that it is impossible to have a χ-weakly-synchronous consensus protocol for
χ < 0.5 − 1/n, i.e., if the honest and online set of each round contains only
minority number of nodes (and this lower bound holds even assuming any rea-
sonable setup assumption such as PKI, random oracle, common reference string
(CRS), or the ability of honest nodes to erase secrets from memory). The in-
tuition for the lower bound is simple: there can be two honest well-connected
components that are partitioned from each other, i.e., the minority honest nodes
inside each component can deliver messages to each other within a single round;
however messages in between incur very long delay. In this case, by liveness of the
consensus protocol, each honest well-connected component will reach agreement
independently of each other. We formalize this intuition later in Section 4.

Best-possible partition tolerance. Due to the above impossibility, a consensus
protocol that achieves consistency, validity, and liveness under 0.5-weak-synchrony
is said to be best-possible partition tolerant.

A refinement of synchronous consensus. First, it is not hard to see that any best-
possible partition tolerant Byzantine Agreement (BA) protocol (i.e., secure under
0.5-weak-synchrony) must also be secure under honest majority in the classical,
strong synchronous model. On the other hand, the converse is not true. Interest-
ingly, we examined several classical, honest-majority BA protocols [2, 15, 18, 20]
and found none of them to satisfy best-possible partition tolerance. In this sense,
our notion of best-possible partition tolerance can also be viewed as a refinement
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of classical honest-majority BA, i.e., we can tease out a proper subset of honest-
majority BA protocols that satisfy good-enough partition tolerance in practice
— and we strongly recommend this robust subset for practical applications.

Round-efficient, best-possible partition tolerant BA. Of course, to show that our
notion is useful, we must show existence of a best-possible partition tolerant BA
that is efficient; and this turns out to be non-trivial.

Theorem 1 (Informal). Assume the existence of a PKI and enhanced trapdoor
permutations. Then, there exists an expected constant-round BA protocol secure
under 0.5-weak-synchrony.

Note that here, expected constant-round means that there is a random variable
T whose expectation is constant, such that if an honest node becomes online in
round r ≥ T , it must have produced an output in round r.

We additionally show how to extend the above result and construct a best-
possible partition tolerant BA protocol that is optimistically responsive [20]:
specifically, under the following optimistic conditions, the honest and online
nodes in O will produce an output in O(δ) amount of time where δ is the actual
maximum network delay (rather than the a-priori upper bound ∆):

O := “there exists a set O containing at least 3n/4 honest and persistently
online nodes, and moreover, the designated sender is not only honest but
also online in the starting round”

Corollary 1 (Informal). Assume the existence of a PKI and enhanced trap-
door permutations. Then, there exists an expected constant-round BA protocol
secure under χ-weak-synchrony; moreover, if the optimistic conditions O speci-
fied above also holds, then the honest and online nodes in O would produce output
in O(δ) time where δ is the actual maximum network delay.

Classical, corrupt-majority BA protocols inherently sacrifice partition tolerance.
As is well-known, in the classical, strongly synchronous model, we can achieve
BA even when arbitrarily many nodes can be corrupt. We show, however, the set
of corrupt-majority protocols are disjoint from the set of best-possible partition
tolerant protocols. Not only so, we can show that the more corruptions one
hopes to tolerate, the less partition tolerant the protocol becomes. Intuitively,
the lower bound is simple because in a corrupt majority protocol, a minority
honest well-connected component must independently reach agreement among
themselves in a bounded amount of time; and obviously there can be two such
components that are disconnected from each other and thus consistency among
the two components is violated (with constant probability).

This simple observation, however, raises another philosophical point: if we
adopted the classical synchronous model, it would be tempting to draw the con-
clusion that corrupt-majority BA is strictly more robust than honest-majority
BA. However, we show that one must fundamentally sacrifice partition toler-
ance to trade for the ability to resist majority corruption and this tradeoff is,
unfortunately, inherent.
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1.3 Results: MPC in a Weakly Synchronous Network

We next consider the feasibility of realizing multi-party computation in a χ-
weakly-synchronous network. Imagine that n parties would like to jointly evalu-
ate the function f(x1, . . . , xn) over their respectively inputs x1, x2, . . . , xn such
that only the outcome is revealed and nothing else. Again, a couple of subtleties
arise in formulating the definition. First, one cannot hope to incorporate the
inputs of offline nodes if one would like online nodes to obtain outputs quickly.
Thus, we require that at least bχnc + 1 number of honest nodes’ inputs be in-
cluded and moreover, every honest node who has always been online throughout
the protocol should get their inputs incorporated. Concretely, we require that
the ideal-world adversary submit a subset I ⊆ [n] to the ideal functionality, such
that I ∩ Honest ≥ bχnc + 1 where Honest denotes the set of honest nodes, and
moreover I must include every honest node who has been online throughout the
protocol. Henceforth, the subset I is referred to as the “effective input set”:

– for every i ∈ I that is honest, the computation should use node i’s true
inputs;

– for every i ∈ I that is corrupt, we allow the ideal-world adversary to replace
the input to any value of its choice; and

– for every i /∈ I, the computation simply uses a canonical input ⊥ as its input.

Second, the notion of guaranteed output must be treated in the same manner
as liveness for BA since we cannot hope that honest but offline nodes can obtain
output for as long as they remain offline. We say that an execution of the multi-
party protocol completes in T rounds, iff for any honest node in Ot where t ≥ T ,
it must have produced an output by the end of round t.

Under the above definition, we prove the following theorem (informally stated):

Theorem 2 (Informal). Assume the existence of a PKI, enhanced trapdoor
permutations, and that the Learning with Errors (LWE) assumption holds. Then,
there is an expected constant-round protocol that allows multiple parties to se-
curely evaluate any function f under 0.5-weak-synchrony.

We further extend our results in a non-trivial manner and and achieve opti-
mistically responsive MPC in the online full version [14].

Additional related work. We provide comparison with additional related work in
our online full version [14].

2 Technical Roadmap

The most technically non-trivial part of our result is how to realize Byzan-
tine Agreement (BA) under 0.5-weak-synchrony. Existing synchronous, honest-
majority protocols [15, 18] completely fail in our model. Since the honest and
online set can change rapidly in every round, it could be that by the end of the
protocol, very few or even no honest nodes have been persistently online, and
everyone honest was offline at some point. In other words, it could be that from
the view of every honest node, message delivery was asynchronous at some point
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in the protocol. Indeed, interestingly many of our core techniques are in fact
reminiscent of asynchronous consensus rather than synchronous approaches.

Although at a very high level, we follow a well-known recipe that constructs
BA from a series of building blocks:

Reliable Broadcast (RBC) ⇒ Verifiable Secret Sharing (VSS)
⇒ Leader Election (LE) ⇒ Byzantine Agreement (BA)

as it turns out, for all these building blocks, even how to define them was
non-trivial: the definitional subtleties arise partly due to the new χ-weakly-
synchronous model, and partly due to compositional issues.

2.1 Reliable Broadcast (RBC)

Definition. Reliable broadcast (RBC) allows a designated sender to convey a
message to other nodes. The primitive can be viewed as a relaxed version of BA:
assuming 0.5-weak-synchrony, RBC always guarantees the following for all but a
negligible fraction of executions:

1. Consistency: if two honest nodes output x and x′ respectively, it must be that
x = x′. For technical reasons that will become clear later, we actually need a
strengthening of the standard consistency notion, requiring that an efficient
extractor can extract the value that honest nodes can possibly output, given
honest nodes’ transcript in the initial T rounds of the protocol.

2. Validity: if the sender is honest, then honest nodes’ output must be equal to
the honest sender’s input;

3. T -liveness (under an honest and initially online sender): if the sender is not
only honest but also online in the starting round, then every node in Ot
where t ≥ T must have produced an output by the end of round t;

4. Close termination: if any honest node (even if offline) produces and output
in round r, then anyone in Ot where t ≥ r + 2∆ must have produced an
output by the end of round t too.

Interestingly, note that the T -liveness property is reminiscent of classical syn-
chronous definitions whereas the close termination property is reminiscent of
asynchronous definitions.

Construction. At a very high level, our RBC construction combines techniques
from classical synchronous “gradecast” [10,15] and asynchronous “reliable broad-
cast” [5, 6]. We defer the concrete construction to Section 5; the construction is
constant round, i.e., achieves T -liveness where T = O(1).

