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Abstract. We introduce a new primitive, called trapdoor hash functions
(TDH), which are hash functions H : {0, 1}n → {0, 1}λ with additional
trapdoor function-like properties. Speci�cally, given an index i ∈ [n],
TDHs allow for sampling an encoding key ek (that hides i) along with a
corresponding trapdoor. Furthermore, given H(x), a hint value E(ek, x),
and the trapdoor corresponding to ek, the ith bit of x can be e�ciently
recovered. In this setting, one of our main questions is: How small can
the hint value E(ek, x) be? We obtain constructions where the hint is
only one bit long based on DDH, QR, DCR, or LWE.
This primitive opens a �oodgate of applications for low-communication
secure computation. We mainly focus on two-message protocols between
a receiver and a sender, with private inputs x and y, resp., where the
receiver should learn f(x, y). We wish to optimize the (download) rate
of such protocols, namely the asymptotic ratio between the size of the
output and the sender's message. Using TDHs, we obtain:
1. The �rst protocols for (two-message) rate-1 string OT based on

DDH, QR, or LWE. This has several useful consequences, such as:
(a) The �rst constructions of PIR with communication cost poly-

logarithmic in the database size based on DDH or QR. These
protocols are in fact rate-1 when considering block PIR.

(b) The �rst constructions of a semi-compact homomorphic encryp-
tion scheme for branching programs, where the encrypted output
grows only with the program length, based on DDH or QR.

(c) The �rst constructions of lossy trapdoor functions with input to
output ratio approaching 1 based on DDH, QR or LWE.

(d) The �rst constant-rate LWE-based construction of a 2-message
�statistically sender-private� OT protocol in the plain model.

2. The �rst rate-1 protocols (under any assumption) for n parallel OTs
and matrix-vector products from DDH, QR or LWE.

We further consider the setting where f evaluates a RAM program y
with running time T � |x| on x. We obtain the �rst protocols with com-
munication sublinear in the size of x, namely T ·

√
|x| or T · 3

√
|x|, based

on DDH or, resp., pairings (and correlated-input secure hash functions).

? Part of the work done while at Friedrich-Alexander-Universität Erlangen-Nürnberg.
?? Part of the work done while at Technion.



1 Introduction

Seminal results from the 1980s [55, 31] showed that it is possible for a group of
mutually distrustful parties to compute a joint function on their private inputs
without revealing anything more than the output of the computation. These
foundational results were seen as providing the �rst theoretical proofs of concept.
However, signi�cant theoretical and practical advances over the years provide
support for the idea that perhaps secure computation can be as practical and
ubiquitous as public-key cryptography.

In the quest to make secure computation e�cient, realizing communication
e�cient secure computation protocols has emerged as a central theme of re-
search. Moreover, secure computation protocols with large communication cost
can often be prohibitive in practice. Consequently, substantial e�ort has been
put towards realizing communication e�cient protocols. Nonetheless, our un-
derstanding of communication e�cient secure computation protocols remains
signi�cantly limited. Speci�cally, known protocols for circuits with communica-
tion independent of the circuit size are only known using fully homomorphic
encryption (FHE) [27] and can only be based on variants of LWE. In the two-
party case, the communication complexity of such protocols is comparable to the
length of the shorter input plus the length of the output. For simpler functions
that can be represented by log-depth circuits or polynomial-size branching pro-
grams, similar protocols were recently constructed from other assumptions such
as DDH [9] or a circular-secure �avor of DCR [23]. Here the communication is
comparable to the total length of both inputs plus the length of the output.

The above state of a�airs leaves several types of gaps between secure and
insecure communication complexity.1 First, even when applying the best known
FHE schemes, there is a constant-factor gap for functions whose output length
is comparable to (or longer than) the length of the shorter input.2 Second, the
communication gap can be even bigger when considering restricted interaction.
For instance, when one input is much shorter than the other, FHE cannot be
used to get communication-e�cient 2-message protocols where the party holding
the long input sends the �rst message. Finally, and most importantly for this
work, under standard assumptions other than LWE, the gaps between secure and
insecure communication are much bigger, especially when considering functions
with unbalanced input sizes.

To illustrate the current gaps, consider the fundamental problem of private
information retrieval (PIR) [44, 17] over m-bit records, where a client wants to
privately learn the ith record of a server's database that consists of n records of
length m each. Here, a protocol that achieves near-optimal communication from
the server to the client (i.e., roughly m bits) is only known under DCR [18, 45].

1 It seems plausible that these gaps can be closed using indistinguishability obfusca-
tion [25]. However, the focus of this work is on constructions that can be based on
more traditional assumptions.

2 A simple �hybrid FHE� technique [28] can generically convert any FHE scheme into
one whose encrypted (long) input is roughly as long as the input. However, no such
generic technique is known for compressing the encrypted output.
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For the case of retrieving m di�erent 1-bit records, the situation is even worse.
In the best known protocol, the gap between the server's message length and
the output length is a big multiplicative constant [33]. Finally, even for the case
m = 1, obtaining polylog(n) communication under (subexponential variants of)
standard assumptions such as DDH or QR is open.

