
Nonces are Noticed: AEAD Revisited

Mihir Bellare1, Ruth Ng1, and Björn Tackmann2

1 Department of Computer Science and Engineering
University of California San Diego, USA

{mihir,ring}@eng.ucsd.edu
2 IBM Research – Zurich, Rüschlikon, Switzerland

bta@zurich.ibm.com

Abstract. We draw attention to a gap between theory and usage of
nonce-based symmetric encryption, under which the way the former
treats nonces can result in violation of privacy in the latter. We bridge
the gap with a new treatment of nonce-based symmetric encryption that
modifies the syntax (decryption no longer takes a nonce), upgrades the
security goal (asking that not just messages, but also nonces, be hidden)
and gives simple, efficient schemes conforming to the new definitions. We
investigate both basic security (holding when nonces are not reused) and
advanced security (misuse resistance, providing best-possible guarantees
when nonces are reused).

1 Introduction

This paper revisits nonce-based symmetric encryption, raising some concerns,
and then addressing them, via a new syntax, a new framework of security defi-
nitions, and schemes that offer both usability and security benefits.

Background. As the applications and usage of symmetric encryption have evolved
and grown, so has a theory that seeks to support and guide them. A definition
of symmetric encryption (as with any other primitive) involves a syntax and
then, for this syntax, definitions of security. In the first modern treatment [10],
the syntax asked the encryption algorithm to be randomized or stateful. Secu-
rity for these syntaxes evolved from asking for various forms of privacy [10] to
asking for both privacy and authenticity [14, 11, 33], inaugurating authenticated
encryption (AE). The idea that encryption be a deterministic algorithm taking
as additional input a non-repeating quantity called a nonce seems to originate
in [50] and reached its current form with Rogaway [46, 48].

NBE1 and AE1-security. We refer to the syntax of this current form of nonce-
based symmetric encryption [46, 48] as NBE1. An NBE1 scheme SE1 specifies
a deterministic encryption algorithm SE1.Enc that takes the key K, a nonce
N , message M and a header (also called associated data) H to return what
we call a core ciphertext C1. Deterministic decryption algorithm SE1.Dec takes
K,N,C1, H to return either a message or ⊥.

2 Mihir Bellare, Ruth Ng, Björn Tackmann

Security asks for privacy of M and integrity of both M and H as long as
nonces are unique, meaning not re-used. Rogaway’s formalization [46] asks that
an adversary given oracles for encryption (taking nonce, message and header) and
decryption (taking nonce, core ciphertext and header) be unable to distinguish
between the case where they perform their prescribed tasks under a hidden key,
and the case where the former returns random strings and the latter returns ⊥,
as long as the adversary does not repeat a nonce across its encryption queries.
We will refer to this as basic AE1-security.

NBE1 providing basic AE1-security has been the goal of recent schemes,
standards and proposed standards, as witnessed by GCM [40, 22] (used in TLS),
OCB [50, 47, 35], CAESAR candidates [17] and RFC 5116 [39]. The security of
NBE1, which we revisit, is thus of some applied interest.

The gap. Our concern is a gap between theory and usage that can result in pri-
vacy vulnerabilities in the latter. Recall that the decryption algorithm SE1.Dec,
to be run by the receiver, takes as input not just the key K, core ciphertext C1

and header H, but also the nonce N . The theory says that how the receiver gets
the nonce is “outside of the model” [46] or that it is assumed to be communi-
cated “out-of-band” [48]. Usage cannot so dismiss it, and must find a way to
convey the nonce to the receiver. The prevailing understanding, reflected in the
following quote from RBBK [50], is that this is a simple matter— if the receiver
does not already have the nonce N , just send it in the clear along with the core
ciphertext C1:

The nonce N is needed both to encrypt and to decrypt. Typically it would be
communicated, in the clear, along with the (core) ciphertext.

RFC 5116 is a draft standard for an interface for authenticated encryption [39].
It also considers it fine to send the nonce in the clear:

... there is no need to coordinate the details of the nonce format between the
encrypter and the decrypter, as long the entire nonce is sent or stored with
the ciphertext and is thus available to the decrypter ... the nonce MAY be
stored or transported with the ciphertext ...

To repeat and summarize, the literature and proposed standards suggest trans-
mitting what we call the “full” ciphertext, consisting of the nonce and the core
ciphertext. Yet, as we now explain, this can be wrong.

Nonces can compromise privacy. We point out that communicating a nonce
in the clear with the ciphertext can damage, or even destroy, message privacy.
One simple example is a nonce N = F (M) that is a hash —under some public,
collision-resistant hash function F— of a low-entropy message M , meaning one,
like a password, which the attacker knows is likely to fall in some small set
or dictionary D. Given a (full) ciphertext C2 = (N,C1) consisting of the core
ciphertext C1 = SE1.Enc(K,N,M,H) together with the nonce N = F (M),
the attacker can recover M via “For M ′ ∈ D do: If F (M ′) = N then return
M ′.” To take a more extreme case, consider that the nonce is some part of the

Nonces are Noticed: AEAD Revisited 3

message, or even the entire message, in which case the full ciphertext clearly
reveals information about the message.

The concern that (adversary-visible) nonces compromise privacy, once iden-
tified, goes much further. Nonces are effectively meta-data. Even recommended
and innocuous-seeming choices like counters, device identities, disk-sector num-
bers or packet headers reveal information about the system and identity of the
sender. For example, the claim that basic-AE1-secure NBE1 provides anonymity
—according to [49, Slide 19/40], this is a dividend of the requirement that core
ciphertexts be indistinguishable from random strings— is moot when the nonce
includes sender identity. Yet the latter is not only possible but explicitly rec-
ommended in RFC 5116 [39], which says: “When there are multiple devices
performing encryption ... use a nonce format that contains a field that is dis-
tinct for each one of the devices.” As another concrete example, counters are
not a good choice of nonce from a user privacy perspective, as indicated in the
ECRYPT-CSA Challenges in Authenticated Encryption report [5].

The above issues apply to all NBE1 schemes and do not contradict their
(often, proven) AE1-security. They are not excluded by the unique nonce re-
quirement or by asking for misuse resistance [51], arising in particular for the
encryption of a single message with a single corresponding nonce.

A natural critique is that the privacy losses we have illustrated occur only for
“pathological” choices of nonces, and choices made in practice, such as random
numbers or counters, are “fine.” This fails, first, to recognize the definitional
gap that allows the “pathological” choices. With regard to usage, part of the
selling point of NBE1 was exactly that any (non-repeating, unique) nonce is fine,
and neither existing formalisms [46] nor existing standards [39] preclude nonce
choices of the “pathological” type. Also, application designers and users cannot,
and should not, carry the burden of deciding which nonces are “pathological”
and which are “fine,” a decision that may not be easy. (And as discussed above,
for example, counters may not be fine.) Finally, Section 8 indicates that poor
choices can in fact arise in practice.

Our perspective is that the above issues reflect a gap between the NBE1
formalism and the privacy provided by NBE1 in usage. Having pointed out this
gap, we will also bridge it.

Contributions in brief. The first contribution of this paper is to suggest that
the way NBE1 treats nonces can result (as explained above) in compromise
of privacy of messages or users. The second contribution is to address these
concerns. We give a modified syntax for nonce-based encryption, called NBE2, in
which decryption does not get the nonce, a corresponding framework of security
definitions called AE2 that guarantee nonce privacy in addition to authenticity
and message privacy, and simple ways to turn NBE1 AE1-secure schemes into
NBE2 AE2-secure schemes.

AE2-secure NBE2 obviates application designers and users from the need
to worry about privacy implications of their nonce choices, simplifying design
and usage. With AE2-secure NBE2, one can use any nonce, even a message-
dependent one such as a hash of the message, without compromising privacy of

4 Mihir Bellare, Ruth Ng, Björn Tackmann

the message. And the nonces themselves are hidden just as well as messages, so
user-identifying information in nonces doesn’t actually identify users.

Our NBE2 syntax. In an NBE2 scheme SE2, the inputs to the deterministic
encryption algorithm SE2.Enc continue to be key K, nonce N , message M and
header H, the output C2 now called a ciphertext rather than a core ciphertext.
The deterministic decryption algorithm SE2.Dec no longer gets a nonce, taking
just key K, ciphertext C2 and header H to return either a message M or ⊥.

Just as an interface, NBE2 already benefits application designers and users,
absolving them of the burden they had, under NBE1, of figuring out and ar-
chitecting a way to communicate the nonce from sender to receiver. The NBE2
receiver, in fact, is nonce-oblivious, not needing to care, or even know, that
something called a nonce was used by the sender. By reducing choice (how to
communicate the nonce), NBE2 reduces error and misuse.

We associate to a given NBE1 scheme SE1 the NBE2 scheme SE2 = TN[SE1]
that sets the ciphertext to the nonce plus the core ciphertext: SE2.Enc(K,N,M,
H) = (N, SE1.Enc(K,N,M,H)) and SE2.Dec(K, (N,C1), H) = SE1.Dec(K,N,
C1, H). We refer to TN as the Transmit Nonce transform. This is worth defining
because it will allow us, in Section 4, to formalize the above-discussed usage
weaknesses in NBE1, but SE2 = TN[SE1] is certainly not nonce hiding and will
fail to meet the definitions we discuss next.

Our AE2-security framework. Our AE2 game gives the adversary an encryption
oracle Enc (taking nonce N , message M and header H to return a ciphertext
C2) and decryption oracle Dec (as per the NBE2 syntax, taking ciphertext
C2 and header H but no nonce, to return either a message M or ⊥). When
the challenge bit is b = 1, these oracles reply as per the encryption algorithm
SE2.Enc and decryption algorithm SE2.Dec of the scheme, respectively, using a
key chosen by the game. When the challenge bit is b = 0, oracle Enc returns a
ciphertext that is drawn at random from a space SE2.CS(|N |, |M |, |H|) that is
prescribed by the scheme SE2 and that depends only on the lengths of the nonce,
message and header, which guarantees privacy of both the nonce and message.
(This space may be, but unlike for AE1 need not be, the set of all strings of some
length, because NBE2 ciphertexts, unlike NBE1 core ciphertexts, may have some
structure.) In the b = 0 case, decryption oracle Dec returns ⊥ on any non-trivial
query. The adversary eventually outputs a guess b′ as to the value of b, and its
advantage is 2 Pr[b = b′]− 1.

We say that SE2 is AE2[A]-secure if practical adversaries in the class A have
low advantage. Let Aae2

u-n be the class of unique-nonce adversaries, meaning ones
that do not reuse a nonce across their Enc queries. We refer to AE2[Aae2

u-n]-
security as basic AE2-security. As the nonce-hiding analogue of basic AE1-
security, it will be our first and foremost target.

