
New Constructions of Reusable
Designated-Verifier NIZKs

Alex Lombardi1∗, Willy Quach2†, Ron D. Rothblum3‡,
Daniel Wichs2§, and David J. Wu4¶

1 MIT, Cambridge, MA
2 Northeastern University, Boston, MA

3 Technion, Haifa, Israel
4 University of Virginia, Charlottesville, VA

Abstract. Non-interactive zero-knowledge arguments (NIZKs) for NP
are an important cryptographic primitive, but we currently only have
instantiations under a few specific assumptions. Notably, we are missing
constructions from the learning with errors (LWE) assumption, the Diffie-
Hellman (CDH/DDH) assumption, and the learning parity with noise
(LPN) assumption.

In this paper, we study a relaxation of NIZKs to the designated-verifier
setting (DV-NIZK), where a trusted setup generates a common reference
string together with a secret key for the verifier. We want reusable schemes,
which allow the verifier to reuse the secret key to verify many different
proofs, and soundness should hold even if the malicious prover learns
whether various proofs are accepted or rejected. Such reusable DV-NIZKs
were recently constructed under the CDH assumption, but it was open
whether they can also be constructed under LWE or LPN.

We also consider an extension of reusable DV-NIZKs to the malicious
designated-verifier setting (MDV-NIZK). In this setting, the only trusted
setup consists of a common random string. However, there is also an
additional untrusted setup in which the verifier chooses a public/secret
key needed to generate/verify proofs, respectively. We require that zero-
knowledge holds even if the public key is chosen maliciously by the
verifier. Such reusable MDV-NIZKs were recently constructed under the
“one-more CDH” assumption, but constructions under CDH/LWE/LPN
remained open.

∗Email: alexjl@mit.edu. Research supported in part by an NDSEG fellowship. Research
supported in part by NSF Grants CNS-1350619 and CNS-1414119, and by the Defense
Advanced Research Projects Agency (DARPA) and the U.S. Army Research Office
under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
†Email: quach.w@husky.neu.edu.
‡Email: rothblum@cs.technion.ac.il. Supported in part by the Israeli Science Foun-
dation (Grant No. 1262/18) and the Technion Hiroshi Fujiwara cyber security research
center and the Israel cyber directorate.
§Email: wichs@ccs.neu.edu. Research supported by NSF grants CNS-1314722, CNS-
1413964, CNS-1750795 and the Alfred P. Sloan Research Fellowship.
¶Email: dwu4@virginia.edu. Part of this work was done while visiting the Technion.

mailto:alexjl@mit.edu
mailto:quach.w@husky.neu.edu
mailto:rothblum@cs.technion.ac.il
mailto:wichs@ccs.neu.edu
mailto:dwu4@virginia.edu

In this work, we give new constructions of (reusable) DV-NIZKs and
MDV-NIZKs using generic primitives that can be instantiated under
CDH, LWE, or LPN.

1 Introduction

Zero-knowledge proofs [28] allow a prover to convince a verifier that a statement is
true without revealing anything beyond this fact. While standard zero-knowledge
proof systems are interactive, Blum, Feldman, and Micali [4] introduced the
concept of a non-interactive zero-knowledge (NIZK) proof, which consists of a
single message sent by the prover to the verifier. Although such NIZKs cannot
exist in the plain model, they are realizable in the common reference string (CRS)
model, where a trusted third party generates and publishes a common reference
string chosen either uniformly random or from some specified distribution. We
currently have NIZKs for general NP languages under several specific assumptions,
such as: (doubly-enhanced) trapdoor permutations, which can be instantiated
from factoring [4,51,23,50,26], the Diffie-Hellman assumption over bilinear groups
[11,32], optimal hardness of the learning with errors (LWE) assumption5 [10],
and circular-secure fully homomorphic encryption [12]. We also have such NIZKs
in the random-oracle model [24]. However, we are lacking constructions from
several standard assumptions, most notably the computational or decisional
Diffie-Hellman assumptions (CDH, DDH), the plain learning with errors (LWE)
assumption, and the learning parity with noise (LPN) assumption.

Designated-verifier NIZK. We consider a relaxation of NIZKs to the desig-
nated verifier model (DV-NIZK). In this model, a trusted third party generates a
CRS together with a secret key, which is given to the verifier and is used to verify
proofs. Throughout this work, we focus on the problem of achieving reusable
(i.e., multi-theorem) security. This means that soundness should hold even if the
scheme is used multiple times and a malicious prover can test whether the verifier
accepts or rejects various proofs.

While reusable DV-NIZKs appear to be a non-trivial relaxation of standard
NIZKs,6 we did not (until recently) have any constructions of such DV-NIZKs
under assumptions not known to imply standard NIZKs. Very recently, the works
of [14,35,46] constructed such DV-NIZKs under the CDH assumption. However,
it was left as an open problem whether such DV-NIZKs can be constructed under
LWE or LPN.

We note that the work [37] constructed an orthogonal notion of reusable
“designated-prover” NIZKs (DP-NIZK) under LWE, where the trusted third party
generates a CRS together with a secret key that is given to the prover and needed
to generate proofs. In addition, the work [8] constructed “preprocessing NIZKs”
(PP-NIZK), in which the trusted third party generates both a secret proving key

5This means that no polynomial-time attacker can break LWE with any probability
better than random guessing.

6The public verifiability of traditional NIZKs immediately implies reusable soundness.

2

and a secret verification key, under variants of the LPN assumption over large
fields.

Malicious-designated-verifier NIZK. We also consider a strengthening of
DV-NIZKs to the malicious-designated-verifier model (MDV-NIZKs) introduced
by [46]. In this model, a trusted party only generates a common uniformly random
string. The verifier can then choose a public/secret key pair, which is used to
generate/verify proofs, respectively. Soundness is required to hold when the
verifier generates these keys honestly, while zero-knowledge is required to hold
even when the verifier may generate the public key maliciously. MDV-NIZKs can
equivalently be thought of as 2-round zero-knowledge protocols in the common
random string model, in which the verifier’s first-round message is reusable;
namely, the public key chosen by the verifier can be thought of as a first-round
message.

Very recently, the work of [46] showed how to construct such MDV-NIZKs
under the “one-more CDH assumption.” This is an interactive assumption that
has received much less scrutiny than standard CDH/DDH.

1.1 Our Results

In this work, we propose a framework for constructing reusable DV-NIZKs from
generic assumptions. One instantiation of this framework yields reusable DV-
NIZKs generically from any public-key encryption together with a secret-key
encryption scheme satisfying a weak form of key-dependent message (KDM)
security Both components can be instantiated under any of the CDH/LWE/LPN
assumptions, so we obtain constructions of DV-NIZKs under these assumptions.
In particular, we obtain the following theorem:

Theorem 1.1 (informal). Assuming the existence of public-key encryption
and secret-key encryption that is KDM-secure with respect to projections (see
Definition 2.12), there exist reusable designated-verifier NIZK arguments for NP.
In particular, there exist reusable DV-NIZKs under either the CDH assumption,
the LWE assumption, or the LPN assumption with noise rate O(1√

n
).

We then show how to construct reusable malicious DV-NIZKs from any
(receiver-extractable) 2-round oblivious transfer (OT) in the common random
string model and the same form of KDM-secure SKE. This yields instantiations of
MDV-NIZKs under the CDH/LWE/LPN assumptions using the OT constructions
of [45,21], as summarized by the following theorem.

Theorem 1.2 (informal). Assuming the existence of “receiver-extractable 2-
message OT” and secret-key encryption that is KDM-secure with respect to
projections, there exist reusable malicious designated-verifier NIZK arguments for
NP. In particular, there exist reusable MDV-NIZKs under the CDH assumption,
the LWE assumption, or the LPN assumption with noise rate n−(

1
2+ε) for any

ε > 0.

3

More generally, we give a compiler converting any Σ-protocol (or even more
generally, any “zero-knowledge PCP” [36,34]) into a DV-NIZK using a form of
single-key attribute-based encryption (ABE) satisfying a certain “function-hiding
(under decryption queries)” property. Collusion-resistant ABE is only known from
specific algebraic assumptions over bilinear maps [49,31] or lattices [30,6], but
single-key ABE can be constructed from any public-key encryption scheme [48,29].
While we are unable to construct our variant of ABE (i.e., one that satisfies
our function-hiding property) from an arbitrary public-key encryption (PKE)
scheme, we show how to construct it by additionally relying on KDM-secure
SKE, using a technique recently developed in [39,38]. However, in addition to
this construction, we outline an alternate approach for building single-key ABE
with our function-hiding property (using the standard lattice-based ABE [6]) in
the full version of this paper [40]. As a result, we believe that our new notion
may be helpful in order to construct DV-NIZKs from other assumptions in the
future. Note that if one could construct DV-NIZKs from any semantically-secure
PKE scheme, it would show that semantically-secure PKE generically implies
CCA-secure PKE (via the Naor-Yung paradigm [42]), which would resolve a
major long-standing open problem. More modestly, one could hope to construct
DV-NIZKs generically from any CCA-2 secure encryption. Our techniques may
offer some hope towards realizing these exciting possibilities.

Our techniques depart significantly from the prior constructions of DV-NIZKs
and MDV-NIZKs in [14,35,46]. In particular, those works relied on the hidden-bits
model from [23] and used a variant of the Cramer-Shoup hash-proof system under
CDH [16,17] to instantiate the hidden bits for a designated verifier. Unfortunately,
we do not have good hash-proof systems under LWE/LPN and so it does not
appear that these techniques can be used when starting from “noisy assumptions”
(among other concerns). As we describe below, we take a vastly different approach
and do not rely on the hidden bits model. One disadvantage of our results is
that, while [14,35,46] achieve statistically sound (M)DV-NIZK proofs, we only
get argument systems with computational soundness7.

Application to reusable non-interactive secure computation. We note
that MDV-NIZKs can be used to obtain new solutions to the problem of reusable
non-interactive secure computation (rNISC) [13]. In this setting, there is a public
function f and a receiver (Rachel) publishes a “query” using her secret input x.
Later a sender (Sam) can send a “response” using his secret input y and ensure
that Rachel only learns f(x, y). We further want Rachel’s query to be reusable
so that Sam can send many different responses with various values yi and have
Rachel learn f(x, yi) without compromising security. The main difficulty is that a
malicious Sam can send malformed responses and, by observing whether Rachel
aborts or not, can potentially learn information about her input x. Previously,
we had instantiations of rNISC (in the CRS model) using 2-round (malicious)
oblivious transfer (OT) and NIZKs, or more recently, via a black-box use of
oblivious linear-function evaluation (OLE) [13]. However, we had no constructions

7Our construction is also computational zero-knowledge. None of the recent constructions
of DV-NIZKs satisfy statistical zero knowledge.

