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Abstract. Time-lock puzzles allow one to encrypt messages for the fu-
ture, by efficiently generating a puzzle with a solution s that remains
hidden until time T has elapsed. The solution is required to be concealed
from the eyes of any algorithm running in (parallel) time less than T .
We put forth the concept of homomorphic time-lock puzzles, where one
can evaluate functions over puzzles without solving them, i.e., one can
manipulate a set of puzzles with solutions (s1, . . . , sn) to obtain a puz-
zle that solves to f(s1, . . . , sn), for any function f . We propose candi-
date constructions under concrete cryptographic assumptions for differ-
ent classes of functions. Then we show how homomorphic time-lock puz-
zles overcome the limitations of classical time-lock puzzles by proposing
new protocols for applications of interest, such as e-voting, multi-party
coin flipping, and fair contract signing.

1 Introduction

Time-lock puzzles [30] allow one to encapsulate messages for a precise amount
of time or, equivalently, to encrypt messages for the future. On input a secret
s and a hardness parameter T , the puzzle generation algorithm allows one to
compute a Z such that s can be recovered only after time T . Time-lock puzzles
are characterized by the following properties.

– Fast puzzle generation: The time needed to generate a puzzle is much shorter
than T . This is crucial when secrets are hidden for a long time, e.g., 10 years.

– Security against parallel algorithms: The secret s is hidden for circuits of
depth less than T , regardless of their size.

The latter can be seen as a more fine-grained notion of the classical semantic
security [19], where simply lowering the security parameter may enable faster
algorithms that exploit massive parallelization to solve the puzzle. Note that
ignoring either of the above properties makes the problem trivial since it can be
either solved with standard probabilistic encryption or any inherently sequen-
tial computation (such as repeated hashing). Applications of time-lock puzzles
include sealed-bid auctions [30], fair contract signing [6], zero-knowledge argu-
ments [12], and non-malleable commitments [23], to mention a few.

? Part of the work done while at Friedrich-Alexander-Universität Erlangen-Nürnberg.



To compensate for the absence of a trusted party, time-lock puzzles force
the decrypter to perform a long computation before being able to recover the
secret. When time-lock puzzles are deployed within large scale protocols, this
slight drawback is magnified and parties may incur in a significant computational
burden. While performing some computation is clearly unavoidable, this effort
should not become the bottleneck of the protocol. To the best of our knowledge,
there is currently no solution to mitigate this problem.

1.1 Limitations of Time-Lock Puzzles

To illustrate the aforementioned limitations of time-lock puzzles, we consider the
scenario of e-voting in the absence of a trusted authority, one of the motivating
examples for the usage of the primitive. Throughout the following discussion
we assume that the voters have access to a public and append-only bulletin
board, e.g., a blockchain, and we will not consider the privacy of the votes nor
their authenticity. Both problems are well studied and can be dealt with using
standard techniques, e.g., unlinkable transactions and anonymous credentials.
Instead, we are going to focus on constructing a system that allows a large set
of voters to cast their preference without any bias.

If one were to assume a trusted administrator, then the voters could simply
encrypt their preference and let the administrator count and announce the result.
However, the absence of trusted authorities makes the problem non-trivial. The
standard approach to avoid voters being biased by the current majority is to
divide the protocol in two phases: In the voting phase the voters commit to their
vote and post the commitment on the bulletin board. In the counting phase, new
commitments are ignored, and voters are asked to reveal their openings, which
makes it possible to compute and announce the result of the election.

This however leaves open the question of how to handle users who send valid
commitments in the first phase but fail to reveal their openings in the second.
One could either (i) repeat the voting phase or (ii) ignore such “unopened”
votes. Repeating the voting process could empower an attacker to successfully
mount a denial-of-service attack at essentially no cost. On the other hand, the
latter solution might be exploited to manipulate the final outcome: An attacker
controlling the network traffic might block those openings corresponding to an
unwanted candidate, thereby generating a bias towards a the preferred side.

Time-lock puzzles elegantly resolve this by replacing commitments as the
hiding mechanism for the votes. The votes of those users who fail to publish
their coins (i.e., reveal their vote) can be simply determined by solving their
time-lock puzzles. Setting the hardness parameter T to be a safe amount longer
than the voting phase makes sure that the votes are kept secret until such a
phase is over, thereby avoiding any bias. Unfortunately, this solution does not
come without additional costs: Consider what happens when a large amount
of voters, say 100.000, fail to open their puzzles. Then the computation of the
election winner tally requires brute-forcing those puzzles, which means that a
massive amount of (parallel) computation is needed in order to complete the
election within reasonable time. Taking into account the typical number of voters
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for an election which is usually in the range of millions, it is safe to say that the
problem is of practical relevance.

We stress that, even though e-voting exemplifies well the scalability issues
of time-lock puzzles, it is certainly not the only scenario where they emerge.
Essentially any other application that involves a large number of users (e.g.,
sealed bid auctions or multi-party coin flipping), encounters similar problems.
We conjecture that such constraints constitute one of the main obstacles that so
far prevented the large scale adoption of time-lock puzzles.

1.2 Our Solution

Put in different words, the main shortcoming of time-lock puzzle-based solu-
tions is that one needs to solve (brute-force) many puzzles before computing
some function over the embedded secrets. What if we could (homomorphically)
evaluate the function first and then solve a single puzzle containing the function
output? This would dramatically reduce the computational burden of time-lock
puzzle-based protocols. Consider the e-voting example as described above: To
compute the election winner one could homomorphically evaluate the corre-
sponding circuit over the puzzles and then solve a single puzzle, regardless of the
number of offline voters.

Motivated by this question, we propose the notion of Homomorphic Time-
Lock Puzzles (HTLP): Loosely speaking, an HTLP is an augmented time-lock
puzzle that allows anyone to evaluate a circuit C over sets of puzzles (Z1, . . . , Zn)
homomorphically, without necessarily knowing the secret messages (s1, . . . , sn)
encapsulated within these puzzles. The resulting output (which is also a puzzle)
contains the circuit output C(s1, . . . , sn) and the timing hardness of this puzzle
does not depend on the size of the circuit C that was evaluated (compactness).
We stress that the compactness of the evaluation algorithm is a crucial require-
ment for HTLP (as it is the case for fully-homomorphic encryption [16]): If we
were to ignore it, then the trivial solution of solving the puzzles (Z1, . . . , Zn)
and then evaluating C over the secrets would suffice.

In this work we put forward the concept of HTLPs and we formally charac-
terize their security guarantees. We then propose several schemes that support
the homomorphic evaluation of different classes of circuits and we demonstrate
their usefulness by presenting several concrete applications.

1.3 Technical Overview

Towards instantiating HTLPs, our starting point is the classical construction of
Rivest, Shamir, and Wagner [30], whose hardness is rooted in the (conjectured)
inherent sequentiality of squaring in finite fields. Let N = p·q be an RSA integer,
a time-lock puzzle for a secret s and for a time T consists of the tuple

(N, T , x, x2
T
· k,Enc(k, s))

where (x, k) are uniformly sampled elements from Z∗N , and Enc(k, s) is a sym-
metric encryption of the secret s. Note that knowing the group order ϕ(N) allows
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one to efficiently compute the term x2
T

by reducing 2T modulo ϕ(N) first. On
the other hand the decrypter has to perform T -many squarings before recover-
ing the key k. Here the hybrid encryption approach breaks the structure of the
group, and therefore the scheme has no homomorphic properties.

Linearly Homomorphic. Our first observation is that the term x2
T

acts
essentially as a one-time pad and we can choose a more structured embedding
that admits an efficiently computable homomorphism. We follow the blueprint
of Paillier [28], i.e., we exploit the fact that the group Z∗N2 can be written as the
product of the group generated by (1 + N), which has order N , and the group
of N -th residues {xN : x ∈ Z∗N}, which has order ϕ(N). Consider the following
(flawed) attempt to construct HTLPs for linear functions:

(N, T , x, xN ·2
T
· (1 +N)s),

for a random x ∈ Z∗N . Assume for the moment that N is fixed across all puzzles,
then the scheme is clearly linearly homomorphic as shown below:

(N, T , x·y, xN ·2
T
·yN ·2

T
·(1+N)s·(1+N)s

′
) = (N, T , (x·y), (x·y)N ·2

T
·(1+N)s+s

′
).