2.2 Verifiable Secret Sharing (VSS)

Definition. Verifiable secret sharing (VSS) allows a dealer to share a secret among
all nodes and later reconstruct it. We propose a new notion of (a computation-
ally secure) VSS that is composable and suitable for a 0.5-weakly-synchronous
network. Somewhat imprecisely, we require the following properties:
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– Binding (formally referred to as Validity in Section 6.2). Standard notions
of VSS [6] require that the honest transcript of the sharing phase binds to
the honestly reconstructed secret. For technical reasons needed later in the
proof of the Leader Election (LE), we require a stronger notion: an efficient
extractor E , knowing honest nodes’ public and secret keys, must be able to
extract this secret from the honest transcript during the sharing phase, and
the honestly reconstructed secret must agree with the extractor’s output.

– Secrecy and non-malleability. If the dealer is honest, then the shared value
must remain secret from the adversary before reconstruction starts. Not
only so, we also need a non-malleablity: an adversary, after interacting in
VSS instances each with an honest dealer, cannot act as a dealer in another
VSS instance and share a secret that is related to the honest secrets.

– Liveness. For liveness, we require that if the dealer is honest and online in the
initial round of the sharing phase, for t ≥ T , everyone inOt must have output
“sharing-succeeded”. Even when the dealer is corrupt or initially offline,
if any honest node (even if offline) ever outputs “sharing-succeeded” in
some round r, then everyone in Ot where t ≥ r + 2∆ must have output
“sharing-succeeded” by the end of round t. If some honest node has out-
put “sharing-succeeded”, then reconstruction must be successful and will
terminate in T rounds for honest and online nodes.

Just like the RBC definition, our VSS definition also has both synchronous and
asynchronous characteristics.

Construction. Informally our construction works as follows:

– Share. In the starting round of the sharing phase, the dealer secret splits
its input s into n shares denoted s1, s2, . . . , sn using a (bn/2c+ 1)-out-of-n
secret-sharing scheme. It then encrypts the share sj to node i’s public key
pkj using a public-key encryption scheme — let CTj be the resulting cipher-
text. Now, the node proves in zero-knowledge, non-interactively, that the
ciphertexts CT1, . . . ,CTn are correct encryptions of an internally consistent
sharing of some secret — let π denote the resulting proof. Assuming PKI
and honest majority, we can realize a Non-interactive Zero-Knowledge Proof
(NIZK) system (without CRS) using a technique called multi-string honest
majority NIZK proposed by Groth and Ostrovsky [13] (see online full ver-
sion [14]). Finally, the dealer invokes an RBC instance (henceforth denoted
RBC0) to reliably broadcast the tuple (sid , {CTj}j∈[n], π) to everyone — here
sid denotes the current instance’s unique identifier and this term is needed
here and also included in the NIZK statement for compositional reasons.
Suppose that the RBC scheme employed satisfies Trbc-liveness. Now in round
Trbc (assuming that the starting round is renamed to round 0), if a tuple has
been output from the RBC0 instance with a valid NIZK proof, then reliably
broadcast the message “ok”; otherwise reliably broadcast the message ⊥ —
note that here n instances of RBC are spawned and each node i will act as the
designated sender in the i-th instance. Finally, output “sharing-succeeded”
iff not only RBC0 has output a tuple with a valid NIZK proof but also at
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least bn/2c+ 1 RBC instances have output “ok” — note that at this moment,
the node (denoted i) can decrypt its own share s′i from the corresponding
ciphertext component contained in the output of RBC0.

– Reconstruct: If the sharing phase has output “sharing-succeeded” and
moreover the reconstruction phase has been invoked, then node i multicasts
the decrypted share s′i as well as a NIZK proof that the decryption was done
correctly (in a way that is consistent with its public key). Finally, as soon
as bn/2c+ 1 decryption shares with valid NIZK proofs are received, one can
reconstruct the secret.

2.3 Leader Election (LE)

Definition. Leader Election (LE) is an inputless protocol that allow nodes to
elect a leader denoted L ∈ [n] among the n nodes. For the outcome of LE to be
considered “good”, we want that not only every honest node must agree on the
leader, but also that this leader belongs to Or for some a-priori known round r
— jumping ahead, later in our BA protocol, everyone would attempt to propose
a value during this round r and the proposal of the elected leader will be chosen.

Intuitively, we would like that the LE achieves a good outcome with O(1)
probability. Our actual definition turns out to be tricky due to compositional
issues that arise due to multiple LE instances sharing the same PKI. We would
like that even when multiple LE instances share the same PKI, roughly speaking,
almost surely there is still independent constant probability that each individual
instance’s outcome is good. In formal definition (see Section 7), we will pre-
cisely specify which subset of honest coins that are freshly chosen in each LE
instance allow us to capture this desired independence. Note that this indepen-
dence property is desired because later in our BA protocol, we need to argue
that after a bounded number of trials, an honest leader must be elected except
with negligible probability.

Construction. Our LE protocol is in fact inspired by the asynchronous leader
election protocol by Canetti and Rabin [6]. Since our LE construction is rather
technical, we explain a high-level intuition here while deferring the full protocol
to Section 7. The idea is for everyone i to choose n coins denoted ci,1, . . . , ci,n ∈ F,
one for each person. All these coins will be committed to using a VSS protocol
such that corrupt nodes cannot choose their coins after seeing honest coins.
Each person j’s charisma is the product of the coins chosen for him by at least
bn/2c+ 1 others, i.e.,

∏
i∈Dj

ci,j where Dj ⊆ [n] and |Dj | ≥ bn/2c+ 1 — in this
way, at least one in Dj is honest and has chosen a random coin. In our protocol,
every person j will announce this set Dj itself through an RBC protocol. Ideally
we would like nodes to agree on a set of candidates that contain many nodes
in Or for some r, and elect the candidate with the maximum charisma (lexi-
cographically) from this set — unfortunately at this moment we do not have
Byzantine Agreement yet. Thus we must accomplish this task without reaching
agreement. Our idea is for each node to independently calculate a sufficiently
large set of candidates; and although honest nodes may not agree on this candi-
date set, honest nodes’ candidate sets must all contain every node in Or. We
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stress that the challenge is that honest offline nodes’ candidate sets must also
satisfy this property even though they are receiving only an arbitrary subset
of messages chosen by the adversary — note that these nodes basically have
“asynchronous” networks. Perhaps more challengingly, it could be that every
honest node may be offline in some round, and thus everyone’s network may be
asynchronous at some point.

Towards this end, we adapt Canetti and Rabin’s leader election idea [6] to
our weakly synchronous setting: specifically, everyone first reliably broadcasts
a tentative candidate set S, but they keep maintaining and growing a local
candidate set denoted S∗ ⊇ S. They would keep adding nodes that they newly
deem eligible to their local set S∗, until at some point, they decide that their local
set S∗ is sufficiently inclusive based on sufficiently many tentative candidate sets
that have been reliably broadcast. At this moment, the node stops growing its
local candidate set and outputs the candidate with maximum charisma from its
current local set. We refer the reader to Section 7 for a detailed description.

2.4 Byzantine Agreement (BA)

The next question is how to construct BA given weakly synchronous LE. This step
turns out to be non-trivial too. In particular, we stress that existing synchronous
BA protocols [2, 15, 18] are broken under 0.5-weak-synchrony, not only because
they lack a good leader election (or common coin) algorithm — in fact even if we
replaced the leader election in existing schemes with an ideal version (e.g., our
own leader election scheme in Section 7), the resulting BA schemes would still
be broken under 0.5-weak-synchrony. All existing synchronous BA schemes make
use of synchrony in a strong manner: they rely on the fact that if an honest node
i sees some message m in round t, then i is surely able to propagate the message
to every honest node by the end of round t+∆. This assumption is not true in
our model since our model does not provide any message delivery guarantees for
offline honest nodes. Instead, our protocol makes use of only weak synchrony and
specifically the following observation (and variants of it): if bn/2c+ 1 number
of nodes declare they have observed a message m by the end of round t, then at
least one of them must be in Ot and if all of these nodes try to propagate the
message m to others in round t, then everyone in Ot∗ where t∗ ≥ t + ∆ must
have observed m by the end of round t∗.

At a very high level, our protocol proceeds in epochs. We make the following
simplifying assumptions for the time being: 1) ∆ = 1, and 2) every node keeps
echoing every message they have seen in every round (in our later technical
sections we will remove the need for infinite echoing):

– Propose: For the first epoch, the designated sender’s signature on a bit is
considered a valid proposal. For all other epochs, at epoch start a leader
election protocol is invoked to elect a leader. Recall that with constant prob-
ability, the leader election algorithm guarantees the following “good” event
G: 1) the LE protocol guarantees that the elected leader is in Or for some
pre-determined round r; and 2) no two honest nodes output inconsistent
leaders. Now imagine that in precisely round r of this epoch, everyone ten-
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tatively proposes a random bit b — and if the node indeed gets elected as a
leader the proposed bit will be recognized as a valid proposal1.