Before moving to schemes, we make two remarks. First that above, for sim-
plicity, we described our definitions in the single-user setting, but the definitions
and results in the body of the paper are in the multi-user setting. Second, the

Nonces are Noticed: AEAD Revisited 5

framework of a single game with different notions captured via different adver-
sary classes allows us to unify, and compactly present, many variant definitions,
including basic, advanced (misuse resistance), privacy-only and random-nonce
security, and in Section 3 we give such a framework not just for AE2 but also
for AE1.

Our transforms. In the presence of a portfolio of efficient AE1-secure NBE1
schemes supported by proofs of security with good concrete bounds [50, 40, 17,
35, 31, 53, 43, 26, 25, 18, 30], designing AE2-secure NBE2 schemes from scratch
seems a step backwards. Instead we give simple, cheap ways to transform AE1-
secure NBE1 schemes into AE2-secure NBE2 schemes, obtaining a corresponding
portfolio of AE2-secure NBE2 schemes and also allowing implementors to more
easily upgrade deployed AE1-secure NBE1 to AE2-secure NBE2.

Since NBE2 schemes effectively take care of nonce communication, we expect
ciphertext length to grow by at least SE1.nl, the nonce length of the base NBE1
scheme. The ciphertext overhead is defined as the difference between the cipher-
text length and the sum of plaintext length and SE1.nl. All our transforms have
zero ciphertext overhead. One challenge in achieving this is that nonce lengths
like SE1.nl = 96 are widely-used but short of the block length 128 of many
blockciphers, precluding inclusion of an extra blockcipher output in the cipher-
text. With regard to computational overhead, the challenge is that it should
be constant, meaning independent of the lengths of the message and header for
encryption, and of the ciphertext and header for decryption. All our transforms
have constant computational overhead. Note that all overhead is in comparison
to transmitting the nonce in the clear (i.e. the TN transform).

The following discussion first considers achieving basic security and then
advanced security. Security attributes of our corresponding “Hide-Nonce (HN)”
transforms are summarized in Figure 1.

Basic HN transforms. We prove that all the following transforms turn a basic-
AE1-secure NBE1 scheme SE1 into a basic-AE2-secure NBE2 scheme SE2. (Re-
call basic means nonces are unique, never reused across encryption queries.)
Pseudocode and pictures for the transforms are in Figure 4.

Having first produced a core ciphertext C1 under SE1, the idea of scheme
SE2 = HN1[SE1,F] is to use C1 itself as a nonce to encrypt the actual nonce in
counter mode under PRF F. A drawback is that this requires the minimal core-
ciphertext length SE1.mccl to be non-trivial, like at least 128, which is not true
for all SE1. Scheme SE2 = HN2[SE1, `,E,Spl] turns to the perhaps more obvious
idea of enciphering the nonce with a PRF-secure blockcipher E. The difficulty is
the typicality of 96-bit nonces and 128-bit blockciphers, under which näıve enci-
phering would add a 32-bit ciphertext overhead, which we resolve by ciphertext
stealing, ` representing the number of stolen bits (32 in our example) and Spl
an ability to choose how the splitting is done. Scheme SE2 = HN3[SE1,F] uses
the result of PRF F on the actual nonce as a derived nonce under which to run
SE1. This is similar to SIV [51, 43]; the difference is to achieve AE2 rather than

6 Mihir Bellare, Ruth Ng, Björn Tackmann

NBE2 scheme
AE2-security provided

Basic Advanced

HN1[SE1,F] Yes Yes

HN2[SE1, `,E,Spl] Yes Yes if ` ≥ 128

HN3[SE1,F] Yes No

HN4[SE1, `,F] Yes

HN5[TE, `, `t] Yes

Fig. 1. Security attributes of the NBE2 schemes defined by our Hide-Nonce (HN)
transforms. In the table SE1 denotes an NBE1 scheme, F a PRF, E a block cipher,
and TE a variable-length tweakable block cipher. Spl is a splitting function, and `, `t
are non-negative integer parameters. A blank entry in the Basic column means the
transform is not for that purpose. Note that HN1’s advanced security only holds
when ciphertexts have sufficiently large (e.g. 128 bits) minimum length, and HN2’s
depends on the length of the stolen ciphertext.

AE1 and to apply the PRF only to the nonce (rather than nonce, message and
header) to have constant computational overhead.

Advanced HN transforms. Unique nonces are easier to mandate in theory than
assure in practice, where nonces may repeat due to errors, system resets, or repli-
cation. In that case (returning here to NBE1), not only does basic AE1-security
give no security guarantees, but also damaging attacks are possible for schemes
including CCM and GCM [32, 52]. Rogaway and Shrimpton’s misuse resistant
NBE1, which we refer to as advanced-AE1-secure NBE1, minimizes the damage
from reused nonces, retaining AE1-security as long as no nonce, message, header
triple is re-encrypted [51]. This still being for the NBE1 syntax, however, the con-
cerns with adversary-visible nonces compromising message and user privacy are
unchanged. We seek the NBE2 analogue, correspondingly defining and achieving
advanced-AE2-secure NBE2 to provide protection against reused nonces while
also hiding them.

With our framework, the definition is easy, calling for no new games; the
goal is simply AE2[Aae2

u-nmh]-security where Aae2
u-nmh is the class of unique-nonce,

message, header adversaries, meaning ones that do not repeat a query to their
Enc oracle. The presence of well-analyzed advanced-AE1-secure NBE1 schemes
[51, 28, 26, 25, 18] again motivates transforms rather than from-scratch designs.

We start by revisiting our basic-security preserving transforms, asking whe-
ther they also preserve advanced security, meaning, if the starting NBE1 scheme
is advanced-AE1-secure, is the transformed NBE2 scheme advanced-AE2-secure?
We show that for HN1, the answer is YES. We then show that it is YES also for
HN2 as long as the amount ` of stolen ciphertext is large enough. (In practical
terms, at least 128.) For HN3, the answer is NO.

Nonces are Noticed: AEAD Revisited 7

That HN1 and HN2 have these properties is good, but we would like to do
better. (Limitations of the above are that HN1 puts a lower bound on SE1.mccl
that is not always met, and setting ` = 128 in HN2 with typical 96-bit nonces
will call for a 224-bit blockcipher.) We offer HN4 and HN5, showing they
provide advanced AE2-security. Pseudocode and pictures are in Figure 5.

Scheme SE2 = HN4[SE1, `,F] uses the result of PRF F on the actual nonce,
message and header as a derived nonce for SE1. The difference with SIV [51,
43] is that what is encrypted under SE1 includes the actual nonce in order to
hide it. The computational overhead stays constant because SE1 need provide
only privacy, which it can do in one pass. Scheme SE2 = HN5[TE, `, `t] is dif-
ferent, using the encode-then-encipher paradigm [14] to set the ciphertext to an
enciphering, under an arbitrary-input-length, tweakable cipher TE, of the nonce,
message and `t-bits of redundancy, with the header as tweak. Instantiating TE
via the very fast AEZ tweakable block cipher [28] yields correspondingly fast,
advanced-AE2-secure NBE2.

Dedicated transforms. While our generic transforms are already able, with low
overhead, to immunize GCM [40, 22] —by this we mean turn this basic-AE1-
secure NBE1 scheme into a basic-AE2-secure NBE2 scheme— we ask if a dedi-
cated transform —ones that exploit the structure of GCM— can do even better.
The goal is not just even lower overhead, but minimization of software changes.
We show that simply pre-pending a block of 0s to the message and then GCM-
encrypting provides basic-AE2-security, so neither the key nor the encryption
software need be changed. Decryption software however does need a change,
and, unlike with our generic transforms, we incur 32 bits of ciphertext overhead.

Related work. As a technical step in achieving security against release of un-
verified plaintext (RUP), Ashur, Dunkelman and Luykx (ADL) [4] use a syntax
identical to NBE2, and their techniques bear some similarities with ours that we
discuss further in Section 7.

The CAESAR competition’s call for authenticated encryption schemes de-
scribes a syntax where encryption receives, in place of a nonce, a public message
number (PMN) and a secret message number (SMN), decryption taking only
the former [19]. The formalization of Namprempre, Rogaway and Shrimpton
(NRS) [44] dubs this “AE5.” In this light, an NBE1 scheme is a AE5 scheme
without a SMN and an NBE2 scheme is an AE5 scheme without a PMN.

Possible future work. The concerns we have raised with regard to a gap be-
tween theory and usage, and privacy vulnerabilities created by adversary-visible
nonces in the latter, arise fundamentally from the choice of syntax represented
by NBE1, and as such hold also in other contexts where an NBE1-style syntax
is used. This includes AE secure under release of unverified plaintext [3], ro-
bust AE [28], online AE [23, 29], committing AE [24, 21], indifferentiable AE [6],
leakage-resilient AE [7] and MiniAE [42]. A direction for future work is to treat
these with an NBE2-style syntax (decryption does not get the nonce) to provide
nonce hiding.

8 Mihir Bellare, Ruth Ng, Björn Tackmann

While our transforms can be applied to promote the advanced-AE1-secure
AES-GCM-SIV NBE1 scheme [25] to an advanced-AE2-secure NBE2 scheme, the
bounds we get are inferior to those of [18]. Bridging this gap to get advanced-
AE2-secure NBE2 with security bounds like [18] is a direction for future work.
Similarly, while we have many ways to turn GCM into a basic-AE2-secure NBE2
scheme with little overhead, one that matches the bounds of [38, 30] would be
desirable.

2 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote
the length of a string Z. If Z is a string then Z[i..j] is bits i through j of Z
if 1 ≤ i ≤ j ≤ |Z|, and otherwise is ε. By x‖y we denote the concatenation
of strings x, y. If x, y are equal-length strings then x⊕y denotes their bitwise
xor. If i is an integer in the range 0 ≤ i < 2n then 〈i〉n ∈ {0, 1}n denotes the
representation of i as a string of (exactly) n bits. (For example, 〈3〉4 = 0011.) If
S is a finite set, then |S| denotes it size. We say that a set S is length-closed if,
for any x ∈ S it is the case that {0, 1}|x| ⊆ S. (This will be a requirement for
message, header and nonce spaces.) If D,R are sets and f :D → R is a function
then its image is Im(f) = { f(x) : x ∈ D } ⊆ R.