Observe that the time needed to homomorphically add secrets is independent
of T . Further recall that the group generated by (1 +N) admits a polynomial-
time algorithm to compute discrete logarithms, so recovering the output is easy

once xN ·2
T

is computed. Unfortunately there are two major issues with the
current scheme: (i) If N is shared across all users who also generated them,
then everybody potentially knows the factorization of N (and therefore ϕ(N)),

which is a problem for security, and (ii) the blinding factor xN ·2
T

is trivially

distinguishable from a uniform element in Z∗N as the Jacobi symbol of xN ·2
T

is
always +1. The latter issue can be easily countered by restricting the random
choice to those elements in Z∗N whose Jacobi symbol is equal to +1. Our idea
to sidestep the former limitation is to use the random self-reducibility of the

problem: In our augmented scheme, the tuple (N, x, x2
T

), where x is a random
element of Z∗N with Jacobi symbol +1, is fixed in a setup phase. A freshly-looking
HTLP can now be computed as

(N, T , xr, (xN ·2
T

)r · (1 +N)s) = (N, T , y, yN ·2
T
· (1 +N)s),

where r is uniformly sampled from {1, . . . , N2}, whose distribution (modulo
ϕ(N)) is statistically close to sampling from {1, . . . , ϕ(N)}. Note that the newly
generated puzzle is correctly distributed and the knowledge of ϕ(N) is not needed
to compute it. It can be shown that the scheme is an HTLP for linear functions,
assuming the inherent sequentiality of squaring modulo N and other standard
intractability assumptions over hidden-order groups.

Multiplicatively Homomorphic. Armed with the tools discussed above, we
can easily switch the message encoding to obtain HTLPs that supports the
evaluation of multiplication gates. This is done by adapting the scheme of above

to a Diffie-Hellman structure in a natural way: Given that the tuple (N, x, x2
T

)
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is fixed in a setup phase, a puzzle to encapsulate a secret s ∈ JN (where JN is
the subgroup of Z∗N whose elements have Jacobi symbol +1) is generated as

(N, T , xr, (x2
T

)r · s)

for some uniformly chosen r. The procedure to recover the puzzle is essentially
unchanged, except that now all the operations are performed in the subgroup
JN . Clearly, there is no need to compute any discrete logarithm since s is already
in its plain form. In [10] it was shown that the decisional Diffie-Hellman (DDH)
assumption over JN is implied by the DDH assumption over Z∗p and Z∗q and the
quadratic residuosity assumption over Z∗N . Thus the security of our scheme fol-
lows from the same set of hard problems (in addition to assuming the sequential
nature of squaring modulo N).

Fully Homomorphic. The schemes constructed above support the homo-
morphic evaluation of some restricted classes of functions over the secrets. The
next natural question is whether there exists an HTLP for any polynomially-
computable function. It seems like the techniques developed so far are not very
helpful in this context since constructing homomorphic encryption from RSA
groups (and related assumptions) has been an elusive task so far. For this rea-
son we turn our attention to constructions based on indistinguishability obfusca-
tion [14]. The scheme that we obtain shall be interpreted as a feasibility result.
We leave constructing HTLPs for any function without the aid of obfuscation
as a fascinating open problem. Our candidate solution follows the blueprint of
the fully-homomorphic encryption (FHE) scheme from [9]. Omitting most of the
technicalities, their FHE is constructed from standard public-key encryption by
obfuscating a program that decrypts two input ciphertexts, computes a NAND
gate over the messages, and re-encrypts the output. This approach allows one
to construct FHE without relying on circular assumptions, since the obfuscated
program can evaluate circuits of any depth without growing in size.

At a first glance, this strategy does not seem to translate directly to the time-
lock puzzle settings, since puzzles do not necessarily have a trapdoor that allows
one to efficiently recover the secret (see, e.g., the construction from [2]). Instead
of replacing the public key encryption, our scheme augments it by additionally
time-locking the message: The puzzle consists of a tuple (c, Z), where the cipher-
text c and any (non-homomorphic) time-lock puzzle Z encode the same message.
To open it, one simply ignores c and solves Z. To support homomorphic com-
putations, we obfuscate a program that takes as input two puzzles (c0, Z0) and
(c1, Z1), decrypts c0 and c1, computes the NAND of the messages and produces
a fresh pair (c′, Z ′) encoding the output bit. Note that, although the program
discards Z0 and Z1, the output puzzle is still well-formed. Such a program is
obfuscated in the setup phase and it is made available to all parties.

Extensions. The constructions presented above constitute the backbone of our
results, but there are still a few shortcomings that need to be addressed in order
to enjoy all advantages of HTLPs. For example, all of the schemes (as described
above) require a trusted setup that needs to be re-initialized once time T has
passed. We show that this is in fact not necessary for our RSA-based schemes

5



and that the common reference string (N, x, x2
T

) can be fixed once and for all in
a one-time setup, assuming a mildly stronger version of the sequential squaring
problem. We also show how to compute homomorphic operations over puzzles
generated under different hardness parameters and we explore the feasibility of
a non-trusted (public-coin) setup. Finally, we present a semi-compact HTLP for
branching programs (a superclass of NC1), where the size of the evaluated puzzle
grows with the length of the program but not with its size.

1.4 Applications

We substantiate our claims with concrete examples of scenarios where HTLPs
are useful. Due to the different nature of our constructions, we focus on how to
exploit our efficient (RSA-based) schemes to build applications of interest.

E-Voting and Sealed Bid Auctions over Blockchains. We consider the
settings where n voters choose one among m candidates and we assume that
n� m. In our protocol, each voter generates a vector of m linearly-homomorphic
puzzles (Z1, . . . , Zm) encapsulating 0, except for the j-th puzzle Zj that encodes
1, where j is the index of the preferred candidate.3 The vector of each voter
is made available to all parties (by, e.g., posting it on a blockchain) during
the voting phase. Afterwards, the outcome of the election can be determined
by simply summing up all vectors and opening the resulting m puzzles. The
resulting vector will contain the amount of votes per candidate and the winner
can then be easily determined. Note that this is a public operation and therefore
there is no need for a trusted tallying authority. Furthermore, the computational
effort needed to determine the result of the election is that of solving m puzzles,
regardless on the amount of voters. The typical values for m are in the order of
tens, which corresponds to a manageable amount of computation for essentially
any machine. This is a significant improvement with respect to the original
solution that required the opening of potentially hundreds of thousands puzzles.

Similar techniques can be used to design a sealed bid auction protocol: Each
bidder time-locks its bid and the index corresponding to the highest bidder is
homomorphically computed over the puzzles. The winner of the auction can
be determined by solving a single puzzle. Unfortunately the resulting protocol
is not yet practical since the circuit being evaluated exceeds the capability of
linear functions and requires fully-homomorphic time-lock puzzles.

Multi-Party Coin Flipping. Coin flipping protocols are one of the classical
problems in cryptography [3] and have recently found applications in real-life
cryptocurrencies [22]. The security required by an n-party coin flipping protocol
is that n−1 colluding parties should not be able to bias the final outcome. Boneh
and Naor [6] proposed a solution for coin flipping among two parties based on
time-lock puzzles. However, naively extending their protocol to the multi-party
setting suffers from predictable drawbacks: The computational effort of the par-
ticipants is proportional to the amount of parties that do not reveal their random

3 We implicitly assume that all puzzles are honestly generated, which can be enforced
with standard cryptographic tools.
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coins. This becomes very significant when coin flipping protocols are executed
on a large scale (e.g., thousands of participants). Using linearly-homomorphic
time-lock puzzles we obtain a very simple solution to this problem. Each par-
ticipant encapsulates a random bit for a safe amount of time and broadcasts it
to all parties. Then each party homomorphically add all puzzles, without the
need for further interactions. Solving the resulting output puzzle and isolating
the least significant bit of the solution gives us an unbiased coin.

Multi-Party Contract Signing. Consider the scenario where n mutually dis-
trusting parties want to exchange signatures on a document. Boneh and Naor [6]
proposed a protocol for fair exchange of signatures based on time-lock puzzles.
The protocol proceeds in rounds where each party generates a time-lock puzzle of
their signature and broadcasts it. When all signatures are published, the proto-
col repeats except that the hardness parameter of the time-lock puzzle is halved.
The protocol is strongly fair in the sense that the work required to recover the
signatures by all parties differs at most by a factor of (roughly) 2.

Observe that if at any round any party fails to broadcast its puzzle, then
all other parties need to solve all the puzzles ((n − 1)-many) from the previ-
ous round to learn the signatures necessary for the validity of the contract. Our
multiplicatively-homomorphic time-lock puzzles can be plugged in this protocol
to solve exactly this issue. More specifically, we can leverage a recent result
on RSA-aggregate signatures [20], where Hohenberger and Waters proposed a
scheme where signatures live in QRN , where N is fixed in the setup, and can
be aggregated by simply multiplying them modulo N . Recall that QRN is a
subgroup fo JN and therefore signatures encapsulated in our HTLP can be ag-
gregated homomorphically.

Equipped with this tool, we can simply replace the time-lock puzzle of Boneh
and Naor with our multiplicatively homomorphic construction and combine it
with the signature scheme of Hohenberger and Waters. Then, in the case that
any party goes offline ahead of time, each other party can homomorphically
aggregate the signatures from the previous round and then solve a single time-
lock puzzle, regardless of the number of participants.