– Vote (formally called “Prepare” later): Let Tle be the liveness parameter of
the LE scheme. In round Tle of the epoch e, a node votes on the elected
leader’s proposal if in epoch e− 1 majority nodes complained of not having
received majority votes for either bit — in this case no honest node can have
made a decision yet. Otherwise if the node has observed majority votes for
some bit b′ from the previous epoch e− 1, it votes for b′ — in this case some
honest node might have made a decision on b′ and thus we might need to
carry on the decision. Henceforth the set of majority votes for b′ from epoch
e− 1 is said to be an epoch-e pseudo-proposal for b′.

– Commit: In round Tle + 1 of the epoch e, a node sends an epoch-e commit
message for a bit b, iff it has observed majority epoch-e votes on b, and no
epoch-e proposal or pseudo-proposal for 1− b has been seen.

– Complain: In round Tle + 2 of the epoch e, send a complaint if neither bit
gained majority votes in this epoch.

At any time, if bn/2c+ 1 number of commits from the same epoch and for
the same bit b have been observed, output b and continue participating in the
protocol (we describe a termination technique in the online full version [14]).

Remark 1. We point out that although our BA protocol might somewhat resem-
ble the recent work by Abraham et al. [2], their protocol is in fact broken under
0.5-weak-synchrony (even if they adopted an ideal leader election protocol) for
a couple of reasons. In their protocol, in essence a node makes a decision if the
node itself has seen majority votes and no conflicting proposal. To ensure con-
sistency under weak synchrony, our protocol makes a decision when majority
votes have been collected and moreover, majority nodes have declared that they
have not seen a conflicting proposal (or pseudo-proposal). Finally, we introduce
a “complain” round, and technically this (and together with the whole pack-
age) allows us to achieve liveness under 0.5-weak-synchrony — in comparison,
Abraham et al.’s protocol [2] appears to lack liveness under weak synchrony.

2.5 Multi-Party Computation

We now consider multi-party computation in a weakly synchronous network.
Specifically, we will consider the task of secure function evaluation (SFE). Imag-
ine that n nodes each has an input where node i’s input is denoted xi. The nodes
would like to jointly compute a function f(x1, . . . , xn) over their respective in-
puts. The privacy requirement is that besides learning the outcome, each node
must learn nothing else (possibly in a computational sense). Recall that earlier in
our Byzantine Agreement (BA) protocols, there is no privacy requirement, and
therefore our goal was to ensure that honest nodes who drop offline do not risk
inconsistency with the rest of the network. With SFE, we would like to protect

1 This is necessary because if a single proposer made a proposal after being elected,
the adversary could make the proposer offline in that precise round.
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not only the consistency but also the input-privacy of those who are benign but
drop offline or have unstable network connection.

Of course, in a weakly synchronous environment, if we would like online nodes
to obtain outputs in a bounded amount of time, we cannot wait forever for offline
honest nodes to come online. Thus, in our definition, we require that 1) at least
n/2 honest nodes’ inputs be included in the computation; and 2) every honest
node that remains online during the protocol must get their inputs incorporated.
Note that the second requirement ensures that our notion is strictly stronger (i.e.,
more robust) than classical synchronous MPC under honest majority.

Construction. Our goal is to construct an expected constant-round SFE protocol
secure under 0.5-weak-synchrony. The näıve approach of taking any existing
MPC and replacing the “broadcast” with our weakly synchrounous BA (see
earlier subsections of this section) may not solve the problem. Specifically, we
need to additionally address the following challenges:

1. Classical synchronous MPC protocols are not required to provide secrecy
for honest nodes who even temporarily drop offline. Once offline, an honest
node’s input may be reconstructed and exposed by honest nodes who still
remain online.

2. Many standard MPC protocols [4, 11] require many pairs of nodes to have
finished several rounds of pairwise interactions to make progress. Even if
such protocols required only constant number of rounds in the classical syn-
chronous model, they may suffer from bad round complexity in our model
— recall that in a weakly synchronous network, nodes do not have persis-
tent online presence; thus it can take (super-)linear number of rounds for
sufficiently many pairs of nodes to have had an opportunity to rendezvous.

To tackle these challenges we rely on a Threshold Multi-Key Fully Homo-
morphic Encryption (TMFHE) scheme [3,12]. In a TMFHE scheme [3],

1. Each node i can independently generate a public key denoted pki and register
it with a PKI.

2. Now, each node i can encrypt its input xi resulting in a ciphertext CTi.
3. After collecting a set of ciphertexts {CTi}i∈S corresponding to the nodes
S ⊆ [n], any node can independently perform homomorphic evaluation (for
the function f) on the ciphertext-set {CTi}i∈S and obtain an encryption

(denoted C̃T) of f({xi}i∈S).

4. Now, each node i can evaluate a partial decryption share of C̃T such that if
sufficiently many partial decryption shares are combined, one can reconstruct
the plaintext evaluation outcome f({xi}i∈S).

In our protocol, in round 0, every node i will compute an TMFHE ciphertext
(denoted CTi) that encrypts its own input and compute a NIZK proof (denoted
πi) attesting to well-formedness of the ciphertext. The pair (CTi, πi) will be
broadcast by invoking an instance of our BA protocol described in Section 8. Let
Tba be the liveness parameter of BA. Now, every honest node in OTba

will have
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obtained outputs from all BA instances at the beginning of round Tba. From the
outputs of these BA instances, nodes in OTba

can determine the effective-input
set I — specifically if any BA instance that has produced a well-formed out-
put with a valid NIZK proof, the corresponding sender will be included in the
effective-input set. Observe that everyone in O0 will be included in I. Now, in
round Tba, any node who has produced outputs from all n BA instances will per-
form homomorphic evaluation independently over the collection of ciphertexts
{CTi}i∈I. They will then compute and multicast a partial decryption share and
a NIZK proof vouching for the correctness of the partial decryption share. Now,
everyone in Ot for t ≥ Tba will have received sufficiently many decryption shares
in round t to reconstruct the evaluation outcome.

Comparison with “lazy MPC”. Interestingly, the recent work by Badrinarayanan
et al. [3] propose a related notion called “lazy MPC”; and their goal is also to
safeguard the inputs of those who are benign but drop out in the middle of the
protocol. Their model, however, is overly restrictive:

1. first, Badrinarayanan et al. [3] require that a set of majority number of
honest nodes to be online forever;

2. not only so, they also make the strong assumption that nodes who drop
offline never come back (and thus we need not guarantee liveness for nodes
who ever drop offline).

As mentioned, in long-running distributed computation environments (e.g., de-
centralized blockchains where a secure computation task may be repeated many
times over the course of years), most likely no single node can guarantee 100%
up-time (let alone majority). From a technical perspective, the existence of a
majority “honest and persistent online” set also makes the problem significantly
easier. For example, for BA, there is in fact a simple compiler that compiles
any existing honest-majority, strongly synchronous BA to a setting in which the
existence of majority “honest and persistent online” set is guaranteed: basically,
simply run an honest-majority, strongly synchronous BA protocol denoted BA0.
If BA0 outputs a value v, multicast a signed tuple (finalize, v). Output v iff
bn/2c+ 1 number of (finalize, v) messages have been received with valid sig-
natures from distinct nodes. In fact, this simple protocol also ensures liveness
for drop-outs who come back online.

Under our definition of weak synchrony, realizing BA is highly non-trivial
(see earlier subsections of this section). Once we realize BA, our approach for
realizing MPC is reminiscent of Badrinarayanan et al. [3]. There is, in fact, a
notable difference in a low-level subtlety: in Badrinarayanan et al. [3]’s lazy
MPC model, they can afford to have sufficiently many pairs of nodes engage
in several rounds of pairwise interaction, whereas in our model, it can take
(super-)linear number of rounds for sufficiently many pairs of nodes to have had
an opportunity to rendezvous. For this reason, we need to use a strengthened
notion of Threshold Multi-Key Fully Homomorphic Encryption (TMFHE) in
comparison with Badrinarayanan et al. [3]. More detailed discussion of these
technicalities are inclued in the online full version [14].
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3 Defining a Weakly Synchronous Execution Model

A protocol execution is formally modeled as a set of Interactive Turing Machines
(ITMs). The execution proceeds in rounds, and is directed by a non-uniform
probabilistic polynomial-time (p.p.t.) environment denoted Z(1κ) parametrized
by a security parameter κ ∈ N. Henceforth we refer to ITMs participating in the
protocol as nodes and we number the nodes from 1 to n(κ) where n is chosen by
Z and may be a polynomial function in κ.