4

under many standard assumptions, including any of CDH/DDH, LPN or LWE.
It turns out that we can easily use MDV-NIZKs instead of standard NIZKs
(along with 2-round malicious OT) to solve this problem. In particular, Rachel
sends OT queries corresponding to her input x as well as the public-key of
an MDV-NIZK. Sam then creates a garbled circuit for f(·, y) with his input y
hard-coded, and sends the labels via the OT responses; in addition he encrypts y
(under a public key in the CRS) and proves that he computed the garbled circuit
and the OT responses correctly and consistently with the encrypted y. We can
simulate Sam’s view (including Rachel’s output) by checking the MDV-NIZK to
decide if Rachel aborts or not; if the MDV-NIZK verifies then we can extract y
from the encryption and be sure that Rachel correctly outputs f(x, y). Using our
instantiations of MDV-NIZKs along with known constructions of 2-round OT
from [45,21], we get instantiations of rNISC under CDH, LPN or LWE.

1.2 Our Techniques

Our approach starts with the construction of non-reusable DV-NIZKs from any
public-key encryption, due to Pass, shelat, and Vaikuntanathan [43]. The [43]
construction relies on a Σ-protocol [15] with 1-bit challenges for an NP-complete
language, such as Blum’s protocol for graph Hamiltonicity [3]. Recall that a
Σ-protocol is a 3-round protocol, where the prover sends a value a, the challenger
chooses a bit b ∈ {0, 1}, and the prover replies with a response z; the verifier
checks the validity of the transcript (a, b, z) at the end. The protocol should
have special soundness (if there are two accepting transcripts (a, 0, z0), (a, 1, z1)
with the same a then the statement must be true) and special honest-verifier
zero-knowledge (given b ahead of time, we can simulate the transcript (a, b, z)
without knowing a witness). The scheme also relies on a public-key encryption
scheme PKE. The non-reusable DV-NIZK of [43] is defined by invoking λ (security
parameter) independent copies of the following base scheme in parallel:

– Setup: The common reference string consists of PKE public keys, (pk0, pk1).
The verifier’s secret verification key (b, skb) consists of a random bit b along
with the secret key skb for the corresponding public key pkb.

– Proof generation: On input a statement x and a witness w, the prover P
first computes the first message a of the Σ-protocol. Then, the prover com-
putes responses (z0, z1) for both possible challenge bits b ∈ {0, 1}, respectively,
and outputs (a, ct0 = Encrypt(pk0, z0), ct1 = Encrypt(pk1, z1)).

– Proof verification: Given a proof (a, ct0, ct1), and verification key (b, skb),
the verifier computes z = Decrypt(skb, ctb) and accepts if and only if (a, b, z)
is a valid transcript.

Zero-knowledge of the DV-NIZK holds because the simulator knows the bits
b of the verifier in each invocation and can therefore simulate the Σ-protocol
transcripts (a, b, zb) without knowing a witness. It can create the ciphertext ctb
by encrypting zb and can put an arbitrary dummy value in the “other” ciphertext
ct1−b; this is indistinguishable by the security of the encryption.

5

Non-reusable soundness of the DV-NIZK follows from the special soundness
of the Σ-protocol. If the statement is false then, for each a, there is only one
challenge bit b that has a valid response z, and therefore the prover would have
to correctly guess the bit b in each of the λ invocations of the above base protocol.
This can only happen with negligible probability.

Unfortunately, as noted in [43], the soundness of this scheme is completely
broken if the prover is allowed to query a verification oracle to test whether
arbitrary proofs accept or reject—by creating a proof of a true statement and
putting an incorrect value in (say) the ciphertext ct0 of the ith copy of the
protocol, the adversary learns the verifier’s bit b in the ith copy after learning
whether the proof accepts or rejects. The adversary can eventually recover all of
the verifier’s bits b this way and, once it does so, it is easy to construct a valid
proof of a false statement by using the Σ-protocol simulator to generate valid
transcripts (a, b, zb).

To overcome this problem, we replace the use of public-key encryption with
a form of attribute-based encryption, so that every instance x yields a different
sequence of challenge bits b associated to it.

Function-hiding ABE. The main tool that we use in this work is a variant of
single-key ABE satisfying a certain function-hiding property. Recall that an ABE
scheme (Setup,KeyGen,Encrypt,Decrypt) allows for the encryption of a message m
under public parameters pp with respect to an attribute x resulting in a ciphertext
ct. The ciphertext ct can be decrypted using a secret key skf associated with a
function f and the message m is recovered if f(x) = 1. On the other hand, if
f(x) = 0, then semantic security holds and nothing about the message is revealed
even given skf . In this work, we focus on schemes satisfying semantic security
in the presence of a single secret key skf ; ABE schemes satisfying single-key
security can be constructed from any public-key encryption scheme [48,29].

The function-hiding property we consider in this work requires that for any
function f , oracle access to the decryption oracle Decrypt(skf , ·) does not reveal
anything about the function f beyond whether skf was qualified to decrypt the
ciphertexts in question. More formally, we consider schemes where the attribute
x is given in the clear as part of the ciphertext ct, and require that an oracle call
of the form Decrypt(skf , ct) can be simulated using the master secret key msk
along with the value f(x), but without any additional knowledge of f .

At first glance, this property seems closely related to the standard notion
of CCA-security, in which access to a decryption oracle does not compromise
semantic security. However, these two notions appear to be incomparable. In
particular, function-hiding can hold even if access to the decryption oracle
completely breaks semantic security while CCA-2 security can hold even if access
to the decryption oracle completely reveals the function f . Nonetheless, we observe
that some of the techniques previously developed for obtaining CCA-security are
also useful for obtaining our form of function-hiding.

Given this notion, our main contributions can be broken down into two
steps: (1) showing that function-hiding ABE yields DV-NIZKs, and (2) giving
constructions of function-hiding ABE. With respect to (1), we note that assuming

6

the existence of public-key encryption, our notion of function-hiding ABE is
actually equivalent to DV-NIZKs for NP; we show the converse to (1) in the full
version of this paper [40].

The compiler. Here, we describe a simplified version of our DV-NIZK protocol
using three main ingredients:

– A Σ-protocol [15] with 1-bit challenges for an NP-complete language L, such
as Blum’s protocol for graph Hamiltonicity [3]. (In Section 4, we describe our
compiler more generally in the language of zero-knowledge PCPs, which can
be instantiated via Σ-protocols as a special case).

– An ABE scheme ABE = (Setup,KeyGen,Encrypt,Decrypt) satisfying single-
key security and function-hiding as described above. (In Section 4, we describe
our compiler more generally using a new primitive called attribute-based
secure function evaluation (AB-SFE), for which ABE is a special case).

– A pseudorandom function PRF that can be evaluated by ABE. In this sim-
plified scheme, it suffices for PRF to output a single bit. (In Section 4, we
describe our compiler by reusing the same PRF and ABE parameters across
invocations, while here we apply parallel repetition of completely independent
schemes).

Our DV-NIZK protocol is defined by invoking λ (security parameter) independent
copies of the following base scheme in parallel.

– Setup: The common reference string consists of the public parameters pp
for ABE. The verifier’s secret verification key (k, skf) consists of a PRF key
k along with an ABE secret key skf for evaluating the function

f(x, b) = 1 ⇐⇒ PRF(k, x) = b.

– Proof generation: On input a statement x and a witness w, the prover P
computes the first message a in the Σ-protocol. Then, the prover computes
responses (z0, z1) for both possible challenge bits b ∈ {0, 1}, respectively,
and computes an ABE encryption of zb with respect to attribute (x, b). This
yields ciphertexts (ct0, ct1); the prover sends (a, ct0, ct1) to the verifier.

– Proof verification: The verifier first computes y = PRF(k, x). Then, the
verifier decrypts cty using its secret verification key skf to obtain the prover’s
response zy. Finally, the verifier checks that the proof (a, y, zy) is valid and
accepts if this is the case.

We claim that the DV-NIZK is reusably sound. Consider any fixed statement8

x 6∈ L and an adversary that makes arbitrary verification queries and eventually
produces an accepting proof for x. First, without loss of generality, we claim that

8This suffices for non-adaptive soundness. Adaptive soundness (in which the cheating
prover is allowed to adaptively select a false statement x 6∈ L after seeing the common
reference string) can be achieved either by complexity leveraging [5] (see Remark 2.4)
or by relying on a trapdoor Σ-protocol [12] (see Remark 4.4).

7

we can consider an adversary that never makes a verification query on x itself; if
an adversary had a non-negligible probability of making such a query and getting
an accepting response then it would be able to win the game without making the
query! Second, we claim that the challenges y = PRF(k, x) for each invocation,
which are used when verifying the adversary’s final proof for x, are pseudorandom
from the prover’s perspective. This holds even if the prover is given oracle access
to the verifier on all statements x′ 6= x since, by the function-hiding of ABE,
these queries can be simulated given only the values PRF(k, x′) without revealing
any additional info about k. But, by the special soundness of the Σ-protocol, the
only way that the adversary can produce an accepting proof would be to guess
all of the values y used in each of the λ invocations, which only happens with
negligible probability.

Moreover, we claim that the DV-NIZK is zero-knowledge. In an honestly-
generated proof π = (a, ct0, ct1), on instance x, the verifier can compute the
response zy for y = PRF(k, x), but the response z1−y is computationally hidden
by semantic security of ABE. This means that π can be simulated given only
(k, (a, zy)), which is in turn simulatable given only x by the special honest-verifier
zero-knowledge of the Σ-protocol.

We provide the formal description of our compiler in Section 4.