1.1 Our Setting and Questions of Interest

Setting: Two-Message Secure Computation. We consider two-party protocols in
which a receiver and a sender have private inputs x and y, respectively. We
consider protocols for evaluating a function f(x, y) using only two messages.
First, based on its input x, the receiver sends the �rst message msg1 to the
sender who, based on its input y, responds with the second messagemsg2. Finally,
the receiver uses its secret state and msg2 to compute f(x, y). Sender's privacy
requires that the receiver learns nothing more about y than f(x, y) and the
length of y. Similarly, receiver's privacy requires that the sender learns nothing
about x other than its length. By default, we only consider security against
semi-honest parties.3

Case I: Large Receiver Output. We are primarily interested in the case where
the output of f is long, and de�ne the download rate of such a 2-message pro-
tocol (or rate for short) as the asymptotic ratio between |f(x, y)| and |msg2|.
We will also consider the overall rate, de�ned as the asymptotic ratio between
the insecure communication complexity of f and that of the protocol. A fun-
damental functionality in this regime is oblivious transfer (OT). We start with
the special case of string OT, implemented via a two-message protocol. Recall
that in the string OT functionality the inputs of the sender and receiver are two
strings s0, s1 ∈ {0, 1}n and a bit i ∈ {0, 1}, respectively. For this functionality, the
receiver's output should be si. Here the download and overall rate are the asymp-
totic ratios n

|msg2|
and n

|msg1|+|msg2|
, respectively, when the security parameter λ

tends to in�nity and n is a su�ciently big polynomial in λ (see De�nition 3.1
for a precise formulation). We also consider batch OT ; this functionality allows
n parallel instances of bit-OT (string OT with 1-bit strings).

Even for the special case of OT, the state-of-the-art with optimal overall rate
(or optimal download rate) is quite unsatisfactory.4 Any 2-message string-OT
protocol can be compiled into a similar protocol with rate 1/2 using hybrid en-
cryption as follows: Given a string-OT protocol for messages of size λ, the sender
uses the OT protocol to transmit one out of two symmetric keys to the receiver,

3 Our protocols can be e�ciently extended to provide security against malicious parties
(under the same assumptions) using sublinear arguments [46]. This increases the
number of rounds, but does not a�ect the asymptotic communication.

4 The work of Cho et al. [16] on laconic OT gives a batch OT protocol where |msg1|
is independent of |x|. This generalizes to arbitrary functions f ; however, even in the
simple case of batch OT the download rate is sub-constant. The same applies to the
more recent work of Quach et al. [52] on laconic function evaluation.
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and uses these keys with a rate-1 symmetric encryption scheme to encrypt the
actual messages. The two ciphertexts are sent along with the OT sender mes-
sage. The receiver recovers one of the two keys and decrypts the corresponding
ciphertext. However, going beyond rate 1/2 seems to hit barriers! Interestingly
enough, for information-theoretic OT in the correlated randomness model, rate
1/2 (as e.g. in Beaver's standard reduction [6]) is optimal [54, 38]. In the com-
putational setting, constructions based on additively homomorphic encryption
or homomorphic secret sharing hit a similar barrier [53, 10, 42]. Currently, the
only construction of OT known to achieve rate better than 1/2 is based on the
Damgård-Jurik cryptosystem [18], which relies on the DCR assumption. Even
here, optimal rate in only achieved by undesirably letting the size of the group
used in the scheme grow with the size of the inputs.5 Moreover, in the more
general case of batch OT, rate 1 could not even be achieved based on DCR. This
brings us to our �rst motivating question:

Can we realize OT with rate > 1
2 from assumptions other than DCR?

Can we realize such batch OT from any assumption?

Why care about OT with rate > 1
2? As mentioned earlier, there is a large body

of work on minimizing the communication complexity of secure computation.
The special case of OT is not only natural and useful as a standalone appli-
cation, but it also serves as a stepping stone for other applications. Indeed,
high-rate 2-message OT implies: (i) high-rate PIR with polylogarithmic com-
munication complexity in the number of records [44, 40]; (ii) a semi-compact
homomorphic encryption scheme that supports evaluation of bounded-length
branching programs (in particular, �nite automata, decision trees and OBDDs)
over encrypted data [40], (iii) a high-rate lossy-trapdoor function [51], and (iv)
statistically sender-private (SSP) two-message OT with constant rate [4, 11]. We
will elaborate on these applications below. To sum up, while high-rate OT is a
powerful primitive with important consequences, very little is known about how
to construct it.