3.1 Modeling Corruption and Network Communication

We assume that there is a non-uniform p.p.t. adversary A(1κ) that may com-
municate with Z freely at any time during the execution. A controls a subset of
nodes that are said to be corrupt. All corrupt nodes are fully within the control
of A: A observes a node’s internal state the moment it becomes corrupt and
henceforth all messages received by the corrupt node are forwarded to A; fur-
ther, A decides what messages corrupt nodes send in each round. In this paper,
we assume that corruption is static, i.e., the adversary A decides which nodes
to corrupt prior to the start of the protocol execution.

Nodes that are not corrupt are said to be honest, and honest nodes faithfully
follow the prescribed protocol for as long as they remain honest. In each round,
an honest node can either be online or offline.

Definition 1 (Honest and online nodes). Throughout the paper, we shall
use the notation Or to denote the set of honest nodes that are online in round
r. The set Or is also called the “honest and online set” of round r. For i ∈ Or,
we often say that i is honest and online in round r.

We make the following assumption about network communication — note
that our protocol is in the multicast model, i.e., every protocol message is sent
to the set of all nodes:

Assumption 1 (Message delivery assumption) We assume that if some-
one in Or multicasts a message m in round r, then everyone in Ot where
t ≥ r +∆ will have received m at the beginning of round t.

In other words, an honest and online node is guaranteed to be able to deliver
messages to the honest and online set of nodes ∆ or more rounds later. The
adversary A may delay or erase honest messages arbitrarily as long as Assump-
tion 1 is respected.

Remark 2 (Offline nodes’ network communication). Note that the above mes-
sage delivery assumption implies that messages sent by honest but offline nodes
can be arbitrarily delayed or even completely erased by the adversary. Further,
the adversary can control which subset of honest messages each offline node re-
ceives in every round; it can omit an arbitrary subset of messages or even all of
them from the view of honest offline nodes for as long as they remain offline.
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Remark 3. We stress that a node is not aware whether it is online or offline.
This makes protocol design in this model more challenging since the adversary
can carefully choose a subset of messages for an offline (honest) node to receive,
such that the offline node’s view can appear perfectly “normal” such that it is
unable to infer that it is offline. Jumping ahead, a consensus protocol secure in
our model should guarantee that should an offline node make a decision while it is
offline, such decisions would nonetheless be safe and would not risk inconsistency
with the rest of the network.

Our protocol needs to be aware of the parameters ∆ and n. Throughout
we shall assume that ∆ and n are polynomial functions in κ. Formally, we can
imagine that Z inputs ∆ and n to all honest nodes at the start of the execution.
Throughout the paper, we assume that (A,Z) respects the following constraints:

Z always provides the parameters n and ∆ to honest nodes at the start
of the execution such that n is the total number of nodes spawned in the
execution, and moreover, the adversary A respects Assumption 1.

Schedule within a round. More precisely, in each round r, the following happens:

1. First, each honest node receives inputs from Z and receives incoming mes-
sages from the network; note that at this moment, A’s decision on which set
of incoming messages an honest node receives will have bearings on whether
this honest node can be included in Or;

2. Each honest node then performs polynomially bounded computation and
decides what messages to send to other nodes — these messages are imme-
diately revealed to A. Further, after the computation each honest node may
optionally send outputs to Z.

3. At this moment, A decides which nodes will belong to Or where r denotes
the current round. Note that A can decide the honest and online set Or of
the present round after seeing what messages honest nodes intend to send
in this round.

4. A now decides what messages each corrupt node will send to each honest
node. Note also that A is rushing since it can see all the honest messages
before deciding the corrupt nodes’ messages.

5. Honest nodes send messages over the network to other nodes (which may be
delayed or erased by A as long as Assumption 1 is satisfied).

Definition 2 (χ-weak-synchrony). We say that (A,Z) respects χ-weak-synchrony
(or that A respects χ-weak-synchrony), iff in every round r, |Or| ≥ bχ · nc+ 1.

To aid understanding, we make a couple of remarks regarding this definition.
First, observe that the set of honest and online nodes need not be the same in
every round. This allows us to model churns in the network: nodes go offline and
come online; and we wish to achieve consistency for all honest nodes, regardless
of whether they are online or offline, as long as sufficiently many nodes are
online in each round. Second, the requirement of χ-weak-synchrony also imposes
a corruption budget. As an example, consider the special case when χ = 0.5 and
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n is an even integer: if (A,Z) respects 0.5-weak-synchrony, it means that the
adversary controls at most n/2− 1 nodes. It could be that the adversary in fact
controls fewer, say, n/3 number of nodes. In this case, up to n/2−1−n/3 honest
nodes may be offline in each round, and jumping ahead, in a consensus protocol
we will require that consistency hold for these honest but offline nodes as well.

Finally, note also that our weakly-synchronous model is a generalization of
the classical synchronous model: in the classical synchronous model, it is addi-
tionally required that for every r, Or must be equal to the set of all nodes that
remain honest till the end of round r (or later).

3.2 Modeling Setup Assumptions

In the plain model without any setup assumptions, Lamport et al. [17] showed
that no consensus protocol could tolerate 1/3 or more corruptions; however
for < 1/3 corruptions, one can construct protocols that tolerate arbitrary net-
work partitions by adopting the partially synchronous model [7, 9, 16]. It is also
known that assuming a public-key infrastructure (PKI) and computationally
bounded adversaries, one can construct consensus protocols that tolerate ar-
bitrarily many corruptions in the classical fully synchronous model. Thus the
interesting open question is whether, assuming the existence of a PKI and com-
putationally bounded adversaries, we can construct protocols that tolerate more
than 1/3 corruptions and yet provide some quantifiable degree of partition tol-
erance. Therefore, throughout this paper we shall assume the existence of a
PKI and computationally bounded adversaries. We assume that the adversary
chooses which nodes to corrupt before the PKI is established.

3.3 Weakly Synchronous Byzantine Agreement

We now define Byzantine Agreement (BA) in a weakly synchronous network.
The consistency definition is standard except that now we require consistency
for honest nodes regardless of whether they are online or offline. For validity,
if the sender is honest but offline initially, we cannot hope that the protocol
will somehow make up for the time lost waiting for the sender to come online,
such that honest and online nodes would output by the same deadline. Thus we
require validity to hold only if the sender is not only honest but also online in
the starting round. For liveness, we cannot hope that honest but offline nodes
obtain outputs quickly without the risk of being inconsistent with the rest of
the network. Thus, we require that as soon as an honest node is online at time
T or greater (where T is also called the liveness parameter), it must produce an
output if it has not done so already.

Syntax. A Byzantine Agreement (BA) protocol must satisfy the following syntax.
Without loss of generality, we assume that node 1 is the designated sender. Before
protocol start, the sender receives an input bit b from Z; and all other nodes
receive no input. The nodes then run a protocol, and during the protocol every
node may output a bit.

16



Security. Let T (κ, n,∆) be a polynomial function in the stated parameters. For
P ∈ {consistency, validity, T -liveness}, a BA protocol is said to satisfy property
P w.r.t. some non-uniform p.p.t. (A,Z) that is allowed to spawn multiple pos-
sibly concurrent BA instances sharing the same PKI, iff there exists a negligible
function negl(·) such that for every κ ∈ N, except with negl(κ) probability over
the choice of protocol execution, the corresponding property as explained below
is respected in all BA instances spawned — henceforth we rename the starting
round of each BA instance to be round 0 and count rounds within the same
instance accordingly afterwards:

– Consistency. If honest node i outputs bi and honest node j outputs bj , it
must be that bi = bj .

– Validity. If the sender is in O0, any honest node’s output must be equal to
the sender’s input.

– T -liveness. Any node in Or for r ≥ T must have output a bit by the end of
round r.

We say that a BA protocol satisfies property P ∈ {consistency, validity, and T -liveness}
under χ-weak-synchrony if it satisfies the property P w.r.t. any non-uniform
p.p.t. (A,Z) that respects χ-weak-synchrony and is allowed to spawn multiple
possibly concurrent BA instances sharing the same PKI. Henceforth, if a BA
protocol satisfies consistency, validity, and T -liveness under χ-weak-synchrony,
we also say that the protocol is a “χ-weakly-synchronous BA protocol”.

Remark 4 (Worst-case vs expected notions of liveness). We note that T -liveness
defines a worst-case notion of liveness. In the remainder of the paper, we some-
times use an expected round complexity notion. We say that our BA protocol is
expected constant round, iff there is a random variable R whose expectation is
constant such that everyone in Or where r ≥ R should have produced an output
by the end of round r.