Constructing function-hiding ABE. We now describe two ways9 to construct
a (single-key) ABE scheme that satisfies our function-hiding property. Combined
with our compiler above, this suffices to construct DV-NIZKs (i.e., the results from
Theorem 1.1). In the body of the paper, we will focus on the second candidate
based on KDM-secure SKE for two main reasons: (1) it enables instantiations from
CDH/LWE/LPN (and correspondingly, DV-NIZKs from these assumptions); and
(2) it readily generalizes to notions beyond ABE, which as we discuss in greater
detail below, enables constructions of MDV-NIZKs from CDH/LWE/LPN.

– Lattice-based ABE: First, we observe that a simple variant of the lattice-
based ABE construction from [6] satisfies our notion of function-hiding.
Namely, we can modify the construction [6] so that the decryption algorithm
(with either the master secret key or a function key) can fully recover the
encryption randomness used to construct a particular ciphertext, and in doing
so, verify that a ciphertext is well-formed (i.e., could be output by the honest
encryption algorithm). If the scheme supports this randomness recovery
property, function-privacy essentially follows from (perfect) correctness of the
underlying scheme. This high-level idea of leveraging randomness recovery is
a common theme in our constructions. We provide additional details in the
full version of this paper [40].

– PKE and KDM-secure SKE: Following the approach of [39,38], we show
that any single-key ABE scheme can be used to construct an ABE scheme
satisfying function-hiding with respect to decryption queries. The amplifica-
tion procedure additionally requires the existence of a secret-key encryption

9We refer to a previous version of this work [41] for an additional approach based on
lossy trapdoor functions.

8

scheme SKE that is KDM-secure for a simple class of functions. As shown
in [7,2,19,9,20], such secret-key encryption schemes can be constructed from
the CDH/LWE/LPN assumptions, and hence, give instantiations of function-
hiding ABE from CDH/LWE/LPN.

In fact, the exact construction of CCA-secure ABE in [39] (and the mod-
ification introduced in [38]) can also be shown to satisfy function-hiding.
However, as noted above, CCA-security does not generically imply our notion
of function-hiding or vice versa. In this work, we describe a simplified variant
of the [38] compiler that suffices to construct function-hiding ABE and then
analyze its security.

We now provide a description of (our simplification of) the [39,38] construction.
Take any (single-key) ABE scheme ABE, a secret-key encryption scheme SKE,
a public-key encryption scheme PKE, an equivocable commitment scheme
Com, and consider the following modified ABE scheme:

• Public parameters: ABE public parameters pp, PKE public key pk,
and commitment common reference string crs.

• Key generation: This is unmodified from ABE: an ABE master secret
key is used to generate keys skf associated to functions f .

• Encryption algorithm: On input the public parameters (pp, pk, crs),
an attribute x and a message m:

1. Sample a SKE secret key s← {0, 1}λ.
2. Sample random strings ρi (for i ∈ [λ]) and Ri,b (for i ∈ [λ], b ∈ {0, 1}).
3. Output commitments comi = Com(crs, si; ρi) to the bits of the secret

key s, a “joint encryption matrix” M = {cti,b}i∈[λ],b∈{0,1} consisting
of λ ABE ciphertexts and λ PKE ciphertexts using the strings Ri,b as
encryption randomness. Lastly, also output a symmetric encryption
ct0 ← SKE.Encrypt(s,m‖{Ri,si}i∈[λ]) of the message m concatenated
with a subset of {Ri,b} corresponding to the bits of s (using fresh
encryption randomness).

We now elaborate on the ciphertexts cti,b:

∗ For every index i ∈ [λ], cti,0 is an ABE ciphertext computed using
(pp, x) and randomness Ri,0, while cti,1 is a PKE ciphertext computed
using pk and randomness Ri,1.

∗ As for the underlying messages: for every index i ∈ [λ], cti,si is
an encryption of ρi, while cti,1−si is an encryption of ⊥ (a dummy
message).

Following [39,38], we provide some high-level intuition for this encryption
algorithm. For a fixed pair (i, b), call a ciphertext cti,b “good” with respect
to commitment comi if there exists commitment randomness ρi such that
comi = Com(crs, b; ρi) and cti,b is a well-formed encryption of ρi. Then, given
a qualified secret key skf , an honestly-generated matrix M = {cti,b} encodes
the SKE-secret key s: we have si = b if and only if cti,b is “good,” so si

9

can be identified by decrypting cti,0 (using skf) and checking whether the
underlying message is ⊥.10

Moreover, the binding property of the commitment scheme Com guarantees
that for every (i, comi, cti,0, cti,1), there is at most one bit b such that cti,b
is “good”; in other words, even malformed ciphertexts encode at most one
secret key s. This introduces enough redundancy in the scheme so that CCA-
like security properties can be guaranteed without the decryption procedure
fully recovering the encryption randomness. In particular, the randomness
{Ri,1−si} can be left unrecoverable (even given a qualified key skf), which is
what allows for a proof of semantic security.

We leave a detailed discussion of the decryption algorithm to Section 5, but
decryption roughly proceeds by recovering some of the overall encryption
randomness (using skf)—namely, (s, ρ, {Ri,si}i∈[λ])— and then checking that
each ciphertext of the form cti,si is “good” (which can be done without using
skf). To argue semantic security, we proceed in three steps:

• Switch the commitment crs to an “equivocal mode” so that com =
(comi)i∈[λ] can be explained as a commitment to any string (with an
appropriate choice of randomness).

• Show that (in equivocal mode) M = {cti,b} can be simulated (using ρ
and {Ri,b}) without knowing s.

• At this point, ct0 is guaranteed to hide m by invoking KDM-security of
SKE.

To argue function-hiding, we show that the ciphertext ct can be decrypted in
two equivalent ways: (1) by using the “honest” decryption algorithm with
the ABE secret key skf ; and (2) using the PKE secret key associated with pk
(and outputting a message only when f(x) = 1). Semantic security of the
scheme is guaranteed to hold in the presence of skf (the secret key of the
honest decryptor), but an adversary with oracle access to one of these two
decryption functions cannot distinguish them. Since the second procedure
hides f(x′) for any attribute x′ not queried by the adversary, function-hiding
follows.

Combined with the instantiations of KDM-secure SKE from various assump-
tions [7,2,19,9,20] and the fact that single-key ABE follows from PKE [48,29],
this approach gives a single-key function-hiding ABE scheme from any of the
CDH/LWE/LPN assumptions. For our LPN instantiation, we require noise
rate 1/

√
n to instantiate the public-key encryption scheme [1]. We describe

this construction and its analysis in Section 5.

Obtaining malicious security. So far, we have shown how to construct DV-
NIZKs from function-hiding single-key ABE and provided several instantiations
of the latter object from concrete assumptions. However, the DV-NIZKs obtained

10In the actual decryption procedure, a more sophisticated mechanism is employed to
identify s in order to handle malformed ciphertexts.

10

in this fashion necessarily requires that the verifier’s secret key be generated by
a trusted party; indeed, if the verifier is malicious and allowed to set up this
DV-NIZK, it can simply sample an ABE key-pair (pp,msk) and remember the
entire master secret key. This clearly breaks zero-knowledge.

To construct a malicious DV-NIZK scheme, we intuitively have to replace
the trusted setup of an ABE scheme with a form of reusable non-interactive
two-party computation that implements a similar functionality. Specifically,
we introduce a more general primitive called attribute-based secure function
evaluation (AB-SFE, see Definition 3.1). At a high-level, an AB-SFE scheme is a
two-party protocol between a sender and a receiver and parameterized by a public
function F : X × Y → {0, 1}. The sender holds a public attribute x ∈ X and a
secret message m while the receiver holds a secret input y ∈ Y . At the end of the
protocol, the receiver should learn m only if F (x, y) = 1 (otherwise, the receiver
should learn nothing). The protocol should be non-interactive in the following
sense: at the beginning of the protocol, the receiver publishes a public key pky
based on its secret input y; thereafter, the sender with its attribute-message
pair (x,m) can send a single message to the receiver that allows the receiver to
learn m whenever F (x, y) = 1. The receiver’s initial message pky should both
hide y and be reusable for arbitrarily many protocol executions. We say AB-SFE
schemes satisfying this property are “key-hiding”. In addition, we are interested
in security even against malicious receivers that choose pky maliciously. We note
that a single-key ABE scheme can be used to construct a secure AB-SFE scheme
satisfying a much weaker security notion where a trusted party generates the
receiver’s message pky.

Similarly to our use of ABE in the generic compiler above, an AB-SFE scheme
can be used to compile a Σ-protocol (or more generally, zero-knowledge PCPs)
to obtain a reusable DV-NIZK; moreover, this compiled DV-NIZK is secure even
against malicious verifiers and is therefore an MDV-NIZK. Specifically, in our
construction, we replace the ABE scheme with an AB-SFE scheme with respect
to the function F where F ((x, b), k) = 1 if and only if PRF(k, x) = b. If we use a
maliciously-secure AB-SFE scheme, we only rely on a trusted setup to generate
a uniformly random common reference string. We then allow the verifier to (1)
sample a PRF key k and (2) compute the receiver message pkk for the AB-SFE
protocol (with private input k) itself. Malicious security of the AB-SFE protocol
exactly allows us to prove malicious zero-knowledge of the compiled protocol.
As in the case of ABE, soundness of the compiled protocol relies on a form of
AB-SFE security where the receiver’s input y is hidden from the sender even
given access to an appropriately-defined decryption oracle.

We obtain AB-SFE schemes that can be plugged into our compiler in two
steps:

– Constructing weak key-hiding AB-SFE. First, we combine a form of
malicious-secure 2-message OT [45,21] with garbled circuits to obtain an
AB-SFE scheme that satisfies weak key-hiding. Namely, the receiver’s input y
is hidden to an adversary that does not have access to the decryption oracle.
We describe this construction in Section 5.2.

11

– Amplifying weak key-hiding to strong key-hiding. Then, we apply
the [39,38] transformation to the weak key-hiding AB-SFE scheme from
above to obtain an AB-SFE scheme that satisfies strong key-hiding where the
receiver’s input y is hidden even in the presence of the decryption oracle. This
allows for new instantiations of MDV-NIZK from any of the CDH/LWE/LPN
assumptions (Theorem 1.2). Our LPN-based instantiation requires noise rate

n−(
1
2+ε) for some ε > 0 in order to implement the [21] OT protocol. We

describe this construction in Section 5.3.

We provide a formal definition of AB-SFE in Section 3, and the full construction
and analysis in Section 5.