1.5 Related Work

Time-lock puzzles were envisioned in the seminal work by Rivest, Shamir, and
Wagner [30]. Their scheme builds on the (conjectured) inherent sequentiality
of repeated squaring in RSA groups. Recently, Bitanski et al. [2] proposed a
different approached to construct time-lock puzzles, assuming the existence of
succinct randomized encodings [1] and non-parallelizable languages. We also
mention a new construction paradigm from Liu et al. [24] that combines witness
encryption [15] with a reference clock, such as a blockchain.

A related but different notion is that of verifiable delay functions [4], which
allow a prover to convince a verifier that a certain amount of sequential com-
putation has been performed. The two notions are incomparable since verifiable
delay functions (in general) do not allow one to encapsulate secrets and time-lock
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puzzles are (in general) not efficiently verifiable. Proofs of sequential work [26]
can be seen as a non-unique verifiable delay functions. Interestingly, Mahmoody
et al. [25] showed a blackbox separation between time-lock puzzles and proofs of
sequential work.

2 Preliminaries

We denote by λ ∈ N the security parameter. We we say that a function µ is
negligible if it vanishes faster than any polynomial. Given two ensembles D0

and D1, we write D0 ≈µ D1 if all probabilistic polynomial-time distinguishers
succeed with probability µ-close to 1/2. Given a set U , we denote by u←$U the
uniform sampling from U . Recall the definition of statistical distance.

Definition 1 (Statistical Distance). Let X and Y be two random variables
over a finite set U . The statistical distance between X and Y is defined as

SD [X,Y ] =
∑
u∈U
|Pr[X = u]− Pr[Y = u]| .

We say that an ensemble D is ε-uniform in U if the statistical distance between
D and uniformly sampling from U is at most ε. We recall the following useful
lemma from [7].

Lemma 1. Let (n, ñ) ∈ N2 and let x←$ {1, . . . , ñ}, then x (mod n) is (n/ñ)-
uniform in Zn.

Proof. Let d = ñ (mod n), then conditioned on the event that x ∈ {1, . . . , ñ−d},
it holds that x (mod n) is uniformly distributed in Zn. Therefore x (mod n) is
(d/ñ) ≤ (n/ñ)-uniform.

2.1 Number Theory and Assumptions

Let N = p · q, where p and q are random primes of equal length, we define
Z∗N := {x ∈ ZN : gcd(x,N) = 1} and JN as the group of elements of Z∗N with
Jacobi symbol +1 and we denote by g a generator of JN . Euler totient function
is denoted by ϕ(·). We say that N is a strong RSA integer if p = 2p′ + 1 and
q = 2q′ + 1, where p′ and q′ are also primes. Note that if N is a strong RSA
integer then JN is cyclic and has order ϕ(N)/2. Also note that a generator g for
JN can be found by sampling g̃←$Z∗N and setting g := −g̃2 since the order of g̃
is either ϕ(N)/2 or ϕ(N)/4 with all but negligible probability.

We state and prove the following simple lemma, which is going to be useful
in the analysis of our schemes.

Lemma 2. For every x ∈ N and every N ∈ N it holds that

xN (mod N2) = (x (mod N))
N

(mod N2).
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Proof. Let us rewrite x = x̃+ kN , for some k and some x̃ < N . Then we have

xN (mod N2) = (x̃+ kN)N (mod N2)

= x̃N +
(
x̃N−1kN

)
N + . . . (mod N2)

= x̃N (mod N2)

= (x (mod N))
N

(mod N2).

Sequential Squaring. In the following we recall the intractability assumption
(implicitly) introduced by Rivest, Shamir, and Wagner [30].

Assumption 1 (Sequential Squaring) Let N be a uniform strong RSA in-
teger, g be a generator of JN , and T (·) be a polynomial. Then there exists some
0 < ε < 1 such that for every polynomial-size adversary A = {Aλ}λ∈N who’s
depth is bounded from above by T ε(λ), there exists a negligible function µ(·) such
that

Pr

b← A(N, g, T (λ), x, y) :

x←$ JN ; b←$ {0, 1}
if b = 0 then y←$ JN
if b = 1 then y := x2

T (λ)

 ≤ 1

2
+ µ(λ).

Note that we restrict the domain of x and y to JN to avoid trivial attacks where
the distinguisher computes the Jacobi symbol of the group element.

Decisional Composite Residuosity. Here we recall the decisional composite
residuosity (DCR) assumption as of [28].

Assumption 2 (Decisional Composite Residuosity) Let N be a uniform
strong RSA integer. Then for every polynomial-size adversary A = {Aλ}λ∈N
there exists a negligible function µ(·) such that

Pr

b← A(N, y) :
x←$Z∗N ; b←$ {0, 1}
if b = 0 then y←$Z∗N2

if b = 1 then y := xN

 ≤ 1

2
+ µ(λ).

Decisional Diffie-Hellman. Here we recall the decisional composite Diffie-
Hellman (DDH) assumption over JN as stated in [10]. In the same work, it was
shown that such a conjecture is implied by the DDH assumption over Z∗p and
Z∗q and by the quadratic residuosity assumption over Z∗N .

Assumption 3 (Decisional Diffie-Hellman) Let N be a uniform strong RSA
integer and g be a generator of JN . Then for every polynomial-size adversary
A = {Aλ}λ∈N there exists a negligible function µ(·) such that

Pr

b← A(N, g, gx, gy, gz) :
(x, y)←$ {1, . . . , ϕ(N)/2}; b←$ {0, 1}
if b = 0 then z←$ {1, . . . , ϕ(N)/2}
if b = 1 then z := x · y (mod ϕ(N)/2)

 ≤ 1

2
+µ(λ).
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2.2 Cryptographic Building Blocks

In the following we introduce the cryptographic primitives used in our work.

Puncturable PseudoRandom Functions. A puncturable pseudorandom
function (PRF) is an augmented PRF that has an additional puncturing al-
gorithm. Such an algorithm produces a punctured version of the key that can
evaluate the PRF at all points except for the punctured one. It is required that
the PRF value at that specific point is pseudorandom even given the punctured
key. A puncturable PRF can be constructed from any one-way function [18].

Definition 2 (Puncturable PRFs). A puncturable family of PRFs is a tuple
of polynomial-time algorithms (Key,Puncture,PRF) defined as follows.

– K ← Key(1λ) a probabilistic algorithm that takes as input the security pa-
rameter and outputs a key K.

– K−i ← Puncture(K, i) a deterministic algorithm that takes as input a key K
and a position i ∈ {0, 1}n and returns a punctured key K−i.

– y ← PRF(K, i) a deterministic algorithm that takes as input a key K and an
index i ∈ {0, 1}n and returns a string y ∈ {0, 1}m.

Definition 3 (Correctness). For all λ ∈ N, for all outputs K ← Key(1λ), for
all points i ∈ {0, 1}n and x ∈ {0, 1}n \ i, and for all K−i ← Puncture(K, i), we
have that PRF(K−i, x) = PRF(K,x).

Definition 4 (Pseudorandomness). For all λ ∈ N and for every polynomial-
time adversaries (A1,A2) there is a negligible function µ(·), such that

Pr

b← A2(τ,K−i, i, y) :

(i, τ)← A1(1λ)
K ← Key(1λ)
K−i ← Puncture(K, i)
b←$ {0, 1}
if b = 0 then y←$ {0, 1}m
if b = 1 then y ← PRF(K, i)

 ≤
1

2
+ µ(λ).

Time-Lock Puzzles. We recall the definition of standard time-lock puzzles [2].
For conceptual simplicity we consider only schemes with binary solutions.

Definition 5 (Time-Lock Puzzles). A time-lock puzzle is a tuple of two al-
gorithms (PGen,PSolve) defined as follows.

– Z ← PGen(T , s) a probabilistic algorithm that takes as input a hardness-
parameter T and a solution s ∈ {0, 1}, and outputs a puzzle Z.

– s← PSolve(Z) a deterministic algorithm that takes as input a puzzle Z and
outputs a solution s.

Definition 6 (Correctness). For all λ ∈ N, for all polynomials T in λ, and
for all s ∈ {0, 1}, it holds that s = PSolve(PGen(T , s)).

10



Definition 7 (Security). A scheme (PGen,PSolve) is secure with gap ε < 1
if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and
every polynomial-size adversary A = {Aλ}λ∈N of depth ≤ T ε(λ), there exists a
negligible function µ(·), such that for all λ ∈ N it holds that

Pr
[
b← A(Z) : Z ← PGen(T (λ), b)

]
≤ 1

2
+ µ(λ).

Trapdoor Encryption. A trapdoor encryption scheme is a public key encryp-
tion scheme that allows one to generate a trapdoor version of the public key.
Such trapdoor key is indistinguishable from a normal public key, however en-
crypting under the trapdoor key hides the message in an information-theoretic
sense. Canetti et al. [9] showed that any public-key encryption with perfect re-
randomization (such as ElGamal or Paillier encryption) can be used generically
to construct such a primitive.

Definition 8 (Trapdoor Encryption). A trapdoor encryption scheme is a
tuple of polynomial-time algorithms (KeyGen,Enc,Dec, tKeyGen) defined as fol-
lows.