Multi-valued agreement. The above definition can be extended to multi-valued
agreement where nodes agree on a value from the domain {0, 1}`(κ) rather than
a single bit. Multi-valued agreement can be obtained by parallel composition
of ` instances of BA. In this paper, we will refer to the multi-valued version as
Byzantine Agreement (BA) too.

4 Lower Bounds

4.1 Impossibility of Weakly-Synchronous Consensus for χ ≤ 0.5

First, we show that for any χ ≤ 0.5 − 1
n , it is impossible to achieve BA under

χ-weak-synchrony. The intuition for this lower bound is simple: if a BA protocol
allows a minority set of online nodes to reach agreement without hearing from
the offline nodes, then two minority camps could independently reach agreement
thus risking consistency. We formalize this intuition in the following theorem.
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Theorem 3. For any χ ≤ 0.5− 1
n , for any polynomial function T , no BA pro-

tocol Π can simultaneously achieve consistency, validity, and T -liveness under
χ-weak-synchrony.

Proof. Please refer to the online full version [14].

We point out that the above the lower bound holds even if A is restricted
to scheduling the same honest and online set throughout, i.e., O0 = O1 =
. . ., has to decide the message delivery schedule in advance, and even when no
node is corrupt. Moreover, the lower bound holds even for randomized protocols,
allowing computational assumptions, and allowing additional setup assumptions
(e.g., PKI, random oracle, or the erasure model).

Best-possible partition tolerance. In light of Theorem 3, a BA protocol secure
under 0.5-weak-synchrony is also said to be best-possible partition tolerant.

4.2 Corrupt-Majority Protocols Sacrifice Partition Tolerance

It is well-known that there exist Byzantine Agreement protocols that tolerate ar-
bitrarily many byzantine faults [8] under the classical synchronous model hence-
forth referred to as strong synchrony. If we adopted the classical strong synchrony
model we might be misled to think that protocols that tolerate corrupt major-
ity are strictly more robust than those that tolerate only corrupt minority. In
this section, however, we show that corrupt-majority protocols (under strong
synchrony) in fact sacrifice partition tolerance in exchange for tolerating cor-
rupt majority, and this is inherent. As explained earlier, in real-world scenarios
such as decentralized cryptocurrencies, partition tolerance seems to be a more
important robustness property.

It is not too difficult to see that any corrupt-majority, strongly-synchronous
protocol cannot be secure under 0.5-weak-synchrony. Specifically, with a corrupt-
majority strongly-synchronous protocol, if the network partitions into multiple
minority connected components, each component will end up reaching its own in-
dependent decision. We can generalize this intuition and prove an even stronger
statement: any strongly-synchronous protocol that tolerates more than ν ≥ 0.5
fraction of corruptions cannot be secure under ν-weak-synchrony, i.e., such a
protocol cannot guarantee consistency for all honest nodes (including offline
ones) even if we make the strong assumption that at least ν fraction of honest
nodes are online. In other words, the more corruptions the protocol tolerates un-
der strong synchrony, the less partition tolerant it becomes. To state our theorem
precisely, we introduce the following notation:

– We say that (A,Z) respects µ-strongly-synchronous iff at least bµnc+1 nodes
are honest and moreover all honest nodes are forever online. We say that a
BA protocol satisfies property P ∈ {consistency, validity, and T -liveness}
under µ-strong-synchrony iff it satisfies property P w.r.t. any non-uniform
p.p.t. (A,Z) that respects µ-strong-synchrony.

– Let BA{µ} be the family that contains every protocolΠ satisfying the follow-
ing: ∃ a polynomial function T (·, ·, ·) s.t. Π that satisfy consistency, validity,
and T (κ, n,∆)-liveness under µ-strong-synchrony.
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– Let BA+{χ} be the family that contains every protocol Π satisfying the
following: ∃ a polynomial function T (·, ·, ·) s.t. Π that satisfy consistency,
validity, and T -liveness under χ-weak-synchrony.

Theorem 4. ∀0 < µ < 0.5, χ ≤ 1− µ− 2/n, BA{µ} ∩ BA+ {χ} = ∅.

Proof. Please refer to the online full version [14].

5 Reliable Broadcast (RBC)

In our upper bound sections (Sections 5, 6.2, 7, 8, and the MPC upper bound
in the online full version [14]) for convenience, we will make a slightly stronger
assumption on the underlying network — but in fact this stronger assumption
can be realized from Assumption 1 described earlier.

Assumption 2 (Strong message delivery assumption) If i ∈ Or and i
has multicast or received a message m before the end of round r, then every-
one in Ot where t ≥ r + ∆ will have received m at the beginning of round t.

In the online full version [14], we describe how to realize Assumption 2
through a simple echo mechanism: roughly speaking, nodes echo and retry send-
ing messages they have seen until they believe that the message has become part
of the honest and online nodes’ view.

5.1 Definition

We define a primitive called reliable broadcast (RBC) that allows a designated
sender to broadcast a message, guaranteeing consistency regardless of whether
the sender is honest or online, and additionally guaranteeing liveness when the
sender is not only honest but also online in the starting round. We also require
a “close termination” property: even when the designated sender is corrupt, we
require that if some honest node outputs in round r, then everyone in Ot where
t ≥ r + 2∆ must have output by the end of round t too. The liveness notion
is defined in a similar fashion as in Section 3.3: since under weak synchrony we
cannot guarantee progress for offline nodes, we require that any honest node who
comes back online in some time T or greater will have received output (assuming
an honest and initially online sender). For technical reasons that will be useful
later in the proof of our Leader Election (LE) protocol, we need a stronger version
of the standard consistency property: not only must honest nodes’ outputs agree,
there must be an efficient extractor that outputs either a bit b ∈ {0, 1} or ⊥ when
given the PKI and the honest nodes’ transcript in the initial T rounds as input.
If any honest node indeed makes an output, the output must be consistent with
the extractor’s output b.

Syntax. An RBC protocol consists of the following algorithms/protocols:

– PKI setup: at the very beginning every node i registers a public key pki
with the PKI;
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– RBC protocol: all instances of RBC share the same PKI. In each RBC in-
stance, a designated sender (whose identifier is pre-determined and publicly-
known) receives a value x from the environment Z whereas all other nodes
receive nothing. Whenever a node terminates, it outputs a value y. Hence-
forth we shall assume that an admissible Z must instruct all nodes to start
protocol execution in the same round2;

– Extractor E : a polynomial-time deterministic extractor E that is needed
only in our security definitions and proofs, not in the real-world protocol.

Security. Let T (n,∆, κ) be a polynomial function in the stated parameters. For
P ∈ {T -consistency, validity, T -liveness, close termination}, we say that an RBC
protocol Π satisfies property P under χ-weak-synchrony iff for any non-uniform
p.p.t. (A,Z) that respects χ-weak-synchrony and can spawn multiple instances
of RBC sharing the same PKI, there exists a negligible function negl(·) such that
for every κ ∈ N, except for negl(κ) fraction of the executions in the experiment
EXECΠ(A,Z, κ), the following properties hold for every RBC instance:

– T -consistency. Let y := E({pki}i∈[n],Tr) where Tr denotes the transcript of
all honest nodes in the initial T rounds of the RBC instance. Then, if any
honest node ever outputs y′, it must be that y′ = y.

– Validity. If the sender is honest and its input is x, then if any honest node
outputs x′, it must be that x′ = x.

– T -liveness (under an honest and initially online sender). If the sender is not
only honest and but also online in the starting round of this RBC instance
(henceforth the starting round is renamed to be round 0 for convenience),
then every node that is honest and online in round r ≥ T will have produced
an output by the end of round r.

– Close termination. If an honest node outputs in some round r, then every
node that is honest and online in round r′ ≥ r+ 2∆ will have output by the
end of round r′.

Remark 5. Although in general, consistency and liveness can be parametrized
by different delay functions, without loss of generality we may assume that two
parameters are the same T (since we can always take the maximum of the two).

5.2 Construction

During the PKI setup phase (shared across all subsequent RBC instances), every
node calls (vk, ssk)← Σ.K(1κ) and registers the vk with the PKI. The portion ssk
is kept secret and henceforth the node will use ssk to sign protocol messages in
all future RBC instances. Henceforth, although not explicitly noted, we assume
that every message is by default tagged with the current session’s identifier
denoted sid . Every signature computation and verification will include the sid .
We also assume that each message is tagged with the purported sender such that
a recipient knows under which public key to verify the signature.