1.3 Recent Related Work

In this section, we describe several recent works that are directly related to this
work. Several of these works [38,21] have yielded new instantiations of our general
framework for constructing designated-verifier NIZKs (relative to a preliminary
version of this work [41]).

NIZKs from LWE. In a concurrent and independent work, Peikert and Shiehian
[44] construct NIZKs from the plain LWE assumption, which in particular yields
reusable (M)DV-NIZKs from LWE. While the [44] NIZK has the major advantage
of being publicly verifiable, we note that our usage of LWE only relies on
plain Regev (public-key) encryption [47] rather than more complex lattice-based
primitives.

KDM-Secure SKE and hinting PRGs. In a concurrent work, Kitagawa,
Matsuda and Tanaka [38] modify the “signaling technique” of [39] with the goal
of constructing CCA-secure encryption (similarly to [39]). The [38] modification
of [39] can be plugged into our construction of (M)DV-NIZKs to obtain our
LPN-based instantiation of DV-NIZKs.

2-Message OT from CDH/LPN. In another concurrent work, Döttling, Garg,
Hajiabadi, Masny, and Wichs [21] construct 2-round OT from the CDH/LPN
assumptions. Their construction can be directly combined with our generic
transformations to obtain the CDH/LPN-based instantiations of MDV-NIZKs in
this paper.

2 Preliminaries

We write λ to denote a security parameter. We say that a function f is negligible
in λ, denoted negl(λ), if f(λ) = o(1/λc) for all c ∈ N. We say an event happens
with negligible probability if the probability of the event happening is negligible,
and that it happens with overwhelming probability if its complement occurs with
negligible probability. We say that an algorithm is efficient if it runs in probabilistic
polynomial-time (PPT) in the length of its inputs. We write poly(λ) to denote
a function bounded by a (fixed) polynomial in λ. We say that two families

12

of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally
indistinguishable if no PPT adversary can distinguish samples from D1 and D2

except with negligible probability, and we denote this by writing D1
c
≈ D2. We

write D1
s
≈ D2 to denote that D1 and D2 are statistically indistinguishable (i.e.,

the statistical distance between D1 and D2 is bounded by a negligible function).
For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a

finite set S, we write x
r← S to denote that x is sampled uniformly at random from

S. For a distribution D, we write x← D to denote that x is sampled from D. For
two finite sets X and Y, we write Funs[X ,Y] to denote the set of functions from
X to Y. In the the full version of this paper [40], we also review the definitions
of core cryptographic primitives such as pseudorandom functions, public-key
encryption, (receiver-extractable) 2-message oblivious transfer, garbling schemes,
and non-interactive equivocable commitments.

2.1 Designated-Verifier NIZKs

We now introduce the notion of a designated-verifier non-interactive zero-knowledge
(DV-NIZK) argument. We use a refined notion where there are separate setup
and key-generation algorithms. The setup algorithm outputs a common reference
string (possibly a common random string) for the scheme. The CRS can be reused
by different verifiers, who would generate their own public and private keys. In
the traditional notion of designated-verifier NIZKs, the setup and key-generations
algorithms are combined, and the public key pk is simply included as part of the
CRS.

Definition 2.1 (Designated-Verifier NIZK Argument). Let L be an NP
language associated with an NP relation R. A designated-verifier non-interactive
zero-knowledge (DV-NIZK) argument for L consists of a tuple of three efficient al-
gorithms dvNIZK = (dvNIZK.Setup, dvNIZK.KeyGen, dvNIZK.Prove, dvNIZK.Verify)
with the following properties:

– dvNIZK.Setup(1λ) → crs: On input the security parameter λ, the setup al-
gorithm outputs a common reference string crs. If dvNIZK.Setup outputs a
uniformly random string, then we say that the DV-NIZK scheme is in the
common random string model.

– dvNIZK.KeyGen(crs)→ (pk, sk): On input a common reference string crs, the
key-generation algorithm outputs a public key pk and a secret verification key
sk.

– dvNIZK.Prove(crs, pk, x, w)→ π: On input the common reference string crs,
a public key pk, a statement x, and a witness w, the prove algorithm outputs
a proof π.

– dvNIZK.Verify(crs, sk, x, π)→ {0, 1}: On input the common reference string
crs, a secret key sk, a statement x, and a proof π, the verification algorithm
outputs a bit b ∈ {0, 1}.

Moreover, dvNIZK should satisfy the following properties:

13

– Completeness: For all (x,w) ∈ R, and taking crs← dvNIZK.Setup(1λ) and
(pk, sk)← dvNIZK.KeyGen(crs), we have that

Pr
[
π ← dvNIZK.Prove(crs, pk, x, w) : dvNIZK.Verify(crs, sk, x, π) = 1

]
= 1.

– Soundness: We consider two variants of soundness:

• Non-adaptive soundness: For all x /∈ L, all PPT adversaries A,

Pr
[
π ← AdvNIZK.Verify(crs,sk,·,·)(1λ, crs, pk, x) :

dvNIZK.Verify(crs, sk, x, π) = 1
]

= negl(λ),

where crs← dvNIZK.Setup(1λ) and (pk, sk)← dvNIZK.KeyGen(crs).
• Adaptive soundness: For all PPT adversaries A,

Pr
[
(x, π)← AdvNIZK.Verify(crs,sk,·,·)(1λ, crs) :

x /∈ L ∧ dvNIZK.Verify(crs, sk, x, π) = 1
]

= negl(λ),

for (crs, pk, sk)← dvNIZK.Setup(1λ) and (pk, sk)← dvNIZK.KeyGen(crs).

– Zero-knowledge: For all PPT adversaries A, there exists a PPT simulator
S = (S1,S2) such that∣∣∣Pr[AO0(crs,pk,·,·)(crs, pk, sk) = 1]− Pr[AO1(stS ,·,·)(crs, pk, sk) = 1]

∣∣∣ = negl(λ),

where crs← dvNIZK.Setup(1λ), (pk, sk)← dvNIZK.KeyGen(crs), and (stS , crs,
pk, sk) ← S1(1λ), the oracle O0(crs, pk, x, w) outputs dvNIZK.Prove(crs, pk,
x, w) if R(x,w) = 1 and ⊥ otherwise, and the oracle O1(stS , x, w) outputs
S2(stS , x) if R(x,w) = 1 and ⊥ otherwise.

Definition 2.2 (Malicious Designated-Verifier NIZKs [46]). Let dvNIZK
be a DV-NIZK for a language L (with associated NP relation R). For an adversary
A, and a simulator S = (S1,S2), we define two experiments ExptRealA(λ) and
ExptSimA,S(λ) as follows:

– Setup: In ExptRealA(λ), the challenger samples crs← dvNIZK.Setup(1λ) and
in ExptSimA,S(λ), the challenger samples (stS , crs)← S1(1λ). In ExptRealA(λ),
the challenger gives crs to A, while in ExptSimA,S(λ), the challenger gives
crs to A. Then, A outputs a public key pk.

– Verification queries: Algorithm A is then given access to a verification
oracle. In both experiments, if R(x,w) 6= 1, then the challenger replies with ⊥.
Otherwise, in ExptRealA(λ), the challenger replies with π ← dvNIZK.Prove(crs,
pk, x, w), and in ExptSimA,S(λ), the challenger replies with π ← S2(stS , pk, x).

– Output: At the end of the experiment, the adversary outputs a bit b′ ∈ {0, 1},
which is the output of the experiment.

14

We say that dvNIZK provides zero-knowledge against malicious verifiers if for all

PPT adversaries A, there exists an efficient simulator S such that ExptRealA(λ)
c
≈

ExptSimA,S(λ). If dvNIZK satisfies this property (in addition to completeness
and soundness), then we say that dvNIZK is a malicious-designated-verifier NIZK
(MDV-NIZK).

Remark 2.3 (Reusability of the CRS with Many Public Keys). The zero-knowledge
property of Definition 2.2 only provides (multi-theorem) zero-knowledge with
respect to a single maliciously-generated public key pk. Using the “OR trick”
transformation from [23], any MDV-NIZK can be generically compiled into one
where a single CRS can be reused with an arbitrary polynomial number of
(potentially maliciously-generated) public keys, while preserving zero-knowledge.
Note that the original transformation compiled any NIZK in the CRS model with
single-theorem zero-knowledge into a multi-theorem version; we note that it also
directly applies to the (malicious) designated-verifier setting (essentially because
proofs can still be generated publicly). Additionally, if the original MDV-NIZK
is in the common random string model, then the resulting protocol is also in the
common random string model.

Remark 2.4 (Adaptive Soundness via Complexity Leveraging). Using the stan-
dard technique of complexity leveraging [5], a DV-NIZK satisfying non-adaptive
soundness also satisfies adaptive soundness at the expense of a super-polynomial
loss in the security reduction.

2.2 Zero-Knowledge PCPs

Definition 2.5 (Zero-Knowledge PCP [36,34]). Let R : {0, 1}n×{0, 1}h →
{0, 1} be an NP relation and L ⊆ {0, 1}n be the associated language. A non-
adaptive, `-query zero-knowledge PCP (with alphabet Σ) for L is a tuple of
algorithms zkPCP = (zkPCP.Prove, zkPCP.Query, zkPCP.Verify) with the follow-
ing properties:

– zkPCP.Prove(x,w) → π: On input a statement x ∈ {0, 1}n and a witness
w ∈ {0, 1}h, the prove algorithm outputs a proof π ∈ Σm.

– zkPCP.Query(x) → (stx, q1, . . . , q`): On input a statement x ∈ {0, 1}n, the
query-generation algorithm outputs a verification state stx and ` query indices
q1, . . . , q` ∈ [m].

– zkPCP.Verify(stx, s1, . . . , s`)→ {0, 1}: On input the verification state st and
a set of responses s1, . . . , s` ∈ Σ, the verify algorithm outputs a bit b ∈ {0, 1}.

Moreover, zkPCP should satisfy the following properties:

– Efficiency: The running time of zkPCP.Prove, zkPCP.Query, and zkPCP.Verify
should be bounded by poly(n). In particular, this means that m = poly(n).

– Completeness: For all x ∈ {0, 1}n and w ∈ {0, 1}h where R(x,w) = 1,

Pr[zkPCP.Verify(stx, πq1 , . . . , πq`) = 1] = 1,

where π ← zkPCP.Prove(x,w) and (stx, q1, . . . , q`)← zkPCP.Query(x).