– (pk , sk) ← KeyGen(1λ) a probabilistic algorithm that takes as input the se-
curity parameter and outputs a key pair (pk , sk).

– pk ← tKeyGen(1λ) a probabilistic algorithm that takes as input the security
parameter and outputs a trapdoor key pk.

– c← Enc(pk ,m) a probabilistic algorithm that takes as input a message m ∈
{0, 1} and a key pk and returns a ciphertext c.

– m← Dec(sk , c) a deterministic algorithm that takes as input a secret key sk
and a ciphertext c and returns a message m.

Definition 9 (Correctness). For all λ ∈ N, for all m ∈ {0, 1} it holds that
m = Dec(sk ,Enc(pk ,m)), where (pk , sk)← KeyGen(1λ).

Definition 10 (Trapdoor Public Keys). For all λ ∈ N and for all proba-
bilistic polynomial-time adversaries A there exists a negligible function µ(·) such
that

Pr

b← A(pk) :
b←$ {0, 1}
if b = 0 then pk ← tKeyGen(1λ)
if b = 1 then (pk , sk)← KeyGen(1λ)

 ≤ 1

2
+ µ(λ).

Definition 11 (µ-Hiding). For all λ ∈ N and for all unbounded adversaries A
there exists a negligible function µ(·) such that

Pr

[
b← A(pk ,Enc(pk , b)) :

b←$ {0, 1}
pk ← tKeyGen(1λ)

]
≤ 1

2
+ µ(λ).

Probabilistic Obfuscation. A probabilistic obfuscator piO is an algorithm
that obfuscates probabilistic circuits and it can be constructed assuming sub-
exponentially secure indistinguishability obfuscation [14] and sub-exponentially
secure one-way functions [9].

11



Definition 12 (piO for a class of samplers S). A uniform polynomial-size
machine piO is an indistinguishable obfuscator for a class of samplers S over
the (possibly randomized) circuit family C = {Cλ}λ∈N if, on input a (possibly
probabilistic) circuit C ∈ Cλ and the security parameter 1λ, outputs a determin-
istic circuit Λ of size p(|C|, λ), for some fixed polynomial p(·).

Definition 13 (Correctness). For every non-uniform polynomial-size distin-
guisher D, every (possibly probabilistic) circuit C ∈ Cλ and string y, we define
the following experiments

– EXPD0 (1λ, C, y): D on input 1λ, C, y, participates in as many number of it-
erations as he wants. In iteration i, it chooses an input xi; if xi = xj for
j < i, then abort; else, D gets back (C(xi, ri)) where ri are fresh randomness
(ri = null, if C is deterministic). At the end of the final iteration, D outputs
a bit b. (Note that D is stateful.)

– EXPD1 (1λ, C, y): Obfuscate circuit C to obtain Λ← piO(1λ, C; r) using fresh
randomness r. Run D as described in the above experiment, except that in
each iteration give Λ(xi) to D instead.

We require that for every non-uniform polynomial-size distinguisher D, there is
a negligible function µ(·), such that, for every λ ∈ N, every C ∈ Cλ, and every
polynomial-size auxiliary input y it holds that

Pr[b← EXPDb (1λ, C, y)] ≤ 1

2
+ µ(λ).

Definition 14 (Security with respect to S). For every sampler D = {Dλ}λ∈N
∈ S, and for every non-uniform polynomial-size machine A, there exists a neg-
ligible function µ(·) such that

Pr[b← A(C0, C1, piO(1λ, Cb), y) : b←$ {0, 1}; (C0, C1, y)← Dλ)].

Indistinguishability Obfuscation. We can cast the definition of indistin-
guishability obfuscation (iO) for circuits as a special case of worst-case input
piO for the class C′ = {C′λ}λ∈N of deterministic circuits as done in [9].

Definition 15 (iO for Circuits [14]). A uniform PPT machine iO is an
indistinguishable obfuscator for circuits, if it is a piO for the class of worst-case
input Indistinguishability samplers Sw−Ind over C′ that includes all deterministic
circuits of size at most λ.

What is left to be defined is the class of worst-case input samplers.

Definition 16 (Worst-case input Indistinguishable Samplers). The class
Sw−Ind of worst-case input indistinguishable samplers for a circuit family C con-
tains all circuit samplers D = {Dλ}λ∈N for C with the following property: For all
adversary A = {(A1,A2)λ}λ∈N where A1 is an unbounded non-uniform machine
and A2 is PPT, there is a negligible function µ(·), such that

12



Pr

b← A2(st, C0, C1, z, x, y) :

(C0, C1, z)← Dλ

(x, st)← A1(C0, C1, z)
b←$ {0, 1}
y ← Cb(x)

 ≤ 1

2
+ µ(λ).

3 Homomorphic Time-Lock Puzzles

In the following we give a definition for the main object of interest of this work,
homomorphic time-lock puzzles (HTLP). The syntax follows the standard nota-
tion for time-lock puzzles except that we consider an additional setup phase that
depends on the hardness parameter but not on the secret. Furthermore, HTLPs
are augmented with an evaluation algorithm that allows one to manipulate puz-
zles in a meaningful way.

Definition 17 (Homomorphic Time-Lock Puzzles). Let C = {Cλ}λ∈N be a
class of circuits and let S be a finite domain. A homomorphic time-lock puzzle
(HTLP) with respect to C and with solution space S is tuple of four algorithms
(HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) defined as follows.

– pp ← HP.PSetup(1λ, T ) a probabilistic algorithm that takes as input a se-
curity parameter 1λ and a time hardness parameter T , and outputs public
parameters pp.

– Z ← HP.PGen(pp, s) a probabilistic algorithm that takes as input public pa-
rameters pp, and a solution s ∈ S, and outputs a puzzle Z.

– s ← HP.PSolve(pp, Z) a deterministic algorithm that takes as input public
parameters pp and a puzzle Z and outputs a solution s.

– Z ′ ← HP.PEval(C, pp, Z1, . . . , Zn) a probabilistic algorithm that takes as in-
put a circuit C ∈ Cλ, public parameters pp and a set of n puzzles (Z1, . . . , Zn)
and outputs a puzzle Z ′.

Security requires that the solution of the puzzles is hidden for all adversaries
that run in (parallel) time less than T . Here we consider a basic version where
the time is counted from the moment the public parameters are published. We
also consider a stronger version, i.e., where the time is taken from the moment
each puzzle is generated, in Section 5.2.

Definition 18 (Security of HTLP). An HTLP scheme (HP.PSetup,HP.PGen,
HP.PSolve,HP.PEval) is secure with gap ε < 1 if there exists a polynomial T̃ (·)
such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size adversary
(A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from above by
T ε(λ), there exists a negligible function µ(·), such that for all λ ∈ N it holds that

Pr

b← A2(pp, Z, τ) :

(τ, s0, s1)← A1(1λ)
pp← HP.PSetup(1λ, T (λ))
b←$ {0, 1}
Z ← HP.PGen(pp, sb)

 ≤ 1

2
+ µ(λ)
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and (s0, s1) ∈ S2.

We consider the basic notion of correctness, that concerns with a single appli-
cation of the evaluation algorithm. The definition can be easily extended to the
multi-hop settings (in the same spirit as [17]) in a natural way.

Definition 19 (Correctness). Let C = {Cλ}λ∈N be a class of circuits (together
with their respective representations). An HTLP scheme (HP.PSetup,HP.PGen,
HP.PSolve,HP.PEval) is correct (for the class C) if for all λ ∈ N, all polynomials
T in λ, all circuits C ∈ Cλ and respective inputs (s1, . . . , sn) ∈ Sn, all pp in the
support of HP.PSetup(1λ, T ), and all Zi in the support of HP.PGen(pp, si), the
following two conditions are satisfied:

– There exists a negligible function µ(·) such that

Pr
[
HP.PSolve(pp,HP.PEval(C, pp, Z1, . . . , Zn)) 6= C(s1, . . . , sn)

]
≤ µ(λ).

– There exists a fixed polynomial p(·) such that the runtime of HP.PSolve(pp, Z)
is bounded by p(λ, T ), where Z ← HP.PEval(C, pp, Z1, . . . , Zn).

The central property for HTLPs is compactness, which requires that the size of
evaluated ciphertexts is independent of the size of the circuit and that the run-
ning time of the evaluation algorithm is independent of the hardness parameter.

Definition 20 (Compactness). Let C = {Cλ}λ∈N be a class of circuits (to-
gether with their respective representations). An HTLP scheme (HP.PSetup,
HP.PGen,HP.PSolve,HP.PEval) is compact (for the class C) if for all λ ∈ N,
all polynomials T in λ, all circuits C ∈ Cλ and respective inputs (s1, . . . , sn) ∈
Sn, all pp in the support of HP.PSetup(1λ, T ), and all Zi in the support of
HP.PGen(pp, si), the following two conditions are satisfied:

– There exists a fixed polynomial p(·) such that |Z| = p(λ, |C(s1, . . . , sn)|),
where Z ← HP.PEval(C, pp, Z1, . . . , Zn).