2 Later in our VSS and LE protocols that invoke RBC, the fact that the RBC’s envi-
ronment Z is admissible is guaranteed by construction.
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1. Propose (round 0): In round 0, the sender multicasts (propose, x) where
x is its input, attached with a signature on the tuple.

2. ACK (round ∆): At the beginning of round ∆, if a tuple (propose, y) with
a valid signature has been received from the sender, multicast (ack, y) along
with a signature on the tuple.

3. Commit (round 2∆): At the beginning of round 2∆, if the node has ob-
served bn/2c+ 1 number of (ack, y) messages for the same y and with valid
signatures from distinct nodes, and moreover, it has not received any con-
flicting (propose, y′) message (with a valid signature from the sender) for
y′ 6= y, then multicast (commit, y) along with a signature on the tuple.

4. Finalize (any time): At any time, if the node has received bn/2c+ 1
valid (commit, y) messages for the same y and from distinct nodes, mul-
ticast (finalize, y) along with a signature on the tuple. At any time, if a
collection of bn/2c+ 1 (finalize, y) messages with valid signatures from
distinct nodes have been observed, output y.

We defer the constructor of the extractor E to the proofs since it is needed
only in the security definitions and proofs and not in the real-world protocol.

Theorem 5. Suppose that the signature scheme employed is secure, then the
above RBC protocol satisfies 2∆-consistency, validity, 4∆-liveness, and close ter-
mination under 0.5-weak-synchrony.

Proof. Please refer to the online full version [14].

6 Verifiable Secret Sharing (VSS)

6.1 Definitions

A Verifiable Secret Sharing (VSS) allows a dealer to share a secret among all
nodes and later reconstruct the secret. Standard notions of VSS [6] require that
the honest transcript of the sharing phase binds to the honestly reconstructed
secret. For technical reasons needed later in the proof of the Leader Election
(LE), we require a stronger notion, i.e., an efficient extractor E , knowing hon-
est nodes’ public and secret keys, must be able to extract this secret from the
honest transcript during the sharing phase (and later the honestly reconstructed
secret must agree with the extractor’s output). We need a composable notion of
secrecy which we call non-malleability — note that composition was a non-issue
in previous works that achieve security against unbounded adversaries [6]. Fi-
nally, for liveness, we require that if the dealer is honest and online in the initial
round, for t ≥ T , everyone in Ot must have output “sharing succeeded”. Even
when the dealer is corrupt or offline, if any honest node ever outputs “sharing
succeeded” in some round r, then everyone in Ot where t ≥ r + 2∆ must have
output “sharing succeeded” by the end of round t. If some honest node has
output “sharing succeeded”, then reconstruction must be successful and will
terminate in T rounds for honest and online nodes.
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Syntax A Verifiable Secret Sharing (VSS) scheme for a finite field F consists
of a setup algorithm K that is run once upfront and henceforth shared among
all protocol instances where each protocol instance contains two sub-protocols
called Share and Reconstruct:

1. (pki, ski)← K(1κ): every node i calls this algorithm to generate a public and
secret key pair denoted pki and ski; and pki is registered with the PKI.

2. Share: A designated node called the dealer receives an input s ∈ F from
Z and all other nodes receive no input. Now all nodes execute the Share
sub-protocol for the dealer to secret-share its input. We assume that for the
same VSS instance, an admissible Z always instructs all honest nodes to start
executing Share in the same round. Should execution of Share successfully
terminate, a node would output a canonical output “sharing succeeded”.

3. Reconstruct: All nodes execute the Reconstruct sub-protocol to reconstruct
a secret that is shared earlier in the Share sub-protocol. We assume that an
admissible Z always instructs all honest nodes to start executing Reconstruct
in the same round. Should execution of Reconstruct successfully terminate,
a node would output a reconstructed secret s′ ∈ F.

Besides these real-world algorithms, a VSS scheme additionally has a polynomial-
time extractor algorithm E that is needed later in the security definitions (in-
cluding the definitions of validity and non-malleability). We shall explain the
extractor E later when we define security.

T -Liveness Consider a pair (A,Z) that may spawn multiple (concurrent or
sequential) VSS instances all of which share the same n, PKI setup, and the same
∆. Let T (n,∆, κ) be a polynomial function in n,∆, κ. We say that a VSS protocol
satisfies T -liveness under χ-weak-synchrony iff for any non-uniform p.p.t. (A,Z)
that respects χ-weak-synchrony (and may spawn multiple instances sharing the
same PKI), there exists negl(·) such that for any κ ∈ N, such that except with
negl(κ) probability, the following holds for every VSS instance spawned:

1. Termination of Share under honest and initially online dealer: suppose that
the Share sub-protocol is spawned in round r0, and moreover the dealer is
in Or0 , then any node in Or for r ≥ r0 + T must have output “sharing
succeeded” by the end of round r;

2. Close termination of Share: if an honest node i has terminated the Share
sub-protocol outputting “sharing succeeded” in round r, then for every
r′ ≥ r+ 2∆, every node in Or′ must have terminated the Share sub-protocol
outputting “sharing succeeded” by the end of round r′;

3. Termination of Reconstruct: if by the end of some round r, some honest node
has terminated the Share sub-protocol outputting “sharing succeeded”,
and moreover honest nodes have been instructed to start Reconstruct, then,
anyone in Ot for t ≥ r+T must have terminated the Reconstruct sub-protocol
outputting some reconstructed value in F by the end of round t.
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T -Validity As before, we consider an (A,Z) pair that is allowed to spawn mul-
tiple (concurrent or sequential) VSS instances, all of which share the same n,
PKI setup, and ∆. Let T (n,∆, κ) be a polynomial function in its parameters.
Henceforth let Honest ⊆ [n] denote the set of honest nodes. We say that a VSS
protocol satisfies T -validity under χ-weak-synchrony, iff for every non-uniform
p.p.t. (A,Z) that respects χ-weak-synchrony (and may spawn multiple VSS in-
stances sharing the same PKI where each instance has a unique sid), there exists
a negligible function negl(·) such that except with negl(κ) probability, the follow-
ing holds for every VSS instance spawned: let s′ := E({pki}i∈[n], {ski}i∈Honest,Tr)
where Tr denotes the transcript observed by all honest nodes in the initial T
rounds of the Share sub-protocol; it must be that

(a) if an honest node ever outputs a reconstructed secret, the value must agree
with s′;

(b) if E outputs ⊥, then no honest node ever outputs “sharing succeeded”3;
(c) if the dealer is honest and online in the round in which the Share sub-protocol

was invoked, and moreover it received the input s from Z, then s′ = s.

Non-Malleability Consider the following experiment ExptA(1κ, s) involving an
adversary A and a challenger C, as well as a challenge input s ∈ F. We assume
that throughout the experiment, if an honest node outputs a string in any VSS
instance, the adversary A is notified of the node’s identifier, the identifier of the
VSS instance, as well as the corresponding output.

1. Setup. First, A chooses which set of nodes to corrupt. Henceforth the chal-
lenger C acts on behalf of all honest nodes and interact with A. The hon-
est nodes run the honest key generation algorithm such that each picks a
public/secret-key pair. The public keys are given to A. A now chooses cor-
rupt nodes’ public keys arbitrarily and sends them to C.

2. Queries. The adversaryA is now allowed to (adaptively) instruct C to spawn
as many VSS instances as it wishes. The queries can be issued at any time,
including before, during, or after the challenge phase (see the Challenge
paragraph later).
– Whenever A sends C a tuple (sid ,Share, u, x) where sid ∈ {0, 1}∗ and
u ∈ [n], C spawns instance sid with node u as the dealer. If u is honest,
A must additionally specify the honest dealer u’s input x in this instance
(otherwise the field x is ignored). Now, C invokes the instance’s Share
sub-protocol (if this has not been done already);

– Whenever A sends C a tuple (sid ,Reconstruct) where sid ∈ {0, 1}∗, C
does the following: if the instance sid has been spawned, then invoke the
Reconstruct sub-protocol for that instance (if this has not been done).

– Whenever A sends C a tuple (sid ,Extract) and instance sid has executed
for at least T rounds, then C computes E({pki}i∈[n], {ski}i∈Honest,Tr)
where Tr is the transcript of honest nodes in the initial T rounds of
the Share sub-protocol; C returns the result to A.

3 Note that (a) implies that if E outputs ⊥, then no honest node will ever output a
reconstructed secret.
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3. Challenge. At any time, A may send the tuple (challenge, sid , u) to C
where u must be an honest node and the challenge sid must not be specified
in any Extract or Reconstruct query throughout the experiment (in the past
or future). C then spawns a challenge VSS instance identified by sid where
u is the designated dealer and receives the input s; further C invokes the
challenge instance’s Share sub-protocol.