15

– Soundness: For all x /∈ L, all proof strings π ∈ Σm,

Pr[zkPCP.Verify(stx, πq1 , . . . , πq`) = 1] = negl(n),

where (stx, q1, . . . , q`)← zkPCP.Query(x).
– Zero-knowledge: For all PPT adversaries A = (A1,A2), there exists an

efficient simulator S such that∣∣∣Pr[b = 1 | R(x,w) = 1]− Pr[b̃ = 1 | R(x,w) = 1]
∣∣∣ = negl(n),

where (stA, x, w, q1, . . . , q`)← A1(1n), π ← zkPCP.Prove(x,w), (π̃1, . . . , π̃`)←
S(x, q1, . . . , q`), b← A2(stA, πq1 , . . . , πq`), and b̃← A2(stA, π̃1, . . . , π̃`),

Semi-malicious zero-knowledge. The zero-knowledge requirement in Defini-
tion 2.5 requires that there exists a PPT simulator for an adversary that reads
any set of ` bits of the PCP, including subsets that would never be output by
zkPCP.Query. In our constructions, we can rely on the relaxed notion of semi-
malicious zero-knowledge which only requires simulation for subsets of bits that
are output by an invocation of zkPCP.Query (for some setting of the randomness).
Specifically, we define the following:

Definition 2.6 (Semi-Malicious Zero-Knowledge). A zero-knowledge PCP
zkPCP for a language L with associated NP relation R satisfies semi-malicious
zero-knowledge if for all PPT adversaries A = (A1,A2), there exists a PPT
simulator S such that∣∣∣Pr[A2(stA, πq1 , . . . , πq`) = 1 | R(x,w) = 1]−

Pr[A2(stA, π̃1, . . . , π̃`) = 1 | R(x,w) = 1]
∣∣∣ = negl(n),

for (stA, x, w, r)← A1(1n), (q1, . . . , q`)← zkPCP.Query(x; r), π ← zkPCP.Prove(
x,w), and (π̃1, . . . , π̃`)← S(x, q1, . . . , q`).

Instantiating zero-knowledge PCPs. As noted by Ishai et al. [34], the original
zero-knowledge protocol by Goldreich et al. [27] makes implicit use of an honest-
verifier zero-knowledge PCP for graph 3-coloring. To briefly recall, the prover
takes a 3-coloring of the graph, randomly permutes the colors, and writes down
the colors for each vertex as the PCP. To check the PCP, the (honest) verifier
samples a random edge in the graph and reads the colors for the two nodes
associated with the edge. It is straightforward to see that if zkPCP.Query always
outputs a pair of nodes corresponding to some edge in the graph, then this PCP
satisfies semi-malicious zero-knowledge. To achieve negligible soundness, we rely
on parallel amplification (e.g., by concatenating many independent copies of the
PCP) and note that semi-malicious zero-knowledge is indeed preserved under
parallel repetition. We state this instantiation below:

Theorem 2.7 (Semi-Malicious Zero-Knowledge PCP [27]). Let L ⊆ {0,
1}n be an NP language. Then, there exists an `-query zero-knowledge PCP for L
with alphabet Σ = {0, 1, 2} and ` = poly(n).

16

We note that there are many other ways to instantiate the zero-knowledge PCP
with the desired properties. For instance, Blum’s protocol for graph Hamiltonic-
ity [3] also implicitly uses a (semi-malicious) zero-knowledge PCP. We can also
construct zero-knowledge PCPs (with fully malicious zero knowledge) using mul-
tiparty computation (MPC) protocols by using the MPC-in-the-head technique
of Ishai et al. [33]. More broadly, Σ-protocols with a polynomial-size challenge
space can generally be viewed as implicitly implementing a (semi-malicious)
zero-knowledge PCP.

2.3 Attribute-Based Encryption

Definition 2.8 (Attribute-Based Encryption). An attribute-based encryp-
tion (ABE) scheme over a message space M, an attribute space X , and a func-
tion family F = {f : X → {0, 1}} is a tuple of algorithms ABE = (ABE.Setup,
ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) with the following properties:

– ABE.Setup(1λ) → (pp,msk): On input the security parameter λ, the setup
algorithm outputs the public parameters pp and the master secret key msk.

– ABE.KeyGen(pp,msk, f)→ skf : On input the public parameters pp, the mas-
ter secret key msk and a function f ∈ F , the key-generation algorithm outputs
a decryption key skf .

– ABE.Encrypt(pp, x,m) → ctx,m: On input the public parameters pp, an at-
tribute x ∈ X , and a message m ∈ M, the encryption algorithm outputs a
ciphertext ctx,m.

– ABE.Decrypt(pp, sk, ct)→ (x,m): On input the public parameters pp, a secret
key sk (which could be the master secret key), and a ciphertext ct, the decryp-
tion algorithm either outputs an attribute-message pair (x,m) ∈ X ×M or a
special symbol ⊥.

Definition 2.9 (Correctness). An ABE scheme ABE is (perfectly) correct if
for all messages m ∈ M, all attributes x ∈ X , and all predicates f ∈ F , and
setting (pp,msk)← ABE.Setup(1λ),

– Pr
[
ABE.Decrypt

(
pp,msk,ABE.Encrypt(pp, x,m)

)
= (x,m)

]
= 1.

– If f(x) = 1, then

ABE.Decrypt
(
pp,ABE.KeyGen(pp,msk, f),ABE.Encrypt(pp, x,m)

)
= (x,m)

with probability 1.

Definition 2.10 (Security). Let ABE be an ABE scheme over an attribute
space X , message space M, and function family F . For a security parameter
λ and an adversary A, we define the ABE security experiment ExptABEA (λ, b) as
follows. The challenger begins by sampling (pp,msk)← ABE.Setup(1λ) and gives
pp to the adversary A. Then A is given access to the following oracles:

– Key-generation oracle: On input a function f ∈ F , the challenger re-
sponds with a key skf ← ABE.KeyGen(pp,msk, f).

17

– Challenge oracle: On input an attribute x ∈ X and a pair of messages
m0,m1 ∈M, the challenger responds with a ciphertext ct← ABE.Encrypt(pp,
x,mb).

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is also the
output of the experiment. An adversary A is admissible for the attribute-based
encryption security game if it makes one challenge query (x,m0,m1), and for
all key-generation queries f the adversary makes, f(x) = 0. We say that ABE is
secure if for all efficient and admissible adversaries A,∣∣∣Pr[ExptABEA (λ, 0) = 1]− Pr[ExptABEA (λ, 1) = 1]

∣∣∣ = negl(λ).

Moreover, we say that ABE is single-key secure if the above property holds for
all efficient and admissible adversaries A that make at most one key-generation
query.

Function hiding. Our generic constructions of designated-verifier NIZKs from
ABE (and generalizations thereof) relies on an additional (weak) notion of
function hiding. While the traditional notion of function hiding asks that the
secret decryption key hides the function, our construction relies on a weaker
notion where we require that oracle access to the decryption function does
not reveal information about the underlying function (other than what can be
directly inferred by the input-output behavior of the function). We give the
formal definition below:

Definition 2.11 (Weak Function Hiding). Let ABE be an ABE scheme,
and let t = t(λ) be a bound on the length of ciphertext in ABE. We say
that ABE satisfies weak function hiding if there exists an efficient simula-
tor S such that for all functions f ∈ F , (pp,msk) ← ABE.Setup(1λ), and
skf ← ABE.KeyGen(pp,msk, f)∣∣∣Pr[AO1(pp,skf ,·)(1λ, pp) = 1]− Pr[AO2(pp,msk,·)(1λ, pp) = 1]

∣∣∣ = negl(λ),

where the oracles O1,O2 are defined as follows:

– Real decryption oracle: On input pp, skf , ct ∈ {0, 1}t, the real decryption
oracle O1(pp, skf , ct) outputs ABE.Decrypt(pp, skf , ct).

– Ideal decryption oracle: On input pp, msk, and a string ct ∈ {0, 1}t, the
ideal decryption oracle O2(pp,msk, ct) outputs Sf(·)(pp,msk, ct). Moreover,
we restrict the simulator S to make at most one oracle query to f per
invocation.

2.4 KDM-Secure Secret-Key Encyryption

Definition 2.12 (One-Time KDM-Secure SKE). A secret-key encryption
(SKE) scheme SKE = (SKE.Encrypt,SKE.Decrypt) is said to be one-time KDM

18

secure for a function class F (with many-bit outputs) if for every function f ∈ F ,
the following two distributions are computationally indistinguishable:

{s r← {0, 1}λ : SKE.Encrypt(s, f(s))}
c
≈ {s r← {0, 1}λ : SKE.Encrypt(s, 0|f(s)|)}

Remark 2.13 (KDM-Secure SKE Constructions for Projection Functions). We
say a function f : {0, 1}λ → {0, 1}m is a projection function if each bit of f(s)
depends on at most one bit of s. As in [38], we consider the class F = Fproj of
projection functions. Secret-key encryption schemes that are KDM-secure for the
class of projection functions can be constructed from the CDH [7,9], LWE (with
polynomial modulus) [2,9], and constant-noise LPN [2] assumptions.

3 Attribute-Based Secure Function Evaluation

In this section, we formally introduce our notion of an attribute-based secure
function evaluation scheme (AB-SFE), which can be viewed as a generalization
of a single-key ABE scheme. We then define two main security requirements on
AB-SFE schemes: message-hiding and key-hiding. For each notion, we introduce
a “weak” variant and a “strong” variant of the notion.

Definition 3.1 (Attribute-Based Secure Function Evaluation).
An attribute-based secure function evaluation (AB-SFE) scheme for a function
F : X ×Y → {0, 1} with message space M consists of a tuple of PPT algorithms
ABSFE = (ABSFE.Setup,ABSFE.KeyGen,ABSFE.Encrypt,ABSFE.Decrypt) with
the following properties:

– ABSFE.Setup(1λ) → crs: On input the security parameter λ, the setup al-
gorithm outputs a common reference string crs. We say that the AB-SFE
scheme is in the common random string model if Setup simply outputs a
uniformly random string.

– ABSFE.KeyGen(crs, y)→ (pk, sk): On input the common reference string crs
and a value y ∈ Y, the key-generation algorithm outputs a public key pk and
a secret key sk.