– There exists a fixed polynomial p̃(·) such that the runtime of HP.PEval(C, pp,
Z1, . . . , Zn) is bounded by p̃(λ, |C|).

Finally we observe that one can define circuit privacy for HTLPs analogously
to the FHE notion. Since it is not of significance for our applications we refrain
from giving a formal definition and we refer the reader to [27].

4 Constructions

In this section we describe our HTLP schemes for different classes of functions.

4.1 Linearly Homomorphic

We describe a scheme (LHTLP) homomorphic over the ring (ZN ,+) below.
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LHP.PSetup(1λ, T ) :

– Sample a pair of primes (p, q) such that p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are also primes, and set N := p · q.

– Sample a uniform g̃←$Z∗N and set g := −g̃2 (mod N).

– Compute h := g2
T

, which can be optimized by reducing 2T modulo
ϕ(N)/2 first.

– Output pp := (T , N, g, h).

LHP.PGen(pp, s) :

– Parse pp := (T , N, g, h).
– Sample a uniform r←$ {1, . . . , N2}.
– Generate the elements u := gr (mod N) and v := hr·N ·(1+N)s (mod N2).
– Output Z := (u, v) as the puzzle.

LHP.PSolve(pp, Z) :

– Parse pp := (T , N, g, h).
– Parse the puzzle Z := (u, v).

– Compute w := u2
T

(mod N) by repeated squaring.

– Output s := v/(w)N (mod N2)−1
N as the solution.

LHP.PEval(⊕, pp, Z1, . . . , Zn) :

– Parse pp := (T , N, g, h).
– Parse every Zi := (ui, vi) ∈ JN × Z∗N2 .
– Compute ũ :=

∏n
i=1 ui (mod N) and ṽ :=

∏n
i=1 vi (mod N2).

– Output the puzzle (ũ, ṽ).

To see why the scheme is correct, observe that

s̃ =
ṽ/(w̃)N (mod N2)− 1

N

=

∏n
i=1 vi/

(∏n
i=1 u

2T

i (mod N)
)N

(mod N2)− 1

N

=

∏n
i=1 h

ri·N · (1 +N)si/ (
∏n
i=1 h

ri (mod N))
N

(mod N2)− 1

N

=

∏n
i=1 h

ri·N · (1 +N)si/
∏n
i=1 h

ri·N (mod N2)− 1

N

=
(1 +N)

∑n
i=1 si (mod N2)− 1

N

by Lemma 2. Furthermore,

s̃ =
(1 +N)

∑n
i=1 si (mod N2)− 1

N
=

1 +N ·
∑n
i=1 si − 1

N
=

n∑
i=1

si

15



by binomial expansion. The security of our construction is shown in the following.

Theorem 1. Let N be a strong RSA integer. If the sequential squaring assump-
tion and the DDH assumptions hold over JN and the DCR assumption hold over
Z∗N2 , then the scheme LHTLP is a secure homomorphic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: Is defined as the original scheme.

Hybrid H1: In this hybrid h is sampled uniformly from JN , instead of being

computed as h := g2
T

. Let (A1,A2) be an efficient distinguisher where the depth
of A2 is less than T . We construct the following reduction against the sequential
squaring assumption: The reduction runs the adversary A1 on input the security
parameter 1λ and receives two secrets (s0, s1) and some advice τ . Then receives
as input the tuple (N, g, T , x, y), sets pp := (T , N, x, y) and computes Z exactly
as specified by the scheme using sb as the solution, for a random b←$ {0, 1}.
Then it invokes the adversary A2 on input (pp, Z, τ) and outputs whatever A2

returns. Observe that the depth of the reduction is only a constant fraction larger
than that of A2. We the analyze the two cases separately.

1. (N, g, x, y) is a uniform tuple: Then x = g and y = h are uniform in JN .
Thus

(T , N, x, y) = (T , N, g, h)

is distributed as in H1.
2. (N, g, x, y, z) is a squared tuple: In this case we have that (N, g, x, y) =

(N, g, x, x2
T

). Which means that the tuple

(T , N, x, y) = (T , N, g, g2
T

)

is distributed according to H0.

Thus the existence of an efficient distinguisher (with depth smaller than T )
between the two hybrids contradicts the sequential squaring assumption.

Hybrid H2: In this hybrid r is sampled from the set {1, . . . , ϕ(N)/2}, rather
than {1, . . . , N2}. The two hybrids are statistically indistinguishable by Lemma 1.
We stress that the encrypter does not know ϕ(N)/2, however the argument is
purely statistical and therefore there is no need for a polynomial-time simulation.

Hybrid H3: In this hybrid u is sampled uniformly at random from JN . We
show indistinguishability with a reduction against the DDH assumption over
JN . The reduction runs the adversary on input the security parameter to receive
(τ, s0, s1). On input (N, g, gx, gy, gz), the reduction sets the public parameters of
the scheme to (T , N, g, gx) and the puzzle to (gy, (gz)N · (1 +N)sb), then feeds
A2 with those inputs and it returns whatever the adversary returns. Clearly the
reduction is efficient, so what is left to be shown is that the inputs are distributed
correctly, according to the two hybrids.
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1. (N, g, gx, gy, gz) is a uniform tuple: Then gx = h is uniform in JN , gy = u
is uniform in JN , and gz is uniform in JN , so we rewrite it as gz = hr (for
some random r ∈ {1, . . . , ϕ(N)/2}). Thus

(T , N, g, gx), (gy, (gz)N · (1 +N)sb) = (T , N, g, h), (u, hr·N · (1 +N)sb)

are distributed identically to H3.
2. (N, g, gx, gy, gz) is a DDH tuple: For the sake of clarity we rewrite the input

tuple as (N, g, gx, gy, gxy). Fix gx = h and observe that the tuples

(T , N, g, gx), (gy, (gxy)N · (1 +N)sb) = (T , N, g, h), (gy, hy·N · (1 +N)sb)

are distributed according to H2.

It follows that any non negligible advantage in distinguishing the two hybrids
directly implies an attack against DDH.

Hybrid H4: In this hybrid v is computed as w · (1 + N)sb (mod N2), where
w is uniformly sampled from Z∗N2 (constrained on having Jacobi symbol +1).
Consider the following reduction against the DCR assumption: Prior to the
challenge, the reduction runs A1 on input 1λ and receives (τ, s0, s1). On input
(N, y), the reduction sets N as the modulus and samples g and h uniformly from
JN (as specified in theH3). Then it computes the Jacobi symbol of y and samples
some ỹ with the same Jacobi symbol as y. Then it samples some u←$ JN and
sets v := y · ỹN · (1 + N)sb (mod N2), for a uniform b←$ {0, 1}. Finally it runs
A2 on input ((T , N, g, h), (u, v)) and returns whatever A2 returns. Note that the
reduction is efficient since the Jacobi symbol is efficiently computable without
the factorization of N . If y is uniform in Z∗N2 , then so is y · ỹN (mod N2), and
therefore the reduction perfectly simulates H4. On the other hand if y is an N -th
residue, then y · ỹN = xN · ỹN = (xỹ)N (mod N2) is also an N -th residue. Note
that the Jacobi symbol of xỹ is +1, since the Jacobi symbol is multiplicatively
homomorphic. It follows that in this case the inputs of the reduction are identical
to that of H3. We can therefore bound from above the distance between these
two hybrids by a negligible amount.

Observe that in the last hybrid every bit of information about the message is
lost. This concludes our proof.

4.2 Multiplicatively Homomorphic

In the following we describe our scheme (MHTLP) which is multiplicatively ho-
momorphic over the ring (JN , ·). The algorithms are described below.

MHP.PSetup(1λ, T ) :

– Sample a pair of primes (p, q) such that p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are also primes, and set N := p · q.

– Sample a uniform g̃←$Z∗N and set g := −g̃2 (mod N).
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– Compute h := g2
T

, which can be optimized by reducing 2T modulo
ϕ(N)/2 first.

– Output pp := (T , N, g, h).

MHP.PGen(pp, s) :

– Parse pp := (T , N, g, h).
– Sample a uniform r←$ {1, . . . , N2}.
– Generate the elements u := gr (mod N) and v := hr · s (mod N).
– Output Z := (u, v) as the puzzle.

MHP.PSolve(pp, Z) :

– Parse pp := (T , N, g, h).
– Parse the puzzle Z := (u, v).

– Compute w := u2
T

(mod N) by repeated squaring.
– Output s := v/w as the solution.

MHP.PEval(⊗, pp, Z1, . . . , Zn) :

– Parse pp := (T , N, g, h).
– Parse every Zi := (ui, vi) ∈ J2N .
– Compute ũ :=

∏n
i=1 ui (mod N) and ṽ :=

∏n
i=1 vi (mod N).

– Output the puzzle (ũ, ṽ).