If X is a finite set, we let x←$X denote picking an element of X uniformly
at random and assigning it to x. Algorithms may be randomized unless otherwise
indicated. If A is an algorithm, we let y ← AO1,...(x1, . . . ;ω) denote running A
on inputs x1, . . . and coins ω, with oracle access to O1, . . ., and assigning the
output to y. By y←$AO1,...(x1, . . .) we denote picking ω at random and letting
y ← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set of all possible
outputs of A when run on inputs x1, . . . and with oracle access to O1, An
adversary is an algorithm. Running time is worst case, which for an algorithm
with access to oracles means across all possible replies from the oracles. We use
⊥ (bot) as a special symbol to denote rejection, and it is assumed to not be in
{0, 1}∗.

Games. We use the code-based game-playing framework of BR [15]. A game
G (see Fig. 2 for an example) starts with an optional Initialize procedure,
followed by a non-negative number of additional procedures called oracles, and
ends with a Finalize procedure. If Finalize is omitted, it is understood to
be the trivial procedure that simply returns (outputs) its input. Execution of
adversary A with game G consists of running A with oracle access to the game
procedures, with the restrictions that A’s first call must be to Initialize (if
present), its last call must be to Finalize, and it can call these procedures at
most once. The output of the execution is the output of Finalize. By Pr[G(A)]
we denote the probability that the execution of game G with adversary A results
in this output being the boolean true. In games, integer variables, set variables
boolean variables and string variables are assumed initialized, respectively, to 0,
the empty set ∅, the boolean false and ⊥.

Nonces are Noticed: AEAD Revisited 9

Game Gprf
F

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1

Kv←$ {0, 1}F.kl

procedure Fn(i,X)

If (Y[i,X] = ⊥) then

Y0←$ {0, 1}F.ol

Y1 ← F.Ev(Ki, X)

Y[i,X]← Yb

Return Y[i,X]

procedure Finalize(b′)

Return (b = b′)

Game Gstprp
TE

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ {0, 1}TE.kl

procedure Fn(i, T,X)

If (Y[i, T,X] = ⊥) then

Y0←$ {0, 1}|X| \ Yi,T ; Y1 ← TE.Ev(Ki, T,X)

Y[i, T,X]← Yb ; X[i, T, Yb]← X

Xi,T ← Xi,T ∪ {X} ; Yi,T ← Yi,T ∪ {Yb}
Return Y[i, T,X]

procedure FnInv(i, T, Y)

If (X[i, T, Y] = ⊥) then

X0←$ {0, 1}|Y | \ Xi,T ; X1 ← TE.In(Ki, T, Y)

X[i, T, Y]← Xb ; Y[i, T,Xb]← Y

Xi,T ← Xi,T ∪ {Xb} ; Yi,T ← Yi,T ∪ {Y }
Return X[i, T, Y]

procedure Finalize(b′)

Return (b = b′)

Fig. 2. Left: Games defining multi-user PRF security for function family F. Right:
Game defining multi-user stPRP security for tweakable cipher TE.

Multi-user security. There is growing recognition that security should be con-
sidered in the multi-user (mu) setting [8] rather than the traditional single-user
(su) one. Our main definitions are in the mu setting. The games provide the ad-
versary a New oracle, calling which results in a new user being initialized, with
a fresh key. Other oracles are enhanced (relative to the su setting) to take an
additional argument i indicating the user (key). We assume that adversaries do
not make oracle queries to users (also called sessions) they have not initialized.

Function families. A function family F specifies a deterministic evaluation al-
gorithm F.Ev : {0, 1}F.kl × F.D → {0, 1}F.ol that takes a key K and input x to
return output F.Ev(K,x), where F.kl is the key length, F.D is the domain and
F.ol is the output length. We say that F is invertible if there is an inversion
algorithm F.In : {0, 1}F.kl×{0, 1}F.ol → F.D∪{⊥} such that for all K ∈ {0, 1}F.kl
we have (1) F.In(K,F.Ev(K,x)) = x for all x ∈ F.D, and (2) F.In(K, y) = ⊥ for
all y 6∈ Im(F.Ev(K, ·)). We say that F is a permutation family if it is invertible
and F.D = {0, 1}F.ol. In that case, we also refer to F as a block cipher and to F.ol
as the block length of F, which we may denote F.bl.

10 Mihir Bellare, Ruth Ng, Björn Tackmann

PRF security. We define multi-user PRF security [9] for a function family F

and adversary A via the game Gprf
F (A) in Fig. 2. Here b is the challenge bit and

Y[·, ·] is a table, all of whose entries are assumed to initially be ⊥. It is required
that any Fn(i,X) query of A satisfies i ≤ v and X ∈ F.D. The multi-user PRF

advantage of adversary A is Advprf
F (A) = 2 Pr[Gprf

F (A)]− 1.

Tweakable ciphers. A tweakable cipher TE [37, 28] specifies a deterministic eval-
uation algorithm TE.Ev : {0, 1}TE.kl×TE.TS×{0, 1}∗ → {0, 1}∗ and a determin-
istic inversion algorithm TE.In : {0, 1}TE.kl × TE.TS × {0, 1}∗ → {0, 1}∗. Here,
TE.kl is the key length and TE.TS is the tweak space. We require that for all K
∈ {0, 1}TE.kl, T ∈ TE.TS and X ∈ {0, 1}∗ we have |TE.Ev(K,T,X)| = |X| and
TE.In(K,T,TE.Ev(K,T,X)) = X.

stPRP security. We define multi-user stPRP (strong tweakable PRP) security
[37] for tweakable cipher TE and adversary A via the game Gstprp

TE (A) in Fig. 2. In
the game, b is the challenge bit and X[·, ·, ·], Y[·, ·, ·] are tables whose entries are
assumed initialized to ⊥. In this game, the adversary has access to an evaluation
oracle Fn and an inversion oracle FnInv. When b = 0, they sample without
replacement (within each session) from the set of strings of the same length as
the input. If b = 1 they evaluate TE.Ev and TE.In under game-chosen keys. It
is required that any Fn(i, T,X) or FnInv(i, T, Y) query of A satisfies i ≤ v,
T ∈ TE.TS and X,Y ∈ {0, 1}∗. The multi-user stPRP advantage of adversary A
is Advstprp

TE (A) = 2 Pr[Gstprp
TE (A)]− 1.

3 Two frameworks for nonce-based encryption

We give definitions for both AE1-secure NBE1—current nonce-based encryp-
tion [50, 46, 48]— and AE2-secure NBE2—our new nonce-based encryption. In
each case there is a single security game, different variant definitions then be-
ing captured by different adversary classes. This allows a unified and compact
treatment.

NBE1. An NBE1 scheme SE1 specifies several algorithms and related quanti-
ties, as follows. Deterministic encryption algorithm SE1.Enc : SE1.KS × SE1.NS
× SE1.MS× SE1.HS→ {0, 1}∗ takes a key K in the (finite) key-space SE1.KS, a
nonce N in the nonce-space SE1.NS, a message M in the message space SE1.MS
and a header H in the header space SE1.HS to return what we call a core cipher-
text C1. This is a string of length SE1.ccl(|N |, |M |, |H|), where SE1.ccl is the
core-ciphertext length function. SE1 also specifies a deterministic decryption al-
gorithm SE1.Dec : SE1.KS×SE1.NS×{0, 1}∗×SE1.HS→ SE1.MS∪{⊥} that takes
key K, nonce N , core ciphertext C1 and header H to return an output that is
either a message M ∈ SE1.MS, or ⊥. It is required that SE1.NS,SE1.MS,SE1.HS
are length-closed sets as defined in Section 2. Most often nonces are of a fixed
length denoted SE1.nl, meaning SE1.NS = {0, 1}SE1.nl. Decryption correctness
requires that SE1.Dec(K,N,SE1.Enc(K,N,M,H), H) = M for all K ∈ SE1.KS,
N ∈ SE1.NS, M ∈ SE1.MS and H ∈ SE1.HS.

Nonces are Noticed: AEAD Revisited 11

Game Gae1
SE1

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ SE1.KS

procedure Enc(i,N,M,H)

If (b = 1) then

C1 ← SE1.Enc(Ki, N,M,H)

Else C1←$ {0, 1}SE1.ccl(|N|,|M|,|H|)

M[i,N,C1, H]←M ; Return C1

procedure Dec(i,N,C1, H)

If (M[i,N,C1, H] 6= ⊥) then

Return M[i,N,C1, H]

If (b = 0) then M ← ⊥
Else M ← SE1.Dec(Ki, N,C1, H)

Return M

procedure Finalize(b′)

Return (b = b′)

Game Gae2
SE2

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ SE2.KS

procedure Enc(i,N,M,H)

If (b = 1) then

C2 ← SE2.Enc(Ki, N,M,H)

Else C2←$ SE2.CS(|N |, |M |, |H|)
M[i, C2, H]←M ; Return C2

procedure Dec(i, C2, H)

If (M[i, C2, H] 6= ⊥) then

Return M[i, C2, H]

If (b = 0) then M ← ⊥
Else M ← SE2.Dec(Ki, C2, H)

Return M

procedure Finalize(b′)

Return (b = b′)

Ax
u-n

Unique nonce adversaries — A ∈ Ax
u-n does not repeat a user-nonce

pair i,N across its Enc queries

Ax
u-nmh

Unique nonce-message-header adversaries — A ∈ Ax
u-nmh does not

repeat a query to Enc

Ax
priv Privacy adversaries — A ∈ Ax

priv makes no Dec queries

Ax
1 Single-user adversaries — A ∈ Ax

1 makes only one New query

Ax
r-n

Random-nonce adversaries — The nonces in the Enc queries of
A ∈ Ax

r-n are distributed uniformly and independently at random

Fig. 3. Top Left: Game defining AE1-security of NBE1 scheme SE1. Top Right:
Game defining AE2-security of NBE2 scheme SE2. Bottom: Some classes of adver-
saries, leading to different security notions, where x ∈ {ae1, ae2}.

AE1 game and advantage. Let SE1 be an NBE1 scheme and A an adversary. We
associate to them the game Gae1

SE1(A) shown on the top left of Fig. 3. (We use the
name “AE1” to associate the game with the NBE1 syntax). The AE1-advantage
of adversary A is Advae1

SE1(A) = 2 Pr[Gae1
SE1(A)]−1. The game is in the multi-user

setting, oracle New allowing the adversary to initialize a new user with a fresh
key. It is required that any Enc(i,N,M,H) query of A satisfy 1 ≤ i ≤ v, N
∈ SE1.NS, M ∈ SE1.MS and H ∈ SE1.HS. When the challenge bit b is 1, the
encryption oracle will return a core ciphertext as stipulated by SE1.Enc, using

12 Mihir Bellare, Ruth Ng, Björn Tackmann

the key for the indicated user i. In the b = 0 case, Enc will return a random
string of length SE1.ccl(|N |, |M |, |H|). The array M is assumed to initially be ⊥
everywhere, and holds core ciphertexts returned by Enc. It is required that any
Dec(i,N,C1, H) query of A satisfy 1 ≤ i ≤ v, N ∈ SE1.NS and H ∈ SE1.HS.
When the challenge bit b is 1, the decryption oracle will perform decryption
as stipulated by SE1.Dec, using the key for the indicated user i. In the b = 0
case, Dec will return ⊥ on any core ciphertext not previously returned by the
encryption oracle.