– ABSFE.Encrypt(crs, pk, x,m) → ct: On input the common reference string
crs, a public key pk, a value x ∈ X , and a message m ∈M, the encryption
algorithm outputs a ciphertext ct.

– ABSFE.Decrypt(crs, sk, x, ct) → m: On input the common reference string
crs, a secret key sk, an attribute x ∈ X , and a ciphertext ct, the decryption
algorithm outputs a message m ∈M∪ {⊥}.

Definition 3.2 (Correctness). An AB-SFE scheme ABSFE is (perfectly) cor-
rect if for all messages m ∈M, all x ∈ X , y ∈ Y where F (x, y) = 1,

Pr
[
ABSFE.Decrypt

(
crs, sk, x,ABSFE.Encrypt(crs, pk, x,m)

)
= m

]
= 1,

where crs← ABSFE.Setup(1λ) and (pk, sk)← ABSFE.KeyGen(crs, y).

19

Message-hiding. The first security requirement on an AB-SFE scheme is
message-hiding. The basic notion (or “weak” notion) is essentially semantic
security: namely, a ciphertext with attribute x ∈ X encrypted under a public key
for y ∈ Y where F (x, y) = 0 should hide the underlying message. Next, we define
a “strong” notion of message-hiding, which says semantic security holds even in
the setting where the public-key is maliciously chosen. In this case, we require
that there exists an efficient algorithm that can extract an attribute y from any
(possibly malformed) public key pk, and ciphertexts encrypted to any attribute
x where F (x, y) = 0 still hide the underlying message.

Definition 3.3 (Weak Message-Hiding). Let ABSFE be an AB-SFE scheme.
For a bit b ∈ {0, 1}, we define the following game between an adversary A and a
challenger:

– Setup: The adversary A begins by sending an input y ∈ Y to the challenger.
The challenger samples crs← ABSFE.Setup(1λ), (pk, sk)← ABSFE.KeyGen(
crs, y) and gives crs, pk, sk to A.

– Challenge query: The adversary A then makes a challenge query (x,m0,m1)
to the challenger where x ∈ X , m0,m1 ∈M, and F (x, y) = 0. The challenger
replies with ct← ABSFE.Encrypt(crs, pk, x,mb) and gives ct to A.

– Output: The adversary A outputs a bit b′ ∈ {0, 1}.

We say that ABSFE provides weak message-hiding if for all PPT adversaries A,

|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| = negl(λ).

Definition 3.4 (Strong Message-Hiding). An AB-SFE scheme ABSFE pro-
vides strong message-hiding if there exists a PPT “extractable-setup” algorithm
(crs, td) ← ABSFE.SetupExt(1λ) and a PPT extractor y ← ABSFE.Ext(td, pk)
with the following properties:

– CRS indistinguishability: The CRS distributions output by ABSFE.Setup
and ABSFE.SetupExt are computationally indistinguishable:

{crs← ABSFE.Setup(1λ) : crs}
c
≈ {(crs, td)← ABSFE.SetupExt(1λ) : crs}.

– Ciphertext indistinguishability in extraction mode: For a bit b ∈
{0, 1}, we define the following game between an adversary A and a challenger:
• Setup: The challenger samples (crs, td)← ABSFE.SetupExt(1λ) and gives
crs to A.

• Public key selection: The adversary chooses a public key pk. The
challenger computes y ← ABSFE.Ext(td, pk) and gives y ∈ Y to A.
• Challenge query: The adversary A makes a challenge query (x,m0,m1)

where x ∈ X , m0,m1 ∈ M, and F (x, y) = 0. The challenger computes
ct← ABSFE.Encrypt(crs, pk, x,mb) and gives ct to A.

• Output: The adversary A outputs a bit b′ ∈ {0, 1}.
We require that for all PPT adversaries A, |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|
= negl(λ).

20

Remark 3.5 (Multiple Challenge Queries). By a standard hybrid argument, any
AB-SFE scheme that satisfies weak message-hiding (resp., strong message-hiding)
against an adversary that makes a single challenge query (x,m0,m1) is also
secure against an adversary that makes polynomially-many challenge queries.
Note that in the strong message-hiding setting, the challenger encrypts each
challenge message with respect to the same public key chosen by the adversary
(and correspondingly, the same value of y is used to check admissibility of each of
the adversary’s challenge queries). It is essential for the hybrid argument to use
the same public key together with the same extracted attribute y, which is known
to the adversary (otherwise, the reduction algorithm is unable to simulate the
other ciphertexts in the hybrid argument, and correspondingly, single-challenge
security does not necessarily imply multiple-challenge security).

Key-hiding. The second security requirement on an AB-SFE scheme is key-
hiding. Similar to the case of message-hiding security, we consider a “weak” notion
and a “strong” notion. The weak notion requires that a public key pk associated
with an attribute y hides y, while the strong notion requires that y remains hidden
even if the adversary has access to a decryption oracle (with the associated secret
key sk). Strong key-hiding is reminiscent of the weak function-hiding property
we defined for ABE (Definition 2.11), and indeed, we show in Section 5.1 that
ABE schemes satisfying weak function-hiding imply AB-SFE schemes that satisfy
strong key-hiding.

Definition 3.6 (Weak Key-Hiding). An AB-SFE scheme ABSFE satisfies
weak key-hiding if there exists a PPT simulator S such that for all y ∈ Y and
all PPT adversaries A,∣∣Pr[A(1λ, crs, pk) = 1]− Pr[A(1λ, crs, pk) = 1]

∣∣ = negl(λ),

where crs← ABSFE.Setup(1λ), (pk, sk)← ABSFE.KeyGen(crs, y), and (crs, pk)←
S(1λ).

Definition 3.7 (Strong Key-Hiding). An AB-SFE scheme ABSFE satisfies
strong key-hiding if there exists a PPT simulator S = (S1,S2) such that for all
y ∈ Y and all PPT adversaries A we have:∣∣∣Pr[AO1(crs,sk,·,·)(1λ, crs, pk) = 1]− Pr[AO2(st,·,·)(1λ, crs, pk) = 1]

∣∣∣ = negl(λ),

where crs← ABSFE.Setup(1λ), (pk, sk)← ABSFE.KeyGen(crs, y), (stS , crs, pk)←
S1(1λ) and the oracles O1,O2 are defined as follows:

– Real decryption oracle O1: On input a string crs, a secret key sk, a value
x ∈ X , and a ciphertext ct, output ABSFE.Decrypt(crs, sk, x, ct).

– Ideal decryption oracle O2: On input a state stS , x ∈ X and a ciphertext
ct, output S2(stS , x, ct, F (x, y)).

21

4 Designated-Verifier NIZKs from AB-SFE

In this section, we show how to construct a DV-NIZK from any AB-SFE scheme
that provides weak message-hiding and strong key-hiding. In the full version
of this paper [40], we show that a converse of this statement also holds: given
any public-key encryption scheme and a DV-NIZK, we can obtain an AB-SFE
scheme that provides weak message-hiding and strong key-hiding. This means
that assuming public-key encryption exists, our notion of AB-SFE is equivalent to
DV-NIZK. Next, we strengthen our construction and show that if the underlying
AB-SFE scheme satisfies strong message-hiding (and strong key-hiding), then we
obtain a DV-NIZK with security against malicious verifiers. We give our main
construction below:

Construction 4.1 (Designated-Verifier NIZKs from AB-SFE) Let λ be
a security parameter. Let L ⊆ {0, 1}n be an NP language associated with an NP
relation R ⊆ {0, 1}n×{0, 1}h, where n = n(λ), h = h(λ). Our construction relies
on the following building blocks:

– Let zkPCP = (zkPCP.Prove, zkPCP.Query, zkPCP.Verify) be an efficient `-
query, non-adaptive, zero-knowledge PCP (with alphabet Σ) for L (Defini-
tion 2.5). Let m = m(λ) be the length of the PCP and ρ = ρ(λ) be a bound
on the number of random bits needed for for zkPCP.Query.

– Let PRF : K × {0, 1}n → {0, 1}ρ be a pseudorandom function.
– Let F : ({0, 1}n × [m])×K → {0, 1} be the function

F ((x, i), k) :=

{
1 ∃j ∈ [`] where i = qj

0 otherwise,
(4.1)

where (stx, q1, . . . , q`)← zkPCP.Query(x;PRF(k, x)).
– Let ABSFE = (ABSFE.Setup,ABSFE.KeyGen,ABSFE.Encrypt,ABSFE.Decrypt)

be an AB-SFE scheme (Definition 3.1) for F with message space M = Σ
and attribute spaces X = {0, 1}n × [m] and Y = K.

We construct a designated-verifier NIZK dvNIZK = (dvNIZK.Setup, dvNIZK.KeyGen,
dvNIZK.Prove, dvNIZK.Verify) for L as follows:

– dvNIZK.Setup(1λ): Output crs← ABSFE.Setup(1λ).

– dvNIZK.KeyGen(crs): Sample k
r← K, and (pk′, sk′)← ABSFE.KeyGen(crs, k).

Output the public key pk = pk′, and the secret verification key sk = (k, sk′).
– dvNIZK.Prove(crs, pk, x, w): Construct a PCP π(PCP) ← zkPCP.Prove(x,w).

Then, for each i ∈ [m], compute ciphertexts cti ← ABSFE.Encrypt(crs, pk,

(x, i), π
(PCP)
i), and finally, output the proof π = (ct1, . . . , ctm).

– dvNIZK.Verify(crs, sk, x, π): On input the verification key sk = (k, sk′), a state-
ment x ∈ {0, 1}n and a proof π = (ct1, . . . , ctm), compute (stx, q1, . . . , q`)←
zkPCP.Query(x;PRF(k, x)). For each j ∈ [`], compute sj ← ABSFE.Decrypt(
crs, sk, (x, qj), ctqj), and finally, output zkPCP.Verify(stx, s1, . . . , s`).

22

Security analysis. We now state the completeness, soundness, and zero-knowledge
theorems for Construction 4.1, but defer the proofs to the full version of this
paper [40].

Theorem 4.2 (Completeness). If zkPCP is complete and ABSFE is correct,
then dvNIZK from Construction 4.1 is complete.