Case II: Large Receiver Input. Up to this point, we were mainly concerned
with functions f(x, y) that have a long output, where our goal was to make
the communication from the sender to the receiver very close to |f(x, y)|. Even
multi-round protocols of this type were not known prior to our work. A second
setting we consider applies to two-round protocols in the case where |x| � |y|
and the output is short. In this case, an insecure protocol for f can simply
have the sender communicate y to the receiver. Since secure computation with
only one message is impossible (except in trivial cases), our goal is to obtain
a two-message secure protocol with similar e�ciency features, namely where
the total communication complexity is comparable to |y| rather than |x|. As
a motivating example, consider the case where the receiver has a large n-bit

5 In this work, we consider this question in the more stringent two-message setting.
However, we note that no other protocols with rate > 1

2
are known even when

additional rounds of communication are allowed.
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database x, the sender's input y describes a small RAM machine M whose
running time is T � n, and the receiver's output is M(x). For instance, M can
select a single entry y ∈ [n] of x, outputting M(x) = xy. Note that a natural
FHE-based protocol where the receiver sends an encryption of x and receives an
encryption of M(x) does not meet our e�ciency goal of using less than n bits of
communication. On the other hand, allowing for a higher round complexity, our
goal can be met using any PIR protocol [46].

From here on, we restrict the attention to 2-message protocols with o(n)
communication. The recent laconic function evaluation primitive [52] provides
such a protocol with overall communication of |y| + poly(λ, T ), where λ is a
security parameter. However, results in this setting are only known under LWE
(with subexponential modulus-to-noise ratio). This brings us to our second main
question:

Are there 2-message protocols computing M(x) with o(n) bits of
communication from any assumptions other than LWE?

1.2 Our Results

In this work, we introduce a new primitive that we call trapdoor hash func-
tions (TDHs).6 TDHs are hash functions H : {0, 1}n → {0, 1}λ with additional
trapdoor-function-like properties. Speci�cally, given an index i ∈ [n], TDHs al-
low for sampling an encoding key ek (that hides i) along with a corresponding
trapdoor. Furthermore, given H(x), a hint value E(ek, x), and the trapdoor cor-
responding to ek, the ith bit of x can be e�ciently recovered. In this setting, one
of our main questions is: how small can the hint value E(ek, x) be? We de�ne
the rate of TDH as the inverse of the size of the hint.

We obtain constructions of rate-1 TDHs from standard assumptions, namely
DDH, QR, DCR, and LWE. The surprising twist in these constructions is the
close integration of techniques developed in two very recent and seemingly un-
related lines of investigation: (i) A new type of hash function for constructing
identity-based encryption by Döttling and Garg [21] and its extension to con-
structions of trapdoor functions by Garg, Gay and Hajiabadi [26, 24] and (ii)
techniques for homomorphic secret sharing by Boyle, Gilboa and Ishai [9].

Main Result: Rate-1 Two-Message String OT. Our TDHs yield the �rst con-
struction of string OT with rate-1 from the {DDH, QR, LWE} assumption. Ad-
ditionally, we get a new construction under DCR, for which, unlike the Damgård-
Jurik construction [18], the size of the group used is independent of the size of
the inputs. We stress that while our constructions use only two messages; pre-
viously, even multi-round constructions with rate > 1

2 were not known under
these assumptions.7 This allows us to obtain the following new results:

6 The notion of trapdoor hash functions is inspired by the closely related notion of hash
encryption [21, 22, 13, 26] and somewhere statistically binding hash functions [36,
43, 49].

7 Our protocols achieve asymptotic download rate 1, which is clearly optimal. However,
the (additive) di�erence between the sender's message length and the output length
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1. Private Information Retrieval : We obtain the �rst constructions of private
information retrieval (PIR) from {DDH, QR, LWE} with download rate
1 (for retrieving long records). The total communication complexity grows
only logarithmically with the number of records.8 Previously, such PIR pro-
tocols were only known under DCR [45]. This also resolves the longstanding
open question of building PIR with polylogarithmic communication (for 1-bit
records) from {DDH, QR} [44]. Such protocols were only known under DCR,
LWE, and the Phi-hiding assumptions [14, 45, 15, 50]. For example, the best

known construction from DDH required O(2
√
logn ·λ) bits of communication,

for database size n and security parameter λ [44, 53].
2. Semi-Compact Homomorphic Encryption for Branching Programs: We ob-

tain the �rst encryption schemes based on {DDH, QR} that allow evaluating
a branching program on an encrypted input, where the encrypted output
grows only with the length of the branching program and not with its size.
Previously, such schemes were only known under {DCR, LWE} [40].

3. Lossy Trapdoor Functions: We obtain the �rst construction of lossy trapdoor
functions [51] with rate 1 from the {DDH, QR, LWE} assumption. Here, rate
is de�ned as the ratio of the input length and output length for the trapdoor
function. Very recently, Garg et al. [24] obtained construction from DDH
with a small constant rate. However, besides that, no constructions with
constant rate were known under these assumptions.