AE1 security metrics. AE1-security is clearly not achievable without restrictions
on the adversary. For example, if A repeats a query i,N,M,H to Enc, then,
when b = 1 it gets back the same reply both times, while if b = 0 it likely does
not, allowing it to determine b with high probability. We define different classes
of adversaries, summarized by the table at the bottom of Figure 3, with the
superscript “x” here being ae1. We say that NBE1 scheme SE1 is AE1[A]-secure
if adversaries in A have low AE1-advantage. The definition is in the multi-user
setting, but restricting attention to adversaries in the class Aae1

1 allows us to
recover the single-user setting. Different security notions in the literature are
then captured as AE1[A]-security for different classes of adversaries A, as we
illustrate below:

• Aae1
u-n is the class of adversaries whose Enc queries never repeat a user-nonce

pair. AE1[Aae1
u-n ∩Aae1

1]-security is thus AEAD as defined in [46, 48].

• AE1[Aae1
u-n]-security is the extension of this to the multi-user setting as defined

in [16], which we have referred to as basic AE1-security in Section 1.

• Adversaries in Aae1
u-nmh ⊇ Aae1

u-n are allowed to re-use a user-nonce pair across
Enc queries as long as they never repeat an entire query. AE1[Aae1

u-nmh∩Aae1
1]-

security is misuse resistant AE [51].

• AE1[Aae1
u-nmh]-security is the extension of this to the multi-user setting [18],

which we have referred to as advanced-AE1-security in Section 1.

• Adversaries in Aae1
r-n pick the nonces in their Enc queries uniformly and in-

dependently at random from SE1.NS. (While the intent here is likely under-
standable, what precisely it means for an adversary to be in this class does
actually need a careful definition, which is given in [12].) No restriction is
placed on how the adversary picks nonces in Dec queries. AE1[Aae1

r-n ∩Aae1
1]-

security is thus classical randomized AE [11] for schemes which make encryp-
tion randomness public, which is the norm.

• Sometimes, in the unique-nonce setting, we consider schemes that provide
only privacy, not authenticity, and, rather than giving a separate game, can
capture this as AE1[Aae1

priv∩Aae1
u-n]-security. AE1[Aae1

priv∩Aae1
u-n∩Aae1

1]-security
is IND$-CPA security, as defined in [46].

Further adversary classes can be defined to capture limited nonce reuse [18] or
other resource restrictions.

Nonces are Noticed: AEAD Revisited 13

The following says that AE1[Aae1
u-n]-security implies AE1[Aae1

r-n]-security with
a degradation in advantage corresponding to the probability that a nonce repeats
for some user. We will refer to this later. We omit the (obvious) proof.

Proposition 1. Let SE1 be an NBE1 scheme. Given adversary Arn ∈ Aae1
r-n

making at most u New queries and at most q Enc queries per user, we construct
adversary Aun ∈ Aae1

u-n such that

Advae1
SE1(Arn) ≤ Advae1

SE1(Aun) +
uq(q − 1)

2SE1.nl
.

Adversary Aun preserves the resources of Arn.

Saying Aun preserves the resources of Arn means that the number of queries to
all oracles are the same for both.

We believe our (above) AE1 framework (single game, many adversary classes)
is of independent interest, as a way to unify, better understand and compactly
present existing and new notions of security for NBE1 schemes. We give a similar
framework for AE2 next.

NBE2 syntax. An NBE2 scheme SE2 specifies several algorithms and related
quantities, as follows. Deterministic encryption algorithm SE2.Enc : SE2.KS ×
SE2.NS× SE2.MS× SE2.HS→ {0, 1}∗, just like for NBE1, takes a key K in the
(finite) key-space SE2.KS, a nonce N in the nonce-space SE2.NS, a message M
in the message space SE2.MS and a header H in the header space SE2.HS to
return a ciphertext C2 that is in the ciphertext space SE2.CS(|N |, |M |, |H|). SE2
also specifies a deterministic decryption algorithm SE2.Dec : SE2.KS× {0, 1}∗ ×
SE2.HS → SE2.MS ∪ {⊥} that takes key K, ciphertext C2 and header H to
return an output that is either a message M ∈ SE2.MS, or ⊥. (Unlike in NBE1,
it does not take a nonce input.) It is required that SE2.NS,SE2.MS,SE2.HS
are length-closed sets as defined in Section 2. Most often nonces are of a fixed
length denoted SE2.nl, meaning SE2.NS = {0, 1}SE2.nl. Decryption correctness
requires that SE2.Dec(K,SE2.Enc(K,N,M,H), H) = M for all K ∈ SE2.KS,
N ∈ SE2.NS,M ∈ SE2.MS and H ∈ SE2.HS.

AE2 game and advantage. Let SE2 be an NBE2 scheme and A an adversary. We
associate to them the game Gae2

SE2(A) shown on the top right of Fig. 3. (We use the
name “AE2” to associate the game with the NBE2 syntax). The AE2-advantage
of adversary A is Advae2

SE2(A) = 2 Pr[Gae2
SE2(A)]−1. The game is in the multi-user

setting, oracle New allowing the adversary to initialize a new user with a fresh
key. It is required that any Enc(i,N,M,H) query of A satisfy 1 ≤ i ≤ v, N
∈ SE2.NS, M ∈ SE2.MS and H ∈ SE2.HS. When the challenge bit b is 1, the
encryption oracle will return a ciphertext as stipulated by SE2.Enc, using the
key for the indicated user i. When b = 0, Enc will return a random element of
the ciphertext space SE2.CS(|N |, |M |, |H|). The array M is assumed to initially
be ⊥ everywhere, and holds ciphertexts returned by Enc. It is required that
any Dec(i, C2, H) query of A satisfy 1 ≤ i ≤ v and H ∈ SE2.HS. When the
challenge bit b is 1, the decryption oracle will perform decryption as stipulated

14 Mihir Bellare, Ruth Ng, Björn Tackmann

by SE2.Dec, using the key for the indicated user i. When b = 0, Dec will return
⊥ on any ciphertext not previously returned by the encryption oracle.

AE2 security metrics. As with AE1-security, restrictions must be placed on
the adversary to achieve AE2-security, and we use adversary classes to capture
restrictions corresponding to different notions of interest. The classes are summa-
rized by the table at the bottom of Figure 3, with the superscript “x” now being
ae2. The classes and resulting notions are analogous to those for AE1. Thus,
AE2[Aae2

1]-security recovers the single-user setting. Aae2
u-n is the class of adver-

saries whose Enc queries never repeat a user-nonce pair, so AE2[Aae2
u-n]-security

is what we have referred to as basic AE2-security in Section 1. Adversaries in
Aae2

u-nmh ⊇ Aae2
u-n are allowed to re-use a user-nonce pair across Enc queries as

long as they never repeat an entire query, so AE2[Aae2
u-nmh]-security is what we

have referred to as advanced AE2-security in Section 1. Adversaries in Aae2
r-n pick

the nonces in their Enc queries uniformly and independently at random from
SE2.NS. AE2[Aae2

priv]-security is privacy only.

Discussion. The main (small but important) change in the syntax from NBE1
to NBE2 is that in the latter, the decryption algorithm no longer gets the nonce
as input. It is up to encryption to ensure that the ciphertext contains everything
(beyond key and header) needed to decrypt. Nonces are thus no longer magically
communicated, making the interface, and the task of application designers, sim-
pler and less error-prone, reducing the possibility of loss of privacy from poor
choices of nonces and opening the door to nonce-hiding security as captured
by AE2. Another change is that, rather than a ciphertext length function, an
NBE2 scheme specifies a ciphertext space. The reason is that a ciphertext might
have some structure, like being a pair (C,C ′). Ciphertexts like this cannot be
indistinguishable from random strings, but they can be indistinguishable from
pairs of random strings, which is captured by defining the ciphertext space corre-
spondingly. This follows [24], in whose committing AE definition the same issue
arose.

Nonce-Recovering NBE2. A natural subclass of NBE2 schemes are those which
recover the nonce explicitly during decryption. We provide definitions to capture
such schemes. We say that an NBE2 scheme SE2 is nonce-recovering if there
exists a deterministic nonce-plus-message recovery algorithm SE2.NMR such that
for any (K,C2, H) ∈ SE2.KS×{0, 1}∗×SE2.HS, if SE2.NMR(K,C2, H) 6= ⊥ then
it parses as a pair (M,N) ∈ SE2.MS×SE2.NS satisfying SE2.Dec(K,C2, H) = M
and SE2.Enc(K,N,M,H) = C2. Most of our transforms from NBE1 scheme to
NBE2 schemes yield nonce-recovering NBE2 schemes.

4 Usage of NBE1: The Transmit-Nonce transform

With AE1-secure NBE1, the nonce is needed for decryption. But how does the
decryptor get it? This is a question about usage not addressed in the formalism.

Nonces are Noticed: AEAD Revisited 15

The understanding, however, is that the nonce can be communicated in the
clear, with the core ciphertext. One might argue this is fine because, in the
AE1-formalism, the adversary picks the nonce, so seeing the nonce again in the
ciphertext cannot give the adversary an advantage.

We have discussed in the introduction why this fails to model cases where
the nonce is chosen by the user, and why, at least in general, nonce transmission
may violate message privacy. But the claim, so far, was informal. The reason
was that transmitting the nonce represents a usage of NBE1 and we had no
definitions to capture this. With AE2-secure NBE2, that gap is filled and we are
in a position to formalize the claim of usage insecurity.

Some readers may see this is unnecessary, belaboring an obvious point. In-
deed, the intuition is clear enough. But formalizing it serves also as an intro-
duction to exercising our framework. We capture the usage in question as an
NBE2 scheme SETN = TN[SE1] built from a given NBE1 scheme SE1 by what
we call the transmit-nonce transform TN. We detail the (rather obvious) claim
that SETN fails to meet AE2-security, and discuss how it will also fail to meet
other, weaker privacy goals.