For correctness it suffices to observe that

s̃ =
ṽ

w̃
=

ṽ

ũ2T
=

∏n
i=1 vi∏n
i=1 u

2T
i

=

∏n
i=1 h

ri · si∏n
i=1 g

ri·2T
=

∏n
i=1 h

ri · si∏n
i=1 h

ri
=

n∏
i=1

si.

For security we prove the following theorem.

Theorem 2. Let N be a strong RSA integer. If the sequential squaring and the
DDH assumptions hold over JN , then the scheme MHTLP is a secure homomor-
phic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: Is defined as the original scheme.

Hybrid H1: Same as Theorem 1.

Hybrid H2: Same as Theorem 1.

Hybrid H3: In this hybrid v is computed as w · s, for a uniform w←$ JN .
Indistinguishability follows from an invocation of the DDH assumption over JN :
The reduction runs the adversary on input the security parameter and receives
(τ, s0, s1). On input (N, g, gx, gy, gz), the reduction sets the public parameters of
the scheme to (T , N, g, gx) and computes the puzzle Z as (gy, gz · sb), for a ran-
domly sampled b←$ {0, 1}. The adversary is fed with (pp, Z, τ) and the reduction
returns whatever the adversary returns. The reduction is clearly polynomial-
time. We consider the two distributions in the following.
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1. (N, g, gx, gy, gz) is a uniform tuple: Then the tuples

(T , N, g, gx), (gy, gz · sb) = (T , N, g, h), (gy, w · sb)

are distributed identically to H3.
2. (N, g, gx, gy, gz) is a DDH tuple: For the sake of clarity we rewrite the input

tuple as (N, g, gx, gy, gxy). Fix gx = h and observe that the tuples

(T , N, g, gx), (gy, gxy · sb) = (T , N, g, h), (gy, hy · sb)

are distributed according to H2.

It follows that any non negligible advantage in distinguishing the two hybrids
directly implies an attack against DDH.

The proof is concluded by observing that in H3 the secret sb is information-
theoretically hidden by w.

XOR-Homomorphism. If we setN to be a Blum integer and encode the secret
s ∈ {0, 1} as (−1)s, then the same construction gives us an XOR homomorphic
scheme. This is because if N is a Blum integer, then (±1, ·) is a subgroup of JN .

4.3 Fully Homomorphic

In the following we describe our construction for a fully-homomorphic time-
lock puzzle (FHTLP). Without loss of generality we consider binary secrets and
circuits that are composed exclusively by NAND gates. Let (KeyGen,Enc,Dec,
tKeyGen) be a trapdoor encryption scheme, (Key,Puncture,PRF) be a punc-
turable PRF, (PGen,PSolve) be any (non-homomorphic) time-lock puzzle, piO
be an obfuscator for probabilistic circuits, and iO be an obfuscator for deter-

ministic circuits. Define the circuit Prog(sk ,pk)(α, β) and MProg(sk0,k,k
′)(i) as

Prog(sk ,pk)(α, β) :

parse α := (zα, cα)

parse β := (zβ , cβ)

sα ← Dec(sk , cα), sβ ← Dec(sk , cβ)

s := sα NAND sβ

z ← PGen(T , s)
c← Enc(pk , s)

return (z, c)

MProg(sk0,k,k
′)(i) :

ri−1 ← PRF(k, i− 1)

ri ← PRF(k, i), r′i ← PRF(k′, i)

(pk i−1, sk i−1)← KeyGen(1λ; ri−1)

(pk i, sk i)← KeyGen(1λ, ri)

Pi ← Prog(ski−1,pki)

Λi ← piO(1p, Pi; r
′
i)

return (Λi)

Let L be a super-polynomial function L(λ) := 2ω(log(λ)). The four algorithms of
the scheme are described below.

FHP.PSetup(1λ, T ) :

– Sample a pair of keys (pk0, sk0)← KeyGen(1λ)
– Sample two PRF keys k, k′ ← Key(1λ)
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– Obfuscate using iO the circuit MProg(sk0,k,k
′), that is, sample MEvk ←

iO(1p,MProg(sk0,k,k
′)) where the security parameter p = p(λ) for ob-

fuscation is an upper-bound on the size of MProg(sk0,k,k
′).

– Output pp := (T , pk0,MEvk).

FHP.PGen(pp, s) :

– Parse pp := (T , pk0,MEvk).
– Generate a ciphertext c← Enc(pk0, s).
– Generate a puzzle z ← PGen(T , s).
– Output Z := (z, c) as the puzzle.

FHP.PSolve(pp, Z) :

– Parse the puzzle Z := (z, c).
– Compute s← PSolve(z) and output s as the solution.

FHP.PEval(C, pp, Z1, . . . , Zn) :

– Evaluate C (of depth ` ≤ L(λ)) layer by layer. For iteration i ∈
{0, . . . , `}, generate the evaluation key for the layer as Λi ← MEvk(i).

– For each NAND gate g in this layer i, let α(g), β(g) be the puzzles of
the values of its input wires

– Evaluate g homomorphically by computing γ(g) = Λi(α(g), β(g)) as the
puzzle of the value of g’s output wire.

– Output the puzzle generated in the last iteration `.

Correctness easily follows from the correctness of the underlying primitives. To-
wards arguing about security, we define a useful subroutine tProg(tpk)(α, β) as
follows

tProg(tpk)(α, β) :

z ← PGen(T , 0)

c← Enc(tpk , 0)

return (z, c)

which is instrumental for probabilistic obfuscator piO. Let SK = {skλ} be the
set of all strings of length n = n(λ). Define the distribution DSK as follows:
Sample a trapdoor key tpk ← tKeyGen(1λ) and some sk ←$SK and return

(C0 = Prog(sk ,tpk), C1 = tProg(tpk), tpk). Then S is the class of samplers that
include the distribution ensembles DSK for all strings SK of length n. Security
is established by the following theorem and the proof is given in the full version.

Theorem 3. Let (PGen,PSolve) be a secure time-lock puzzle. Define µ(λ) :=
µ̃(λ)·L−1, where µ̃(·) is some negligible function. Assume the following primitives
with distinguishing gaps bounded by µ(λ) against a polynomial-size adversary
who’s depth is bounded by T ε(λ), for some constant ε < 1:

– (KeyGen,Enc,Dec, tKeyGen) is a secure µ-hiding trapdoor encryption scheme,
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– piO is a secure indistinguishable obfuscator for the class of samplers S,
– iO is a secure indistinguishable obfuscator for circuits, and
– (Key,Puncture,PRF) is a secure puncturable PRF.

Then, the scheme FHTLP is a secure homomorphic time-lock puzzle.

5 Extensions

In the following we explore and discuss several extensions of our constructions.

5.1 Semi-Compact Scheme for Branching Programs

The linearly homomorphic scheme described in Section 4.1 can be easily general-
ized to higher powers of N , along the lines of the work of Damgrd and Jurik [11],
where the message domain is ZNy−1 and the ciphertexts live in ZNy , for an ar-
bitrary y ∈ N. The public parameters are identical to the ones generated by
LHP.PSetup, whereas the puzzle is generated as

u := gr (mod N) and v := hr·N
y−1

· (1 +N)s (mod Ny).

The solving algorithm factors hr·N
y−1

(mod Ny) out of v, via a series of sequen-
tial squarings, and recovers s from (1+N)s (mod Ny) using the polynomial-time
discrete-logarithm algorithm described in [11]. Security follows from a natural
generalization of the DCR assumption, also introduced in [11].

Note that the asymptotic message-ciphertext rate approaches 1 as y grows.
This is desirable from a practical perspective but also it allows us to instantiate
the compiler of Ishai and Paskin [21] with our extended scheme: As a corollary
we obtain a (semi-compact) HTLP for branching programs (a superclass of NC1)
where the ciphertext size grows linearly in the length of the branching program
but does not depend on its width.

5.2 Reusing the Setup

A shortcoming of our primitive is that security is guaranteed to hold against a
depth-constrained adversary that takes as input both the public parameters pp
and the puzzle Z. This is equivalent to saying that the secrets are hidden until
time T since the generation of the setup rather than the generation of the puzzle.
From a practical perspective, this cripples the applicability of our primitive since
the public parameters need to be re-initialized after time T .

Ideally, we would like to set the public parameters once and for all and
compute polynomially many puzzles at arbitrary time intervals. Each puzzle
should then hide the secret until time T , starting from the generation of the
puzzle itself. Thus we consider a two stage adversary (A1,A2), where A1 is
polynomial-size (unbounded depth) and is allowed to craft the polynomial-size
advice τ after being given the the public parameters pp. Then the depth-bounded
A2 is asked to guess the bit b on input the puzzle Z and the advice τ . This is
formalized in the following.
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Definition 21 (Reusable Security of HTLP). An HTLP scheme (HP.PSetup,
HP.PGen,HP.PSolve,HP.PEval) is reusable secure with gap ε < 1 if there exists a
polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-
size adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from
above by T ε(λ), there exists a negligible function µ(·), such that for all λ ∈ N it
holds that

Pr

b← A2(Z, τ) :

pp← HP.PSetup(1λ, T (λ))
(τ, s0, s1)← A1(pp)
b←$ {0, 1}
Z ← HP.PGen(pp, sb)

 ≤ 1

2
+ µ(λ)

and (s0, s1) ∈ S2.