4. Malicious Statistically Sender Private OT: We obtain the �rst LWE-based 2-
message OT protocol in the plain model that o�ers statistical sender privacy
against a malicious receiver and has a constant rate. This improves over the
1/ log(λ) rate of a recent LWE-based protocol of Brakerski and Döttling [11].
Similar protocols were previously known under {DDH, DCR} [48, 1, 34].

Rate-1 Protocols for Functionalities Generalizing OT. We generalize the tech-
niques for rate-1 OT to yield secure 2-message protocols with download rate 1
for other useful functionalities. In these cases, we obtain the �rst protocols under
any assumption. We obtain such protocols for the following functionalities.

1. Batch OT: Batch OT allows n instances of bit-OT to be performed in par-
allel. We obtain 2-message batch OT protocol with download rate 1 (but
sub-constant upload rate) from QR and LWE. Allowing for inverse polyno-
mial error probability, we obtain a similar protocol under DDH. Protocols
with smaller constant download rates (and constant overall rate) were known
under a variety of assumptions; see [39, 10, 8] and references therein.

2. Batch OLE: An oblivious linear function evaluation (OLE) scheme allows
the sender to evaluate an a�ne function f(x) = ax + b over the receiver's

grows with the security parameter λ. In the full version we show that that this gap is
necessary even in the more liberal setting of secure computation with preprocessing.

8 More speci�cally, as our group-based constructions are black-box in the underlying
group, we can count the communication complexity in terms of the number of group
elements, which in our case is logn · poly(λ), where n is the size of the database and
λ is the security parameter.
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private input x. We obtain the �rst batch OLE (over either a �eld of a
small characteristic or smooth modulus) with download rate 1 based on
QR or LWE. We also get a DDH-based construction if we allow inverse-
polynomial error. For the case of �elds, smaller constant download rate (and
constant overall rate) could be realized under LWE [20, 42] or code-based
assumptions [47, 41, 2].

3. Matrix-Vector Products: We generalize the above to oblivious matrix-vector
product evaluation (OMV), where the sender has a matrix M , the receiver
holds a vector v, and the output isMv. A two-message OMV protocol can be
thought as a relaxed form of additively homomorphic encryption. Our tech-
niques can be generalized to construct OMVs over F2 with optimal download
rate, based on QR or LWE. We can also generalize the LWE-based construc-
tion to �elds modulo small primes or smooth integers. Compared to previous
LWE-based constructions (e.g., [42]), we get better (optimal) download rate
but worse overall rate.

As mentioned for rate-1 OT, all the aforementioned results were known only un-
der the DCR assumption (and in the case of functionalities generalizing OT, were
not known under any standard assumptions), where optimal rate was achieved
by letting the size of the group grow with the size of the inputs. Our work im-
proves in this setting. Speci�cally, assuming only DCR, our work implies all of
the above results in groups of size independent of the message length.

As in the context of rate-1 OT, while we consider only two-message protocols,
we stress that, prior to our work, none of the above-mentioned results were known
even when additional rounds of communication are allowed.

Beyond OT: Two-Message SFE with Sublinear Communication. Armed with
our new techniques, we attempt to broaden the class of functionalities for which
two-message secure-function evaluation (SFE) can be achieved with sublinear
communication. Speci�cally, we start with the following example setting: Alice
would like to share her DNA sequence online so that various medical researchers
can use it to provide her with valuable insights about her health. However, Alice
wants to keep her �large� genetic information con�dential and each researcher
wants to keep the speci�c parts of the genetic code it looks at private. In a bit
more detail, Alice wants to publish a hash h(x) of her input x (of length n)
online, such that any contractor Bob, with a private machine M with �small
running time� (denoted by T ) can send Alice a �short� message, enabling her to
learn M x, where M has random access to x. In summary, we are interested in a
setting that allows Alice to evaluate Bob's private small machine on her private
large input with sublinear communication.

Positive results for the above setting with sublinear communication are only
known from lattice assumptions � namely, using laconic function evaluation [52].
In contrast, for the case of DDH-based constructions, such protocols need com-
munication complexity proportional to n. We note that constructions based on
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laconic OT [16] do not keep the locations accessed by M private and thus, do
not su�ce for this application.9

We obtain the �rst protocol for non-interactive secure computation on large
inputs from DDH with communication proportional to T ·

√
n, where T is the

running time of the machine and n is the size of the database. Furthermore, using
pairings (and appropriate correlated-input secure hash functions [37, 30, 7, 32, 3])
we obtain a protocol with communication cost proportional to T · 3

√
n.

Further, in a scenario where Bob's machine M is repeatedly executed over
di�erent large inputs (possibly owned by di�erent Alices), we achieve protocols
with communication proportional to T , and independent of n, per execution,
assuming a non-interactive �o�ine phase� where Bob publishes an �encoding� of
M of length proportional to n or

√
n (from DDH or pairings, resp.), which can

be amortized over all executions.
Our results are obtained by constructing a variant of laconic OT [16], that

keeps the locations accessed by M private. We call this primitive private laconic
OT. The key technical challenge here is to realize this primitive with communi-
cation cost sublinear in the size of Alice's large input. By using private laconic
OT, rather than laconic OT, in the constructions from in [16], we obtain SFE
for RAM programs with sublinear communication which, as opposed to the pro-
tocol from [16], also hides the access pattern made by the machine to the input
database and therefore achieves a full notion of security.