The TN transform. Our TN (Transmit Nonce) transform takes an NBE1
scheme SE1 and returns the NBE2 scheme SETN = TN[SE1], that, as the name
suggests, transmits the nonce in the clear, meaning the SETN ciphertext is the
nonce together with the SE1 core ciphertext. In more detail, encryption algorithm
SETN.Enc(K,N,M,H) lets C1 ← SE1.Enc(K,N,M,H) and returns ciphertext
C2 ← (N,C1). Decryption algorithm SETN.Dec(K,C2, H) parses C2 as a pair
(N,C1) with N ∈ SE1.NS —we write this as (N,C1) ← C2— returning ⊥ if
the parsing fails, and else returning M ← SE1.Dec(K,N,C1, H). NBE2 scheme
SETN has the same key space, message space and header space as SE1, and we de-
fine its ciphertext space via SETN.CS(`n, `m, `h) = SE1.NS×{0, 1}SE1.ccl(`n,`m,`h)

for all `n, `m, `h ≥ 0. Usage of SE1 in which the nonce is sent in the clear (along
with the core ciphertext) can now be formally modeled by asking what formal
security notions for NBE2 schemes are met by SETN = TN[SE1].

Insecurity of TN[SE1]. Let SE1 be any NBE1 scheme. It might, like GCM,
be AE1[Aae1

u-n]-secure, or it might even be AE1[Aae1
u-nmh]-secure. Regardless, we

claim that NBE2 scheme SETN = TN[SE1] fails to be AE2[Aae2
priv ∩Aae2

u-n]-secure,
meaning fails to provide privacy even for adversaries that do not reuse a nonce.
This is quite obvious, since the adversary can test whether the nonce in its Enc
query matches the one returned in the ciphertext. In detail:

Adversary A

Initialize
Pick some (N,M,H) ∈ SE1.NS× SE1.MS× SE1.HS with |N | ≥ 1
New // Initialize one user
(N∗, C1)←$ Enc(1, N,M,H) // Ciphertext returned is a pair
If (N∗ = N) then b′ ← 1 else b′ ← 0
Finalize(b′)

16 Mihir Bellare, Ruth Ng, Björn Tackmann

This adversary has advantage Advae2
SETN

(A) ≥ 1 − 1/2 = 1/2, so represents a
violation of AE2[Aae2

priv ∩Aae2
u-n]-security.

Discussion. The attack above may be difficult to reconcile with SE1 being
AE1[Aae1

u-n]-secure, the question being that, in the AE1 game, the adversary picks
the nonce, and thus already knows it, so why should seeing it again in the ci-
phertext give the adversary extra information? The answer is that in usage the
adversary does not know the nonce a priori and seeing may provide additional
information. This is not modeled in AE1 but is modeled in AE2. To be clear, the
above violation of AE2 security does not contradict the assumed AE1-security
of SE1.

One might (correctly) argue that AE2 is a strong requirement so failing it
does not represent a concerning violation of security, but it is clear that SETN

will fail to meet even much weaker notions of privacy for NBE2 schemes that one
could formalize in natural ways, such as message recovery security or semantic
security. (The nonce could be message dependent, in the extreme equal to the
message.) One might also suggest that the losses of privacy occur for pathological
choices of nonces, and nonce transmission is just fine if the nonce is a random
number or counter, to which there are two responses. (1) The pitch and promise
of AE1[Aae1

u-n]-secure NBE1 is that any (non-repeating) nonce is fine. For example
RBBK [50] says “The entity that encrypts chooses a new nonce for every message
with the only restriction that no nonce is used twice,” and RFC 5116 says
“Applications SHOULD use the nonce formation method defined in Section 3.2,
and MAY use any other method that meets the uniqueness requirement.” It is
important to know (both to prevent misuse and for our understanding) that in
usage of NBE1, security requires more than just uniqueness of nonces; one must
be concerned with how they are conveyed to the receiver. (2) A counter nonce
can lead to loss of user privacy, for example revealing identity information, that
is resolved by moving to AE2[Aae2

u-n]-secure NBE2, which is nonce hiding.

5 Basic transforms

We have explained that AE2-secure NBE2 offers valuable security and usability
benefits over current encryption. So we now turn to achieving it. We follow the
development path of NBE1, first, in this section, targeting basic AE2-security —
no user reuses a nonce, which in our framework corresponds to adversaries in the
class Aae2

u-n— and then, in Section 6, targeting advanced AE2-security —misuse
resistance, where nonce-reuse is allowed, which in our framework corresponds to
adversaries in the class Aae2

u-nmh.

Significant effort has gone into the design and analysis of basic-AE1-secure
NBE1 schemes. We want to leverage rather than discard this. Accordingly,
rather than from-scratch designs, we seek transforms of basic-AE1-secure NBE1
schemes into basic-AE2-secure NBE2 ones. This section gives three transforms
that are simple and efficient and minimize quantitative security loss.

Nonces are Noticed: AEAD Revisited 17

Preliminaries. We assume for simplicity that the NBE1 schemes provided as
input to our transforms have nonces of a fixed length, meaning that SE1.NS =
{0, 1}SE1.nl. This holds for most real-world AE1-secure NBE1 schemes. All our
transforms can be adapted to allow variable-length nonces.

Core ciphertexts in practical NBE1 schemes tend to be no shorter than a cer-
tain minimal value, for example 96 bits for typical usage of GCM with AES [22].
We refer to this value as the minimal core-ciphertext length of the scheme SE1,
formally defining SE1.mccl = minN,M,H{SE1.ccl(|N |, |M |, |H|)} where the mini-
mum is over all (N,M,H) ∈ SE1.NS×SE1.MS×SE1.HS. This is relevant because
some of our transforms need SE1.mccl to be non-trivial to provide security.

All transforms here use two keys, meaning the key for the constructed NBE2
scheme SE2 is a pair consisting of a key for a PRF and a key for SE1. An
implementation can, starting from a single overlying key, derive these sub-keys
and store them, so that neither key size nor computational cost increase. This
is well understood and is done as part of OCB, GCM and many other designs.

The ciphertext overhead is the bandwidth cost of the transform. We now
discuss how to measure it. In the NBE2 scheme SE2 constructed by any of our
transforms from an NBE1 scheme SE1, the ciphertext space is the set of strings
of some length, SE2.CS(`n, `m, `h) = {0, 1}SE2.cl(`n,`m,`h). Since NBE1 decryption
gets the nonce for free while NBE2 decryption must, effectively, communicate it
via the ciphertext, the “fair” definition of the ciphertext overhead of the trans-
form is the maximum, over all possible choices of `n, `m, `h, of

SE2.cl(`n, `m, `h)− SE2.ccl(`n, `m, `h)− SE1.nl .

Another way to put it is that the ciphertext overhead is how much longer cipher-
texts are in SE2 than in TN[SE1]. All our transforms have ciphertext overhead
zero, meaning are optimal in terms of bandwidth usage.

The HN1 transform. The idea of our first transform is that a piece of the core
ciphertext may be used as a nonce under which to encrypt the actual nonce. Let
SE1 be an NBE1 scheme and F a function family with F.ol = SE1.nl, so that
outputs of F.Ev can be used to mask nonces for SE1. Assume SE1.mccl ≥ F.il,
so that an F.il-bit prefix of a core ciphertext can be used as an input to F.Ev.
Invertibility of F is not required, so it can, but need not, be a blockcipher. Our
HN1 transform defines NBE2 scheme SEHN1 = HN1[SE1,F] whose encryption
and decryption algorithms are shown in Figure 4. A key (KF,K1) for SEHN1

is a pair consisting of a key KF for F and a key K1 for SE1, so that the key
space is SEHN1.KS = {0, 1}F.kl× SE1.KS. The message, header and nonce spaces
are unchanged. The parsing Y ‖C1 ← C2 in the second line of the decryption
algorithm SEHN1 is such that |Y | = SE1.nl. The ciphertext overhead is zero. The
computational overhead is one call to F.Ev for each of encryption or decryption.
The following says that if the starting NBE1 scheme SE1 is basic-AE1-secure
and F is a PRF then the NBE2 scheme SEHN1 returned by the transform is
basic-AE2-secure. The proof is in the full version.

Theorem 2. Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given ad-
versary A2 ∈ Aae2

u-n, making qn queries to its New oracle, qe queries per user to

18 Mihir Bellare, Ruth Ng, Björn Tackmann

its Enc oracle, and qd queries per user to its Dec oracle, we construct adver-
saries A1 ∈ Aae1

u-n and B such that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qn(qe + qd)(qe + qd − 1)

2F.il+1
.

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe + qd queries per user to its Fn oracle. Adversary B has
about the same running time as A2.

Splitting. Our next transform employs ciphertext stealing [41] to get zero cipher-
text overhead. There are many choices with regard to how to implement stealing,
for example whether one steals from the first part of the core ciphertext or the
last, and implementations may have different preferences. Accordingly, we do
not pin down a choice but instead parameterize the transform by a splitting
algorithm responsible for splitting a given string X (the core ciphertext) into
segments x (the stolen part, of a prescribed length `) and y (the rest). Formally,
splitting scheme Spl specifies a deterministic algorithm Spl.Ev that takes an in-
teger ` ≥ 0 and a string X with |X| ≥ `, and returns a pair of strings (x, y) ←
Spl.Ev(`,X) with |x| = `. If (x, y) ∈ Im(Spl.Ev(|x|, ·)) —the image of a function
was defined in Section 2— then X ← Spl.In(x, y) recovers the unique X such
that Spl.Ev(|x|, X) = (x, y), and otherwise returns X = ⊥.

This isn’t enough because for security we want that if X is random then so
are x, y. A simple way to ensure this is to require that the split sets x to some
bit positions of X and y to the rest, with the choice of positions depending only
on |X|. Formally, we require that there is a (deterministic) function Spl.St that
given integers `, n with n ≥ ` ≥ 0 returns a starting index s = Spl.St(`, n) in
the range 1 ≤ s ≤ n− `+ 1, and Spl.Ev(`,X) returns x = X[s..(s+ `− 1)] and
y = X[1..(s−1)]‖X[(s+`)..|X|] for s = Spl.St(`, |X|). The most common choices
are that Spl.St(`, n) = 1, so that x = X[1..`] is the `-bit prefix of X and y =
X[(` + 1)..|X|] is the rest (corresponding to stealing from the first part of X),
or Spl.St(`, n) = n − ` + 1, so that x = X[(|X| − ` + 1)..|X|] is the `-bit suffix
of X and y = X[1..(|X| − `)] is the rest (corresponding to stealing from the last
part of X), but other choices are possible.