Theorem 4.3 (Soundness). If PRF is a secure PRF, ABSFE satisfies strong
key-hiding, and zkPCP is sound, then dvNIZK from Construction 4.1 satisfies
non-adaptive computational soundness.

Remark 4.4 (Adaptive Soundness without Complexity Leveraging). Theorem 4.3
shows that Construction 4.1 gives a non-adaptively sound DV-NIZK. As noted
in Remark 2.4, we can always use complexity leveraging to obtain adaptive
soundness. Here, we note that we can avoid complexity leveraging and sub-
exponential hardness assumptions if we instead apply our general compiler to
zero-knowledge PCPs based on “trapdoor Σ-protocols” [12]. We refer the reader
to the full version of this paper [40] (Remark 4.4 and Appendix A) for more
details.

Theorem 4.5 (Zero-Knowledge). If ABSFE satisfies weak message-hiding
(resp., strong message-hiding) and zkPCP satisfies semi-malicious zero-knowledge,
then the designated-verifier NIZK dvNIZK from Construction 4.1 satisfies compu-
tational zero-knowledge (resp., computational zero-knowledge against malicious
verifiers).

Remark 4.6 (DV-NIZKs in the Common Random String Model). If the public
parameters of ABSFE (i.e., the output of ABSFE.Setup) in Construction 4.1 are
uniformly random strings, then the resulting DV-NIZK is also in the common
random string model. More generally, because we are working with computational
notions of soundness and zero-knowledge, this is true even if the public parameters
are only pseudorandom. In this case, computational soundness and zero-knowledge
would still follow by a standard hybrid argument, but completeness may be
downgraded from perfect to statistical.

5 Constructing AB-SFE Schemes

In this section, we describe several approaches to construct AB-SFE schemes
satisfying different flavors of message-hiding and key-hiding. First, in Section 5.1,
we show how to build weak message-hiding AB-SFE from any single-key ABE
scheme. In Section 5.2, we show how to construct AB-SFE schemes with strong
message-hiding (and weak key-hiding) from receiver-extractable OT. Then, in
Section 5.3, we show how to generically boost an AB-SFE scheme satisfying
weak key-hiding into one that satisfies strong key-hiding (Definition 3.7) via a
KDM-secure secret-key encryption scheme (while preserving weak/strong message-
hiding). Combining the constructions in Section 5.2 and 5.3, we obtain AB-SFE
schemes that provide both strong message-hiding and strong key-hiding (which

23

suffice to realize our strongest notion of MDV-NIZK via Construction 4.1). Finally,
in Section 5.4, we describe how to instantiate the different building blocks from
the CDH, DDH, or LWE assumptions.

5.1 Weak Message-Hiding AB-SFE from Single-Key ABE

As noted in Section 1.2, an AB-SFE scheme can be viewed as a generalization of
a single-key ABE scheme. In the full version of this paper [40], we describe two
simple constructions of AB-SFE schemes from single-key ABE schemes (which
are in turn implied by public-key encryption [48,29]). Both of these schemes
provide weak message-hiding.

5.2 Strong Message-Hiding AB-SFE from Receiver-Extractable OT

Towards our goal of obtaining a malicious-designated-verifier NIZK, we show in
this section how to construct an AB-SFE scheme that provides strong message-
hiding from any receiver-extractable 2-message OT scheme. The resulting scheme
satisfies weak key-hiding, and we show how to amplify key-hiding security in
Section 5.3.

Construction 5.1 (Strong Message-Hiding AB-SFE from OT) Take a
function F : X ×Y → {0, 1} and a message space M. Our construction relies on
the following ingredients:

– For an attribute x ∈ X and a message m ∈ M, let Cx,m : Y → M ∪ {⊥}
be a circuit that on input y′ outputs m if F (x, y′) = 1 and ⊥ otherwise. Let
` = poly(λ) be a bound on the bit-length of elements in Y.

– Let Yao = (Yao.Garble,Yao.Eval) be a garbling scheme that supports the circuit
class C = {x ∈ X ,m ∈M : Cx,m}.

– Let OT = (OT.Setup,OT1,OT2,OT.Receive) be a 2-message batch OT scheme
that is receiver-extractable with k-bit messages with batch size ` (see the full
version of this paper [40] for the formal definitions), where k = poly(λ) is a
bound on the length of the labels output by Yao. Let {0, 1}τ be the randomness
space for the first OT message.

We construct an AB-SFE scheme as follows:

– ABSFE.Setup(1λ): Output crs← OT.Setup(1λ).

– ABSFE.KeyGen(crs, y): Sample sk = r
r← {0, 1}τ , and set pk← OT1(crs, y; r).

Output (pk, sk).

– ABSFE.Encrypt(crs, pk, x,m): Compute (C̃x,m, lab) ← Yao.Garble(1λ, Cx,m),
where lab = {labi,b}i∈[`],b∈{0,1} and labi,b ∈ {0, 1}t for all i ∈ [`] and b ∈
{0, 1}. Output the ciphertext ct = (C̃x,m,OT2(crs, pk, lab)).

– ABSFE.Decrypt(crs, sk, x, ct): On input the common reference string crs, a

secret key sk = r, an attribute x ∈ X , and a ciphertext ct = (C̃, ct′),

the decryption algorithm computes
−→
lab← OT.Receive(crs, r, ct′) and outputs

Yao.Eval(C̃,
−→
lab).

24

We state the properties of Construction 5.1 in the following theorem, but defer
the proof to the full version of this paper [40].

Theorem 5.2 (Strong Message-Hiding AB-SFE from OT). If Yao is a
secure garbling scheme and OT is a receiver-extractable 2-message batch OT
scheme on k-bit messages, then the AB-SFE scheme ABSFE from Construction 5.1
satisfies strong message-hiding and weak key-hiding.

5.3 Amplifying Weak Key-Hiding AB-SFE to Strong Key-Hiding
AB-SFE

In the full version of this paper [40], we show how to generically upgrade weak key-
hiding to strong key-hiding via KDM-secure secret-key encryption (Definition 2.12)
and an equivocable non-interactive commitment scheme [18]. Before presenting
our main construction, we first define a useful property on PKE and AB-SFE
schemes that we will use in our construction.

Definition 5.3 (Recovery from Randomness [39]). A public-key encryption
scheme PKE = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) with message space M
satisfies the recover from randomness property if there exists an efficient algorithm
PKE.Recover with the following property:

– PKE.Recover(pk, ct, r) → m/⊥: On input a public key pk, a ciphertext ct,
and a string r, output a message m ∈M or ⊥.

Then, for all messages m ∈M, if (pk, sk)← PKE.KeyGen(1λ), ct← PKE.Encrypt(
pk,m; r), then Recover(pk, ct, r) = m. Alternatively, if there is no pair (m, r)
where ct = PKE.Encrypt(pk,m; r), then Recover(pk, ct, r) = ⊥. We extend this
definition to the AB-SFE setting accordingly: in this case, ABSFE.Recover(crs, pk,
ct, r) either outputs (x,m) if ct = ABSFE.Encrypt(crs, pk, x,m; r) and ⊥ if there
does not exist any (x,m) such that ct = ABSFE.Encrypt(crs, pk, x,m; r).

Remark 5.4 (Recovery from Randomness [39]). It is straightforward to upgrade
any PKE (resp., AB-SFE) scheme to have the recovery from randomness property.
As noted in [39], we simply modify the encryption algorithm to use part of the
encryption randomness to construct a symmetric encryption of the underlying
message (resp., underlying attribute-message pair).

Construction 5.5 (Weak Key-Hiding to Strong Key-Hiding) Let ABSFE
be an AB-SFE scheme for F : X × Y → {0, 1} with message space M that satis-
fies weak key-hiding and the recovery from randomness property (Definition 5.3,
Remark 5.4). To construct an AB-SFE scheme satisfying strong key-hiding, we
additionally rely on the following building blocks:

– Let PKE be a public-key encryption scheme with message space {0, 1}λ and
which supports the recovery from randomness property (Remark 5.4).

– Let ` = `(λ) be a bound on the number of bits of randomness PKE.Encrypt
and ABSFE.Encrypt use.

25

– Let SKE denote a secret-key encryption scheme with message-space M×
{0, 1}`λ that is one-time KDM-secure for the class of projection functions
(Definition 2.12, Remark 2.13).

– Let Com be a non-interactive equivocable commitment scheme with message
space {0, 1}.

We construct an augmented AB-SFE scheme Aug as follows:

– Aug.Setup(1λ): Sample ABSFE.crs← ABSFE.Setup(1λ), (PKE.pk,PKE.sk)←
PKE.Gen(1λ), and for each i ∈ [λ], Com.crsi ← Com.Setup(1λ). It outputs
the common reference string crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]).

– Aug.KeyGen(crs, y): On input crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]),
sample a key-pair (ABSFE.pk,ABSFE.sk) ← ABSFE.KeyGen(ABSFE.crs, y)
and output the public key pk = ABSFE.pk and the secret key sk = (y,ABSFE.pk,
ABSFE.sk).

– Aug.Encrypt(crs, pk, x,m): Parse crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ])
and pk = ABSFE.pk, and proceed as follows:

• Sample a secret key s
r← {0, 1}λ for SKE.

• For every i ∈ [λ], sample ρi
r← {0, 1}λ and compute ci ← Com.Commit(

Com.crsi, si; ρi).

• For every i ∈ [λ], define Mi,si = ρi and Mi,1−si = ⊥. Then, sample

Ri,0, Ri,1
r← {0, 1}` and construct the ciphertexts

cti,0 ← ABSFE.Encrypt(ABSFE.crs,ABSFE.pk, x,Mi,0;Ri,0)

cti,1 ← PKE.Encrypt(PKE.pk,Mi,1;Ri,1).

• Let ct0 ← SKE.Encrypt(s, (m, (Ri,si)i∈[λ])).

• Output ct =
(
ct0, (ci, cti,0, cti,1)i∈[λ]

)
.

– Aug.Decrypt(crs, sk, x, ct): On input crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]),
a secret key sk = (y,ABSFE.pk,ABSFE.sk), and a ciphertext ct =

(
ct0, (ci, cti,0,

cti,1)i∈[λ]
)
, proceed as follows:

1. If F (x, y) = 0, output ⊥.

2. For every i ∈ [λ], compute ρ′i ← ABSFE.Decrypt(ABSFE.crs,ABSFE.sk, x,
cti,0). If ρ′i 6= ⊥ and Com.Commit(Com.crsi, 0; ρ′i) = ci, set s′i = 0;
otherwise, set s′i = 1.