1.3 Concurrent Work

In a concurrent work, Gentry and Halevi [29] constructed an e�cient rate-1 FHE
schemes from LWE, which in particular also yield rate-1 OT constructions. When
instantiated from LWE with polynomial modulus-to-noise ratio, their construc-
tion achieves rate 1− ε for any constant ε. In comparison, our OT constructions
achieve rate 1− 1/λ in this regime and can also be based on DDH or QR.

1.4 Paper Organization

In the following sections, we give a high level overview of the technical contri-
butions of our work. We �rst introduce trapdoor hash functions, and present
the ideas behind our constructions from the di�erent assumptions. We then pro-
ceed to discuss the applications of trapdoor hash. More technical details and full
formal analysis are provided in the full version.

2 Trapdoor Hash Functions

We start by providing a notational framework for the new primitive, then give
an overview of our constructions.

9 For this application, we insist on the two-message setting. Allowing O(T ) rounds of
interaction, similar protocols can be based on any single-server PIR scheme [46].
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2.1 De�ning Trapdoor Hash

A trapdoor hash scheme (TDH) de�nes a family of samplable publicly-parameterized
hash functions Hhk : {0, 1}n → {0, 1}η, accompanied with the following three al-
gorithms:

� Key generation: given the public hash key, Bob generates a pair of an encod-
ing key and a trapdoor (ek, td)← G(hk, i), corresponding to a private index
i ∈ [n].

� Encoding: using the encoding key ek, Alice, with a private input x ∈ {0, 1}n,
can compute a hint e← E(ek, x), which essentially encodes the bit x[i].

� Decoding: Bob, who has the secret trapdoor td, can now decode any encoding
e generated for some input x as above, to recover xi, given only the hash
Hhk(x). In fact, Bob would be able to generate two encodings (e0, e1) ←
D(td, h), where it is guaranteed that e = ex[i].

We actually consider a more general notion of TDH where Bob with a private
predicate f : {0, 1}n → {0, 1}, chosen from a prede�ned class of predicates F ,
generates a key ek, using which Alice encodes the bit f(x), and a corresponding
trapdoor, using which Bob decodes. Such a scheme is called trapdoor hash for
F , and the above special case is referred to as trapdoor hash for index predicates.

De�nition 2.1 (Trapdoor Hash Scheme). Let F = {Fn}n∈N be a class of
predicates, where each Fn is a set of predicates de�ned over over {0, 1}n, and let
ω := ω(λ) ∈ N for any λ ∈ N. A rate- 1ω trapdoor hash scheme (TDH) for F is a
tuple of �ve PPT algorithms TDH = (S,G,H,E,D) with the following properties.

� Syntax:
• hk← S(1λ, 1n). The sampling algorithm takes as input a security param-
eter λ and an input length n, and outputs a hash key hk.

• (ek, td) ← G(hk, f). The generating algorithm takes as input a hash key
hk and a predicate f ∈ Fn, and outputs a pair of an encoding key ek and
a trapdoor td.

• h ← H(hk, x; ρ). The hashing algorithm takes as input a hash key hk,
a string x ∈ {0, 1}n and randomness ρ ∈ {0, 1}∗, and deterministically
outputs a hash value h ∈ {0, 1}η.

• e ← E(ek, x; ρ). The encoding algorithm takes as input an encoding key
ek, string x ∈ {0, 1}n and randomness ρ ∈ {0, 1}∗, and deterministically
outputs an encoding e ∈ {0, 1}ω.

• (e0, e1) ← D(td, h). The decoding algorithm takes as input a trapdoor
td, a hash value h ∈ {0, 1}η, and outputs a pair of a 0-encoding and a
1-encoding (e0, e1) ∈ {0, 1}ω × {0, 1}ω.

� Correctness: TDH is (1 − ε)-correct (or has ε error probability), for ε :=
ε(λ) < 1, if the following holds for any λ, n ∈ N, any x ∈ {0, 1}n and any
predicate f ∈ Fn.