The HN2 transform. The starting idea of this transform is that our NBE2
scheme can encrypt under the given NBE1 scheme and then also include in the
ciphertext an enciphering, under a blockcipher E, of the nonce. We enhance this
to encipher, along with the nonce, ` bits stolen from the core ciphertext. The
stealing has two dividends. First, nonces are often shorter than the block length
of E —for example SE1.nl = 96 and E.bl = 128 for AES-GCM and OCB [50,
35]— so in the absence of stealing, the nonce would be padded before enciphering,
leading to ciphertext overhead. Second, while we show here (Theorem 3) that
the scheme preserves basic security regardless of the amount ` stolen, we show
later (Theorem 6) that it preserves even advanced security if ` is non-trivial (128
bits or more). We now proceed to the full description.

Nonces are Noticed: AEAD Revisited 19

SEHN1.Enc((KF,K1), N,M,H)

C1 ← SE1.Enc(K1, N,M,H)

x← C1[1..F.il] ; P ← F(KF, x)

Y ← P⊕N ; C2 ← Y ‖C1

Return C2

SEHN1.Dec((KF,K1), C2, H)

If (|C2| < SE1.nl + F.il) then return ⊥
Y ‖C1 ← C2 ; x← C1[1..F.il] ; P ← F(KF, x)

N ← P⊕Y ; M ← SE1.Dec(K1, N,C1, H)

Return M

SEHN2.Enc((KE,K1), N,M,H)

C1 ← SE1.Enc(K1, N,M,H)

(x, y)← Spl.Ev(`, C1)

C2,1 ← E.Ev(KE, N‖x)

C2 ← C2,1‖y
Return C2

SEHN2.Dec((KE,K1), C2, H)

If (|C2| < E.bl) then return ⊥
N‖x← E.In(KE, C2[1..E.bl])

y ← C2[E.bl + 1..|C2|] ; C1 ← Spl.In(x, y)

If (C1 = ⊥) then return ⊥
M ← SE1.Dec(K1, N,C1, H) ; Return M

SEHN3.Enc((KF,K1), N,M,H)

N1 ← F.Ev(KF, N)

C1 ← SE1.Enc(K1, N1,M,H)

C2 ← N1‖C1 ; Return C2

SEHN3.Dec((KF,K1), C2, H)

If (|C2| < F.ol) then return ⊥
N1‖C1 ← C2 ; M ← SE1.Dec(K1, N1, C1, H)

Return M

HN1[SE1,F] HN2[SE1, `,E,Spl] HN3[SE1,F]

Fig. 4. Top: Encryption and decryption algorithms of the NBE2 schemes constructed
by our basic transforms. From top to bottom: SEHN1 = HN1[SE1,F], SEHN2 =
HN2[SE1, `,E,Spl] and SEHN3 = HN3[SE1,F]. Bottom: Diagrams illustrating the en-
cryption algorithms of the constructed schemes.

Let SE1 be an NBE1 scheme, Spl a splitting scheme and ` ≥ 0 the prescribed
length of the stolen segment of the core ciphertext. We assume the minimal
core-ciphertext length of SE1 satisfies SE1.mccl ≥ `, which ensures that core
ciphertexts are long enough to allow the desired splitting. Let E be a blockcipher
with block length E.bl = SE1.nl + `. Our HN2 transform defines NBE2 scheme
SEHN2 = HN2[SE1, `,E,Spl] whose encryption and decryption algorithms are
shown in Figure 4. The parsing in the second line of the decryption algorithm
SEHN2 is such that |N | = SE1.nl. A key (KE,K1) for SEHN2 is a pair consisting

20 Mihir Bellare, Ruth Ng, Björn Tackmann

of a key KE for E and a key K1 for SE1, so that the key space is SEHN2.KS =
{0, 1}E.kl × SE1.KS. The nonce, message and header spaces are unchanged. The
length of ciphertext C2 is E.bl+ |C1| − ` = |C1|+ SE1.nl, so the ciphertext space
is SEHN2.CS(`n, `m, `h) = {0, 1}SE1.nl+SE1.ccl(`n,`m,`h). The ciphertext overhead is
zero. The computational overhead is an extra blockcipher call for encryption and
a blockcipher inverse for decryption.

A typical instantiation for basic security is E = AES, so that E.bl = 128.
Nonces would have length SE1.nl = 96. We then set ` = 32 and Spl.St(`, n) = 1
for all n. This means SE1.mccl must be at least 32, which is true for all real-world
schemes we know. This reduction in the required value of SE1.mccl for security is
the benefit that HN2 offers over HN1. Recall the latter needs F.il ≥ SE1.mccl,
and hence by Theorem 2 needs SE1.mccl ≥ 128, for the same security that HN2
can offer with SE1.mccl ≥ 32.

The following says that if the starting NBE1 scheme SE1 is basic-AE1-secure
and E is a PRF, then the NBE2 scheme SEHN2 returned by the transform is
basic-AE2-secure. This holds regardless of the value of `. The proof is in the full
version of this paper [12].

Theorem 3. Let SEHN2 = HN2[SE1, `,E,Spl] be obtained as above. Then, given
adversary A2 ∈ Aae2

u-n, making qn queries to its New oracle, qe queries per user
to its Enc oracle, and qd queries per user to its Dec oracle, we construct ad-
versaries A1 ∈ Aae1

u-n and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

E (B) . (1)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe queries per user to its Fn oracle. Adversary B has about
the same running time as A2.

The HN3 transform. Our third transform uses what we call nonce-based nonce-
derivation, in which encryption is performed under SE1 using as nonce the result
N1 = F(KF, N) of a PRF F on the actual nonce N . The idea comes from SIV [51]
but differences include that: (1) SIV constructs an AE1-secure NBE1 scheme
while we construct an AE2-secure NBE2 scheme. (2) SIV decryption needs to
have the original nonce. (3) Our synthetic nonce N1 is a function only of the
actual nonce while the one in SIV is also a function of the message and header.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function
family with F.ol = SE1.nl, meaning outputs of F.Ev can be used as nonces for SE1.
Invertibility of F is not required, so it can, but need not, be a blockcipher. Our
HN3 transform defines NBE2 scheme SEHN3 = HN3[SE1,F] whose encryption
and decryption algorithms are shown in Figure 4. A key (KF,K1) for SEHN3 is a
pair consisting of a key KF for F and a key K1 for SE1, so that the key space is
SEHN3.KS = {0, 1}F.kl×SE1.KS. The message and header spaces are unchanged,
and the nonce space is SEHN3.NS = {0, 1}F.il, meaning inputs to F are nonces
for SE2. The parsing in the second line of the decryption algorithm SEHN3 of
Figure 4 is such that |N1| = SE1.nl. Note that the decryption algorithm does
not use F or KF.

Nonces are Noticed: AEAD Revisited 21

As with HN1 and HN2, the HN3 transform has zero ciphertext overhead.
The computational overhead for encryption is one invocation of F. Advantages
emerge with decryption, where there is now no computational overhead. Indeed
decryption in SEHN3 is effectively the same as in SE1. In particular, in the typical
case that F is a blockcipher on which SE1 is itself based, decryption (unlike
with HN2) no longer needs to implement its inverse, which can be a benefit in
hardware and for reducing code size.

It is natural and convenient here to assume SE1 is AE1[Aae1
r-n]-secure. (Recall

this is AE1-security for the class of adversaries that pick the nonce at random.)
By Proposition 1 this is implied by its being AE1[Aae1

u-n]-secure (that is, basic-
AE1-secure). Assuming additionally that F is a PRF, the following says that
HN3[SE1,F] is AE2[Aae2

u-n]-secure (that is, basic-AE2-secure). The proof is in
the full version.

Theorem 4. Let SEHN3 = HN3[SE1,F] be obtained as above. Then, given ad-
versary A2 ∈ Aae2

u-n that makes qn queries to its New oracle, qe queries to its Enc
oracle, and qd queries to its Dec oracle, we construct adversaries A1 ∈ Aae1

r-n and
B such that

Advae2
SE2(A2) ≤ Advae1

SE1(A1) + Advprf
F (B) .

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe queries to its Fn oracle, respectively. Adversary B has
about the same running time as A2.

6 Advanced transforms

We now turn to achieving AE2-security in the nonce-misuse setting, which we
formalized as AE2[Aae2

u-nmh]-security. We discuss various transforms for this pur-
pose.

Advanced security of HN1. We showed in Theorem 2 that HN1 preserves basic
security. It turns out that it also preserves advanced security. The following
says that if the starting NBE1 scheme SE1 is advanced-AE1-secure and F is a
PRF then the NBE2 scheme SEHN1 returned by the transform is advanced-AE2-
secure. The proof is in the full version.

Theorem 5. Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given ad-
versary A2 ∈ Aae2

u-nmh, making qn queries to its New oracle, qe queries per user
to its Enc oracle, and qd queries per user to its Dec oracle, we construct ad-
versaries A1 ∈ Aae1

u-nmh and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qn(qe + qd)(qe + qd − 1)

2F.il+1
. (2)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe + qd queries per user to its Fn oracle. Adversary B has
about the same running time as A2.

22 Mihir Bellare, Ruth Ng, Björn Tackmann

SEHN4.Enc((KF,K1), N,M,H)

N1 ← F.Ev(KF, (N,M,H))

C1 ← SE1.Enc(K1, N1, N‖M,H)

C2 ← N1‖C1

Return C2

SEHN4.Dec((KF,K1), C2, H)

If (|C2| < F.ol) then return ⊥
N1‖C1 ← C2 ; X ← SE1.Dec(K1, N1, C1, H)

If (X = ⊥) then return ⊥
N‖M ← X ; T ← F.Ev(KF, (N,M,H))

If (T = N1) then return M else return ⊥

SEHN5.Enc(KTE, N,M,H)

C2 ← TE.Ev(KTE, H, 0
`t‖N‖M)

Return C2

SEHN5.Dec(KTE, C2, H)

X ← TE.In(KTE, H,C2)

If X[1..`t] 6= 0`t then return ⊥
N‖M ← X[(`t + 1)..|X|] ; Return M

HN4[SE1, `,F] HN5[TE, `, `t]

Fig. 5. Top: Encryption and decryption algorithms of the NBE2 schemes constructed
by our advanced transforms. From top to bottom: SEHN4 = HN4[SE1, `,F] and SEHN5

= HN5[TE, `, `t]. Bottom: Diagrams illustrating the encryption algorithms of the con-
structed schemes.