3. Compute (m′, (r′i)i∈[λ])← SKE.Decrypt(s′, ct0).

4. For every i ∈ [λ], perform the following checks:

• If s′i = 0, then check if Recover(ABSFE.crs,ABSFE.pk, cti,0, r
′
i) =

(x, ρ̃i) for some ρ̃i, and output ⊥ if the check fails.
• If s′i = 1, then compute ρ̃i ← PKE.Recover(PKE.pk, cti,1, r

′
i) and

output ⊥ if the recovery procedure fails.
• Finally, check if ci = Com.Commit(Com.crsi, s

′
i; ρ̃i). Output ⊥ if this

check fails.

5. If all checks pass, output m′.

26

5.4 Instantiations

In this section, we describe how to instantiate each of the building blocks needed
to obtain an AB-SFE scheme satisfying strong key-hiding and strong (respectively,
weak) message-hiding from either the CDH assumption, the LWE assumption, or

the LPN assumption with noise rate n−(
1
2+ε) (respectively, the CDH assumption,

the LWE assumption, or the LPN assumption with noise rate O(1/
√
n)). All of

our LWE-based instantiations can use a polynomial modulus-to-noise ratio.
The resulting weak message-hiding AB-SFE instantiations correspondingly

yield DV-NIZKs. Moreover, the resulting strong message-hiding AB-SFE schemes
have uniformly random public parameters, thus yielding designated-verifier NIZKs
with security against malicious verifiers in the common random string model. We
instantiate each building block as follows (with more details in the full version of
this paper [40]):

– There exists a receiver-extractable 2-message batch OT scheme in the common
random string model under the CDH/LWE/LPN assumptions (with the
parameters specified above). There exists a garbling scheme from one-way
functions. Thus, by Theorem 5.2, we obtain an AB-SFE scheme with strong
message-hiding and weak key-hiding under the CDH/LWE/LPN assumptions
in the common random string model.

– There exist public-key encryption schemes with pseudorandom (or uniformly
random) public keys from the CDH assumption [25], the LWE assumption [47],
or the LPN assumption [1] with the parameters specified above. Because we
only use the associated secret key in the proof of security, we can replace the
public key PKE.pk from Construction 5.5 with a uniformly random string,
while maintaining security (by a standard hybrid argument) and perfect
correctness.

– From Section 5.1, there exists an AB-SFE scheme with weak message-hiding
and weak key-hiding under any assumption implying PKE.

– By Remark 2.13, there exists a KDM-secure secret-key encryption scheme
for projection functions under the CDH assumption, the LWE assumption,
or the LPN assumption with constant noise rate.

– There exists a non-interactive equivocable commitment scheme from one-way
functions in the common random string model.

Remark 5.6 (Almost-All-Keys Perfect Decryption Correctness). Some of the
PKE/OT schemes above (such as the PKE scheme of [1]) do not actually satisfy
perfect decryption correctness. However, the transformation of [22] shows that
these encryption schemes can be modified to satisfy the following “almost-all-keys
perfect correctness” property: with probability 1− negl(λ) over the randomness
of PKE.KeyGen(·), decryption is perfectly correct with probability 1 over the
choice of encryption randomness. Encryption schemes satisfying this notion of
almost-all-keys perfect correctness suffice for all of the constructions in this paper.

Instantiations. Combining the above primitives in Construction 5.5, we now
obtain the following corollaries. In all cases, we only rely on polynomial hardness
of the underlying assumption.

27

Corollary 5.7 (Weak Message-Hiding, Strong Key-Hiding AB-SFE
from LPN). Assuming polynomial hardness of the LPN assumption with noise
rate O(1√

n
), there exists an AB-SFE scheme with that satisfies strong key-hiding

and weak message-hiding.

Corollary 5.8 (Strong Message-Hiding, Strong Key-Hiding AB-SFE
from CDH/LWE/LPN). Assuming polynomial hardness of either CDH, LWE,

or LPN with noise rate n−(
1
2+ε) for any ε > 0, there exists an AB-SFE scheme

with uniformly random public parameters that satisfies strong key-hiding and
strong message-hiding security.

Combining Theorem 2.5 now with Construction 4.1 (and Remarks 4.4 and 4.6),
we obtain the following instantiations of designated-verifier NIZKs:

Corollary 5.9 (Designated-Verifier NIZKs from LPN). Assuming poly-
nomial hardness of the LPN assumption with noise rate O(1√

n
), there exists a

designated-verifier NIZK argument for NP that is adaptively sound and provides
computational zero-knowledge in the common reference string model.

Corollary 5.10 (Malicious-Designated-Verifier NIZKs from CDH/LWE
/LPN). Assuming polynomial hardness of either CDH, LWE, or LPN with noise

rate n−(
1
2+ε) for any ε > 0, there exists a designated-verifier NIZK argument for

NP that is adaptively sound and provides computational zero-knowledge against
malicious verifiers in the common random string model.

Acknowledgments

We thank Yuval Ishai and Brent Waters for many helpful discussions and com-
ments on this work.

References

1. M. Alekhnovich. More on average case vs approximation complexity. In FOCS,
pages 298–307, 2003.

2. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In CRYPTO,
pages 595–618, 2009.

3. M. Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, volume 1, page 2, 1986.

4. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In STOC, pages 103–112, 1988.

5. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In EUROCRYPT, pages 223–238, 2004.

6. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In EUROCRYPT, pages 533–556, 2014.

28

7. D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption
from decision diffie-hellman. In CRYPTO, pages 108–125, 2008.

8. E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In ACM
CCS, pages 896–912, 2018.

9. Z. Brakerski, A. Lombardi, G. Segev, and V. Vaikuntanathan. Anonymous IBE,
leakage resilience and circular security from new assumptions. In EUROCRYPT,
pages 535–564, 2018.

10. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, and R. D.
Rothblum. Fiat-Shamir from simpler assumptions. IACR Cryptology ePrint Archive,
2018:1004, 2018.

11. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.
IACR Cryptology ePrint Archive, 2003:83, 2003.

12. R. Canetti, A. Lombardi, and D. Wichs. Fiat-Shamir: From practice to theory, part
ii (NIZK and correlation intractability from circular-secure FHE). IACR Cryptology
ePrint Archive, 2018:1248, 2018.

13. M. Chase, Y. Dodis, Y. Ishai, D. Kraschewski, T. Liu, R. Ostrovsky, and V. Vaikun-
tanathan. Reusable non-interactive secure computation. In CRYPTO, 2019.

14. G. Couteau and D. Hofheinz. Designated-verifier pseudorandom generators, and
their applications. In EUROCRYPT, 2019.

15. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO, pages 174–187, 1994.

16. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, 1998.

17. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

18. G. D. Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable
commitment. In STOC, pages 141–150, 1998.

19. N. Döttling and S. Garg. Identity-based encryption from the Diffie-Hellman
assumption. In CRYPTO, pages 537–569, 2017.

20. N. Döttling, S. Garg, M. Hajiabadi, and D. Masny. New constructions of identity-
based and key-dependent message secure encryption schemes. In PKC, pages 3–31,
2018.

21. N. Döttling, S. Garg, M. Hajiabadi, D. Masny, and D. Wichs. Two-round oblivious
transfer from CDH or LPN. IACR Cryptology ePrint Archive, 2019, 2019.

22. C. Dwork, M. Naor, and O. Reingold. Immunizing encryption schemes from
decryption errors. In EUROCRYPT, pages 342–360, 2004.

23. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

24. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194, 1986.

25. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO, pages 10–18, 1984.

26. O. Goldreich. Basing non-interactive zero-knowledge on (enhanced) trapdoor
permutations: The state of the art. In Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and Computation, pages 406–421.
Springer, 2011.

27. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract).
In FOCS, pages 174–187, 1986.

28. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

29

29. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded
collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

30. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. In STOC, pages 545–554, 2013.

31. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM CCS, pages 89–98, 2006.

32. J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive Zaps and new techniques for
NIZK. In CRYPTO, pages 97–111, 2006.

33. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In STOC, pages 21–30, 2007.

34. Y. Ishai, M. Mahmoody, and A. Sahai. On efficient zero-knowledge PCPs. In TCC,
pages 151–168, 2012.

35. S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In EURO-
CRYPT, 2019.

36. J. Kilian, E. Petrank, and G. Tardos. Probabilistically checkable proofs with zero
knowledge. In STOC, pages 496–505, 1997.

37. S. Kim and D. J. Wu. Multi-theorem preprocessing NIZKs from lattices. In
CRYPTO, pages 733–765, 2018.

38. F. Kitagawa, T. Matsuda, and K. Tanaka. Cca security and trapdoor functions via
key-dependent-message security. IACR Cryptology ePrint Archive, 2019:291, 2019.

39. V. Koppula and B. Waters. Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. IACR Cryptology ePrint
Archive, 2018:847, 2018.

40. A. Lombardi, W. Quach, R. D. Rothblum, D. Wichs, and D. J. Wu. New con-
structions of reusable designated-verifier NIZKs. IACR Cryptology ePrint Archive,
2019:242, 2019.

41. A. Lombardi, W. Quach, R. D. Rothblum, D. Wichs, and D. J. Wu. New construc-
tions of reusable designated-verifier nizks. IACR Cryptology ePrint Archive, 2019,
2019. Preliminary Version.

42. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC, pages 427–437, 1990.

43. R. Pass, a. shelat, and V. Vaikuntanathan. Construction of a non-malleable
encryption scheme from any semantically secure one. In CRYPTO, pages 271–289,
2006.

44. C. Peikert and S. Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In CRYPTO, 2019.

45. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and
composable oblivious transfer. In CRYPTO, pages 554–571, 2008.

46. W. Quach, R. D. Rothblum, and D. Wichs. Reusable designated-verifier NIZKs for
all NP from CDH. In EUROCRYPT, 2019.

47. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

48. A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM CCS, pages 463–472, 2010.

49. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

50. A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero knowledge. In CRYPTO, pages 566–598, 2001.

51. A. D. Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge proof
systems. In CRYPTO, pages 52–72, 1987.

30

	New Constructions of Reusable Designated-Verifier NIZKs