Pr[e = ef(x)] ≥ 1− negl(λ) Pr[e 6= e1−f(x)] ≥ 1− ε− negl(λ)

where hk := S(1λ, 1n), (ek, td) := G(hk, f), h := H(hk, x; ρ) and e := E(ek, x; ρ)

for ρ
$←− {0, 1}∗, and (e0, e1) := D(td, h).
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� Function Privacy: TDH is function-private if for any polynomial-length
{1nλ}λ∈N and any {fn}n∈N and {f ′n}n∈N such that fn, f

′
n ∈ Fn for all n ∈ N,

it holds that
{(hkλ, ekλ)}λ∈N

c≡ {(hkλ, ek′λ)}λ∈N

where hkλ
$←− S(1λ, 1nλ), (ekλ, tdλ)

$←− G(hkλ, fnλ) and (ek′λ, td
′
λ)

$←− G(hkλ, f
′
nλ

).
� Input Privacy: TDH is input-private if for any polynomial-length {xλ}λ∈N
and {x′λ}λ∈N such that nλ := |xλ| = |x′λ|, it holds that

{(hkλ, hλ)}λ∈N
c≡ {(hkλ, h′λ)}λ∈N

where hkλ
$←− S(1λ, 1nλ), hλ = H(hkλ, xλ; ρ) and h′ = H(hkλ, x

′
λ; ρ
′) for

ρ, ρ′
$←− {0, 1}∗. We also de�ne statistical input privacy in the natural sense.

� Compactness: we require that the image length of the hash function, η, is
independent of n, and is bounded by some polynomial in λ.

For this outline, we think of trapdoor hashing as a protocol where Alice and Bob
play the roles of a sender with input x and, respectively, a receiver who wants to
learn x[i] (or, generally, f(x)). For now, we will mostly focus on receiver privacy,
i.e. function privacy, as sender's privacy is much easier to achieve. Our main goal
is to construct trapdoor hash with optimal rate of 1, that is a scheme where the
hint e consists of a single bit.

2.2 Trapdoor Hash from DDH

We start with our DDH-based construction of trapdoor hash for index predicates.
Recall that, roughly speaking, the Decisional Di�e-Hellman (DDH) assumption
says that an element gab of a group G with prime order p, where g ∈ G is a
generator and a, b ∈ Zp are uniform, is indistinguishable from a uniform group
element, given ga and gb. We formally state our �rst result below.

Theorem 2.2. There exists a rate-1 trapdoor hash scheme for index predicates
with error probability 1/λ, statistical input privacy, and function privacy based
on the DDH assumption.

The Basic Hash Function. The starting point of is the following group-based
hash function mapping {0, 1}n to a group G:

H(A, x) =
n∏
j=1

gj,x[j]

where x ∈ {0, 1}n is the input and A = (gj,b)j∈[n],b∈{0,1}
$←− G2×n is chosen

uniformly at random and serves as the hash key hk. By choosing n larger than the
representation size of a group element in G, this function becomes compressing.
Collision resistance of this function can be routinely established from the discrete
logarithm assumption in G.

This surprisingly powerful function plays a central role in recent construc-
tions of identity based encryption [21], trapdoor functions [26], deterministic
encryption and lossy trapdoor functions [24].
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Adding Trapdoors. We show how this function can be made invertible, using tech-
niques of [24]. Clearly, the hash value h ← H(hk, x) is too short to information-
theoretically specify x. Thus we will add additional hints, which we also call
encodings, to allow recovery of x. We will �rst discuss how the receiver can re-
cover a single bit x[i] of x.

Let i ∈ [n] be an index of the receiver's choice. The receiver will generate a
matrix B ∈ G2×n, that serves as an encoding key ek, such that the following
holds for all x ∈ {0, 1}n: If H(A, x) = h, then H(B, x) = hs · gx[i] for some s ∈ Zp.
We can construct such a matrix B = (uj,b)j∈[n],b∈{0,1} by choosing s

$←− Zp
uniformly at random, and setting

uj,b = gsj,b

for all j 6= i and
ui,b = gsi,b · gb. (2.1)

Since s is uniform, we immediately get, via the DDH assumption, that all gsj,b
are pseudorandom, and consequently, the matrix B is pseudorandom as well.
Thus, the matrix B computationally hides the index i.

Given the values h = H(A, x) and the hint e = H(B, x), as well as a trapdoor
consisting of s, the receiver can recover x as follows. As by the above property

it holds that e = hs · gx[i], we can recover x[i] by testing e
?
= hs · gb for both

b ∈ {0, 1} and setting x[i] ← b for the b which satis�es this test. While we can
construct a trapdoor hash function in this way, its rate will be far from 1: To
encode a single bit x[i] of x, we need to spend one full group element e. Assuming
that a group element has size λ, this will give us a construction of rate 1/λ.

Towards Rate 1. Clearly, sending a group element e to encode a single bit x[i]
is wasteful. However, we make the following observation: The term e can only
assume two di�erent values, namely hs and hs · g, depending on whether the bit
x[i] is 0 or 1. So what we need is a way for the sender to signal to the receiver
that either e = hs or e = hs · g, without actually sending e. Yet, since the sender
does not know i, he generally does not know whether he is encoding 0 or 1, that
is, he does not know whether e is of the form hs or hs · g.