Advanced security of HN2. We showed in Theorem 3 that HN2 preserves ba-
sic security regardless of the amount ` of stolen core-ciphertext—even if ` = 0.
For small `, HN2 may, however, leak information about the nonce in the ad-
vanced (misuse resistance) setting. The transformation does therefore not pro-
vide AE2[Aae2

u-nmh]-security. This is easy to see when ` = 0, in which case if two
different message-header pairs are encrypted with the same nonce, then the first
part of the ciphertext is the same, leading to an Aae2

u-nmh-adversary with advan-
tage 1− 2−E.bl. The advantage of this attack however decreases (exponentially)
as ` increases. The following theorem says that once ` is non-trivial (say, 128
bits or more), the transform actually preserves advanced security as well. In the
full version of this paper, we prove this theorem and describe the attack alluded
to above in detail, showing that the bound in Theorem 6 is tight [12].

Nonces are Noticed: AEAD Revisited 23

Theorem 6. Let SEHN2 = HN2[SE1, `,E,Spl] be obtained as above. Then, given
adversary A2 ∈ Aae2

u-nmh, making qn queries to its New oracle and qe queries per
user to its Enc oracle, we construct adversaries A1 ∈ Aae1

u-nmh and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

E (B) +
qnqe(qe − 1)

2`+1
. (3)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe queries per user to its Fn oracle. Adversary B has about
the same running time as A2.

This however is not ideal because security would need ` = 128, which requires
SE1.mccl ≥ 128 (not always true) and also, assuming 96-bit nonces, would require
that the blockcipher E have block length 128+96=224, which precludes AES. We
now give further transforms that do better.

The HN4 transform. The HN3 transform clearly does not provide advanced-
AE2-security because, if a nonce is repeated, the resulting ciphertexts have
the same synthetic nonce, and hence the same first parts, which an adversary
can notice. The starting idea for HN4 is to obtain the synthetic nonce N1

by applying the PRF F, not just to the actual nonce N as in HN3, but, as
in SIV [51], to (N,M,H). If we now encrypt with N1 under an NBE1 scheme
SE1, we can indeed show that AE2[Aae2

u-nmh]-security is achieved, assuming SE1 is
AE1[Aae1

u-nmh]-secure. The latter assumption, however, is not satisfactory here be-
cause AE1[Aae1

u-nmh]-security (typically achieved via SIV itself) already requires
two passes through the entire input, so our computation of N1 adds another
entire pass, resulting in significant (non-constant) computational overhead. To
avoid this we ask whether it would be enough for SE1 to provide only privacy,
meaning be AE1[Aae1

r-n ∩Aae1
priv]-secure, because this can be achieved in one pass.

Indeed, this is what SIV assumes, but the difficulty is that SIV decryption makes
crucial use of the original nonce N to provide authenticity, recomputing it and
checking that it matches the one in the ciphertext. But to be nonce hiding,
we cannot transmit N . We resolve this by including N as part of the message
encrypted under SE1.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function
family with F.ol = SE1.nl, meaning outputs of F.Ev can be used as nonces for
SE1, and also with SE1.NS×SE1.MS×SE1.HS ⊆ F.D, meaning triples (N,M,H)
can be used as inputs to F. Let ` ≥ 1 be an integer prescribing the nonce length
of the constructed scheme. Our HN4 transform defines NBE2 scheme SEHN4

= HN4[SE1, `,F] whose encryption and decryption algorithms are shown in
Figure 5. A key (KF,K1) for SEHN4 is a pair consisting of a key KF for F and
a key K1 for SE1, so that the key space is SEHN4.KS = {0, 1}F.kl × SE1.KS. The
message and header spaces are unchanged, and the nonce space is SEHN4.NS =
{0, 1}`. The parsing in the second line of the decryption algorithm SEHN4 of
Figure 4 is such that |N1| = SE1.nl. The ciphertext overhead is zero, and if
SE1 is a standard one-pass privacy only scheme like counter-mode, then the
computational overhead is constant.

24 Mihir Bellare, Ruth Ng, Björn Tackmann

Security, as with SIV, requires that SE1 satisfies tidiness [43]. Formally, for
all K,N,C1, H, if SE1.Dec(K,N,C1, H) = M 6= ⊥ then SE1.Enc(K,N,M,H)
= C1. We capture the assumption that SE1 provides only privacy in the nonce
respecting setting, and it continues to be convenient for this to be for adversaries
that pick the nonce at random, so our assumption for SE1 is AE1[Aae1

r-n ∩Aae1
priv]-

security. By Proposition 1 this is implied by its being AE1[Aae1
u-n ∩Aae1

priv]-secure.
Assuming additionally that F is a PRF, the following says that HN4[SE1, `,F]
is AE2[Aae2

u-nmh]-secure. The proof is in the full version [12].

Theorem 7. Let SEHN4 = HN4[SE1, `,F] be obtained as above, and let SE1 sat-
isfy tidiness. Then, given adversary A2 ∈ Aae2

u-nmh making qn queries to its New
oracle and qe, qd encryption and decryption queries for each user, respectively,
we construct adversaries A1 ∈ Aae1

r-n ∩Aae1
priv and B such that

Advae2
SE2(A2) ≤ Advae1

SE1(A1) + Advprf
F (B) +

qnqd
2SE1.nl

.

Adversary A1 makes qn queries to its New oracle, qe queries to its Enc oracle
per user, and no queries to its Dec oracle. B makes qn queries to its New
oracle, and qe + qd queries to its Fn oracle per user. Adversaries A1 and B both
have about the same running time as A2.

Our final transform HN5 is different. It does not start from an NBE1
scheme but rather from a (arbitrary-input-length) tweakable cipher, extending
the encode-then-encipher paradigm [14] to provide advanced-AE2-security. In-
stantiation via a fast tweakable cipher like AEZ [28] results in correspondingly
fast advanced-AE2-secure NBE2.

The HN5 transform. We encipher the nonce, message and some redundancy,
using the header as the tweak. The change from [28] is to move the nonce from
tweak to an input so as to hide it, which we will show is enough to confer
AE2-security.

Proceeding to the details, let TE be a tweakable cipher as defined in Sec-
tion 2. Let ` ≥ 1 be an integer prescribing the nonce length of the constructed
scheme. Let `z ≥ 0 be the number of bits of redundancy we introduce to provide
authenticity [14]. Our transform defines NBE2 scheme SEHN5 = HN5[TE, `, `z]
whose encryption and decryption algorithms are shown in Figure 5. The key
space of SEHN5 is the key space of TE. The message space is {0, 1}∗. The
header space SEHN5.HS is set to the tweak space TE.TS of TE. The nonce
space is SEHN5.NS = {0, 1}`. The length of ciphertext SEHN5.Enc(K,N,M,H)
is `z + |N |+ |M |, so SEHN5.CS(`n, `m, `h) = {0, 1}`z+`+`m . Ciphertext overhead,
in this case, is not relative to an underlying NBE1 scheme, since there isn’t any,
but we see that ciphertexts are longer than message plus nonce by just `z bits,
which is effectively optimal [28].

The following theorem shows that SEHN5 is advanced-AE2-secure if tweakable
cipher TE is an stPRP (as defined in Section 2) and `z is sufficiently large.

Theorem 8. Let SEHN5 = HN5[TE, `, `z] be obtained as above. Let A ∈ Aae2
u-nmh

be an adversary making qn queries to its New oracle, qe queries per user to its

Nonces are Noticed: AEAD Revisited 25

Enc oracle with minimum message length `1, and qd queries with minimum
ciphertext length `2 ≥ `z per user to its Dec oracle. We construct adversary B
such that

Advae2
SEHN5

(A) ≤ Advstprp
TE (B) +

qnqe(qe + 1)

2`z+`+`1+1
+
qnqd(qd + 1)

2`2+1
+
qnqd
2`z

.

Adversary B makes qn queries to its New oracle, qe queries per user to its Fn
oracle, and qd queries per user to its FnInv oracle.

7 Dedicated transform for GCM

We have shown that our generic transforms allow us to immunize NBE1 schemes
with low overhead. We now present a transform specific to a real-world NBE1
scheme: GCM. Our transform takes advantage of the underlying structure of
GCM to further minimize overhead. Crucially, we also minimize changes to the
scheme so that existing hardware and software can easily adapt.

Generalizing GCM to CAU1. Following Bellare and Tackmann [16], we generalize
GCM via a transform CAU1. (We add the “1” to indicate that it is an NBE1
scheme.)

Let E be a block cipher, H be a function family and ` ≥ 1 be an integer
indicating the desired nonce-length. Then CAU1 = CAU1[E,H, `] is an NBE1
scheme. E.bl(2E.bl−`−2) is the maximum message length for CAU1 so we require
that 1 ≤ ` < E.bl. Core ciphertexts returned by CAU1.Enc take the form τ‖C,
where τ is a tag of length E.bl. CAU1’s keys are keys to its underlying block
cipher E, meaning that CAU1.kl = E.kl. We use function family H to compute
the tag τ . H takes input of the form (C,H) and returns an output of length
E.bl. It uses a key which is generated by enciphering 0E.bl using E. This means
that we require that H.D = {0, 1}∗ × CAU1.HS and H.ol = H.kl = E.bl. The full
description of CAU1.Enc and CAU1.Dec is in the full version [12].

AES-GCM, as proposed by McGrew and Viega [40] and standardized by
NIST [22], is obtained by instantiating E = AES (so E.bl = 128), H = GHASH
and ` = 96. It is widely used in practice and achieves basic AE1-security (i.e.
AE1[Aae2

u-n]-security). CAU1 has a fixed-length nonce, reflecting the standardized
version of GCM, but a variant with variable-length nonces can be obtained by
pre-processing the nonce, as discussed in [40].

AE2-secure CAU2. We exploit a feature of GCM, that the nonce can be derived
from the authentication tag τ . In particular, if τ‖C ← CAU1.Enc(K,N,M,H),
then τ = H.Ev(E.Ev(K, 0E.bl), (C,H))⊕E.Ev(K,N‖〈1〉E.bl−`). (Recall that, as de-
fined in Section 2, 〈i〉n is the n-bit representation of integer i.) Therefore, in
constructing our NBE2 variant CAU2, we make use of the fact that the sender
does not need to communicate the nonce—the receiver uses the tag to recover
it. In other words, we exploit the “parsimoniousness” of TN[CAU1] [13].

Unfortunately, the recovery procedure will succeed for any given ciphertext
with probability 2−E.bl+`, since this is the probability that some nonce with suffix

26 Mihir Bellare, Ruth Ng, Björn Tackmann

〈1〉E.bl−` is recovered. This would be unacceptable in GCM since an adversary
would be able to forge valid tags with probability 2−32.

So in order to make the scheme work, we add redundancy to the scheme by
prepending the message with 0`. CAU2 decryption will check that the message
returned by CAU1.Dec indeed starts with such a string; this check works because
a decryption with a “wrong” nonce leads to a random ciphertext. (For this
reason, the maximum message length of CAU2 is ` bits shorter than CAU1.)
A similar technique is used by ADL [4] in their scheme, GCM-RUP, but for a
slightly different variant of GCM.