4. Output. Whenever the adversary A outputs a bit b ∈ {0, 1}, this bit is
defined as the experiment’s output.

We assume that an admissible A never attempts to create two VSS instances
with the same sid , i.e., A chooses distinct session identifiers for all instances.
Further, throughout the experiment, A is allowed to decide which honest nodes
are online/offline in each round (after seeing the messages honest nodes want to
send in that round). A also controls the message delivery schedule4.

Definition 3 (Non-malleability for VSS). We say that a VSS scheme sat-
isfies non-malleability under χ-weak-synchrony iff for any non-uniform p.p.t. A
that respects χ-weak-synchrony, there exists a negligible function negl(·) such that

for any s, s′ ∈ F,
∣∣∣Pr[ExptA(1κ, s) = 1]− Pr[ExptA(1κ, s′) = 1]

∣∣∣ ≤ negl(κ).

6.2 A 0.5-Weakly-Synchronous VSS Scheme

We show how to construct a 0.5-weakly synchronous VSS scheme. We will rely
on the following cryptographic primitives:

1. let NIZK := (K, K̃,P,V) denote multi-CRS NIZK scheme that satisfies com-
pleteness, zero-knowledge, and simulation soundness (see the online full ver-
sion [14]);

2. let PKE := (K,Enc,Dec) denote a perfectly correct public-key encryption
scheme that preserves IND-CCA security; and

3. let RBC denote a reliable broadcast scheme that satisfies Trbc-consistency,
Trbc-liveness, validity, and close termination under 0.5-weak-synchrony for
some polynomial function Trbc.

PKI setup (shared across all VSS instances): During the PKI setup phase,
every node i performs the following:

– let (epki, eski) ← PKE.K(1κ); (vki, sski) := Σ.K(1κ); crsi ← NIZK.K(1κ);
and let (rpki, rski)← RBC.K(1κ);

– node i registers its public key pki := (epki, crsi, vki, rpki) with the PKI; and
it retains its secret key comprised of ski := (eski, sski, rski).

Share (executed by the dealer): Let s be the input received from the environ-
ment, the dealer does the following:

– it splits s into n shares using a (bn/2c+ 1)-out-of-n Shamir Secret Sharing
scheme, where the i-th share is henceforth denoted si;

4 Specifically, when honest nodes running inside C want to send messages, the messages
are forwarded to A, and A tells C when each honest node receives what message.
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– for i ∈ [n], it computes CTi := PKE.Encepki(sid , si) where sid is the identifier
of the current instance;

– it calls NIZK.P({crsi}i∈[n], x, w) to compute a proof π where x and w are
defined as below: x := (sid , {pki,CTi}i∈[n]) is the statement declaring that
there is a witness w := (s, {si}i∈[n]) such that for each i ∈ [n], CTi is a valid
encryption5 of (sid , si) under epki (which is part of pki); and moreover, the
set of shares {si}i∈[n] is a valid sharing of the secret s.

– finally, the dealer relies on RBC to reliably broadcast the tuple (sid , {CTi}i∈[n], π)
— henceforth this RBC instance is denoted RBC0.

Share (executed by everyone): Every node i does the following (where the
starting round of Share is renamed round 0):

– Any time: whenever the RBC0 instance outputs a tuple of the form (sid , {CTj}j∈[n], π),
call NIZK.V to verify the proof π w.r.t. the statement (sid , {pki,CTi}i∈[n]);
and if the check succeeds, set flag := 1 (we assume that flag was initially 0).

– Round Trbc: if flag = 1, reliably broadcast the message “ok”; else reliably
broadcast the message “⊥”;

– Any time: whenever more than bn/2c+ 1 RBC instances have output “ok”
and RBC0 has output a tuple; decrypt CTi contained in the tuple output by
RBC0 using secret key eski; let ( , si) be the decrypted outcome; now record
the share si and output “sharing-succeeded”;

Reconstruct (executed by everyone): when the Reconstruct sub-protocol has
been invoked, every node i waits till the instance’s Share sub-protocol has
output “sharing-succeeded” and then performs the following where the
set S is initially empty:

– let si be the share recorded at the end of the Share sub-protocol;
– call NIZK.P({crsi}i∈[n], x, w) to compute a proof (henceforth denoted πi) for

the following statement x := (sid , i, si,CTi) declaring that there is random
string that causes PKE.K to output the tuple (epki, eski) where epki ∈ pki;
and moreover, (sid , si) is a correct decryption of CTi using eski — the
witness w includes the randomness used in PKE.K, eski, and the randomness
of PKE.Dec.

– multicast the tuple (sid , i, si, πi);
– upon receiving a tuple (sid , j, sj , πj) such that πj verifies w.r.t. the state-

ment (sid , j, sj ,CTj) where CTj was the output of RBC0 during the Share
sub-protocol, add sj to the set S.

– whenever the set S’s size is at least bn/2c+ 1, call the reconstruction algo-
rithm of Shamir Secret Sharing to reconstruct a secret s, and if reconstruc-
tion is successful, output the result.

Since the extractor algorithm E is only needed in the proofs, we defer its
presentation to the online full version [14].

Theorem 6. Without loss of generality, assume that Trbc ≥ 3∆ (if not, we
can simply define Trbc := 3∆); and moreover assume that the RBC scheme em-
ployed satisfies Trbc-liveness, validity, Trbc-consistency, and close termination

5 For simplicity, we omit writing the randomness consumed by PKE.Enc which is also
part of the witness.
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under 0.5-weak-synchrony; the NIZK scheme employed satisfies zero-knowledge
and simulation soundness; and the PKE scheme satisfies IND-CCA security and
is perfectly correct. Then, the above VSS protocol satisfies 2Trbc-liveness, Trbc-
validity, and non-malleability under 0.5-weak-synchrony.

Proof. Please refer to the online full version [14].

7 Leader Election (LE)

7.1 Definition

A leader election (LE) protocol is an inputless protocol such that when a node
terminates, it outputs an elected leader L ∈ [n]. For the outcome of LE to be
considered good, we want that not only every honest node must agree on the
leader, but also that this leader belongs to Or for some a-priori known round r.
We would like that the LE achieves a good outcome with O(1) probability. Our
actual definition below is somewhat tricky due to compositional issues that arise
due to multiple LE instances sharing the same PKI. We would like that even when
multiple LE instances share the same PKI, roughly speaking, almost surely there
is still independent constant probability that each individual instance’s outcome
is good. In our formal definition below, we will precisely specify which subset of
honest coins that are freshly chosen in each LE instance allow us to capture this
desired independence. Note that this independence property is desired because
later in our BA protocol, we need to argue that after super-logarithmically many
trials, an honest leader must be elected except with negligible probability. We
formalize the definitions below.

T -liveness. Consider an (A,Z) pair that is allowed to spawn multiple concurrent
or sequential LE instances all of which share the same n, PKI setup, and ∆.

Let T (n,∆, κ) be a polynomial function in its parameters. We say that an LE
protocol denoted Π satisfies T -liveness under χ-weak-synchrony if for every non-
uniform p.p.t. (A,Z) that respects χ-weak-synchrony and may spawn multiple
LE instances sharing the same PKI, there exists a negligible function negl(·)
such that for every κ ∈ N, except with negl(κ) probability, the following holds
for every LE instance spawned (for the LE instance of interest, we rename its
starting round to round 0):

every node in Or for r ≥ T must have output by the end of round r.

(T ∗, q)-quality. We consider an (A,Z) pair who can spawn m(κ) LE instances
possibly running concurrently. Henceforth let ρ∗` denote the collection of the
following randomness:

for each node honest and online in the starting round (i.e., round 0) of the
`-th instance: the first d(κ, n) bits of randomness consumed by this node in
this round,

where d(κ, n) is an appropriate polynomial function that depends on the con-
struction. Let ρ be all randomness consumed by the entire experiment (including
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by (A,Z) and by honest nodes and the randomness of the PKI), and let ρ\ρ∗`
denote all other randomness besides ρ∗` .

We say that a leader election (LE) protocol satisfies (T ∗, q)-quality under
χ-weak-synchrony, iff for any polynomial function m(κ), for any non-uniform
p.p.t. (A,Z) that respects χ-weak-synchrony and spawns m(κ) LE instances
possibly executing concurrently, there exists a negligible function negl(·) such
that for all κ ∈ N, for every 1 ≤ ` ≤ m(κ), except for a negl(κ) fraction of
choices for ρ\ρ∗` , there exist at least q fraction of choices for ρ∗` , such that the
experiment (determined by the joint randomness choice above) would guarantee
the following good events for the `-th instance:

1. Consistency: if an honest node outputs L and another honest node outputs
L′, it holds that L = L′; and

2. Fairness: let L be the leader output by an honest node, we have that L ∈ OT∗
(assuming that the start round of the `-th instance is renamed round 0).