However, assume the sender could somehow determine the distance to a
nearby reference point of e which is insensitive to small perturbations. This
would for instance be the case if the group G had a subgroup G′, such that we
can e�ciently test membership in G′ and the quotient G/G′ is of polynomial
size. Since |G/G′| is only of polynomial size, we can e�ciently compute the dis-
tance to G′ for every e ∈ G. That is, the function Dist(e) which exhaustively
searches for the smallest z ∈ Z such that e · gz ∈ G′ is e�ciently computable.
Assuming further for simplicity that |G/G′| is even, it holds for every e ∈ G that

Dist(e · g) mod 2 = (Dist(e) + 1) mod 2.

This means that hs and hs ·g never map to the same bit under the function Dist(·)
mod 2. Via this observation, the sender can signal to the receiver whether e is
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hs or hs · g as follows. Instead of sending e itself to the receiver, he just sends
the bit ê = Dist(e) mod 2 ∈ {0, 1} to the receiver.

Modifying the recovery procedure of above, the receiver can recover x[i] by

testing ê
?
= Dist(hsgb) mod 2 for b ∈ {0, 1} and setting x[i] ← b for the b

which satis�es this test. This procedure recovers the correct bit x[i] with ê =
Dist(hs · gx[i]), as the value e computed by the sender must have been either hs

or hs · g, and by the above Dist(hs) mod 2 6= Dist(hs · g) mod 2.

Achieving Rate 1. Alas, since G is typically a cyclic group of prime order, it has
no non-trivial subgroups. But upon closer inspection, the signalling technique
above does not really rely on any additional group structure. All we need is that
Dist(e · g) = Dist(e) + 1.

Fortunately, a technique to determine the distance to a reference point was
proposed by Boyle, Gilboa and Ishai [9] in the context of homomorphic secret
sharing. In a nutshell, instead of computing the distance to a subgroup, we
compute the distance to a moderately dense pseudorandom subset of G. Such a
pseudorandom subset can be succinctly represented via the key of a pseudoran-
dom function by setting SK to be the set of all points h ∈ G for which PRFK(h)
starts with k = O(log(λ)) zeros. By tuning the parameter k appropriately, one
can achieve an average separation of the points in SK by an arbitrary polynomial
amount. We can now de�ne Dist(e) to be the smallest z ∈ Z such that e·gz ∈ SK ,
i.e. PRFK(e · gz) starts with k zeros. Note that this function can be computed
e�ciently for the above choice of k.

However, as the vigilant reader might have observed already, when using this
distance function, the above signalling procedure does not have perfect correct-
ness anymore. If hs and hs · g decode to di�erent points in SK , it might be that
Dist(hs) mod 2 = Dist(hs · g) mod 2, in which case the receiver cannot infer
whether x[i] = 0 or x[i] = 1 and must declare an erasure.

Fortunately, by choosing k large enough, we can make the probability of such
an erasure happening an arbitrarily small polynomial fraction 1/p(λ), while still
ensuring that the decoding procedure runs in polynomial time10 As it turns out,
in many applications, we can deal with this small erasure probability by resorting
to standard coding techniques.

Sender Privacy. So far we have not addressed issues concerning the privacy of
the sender's inputs. However, in our DDH-based construction this is easy to
achieve by providing an additional random input to the hash function H. That
is, we de�ne H as

H(A, x; r) = gr ·
n∏
j=1

gj,x[j],

10 We can ensure that both sender and receiver run in strict polynomial time by intro-
ducing a suitable polynomial upper bound for the number of trials in the exhaustive
search step of Dist(·). For small erasure probabilities, a near-quadratic improvement
in the running time can be obtained via the recent optimal �distributed discrete log�
algorithm of Dinur, Keller, and Klein [19].
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for a uniformly random r
$←− Zp. The hash value h = H(A, x; r) is now uniformly

random (over the choice of r) and therefore does not leak information about x.
Furthermore, given the trapdoor s and a single bit x[j] of the input x we can
perfectly simulate e by computing e ← hs · gx[j]. From e we can compute ê as
before. Thus, the modi�ed construction has perfect sender privacy.

2.3 Trapdoor Hash from QR and LWE

We now brie�y discuss instantiations of these techinques based on the Quadratic
Residuosity (QR) and Learning With Errors (LWE) assumptions to achieve trap-
door hash for the even more general class of linear predicates. As it turns out,
in both these cases we will have structures with exact subgroups. However, in
both cases there will also be new challenges which will have to be addressed with
slightly di�erent ideas.

Theorem 2.3. There exists a rate-1 trapdoor hash scheme for linear predicates
with negligible error probability, statistical input privacy, and function privacy
based on the {QR,LWE} assumption.