Arguing about the security of the constructions described in Section 4.1 and Sec-
tion 4.2 in these settings requires a slightly modified version of the standard
sequential squaring assumption (Assumption 1) that we describe below.

Assumption 4 (Strong Sequential Squaring) Let N be a uniformly sam-
pled strong RSA integer, g be a generator of JN , and T (·) be a polynomial.
Then there exists some 0 < ε < 1 such that for every polynomial-size adversary
(A1,A2) = {(A1,A2)λ}λ∈N, where the depth of A2 is bounded from above by
T ε(λ), there exists a negligible function µ(·) such that

Pr

b← A2(x, y, τ) :

τ ← A1(N, g, T (λ))
x←$ JN ; b←$ {0, 1}
if b = 0 then y←$ JN
if b = 1 then y := x2

T (λ)

 ≤ 1

2
+ µ(λ).

This essentially corresponds to stating that the prior knowledge of the group
structure does not help one breaking the sequentiality of the squaring operation,
which seems to be a mild strengthening of the original conjecture. We remark
that similar assumptions have already appeared in the context of verifiable delay
functions [29,31,5]. We are now ready to state the following theorems.

Theorem 4. Let N be a strong RSA integer. If the strong sequential squaring
assumption and the DCR assumption hold over JN and Z∗N2 , respectively, then
the scheme LHTLP is a reusable secure homomorphic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: This is the original experiment.

Hybrid H1: In this hybrid r is randomly sampled from {1, . . . , ϕ(N)/2}.
By Lemma 1, H0 and H1 are statistically close.

Hybrid H2: In this hybrid v is computed as zN · (1 + N)sb (mod N2), for
a uniform z←$ JN . Let (A1,A2) be an efficient distinguisher where the depth
of A2 is less than T . We construct the following reduction (R1,R2) against the
strong sequential squaring assumption: R1 takes as input the tuple (N, g, T ) and
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computes h := g2
T

, then it sets pp := (T , N, g, h) and runs A1(pp), who outputs
some (τ, s0, s1), which is also the output of R1. The challenger sends to R2 the
triple (x, y, (τ, s0, s1)), who sets u := x and v := yN · (1 + N)sb (mod N2), for
a random b←$ {0, 1}, and runs A2((u, v), τ) outputting whatever the adversary
outputs. Observe that R1 is efficient, since T is a polynomial, and that the depth
of R2 is identical (up to a constant factor) to that of A2. We distinguish two
cases.

1. y = x2
T

: Let x = gr, for some r ∈ {1, . . . , ϕ(N)/2}. Then the puzzle

(u, v) = (x, x2
T ·N · (1 +N)sb (mod N2)) = (gr, hr·N · (1 +N)sb (mod N2))

is distributed according to H1.
2. y←$ JN : In this case the puzzle

(u, v) = (x, yN · (1 +N)sb (mod N2))

is distributed according to H2.

Thus the existence of (R1,R2) contradicts the sequential squaring assumption.

Hybrid H3: In this hybrid v is computed as w · (1 + N)sb (mod N2), where
w is uniformly sampled from Z∗N2 (constrained to have Jacobi symbol +1). The
indistinguishability follows from an invocation of the DCR assumption and the
argument is identical to the last hybrid of Theorem 1.

The proof concludes by observing that the message in the last hybrid is hidden
in an information-theoretic sense.

Theorem 5. Let N be a strong RSA integer. If the strong sequential squaring
assumption holds over JN , then the scheme MHTLP is a secure reusable homo-
morphic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: This is the original experiment.

Hybrid H1: Same as Theorem 4.

Hybrid H2: In this hybrid we compute v as w · s, for a uniform w←$ JN .
The two hybrids are indistinguishable by the sequential squaring assumption
over JN . Consider the following two-stage reduction: R1 takes as input the tuple

(N, g, T ) and computes h := g2
T

, then it sets pp := (T , N, g, h) and runs A1(pp),
who outputs some message (τ, s0, s1). The output of R1 is the string (τ, s0, s1).
The challenger provides R2 with the triple (x, y, (τ, s0, s1)), who sets u := x and
v := y · sb and runs A2((u, v), τ) and outputs whatever the adversary outputs.
Observe that R1 is efficient, since T is a polynomial, and that the depth of R2

is close to that of A. It is not hard to see that whenever y = x2
T

then reduction
reproduces the distribution of H1, whereas if y is uniformly sampled in JN , then
the simulation is identical to H2. Thus the success probability of R is identical
to that of A. This contradicts the sequential squaring assumption and bounds
the difference between the two hybrids to a negligible factor.

Observe that in H2 the puzzle consists of two uniform elements of JN .
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5.3 Public-Coin Setup

All of our schemes require a trusted setup where the random coins have to be
kept private. If revealed, they would give one an unfair advantage in solving any
puzzle. This does not seem to be an inherent limitation of the primitive and
we could envision a dream-version of HTLPs where the setup can be run with
public random coins. Towards this objective, one can generalize the techniques
presented in Section 4.1 and Section 4.2 to hidden-order groups with public-coin
setups [8], however this would hinder the efficiency of the schemes as the tuple

(g, h = g2
T

) is no longer efficiently computable (by assumption). Depending on
T , this may require a significant initial investment in terms of computation.

Nevertheless, for certain applications (e.g., e-voting or sealed bid auctions)
it might be perfectly acceptable to run T sequential squarings ahead of time to
generate the tuple (g, h). Note that, in the variants described above, the puzzle
is guaranteed to hide the payload for time proportional to T , starting from
the moment the puzzle is published. Therefore arbitrarily many puzzles can be
efficiently spawned once (g, h) is fixed. Constructing an HTLP with an efficient
public-coin setup is a fascinating open question.

5.4 Combining Puzzles of Different Hardness

Another limitation of our schemes is that the time parameter T is fixed once
and for all in the setup. An easy solution to make our construction more flex-
ible is to augment the setup with multiple (T1, . . . , Tn). For the constructions
in Section 4.1 and Section 4.2 is sufficient to set the public parameters as

pp :=
(
g, h1 := g2

T1
, . . . , hn := g2

Tn
)

which can be efficiently computed using the factors of N . Our scheme in Sec-
tion 4.3 can also be extended by producing different obfuscated circuits (MEvk (1),

. . . ,MEvk (n)), with the appropriate Ti hardwired. Here it is important that the
obfuscated circuits are sampled with fresh coins, so also the corresponding keys

(pk
(1)
0 , . . . , pk

(n)
0 ) must be included in the setup.

It turns out that one can even combine puzzles generated with different
parameters T1 and T2 in a natural way: Assume without loss of generality that
T1 > T2, then clearly 2T2 ·t̃ = 2T1 , for some integer t̃ = 2t. Then the homomorphic
evaluation over two puzzles (u1, v1) and (u2, v2) is done as follows

ũ := u2
t

1 · u2 (mod N) and ṽ := v1 · v2 (mod N2) / (mod N),

where the second modulus depends on whether we are considering linearly or
multiplicatively homomorphic puzzles. Note that the hardness of the resulting
puzzles (ũ, ṽ) corresponds to the time proportional to solving it (T2) + homomor-
phic evaluation (t) = T1. This is aligned with the expectation that the evaluation
algorithm does not decrease the difficulty of a puzzle. For the fully-homomorphic
construction the argument is a bit more delicate since the obfuscated circuits
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contain a trapdoor to efficiently solve the puzzles. Therefore, one has to en-
sure that the puzzles are re-encoded with the correct hardness parameter. This
can be done via standard techniques, e.g., signing the puzzles and verifying the
signatures inside the obfuscated circuits.

6 Applications

In this section we present some of the most interesting applications of HTLPs.
We stress that our purpose is to demonstrate the usefulness of our primitive in
broader contexts and not to construct systems that are ready to be deployed
in practice. The precise implementation and the complete characterization of
the security of such systems is beyond the scope of this work. In favor of a
simpler presentation, we implicitly assume that all HTLPs are well-formed and
all secrets are sampled from the correct domains. This can be always enforced
by augmenting our schemes with non-interactive zero-knowledge proofs [13].

6.1 E-Voting

We construct an e-voting protocol with n voters and m candidates. An e-voting
protocol consists of a voting phase and a counting phase and proceeds as follows:
During the voting phase, each voter casts a vote for one of the candidates and the
votes are counted during the subsequent counting phase. Finally the candidate
with the largest amount of votes is announced as the winner of the election. The
votes must be kept hidden for the duration of the first phase to avoid any bias.