7.2 Construction

The construction is a bit involved and thus we refer the reader to Section 2.3 for
an intuitive explanation of our protocol. Below we focus on a formal description.

Let VSS denote a verifiable secret sharing scheme for inputs over the finite
field F. (see Section 6.2) and let Tvss be its liveness parameter. We now show
how to construct leader election from verifiable secret sharing. In our protocol
below, there are n2 instances of VSS. Henceforth we use VSS[i, j] to denote the
j-th instance where node i is the designated dealer. Additionally, let RBC denote
a reliable broadcast protocol (see Section 5) whose liveness parameter is denoted
Trbc. Let Σ := (K,Sign,Ver) denote a digital signature scheme.

The following protocol is executed by every node, below we describe the
actions taken by node i ∈ [n] — for simplicity we implicitly assume that every
message is tagged with its purported sender:

– PKI setup (shared across all LE instances): each node i calls (rpki, rski)←
RBC.K(1κ); (vpki, vski) ← VSS.K(1κ); and (vki, sski) ← Σ.K(1κ). Now its
public key is (rpki, vpki, vki) and its secret key is (rski, vski, sski).
In the following, we describe the leader election (LE) protocol. We assume
that all LE protocols share the same PKI. Moreover, whenever a node i uses
sski to sign messages, the message to be signed is always tagged with the
session identifier sid of the current instance and signature verification also
verifies the signature to the same sid .

– Round 0: Node i chooses n random coins ci,1, . . . , ci,n ∈ F. For instances
VSS[i, 1], . . ., VSS[i, n] where node i is the dealer, node i provides the inputs
ci,1, . . . , ci,n respectively to each instance. Then, node i invokes the Share
sub-protocol of all n2 instances of VSS.

– Any round: At any time during the protocol, if in node i’s view, all n VSS
instances where node j is the dealer has terminated outputting “sharing
succeeded”, we say that node i now considers j as a qualified dealer.

– Round Tvss: If in round Tvss, at least bn/2c+ 1 qualified dealers have been
identified so far: let D be the current set of all qualified dealers; reliably
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broadcast the message (qualified-set, D) using RBC. Henceforth, we use
RBC[j] to denote the RBC instance where j is the sender. If not enough
qualified dealers have been identified, reliably broadcast the message ⊥.

– Any round: In any round during the protocol, if RBC[j] has output (qualified-set,
Dj) such that Dj is a subset of [n] containing at least bn/2c+ 1 nodes, and
moreover every node in Dj has become qualified w.r.t. node i’s view so far,
then node i considers j as a candidate, and node i records the tuple (j,Dj).

– Round Tvss + Trbc: In round Tvss + Trbc, do the following:
• invoke the Reconstruct sub-protocol of all VSS instances;
• if at least bn/2c+1 nodes are now considered candidates: let S be the set

of all candidates so far; now multicast (candidate-set, S) along with a
signature on the message.

– Any round: At any time, if a node i has observed a (candidate-set, Sj)
message with a valid signature from the purported sender j where Sj ⊆ [n] is
at least bn/2c+ 1 in size, and moreover, every node in Sj is now considered
a candidate by node i too, we say that node i becomes happy with j.

– As soon as node i becomes happy with at least bn/2c+ 1 nodes, let S∗i be
the current set of nodes that are considered candidates;

– As soon as the relevant VSS instances (needed in the following computation)
have terminated the reconstruction phase outputting a reconstructed secret
— henceforth let c′u,v be the secret reconstructed from instance VSS[u, v]:
• For every u ∈ S∗i : let (u,Du) be a previously recorded tuple when u first

became a candidate; compute node u’s charisma as Cu :=
∏
v∈Du

c′v,u.
• Output the node u∗ ∈ S∗i with maximum charisma (where ordering be-

tween elements in F is determined using lexicographical comparisons).

Theorem 7. Suppose that the VSS scheme satisfies Tvss-liveness, Tvss-validity,
and non-malleability under 0.5-weak-synchrony; the RBC scheme satisfies Trbc-
consistency, Trbc-liveness, validity, and close termination under 0.5-weak-synchrony,
and the signature scheme satisfies existential unforgeability under chosen-message
attack. Then, the above LE scheme satisfies (2Tvss+Trbc)-liveness and (Tvss, 1/2)-
quality under 0.5-weak-synchrony.

Proof. Please refer to the online full version [14].

8 Byzantine Agreement

Let LE be a leader election scheme that satisfies Tle-liveness and (T ′le, 1/2)-quality
under 0.5-weak-synchrony where Tle > T ′le.

PKI setup. Upfront, every node performs PKI setup as follows: every node
calls (LE.pk, LE.sk)← LE.K(1κ); further, it calls (vk, ssk)← Σ.K(1κ). The tuple
(LE.pk, vk) is the node’s public key and registered with the PKI, and the tuple
(LE.sk, ssk) is the node’s secret key.

As before we assume that all messages, excluding the ones within the LE
instance6, are signed (using each node’s ssk) and tagged with the purported

6 Recall that the LE instance deals with its own message signing internally.
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sender, and honest recipients verify the signature (using the purported sender’s
vk) upon receiving any message. To allow multiple BA instances to share the
same PKI, we assume that a message is always tagged with the current instance’s
session identifier sid before it is signed and the verification algorithm checks the
sid accordingly. Messages with invalid signatures are discarded immediately.

Protocol. In the following, an epoch-e commit evidence for b ∈ {0, 1} is a set of
signatures from bn/2c+ 1 number of distinct nodes on the message (prepare, e, b).
Our protocol works as follows. For each epoch e = 1, 2, . . ., do the following
(henceforth the initial round of each epoch is renamed round 0 of this epoch):

– Propose. For the initial Tle rounds in each epoch, do the following:

1. If the current epoch is e = 1, then in round 0 of epoch 1, the sender
multicasts a signed tuple (propose, b) where b is its input bit.

2. Round 0 of every epoch: invoke an instance of the LE protocol.

3. Round T ′le of every epoch: every node i ∈ [n] flips a random coin bi←${0, 1},
and multicasts a signed tuple (propose, bi)

– Prepare (round Tle + ∆ of each epoch). If e = 1 and a node has heard
an epoch-1 proposal for b from the sender, then it multicasts the signed tuple
(prepare, e, b). Else if e > 1, every node performs the following:

1. if an epoch-e proposal of the form (propose, e, b) has been heard from an
eligible epoch-e proposer which is defined by the output of LE and more-
over, either an epoch-(e−1) commit evidence vouching for b or bn/2c+ 1
epoch-(e− 1) complaints from distinct nodes have been observed, multi-
cast the signed tuple (prepare, e, b).

If LE has not produced an output in the range [n] at the beginning of
this round, act as if no valid proposal has been received.

2. else multicast the signed tuple (prepare, e, b) if the node has seen an
epoch-(e− 1) commit evidence vouching for the bit b (if both bits satisfy
this then send a prepare message for each bit).

– Commit (round Tle + 2∆ of each epoch). If by the beginning of the
commit round of the current epoch e, a node

1. has heard an epoch-e commit evidence for the bit b;

2. has not observed a valid epoch-e proposal for 1 − b (from an eligible
proposer); and

3. has not observed any epoch-(e− 1) commit evidence for 1− b;
then multicast the signed tuple (commit, e, b).

– Complain (round Tle+3∆ of each epoch). If no epoch-e commit evidence
has been seen, multicast the signed tuple (complain, e).

– End of this epoch and beginning of next epoch (round Tle + 4∆).

Finalization. At any time during the protocol, if a node has collected bn/2c+ 1
commit messages (from distinct nodes) for the same epoch and vouching for the
same bit b, then output b if no bit has been output yet and continue participating
in the protocol (we devise a termination technique in the online full version [14]).
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Theorem 8. Suppose that the LE scheme satisfies Tle-liveness and (Tle
′, 1/2)-

quality under 0.5-weak-synchrony, the digital signature scheme employed is se-
cure, and let λ be any super-logarithmic function in the security parameter κ.
Then, the BA scheme above satisfies consistency, validity, and λ · (Tle + 4∆)-
liveness under 0.5-weak-synchrony.

Proof. Please refer to the online full version [14].
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