More formally, the transform CAU2 defines an NBE2 scheme CAU2 =
CAU2[E,H, `] whose encryption and decryption algorithms are shown in Fig. 6.
The parsing in the first and sixth line of CAU2.Dec is such that |τ | = E.bl and
|x| = `. If either parsing fails, CAU2.Dec will return ⊥.

The theorem below demonstrates that CAU2 achieves basic security assuming
that E is an sPRP and H is an (ε1, ε2)-AXU function family (as defined in [36,
16, 34, 2] and others). We refer the reader to the full version of this paper for a
description of these notions of security [12].

Theorem 9. Let CAU2 = CAU2[E,H, `] be the NBE2 scheme defined above
where H is an (ε1, ε2)-AXU function family. Let A ∈ Aae2

u-n be an adversary
making qn calls to its New oracle, qe calls to its Enc oracle per session and qd
calls to its Dec oracle per session. The total number of message blocks passed
to the encryption oracle by A for any single session does not exceed Q′ and
the lengths of C2, H passed to the decryption oracle by A do not exceed `′1, `2,
respectively. Let Q = Q′+qe and `1 = `′1+E.bl. Then we can construct adversary
B such that:

Advae2
CAU2(A) ≤2Advsprp

E (B) + qn(qeqd + q2d) · ε1(`1, `2) + qn(q2d − qd) · ε2(`1, `2)

+ qn

(
2Q2 + 2Q+ q2d + 4qdQ+ 3qd + 2

2E.bl+1
+
q2d + qd + 2qeqd

2`+1

)
B makes qn queries to its New oracle, no more than Q + 1 queries to its Fn
oracle for each user and no more than qd queries to its Dec oracle for each user.

The proof of the theorem is in the full version of this paper. Future work can
apply the techniques used in recent work to improve upon this bound [16, 38,
30].

CAU2 has some advantages over the schemes obtained through our basic
transforms described in Section 5. CAU2 only makes use of the same keys and
(often extensively optimized) primitives already existing in CAU1. This allows
for code reuse, making it easy for existing hardware and software to adapt. In
contrast to the generic transforms, CAU2 has a (E.bl−`)-bit ciphertext overhead
(for reference, in AES-GCM this is 32-bits), but lower or comparable computa-
tional overhead—a single block cipher call in both encryption and decryption.

Nonces are Noticed: AEAD Revisited 27

CAU2.Enc(K,N,M,H)

C2 ← CAU1.Enc(K,N, 0`‖M,H)

Return C2

CAU2.Dec(K,C2, H)

τ‖C ← C2 ; h← H.Ev(E.Ev(K, 0E.bl), (C,H))

y ← E.In(K, τ⊕h) ; N ← y[1..`]

If (y[(`+ 1)..E.bl] 6= 〈1〉E.bl−`) then return ⊥
M∗ ← CAU1.Dec(K,N,C2, H)

If (M∗ = ⊥) then return ⊥
x‖M ←M∗

If (x 6= 0`) then return ⊥ else return M

Fig. 6. Encryption and decryption algorithms of NBE2 scheme CAU2 = CAU2[E,H, `],
a special case of which is an AE2[Aae2

u-n]-secure variant of GCM.

8 A real-world perspective

In addition to bridging the gap between theory and usage, our framework allows
us to formalize weaknesses of real-world schemes which communicate nonces in
the clear.

First, it allows us to formalize an intuitive fact: pathologically chosen nonces
cannot be communicated in the clear. It may seem obvious that message or
key-dependent nonces violate security but such pathological nonce choices have
occurred in the wild. For instance, CakePHP, a web framework, used the key
as the nonce [1] when encrypting data. The use of a hash of a message has also
been proposed, and subsequently argued as insecure, in an Internet forum [45].

Second, it disallows metadata leakage through the nonce. Implicit nonces
with a device specific field, such as those recommended in RFC 5116 [39] enable
an adversary to distinguish between different user sessions. Even the “standard”
nonce choices are not safe against these adversaries. A counter will allow an
adversary distinguish between sessions with high traffic and low traffic, and a
randomly chosen nonce can detect devices with poor entropy (RSA public keys
were used to a similar end by HDWH [27]).

Acknowledgments. We thank the anonymous reviewers for their feedback
and suggestions. Bellare was supported in part by NSF grants CNS-1526801 and
CNS-1717640, ERC Project ERCC FP7/615074 and a gift from Microsoft. Ng
was supported by DSO National Labs. Tackmann was supported in part by the
Swiss National Science Foundation (SNF) via Fellowship No. P2EZP2 155566
and NSF grant CNS-1228890.

References

1. CakePHP: Using the IV as the key. http://www.cryptofails.com/post/

70059594911/cakephp-using-the-iv-as-the-key, accessed: 2019-02-12

28 Mihir Bellare, Ruth Ng, Björn Tackmann

2. Abed, F., Fluhrer, S.R., Forler, C., List, E., Lucks, S., McGrew, D.A., Wenzel,
J.: Pipelineable on-line encryption. In: Cid, C., Rechberger, C. (eds.) FSE 2014.
LNCS, vol. 8540. Springer.

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873. Springer.

4. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403. Springer.

5. Aumasson, J., Babbage, S., Bernstein, D., Cid, C., Daemen, J., Dunkelman, O.,
Gaj, K., Gueron, S., Junod, P., Langley, A., McGrew, D., Paterson, K., Preneel, B.,
Rechberger, C., Rijmen, V., Robshaw, M., Sarkar, P., Schaumont, P., Shamir, A.,
Verbauwhede, I.: CHAE: Challenges in authenticated encryption. ECRYPT-CSA
D1.1, Revision 1.05 (March 2017), https://chae.cr.yp.to/whitepaper.html

6. Barbosa, M., Farshim, P.: Indifferentiable authenticated encryption. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991.

7. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in
the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624. Springer.

8. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807. Springer.

9. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: 37th FOCS.IEEE Computer
Society Press (Oct 1996).

10. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS. IEEE Computer Society Press (Oct 1997).

11. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976. Springer.

12. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited. Cryptol-
ogy ePrint Archive Report 2019/624, (2019), http://eprint.iacr.org/2019/624

13. Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In:
Knudsen, L.R. (ed.) FSE’99. LNCS, vol. 1636. Springer.

14. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976. Springer.

15. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004. Springer.

16. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I.
LNCS, vol. 9814. Springer.

17. Bernstein, D.: CAESAR call for submissions, final (2014.01.27) (2014), https:

//competitions.cr.yp.to/caesar-call.html
18. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: Multi-user secu-

rity, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part I. LNCS, vol. 10820. Springer.

19. CAESAR Committee: Cryptographic competitions: Caesar call for submissions, fi-
nal (2014.01.27). https://competitions.cr.yp.to/caesar-call.html, accessed:
2018-07-23

Nonces are Noticed: AEAD Revisited 29

20. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,
Heninger, N., Weinmann, R.P., Rescorla, E., Shacham, H.: A systematic analy-
sis of the juniper dual EC incident. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016.

21. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991. Springer.

22. Dworkin, M.: Recommendation for block cipher modes of operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D
(November 2007).

23. Fleischmann, E., Forler, C., Lucks, S.: McOE: A family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549. Springer.

24. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol.
10403. Springer.

25. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Specification and analysis.
Cryptology ePrint Archive, Report 2017/168 (2017), http://eprint.iacr.org/

2017/168
26. Gueron, S., Lindell, Y.: GCM-SIV: Full nonce misuse-resistant authenticated en-

cryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015.

27. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your ps and
qs: Detection of widespread weak keys in network devices. In: USENIX Security
Symposium. vol. 8, p. 1 (2012).

28. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056. Springer.

29. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215. Springer.

30. Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM,
revisited: Tight bounds for nonce randomization. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018.

31. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417.
Springer.

32. Joux, A.: Authentication failures in NIST version of GCM (2006), comments
submitted to NIST modes of operation process, https://csrc.nist.gov/

csrc/media/projects/block-cipher-techniques/documents/bcm/comments/

800-38-series-drafts/gcm/joux_comments.pdf
33. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of

operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978. Springer.
34. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y. (ed.)

CRYPTO’94. LNCS, vol. 839. Springer.
35. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption

modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733. Springer.
36. Kurosawa, K., Iwata, T.: TMAC: Two-key CBC MAC. In: Joye, M. (ed.) CT-

RSA 2003. LNCS, vol. 2612. Springer.
37. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. Journal of Cryp-

tology 24(3), 588–613 (Jul 2011).

30 Mihir Bellare, Ruth Ng, Björn Tackmann

38. Luykx, A., Mennink, B., Paterson, K.G.: Analyzing multi-key security degradation.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625.
Springer.

39. McGrew, D.: An interface and algorithms for authenticated encryption. IETF Net-
work Working Group, RFC 5116 (January 2008).

40. McGrew, D.A., Viega, J.: The security and performance of the Galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348. Springer.

41. Meyer, C.H., Matyas, S.M.: CRYPTOGRAPHY: A new dimension in computer
data security: A guide for the design and implementation of secure systems. Wiley
(1982).

42. Minematsu, K.: Authenticated encryption with small stretch (or, how to accelerate
AERO). In: Liu, J.K., Steinfeld, R. (eds.) ACISP 16, Part II. LNCS, vol. 9723.
Springer.

43. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composi-
tion. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441.
Springer.

44. Namprempre, C., Rogaway, P., Shrimpton, T.: AE5 security notions: Definitions
implicit in the CAESAR call. Cryptology ePrint Archive, Report 2013/242 (2013),
http://eprint.iacr.org/2013/242

45. Reddit: Hash of message as nonce? (2015), https://redd.it/3c504m, https://
redd.it/3c504m

46. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002.

47. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329.
Springer.

48. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017. Springer.

49. Rogaway, P.: The evolution of authenticated encryption. Real World Cryp-
tography Workshop, Stanford (January 2013), https://crypto.stanford.edu/

RealWorldCrypto/slides/phil.pdf

50. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM CCS 2001.

51. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004. Springer.

52. Vaudenay, S., Vizár, D.: Under pressure: Security of caesar candidates beyond
their guarantees. Cryptology ePrint Archive, Report 2017/1147 (2017), https:

//eprint.iacr.org/2017/1147

53. Wu, H., Preneel, B.: AEGIS: A fast authenticated encryption algorithm. In: Lange,
T., Lauter, K., Lisonek, P. (eds.) SAC 2013. LNCS, vol. 8282. Springer.