Let T be the time bound of the voting phase. We propose an e-voting protocol
based on our linearly homomorphic time-lock puzzle from Section 4.1. Here, the
i-th vote, denoted by votei, consists of a tuple of m time-lock puzzles where
the secret encoded is always 0 except at position j, where the secret is 1. This
encodes the preference for the j-th candidate Cj . After receiving votes from all
the voters, the puzzles are combined homomorphically to sum up the number of
preferences for each candidate. We eventually obtain a final vote consisting of m
puzzles, which are then solved to obtain the final vote tallies for each candidate.

Election Setup: Generate the public parameters pp← LHP.PSetup(1λ, T )
and publish them so that they are accessible to all the voters.

Voting Phase: Each voter Vi, on deciding to vote the j-th candidate Cj
(where j ∈ {1, . . . ,m}) does the following.

– For all j′ ∈ {1, . . . ,m}/j, generate Zj′ ← LHP.PGen(pp, 0).
– Generate Zj ← LHP.PGen(pp, 1).
– Compute votei = (Z1, . . . , Zm) and output votei as the vote.

Counting Phase: Collect votes from all voters denoted by (vote1, . . . , voten)
and do the following.
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– Parse each vote as votei = (Z
(i)
1 , . . . , Z

(i)
m ).

– For all j ∈ {1, . . . ,m}:
• Compute the puzzle Z̃j ← LHP.PEval(⊕, pp, Z(1)

j , . . . , Z
(n)
j ).

• Count the votes received by j-candidate by vj ← LHP.PSolve(pp, Z̃j).
– Output j∗-th candidate as the winner of the election, where vj∗ =

max(v1, . . . , vm).

By the security of LHTLP, the votes remain hidden for the whole duration of
the voting phase. Furthermore, observe that we eventually need to only solve
m puzzles, one puzzle per candidate. This is regardless on how many users go
offline before the counting phase.

6.2 Multi-Party Coin Flipping

We consider the settings where n parties want to flip a coin in such a way that
(i) the value of the coin is unbiased even if n − 1 parties collude and (ii) all
parties agree on the same value for the coin. Consider the protocol where parties
commit to a bit and the result is the XOR of all the bits. The problem with this
simple solution is that one party that controls the network traffic might learn
all of the other bits and go offline if he does not agree with the outcome, thus
biasing the result.

We propose the use of our linearly homomorphic time-lock puzzles to solve
this problem. Let T be a bound on the runtime of the protocol. In our protocol,
LHP.PSetup(1λ, T ) is run first to generate the public parameters pp. Then, every
party Pi randomly chooses a bit bi←$ {0, 1} and generates a time-lock puzzle
as Zi ← LHP.PGen(pp, bi) before publishing it. Once Pi receives the puzzles
from all other parties, it runs Z ← LHP.PEval(⊕, pp, Z1, . . . , Zn) to obtain the
puzzle Z encoding the sum of all secrets. Each party Pi can solve Z to recover
the corresponding s and output its least significant bit as the result of the coin
flipping. Observe that only one puzzle needs to be solved regardless of the number
of participants, even if everyone goes offline after the first phase. Since the time-
lock puzzle is correct, then so is our protocol, furthermore the coins is unbiased
by the security of LHTLP (in the timing model).

Setup: Generate the public parameters pp← LHP.PSetup(1λ, T ) and pub-
lish them so that they are accessible to all the parties.

Coin Flipping: Each party Pi does the following.

– Choose bi←$ {0, 1},
– Generate Zi ← LHP.PGen(pp, bi).
– Broadcast Zi to all other parties.

Announcement of the Result: Each party Pi collects all the puzzles
Z1, . . . , Zn from other parties and does the following.
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– Compute the final puzzle Z ← LHP.PEval(⊕, pp, Z1, . . . , Zn).
– Solve the final puzzle as s← LHP.PSolve(pp, Z)
– Output b← LSB(s) as the final result of the coin flipping.

6.3 Sealed Bid Auctions

Consider the settings where an auction is conducted with a set of n bidders
(B1, . . . , Bn). The bids are sealed throughout the bidding phase and disclosed
during the opening phase. Once all of the bids are revealed, the highest bidder
(or some other bidder depending on the allocation rule of the auction) is awarded
as the winner. Sealed-bid auctions are one of the motivating examples for the
usage of time-lock puzzles [6]. However, current solutions do not scale well with
the amount of users going offline after the first phase.

To counter this issue we propose a protocol very similar to the coin-flipping
one, where the setup generates the public parameters of the time-lock puzzles
pp. In the bidding phase, each bidder generates a puzzle Zi on input a bound
T and his bid. The winner of the auction is the recovered by homomorphically
evaluating the circuit Γ over all bids, where Γ computes the highest bid from
a given list of bids and outputs the index of the corresponding bidder. Also in
this case, only one puzzle has to be solved in the announcement phase. However,
the function that needs to be homomorphically evaluated is no longer linear and
therefore one needs to resort to fully-homomorphic time-lock puzzles (such as
the scheme described in Section 4.3).

6.4 Multi-Party Contract Signing

Consider the settings where n mutually distrusting parties want to jointly sign
a contract. The contract is enforceable only if signed by all parties. In a naive
approach, a party Pi collects the signatures that were broadcast by all other
parties and add its own to seal the contract. However, if Pi fails to broadcast its
own signature, other parties are left empty-handed.

We propose a solution based on the combination of multiplicatively homo-
morphic time-lock puzzles (as described in Section 4.2) and RSA-aggregate sig-
natures [20]. Loosely speaking, an aggregate signature scheme allows one to
publicly combine signatures over different messages and under different keys
in such a way that the digest is still efficiently verifiable. The crucial prop-
erty of the construction of Hohenberger and Waters [20] is that signatures σ
are elements of QRN , for some fixed RSA integer N , and the aggregation of
((pk1,m1, σ1), . . . , (pkn,mn, σn)) is computed as

σagg =

n∏
j=1

σj (mod N).

Since QRN is a subgroup of JN , we can seamlessly compute the aggregation
function homomorphically. Let M be the contract to be signed. Our contract-
signing protocol proceeds as follows: In the setup phase, the public parameters of
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the Hohenberger-Waters signature scheme (Setup,KeyGen,Sign) and of MHTLP
(with reusable setup) are generated. Note that we implicitly assume that both
setup algorithms sample the same strong RSA integer N . Then we fix T1 := T
for some fixed T (which is suggested to be in the order of 230 − 250 in [6]) and

each Ti is defined as Ti−1

2 , until T` := 2. Each user generates a key pair (pk i, sk i)
and enters in the following loop. In the k-th iteration, each party Pi generates

a signature σ
(k)
i on the contract M via the signing algorithm Sign4. Then it

time-locks σ
(k)
i with a timing hardness Tk via Z

(k)
i ← MHP.PGen(pp2, σ

(k)
i , Tk)

and broadcasts Z
(k)
i . If every user successfully broadcasts Z

(k)
i , then the pro-

tocol proceeds to the next iteration. Otherwise each party collects the puzzles

(Z
(k−1)
1 , . . . , Z

(k−1)
n ) from the previous iteration and generates the final puzzle

as Z(k−1) ← MHP.PEval(⊗, pp2, Z(k−1)
1 , . . . , Z

(k−1)
n ). Solving this final puzzle

reveals the aggregated signature σagg on M .

Setup Phase: Generate the public parameters of the aggregate signature
scheme as pp1 ← Setup(1λ, 1T ) and the public parameters of the time-lock
puzzle MHTLP (with reusable setup and multiple hardness parameters) as
pp2 ← MHP.PSetup(1λ, T1, T2, . . . , T`) and broadcast it to all parties.

Key Generation Phase: Before the start of the first iteration, each party
Pi executes the key generation algorithm (pk i, sk i)← KeyGen(pp1) to gen-
erate a public and private key pair (pk i, sk i).

Signing Phase: At the beginning of the k-th iteration, each party Pi does
the following.

– Generate a signature on M as σ
(k)
i ← Sign(pp1, sk i,M).

– Time-lock the signature via Z
(k)
i ← MHP.PGen(pp2, σ

(k)
i , Tk) with tim-

ing hardness Tk and broadcast the puzzle.

Aggregation phase: If all parties had broadcast their puzzles, proceed to
(k + 1)-th iteration. If not (or if k = `), each party Pi does the following.

– Collect the puzzles (Z
(k−1)
1 , . . . , Z

(k−1)
n ) from the (k − 1)-th iteration.

– Generate the final puzzle as

Z(k−1) ← MHP.PEval(⊗, pp2, Z(k−1)
1 , . . . , Z

(k−1)
n ).

– Solve the puzzle to obtain the aggregated signature
σagg ← MHP.PSolve(pp2, Z

(k−1)) on M .
– Output (M,σagg).

Acknowledgements. Research supported in part by a gift from Ripple, a gift
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4 In [20] the signing algorithm requires an additional timing parameter, which we fix
to be the round number and omit for the sake of clarity.
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