Construction from QR. We will start with the QR-based construction. Instead
of relying on the QR assumption directly, we will use the fact that we can
construct a group G in which the subgroup indistinguishability problem is hard
under QR [12]. More speci�cally, the group G we use has a subgroup G′ such
that |G/G′| = 2. We can represent every h ∈ G as h = (−1)b ·a, where b ∈ {0, 1}
and a ∈ G′. For the hash function H, we can use exactly the same construction
as above, that is H(hk, x) =

∏n
j=1 gj,x[j]. The only di�erence is that we choose

the elements in the key hk = A from the subgroup G′ instead of G, that is,

A = (gj,b)j∈[n],b∈{0,1}
$←− G′2×m. Similar as in the DDH-based construction,

for an index i ∈ [n], the matrix B generated by G now has the form B =
(uj,b)j∈[n],b∈{0,1} where

uj,b = gsj,b

for all j 6= i and
ui,b = gsi,b · (−1)b.

Here, s is uniformly random in an appropriate domain. The crucial di�erence is
that in ui,b, we have replaced the generator g in the DDH-based construction
by −1. It follows directly via the subgroup indistinguishabilty assumption that
gsi,b · (−1)b is indistinguishable from gsi,b. Thus, as before, the index i is hidden.

By a similar analysis as before, it holds that if h = H(A, x), then e =
H(B, x) = hs · (−1)x[i]. However, there is a crucial di�erence now: As e =
hs · (−1)x[i], the sender can also compute e · (−1) = hs · (−1)1−x[i]. That is,
one of these two elements is hs and the other one is hs · (−1). Recall that the
receiver can also compute these two elements using the hash value h and the
trapdoor s. Thus, the only task left for the sender is to signal to the receiver
which one of the two elements the element e he got is. This can be easily done
by communicating a single bit: The sender compares e and e · (−1) under some
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total order �, say, by representing both elements as bit strings, and computing
the lexicographic order. Now, he sends the bit ê = 0 if e � e · (−1) and ê = 1
otherwise. The receiver can recover x[i] as follows: If hs � hs · (−1) and ê = 0 he
sets x[i] = 0, otherwise x[i] = 1.

The main di�erence of this instantiation compared to our DDH-based con-
struction is that there is no decoding error. We can even leverage this fact to
achieve a stronger functionality. So far, we have only discussed how the receiver
can recover individual bits x[i] of the sender's input, namely realize trapdoor
hash for index predicates. We will now show how this can be upgraded in a way
such that the receiver can learn an inner product 〈y, x〉 mod 2, and therefore
obtain trapdoor hash for the more general class of linear predicates. The vector
y is chosen by the receiver and is used to generate the matrix B. Concretely, for
a vector y ∈ {0, 1}n the receiver sets

uj,b = gsj,b · (−1)b·y[j]

for all j ∈ [n] and b ∈ {0, 1}. As before, we can use the subgroup indistinguisha-
bility assumption to establish that the matrix B hides the vector y.

A simple calculation shows that H(B, x) = hs · (−1)〈y,x〉. The encoding and
decoding procedures are exactly the same as before, with the di�erence that now
the receiver learns the inner product 〈y, x〉 mod 2. While this modi�cation to
our construction is nearly straightforward, it has several important applications.

Construction from LWE. We will �nally turn to our construction from LWE. On
a conceptual level, the construction is very similar to the QR-based construction.
We will directly explain the construction for linear predicates, i.e. inner products
over F2. In this instantiation, let q = 2p be an even modulus. The hashing key
hk = A is a 2×n matrix of uniformly random column vectors aj,b ∈ Zkq , that is,
each component of this matrix is a vector itself. The hash of an input x ∈ {0, 1}n
is now computed as the sum of the corresponding aj,b, that is

H(A, x) =
n∑
j=1

aj,x[j].

The encoding key contains a matrix B = (uj,b)j∈[n],b∈{0,1}, which consists of

elements uj,b ∈ Zkq which are computed by

uj,b = s>aj,b + ej,b + y[j] · b · (q/2),

where s is chosen uniformly from Zkq and the ej,b are sampled from a short
LWE-error distribution such as a discrete gaussian. By the LWE assumption, we
immediately get that the values s>aj,b+ej,b are pseudorandom, and consequently
the matrix B hides the vector y. Assume further that PRF is a pseudorandom
function from Zkq to Zq. For this instantiation, the receiver will also include a

uniformly random PRF-key K
$←− {0, 1}λ into the encoding key.
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As before, the sender computes h = H(A, x) and e = H(B, x). Notice that it
holds that

e =
n∑
j=1

uj,x[j] = s>
n∑
j=1

aj,x[j] +

n∑
j=1

ej,x[j] + 〈y, x〉 · (q/2) = s>h+ e′+ 〈y, x〉 · (q/2),

where e′ =
∑n
j=1 ej,x[j] is a small error.

The challenge in this instantiation is that e is noisy, so the comparison-based
technique from the QR-based construction will not work here. Nevertheless, a
standard tool to robustly deal with this kind of error in the world of LWE is the
rounding technique, introduced by Banerjee, Peikert and Rosen [5]. De�ne the
rounding function b·e2 by bze2 = bz · 2/qe mod 2. The sender now computes ê
by

ê = bH(B, x) + PRFK(h)e2
and sends h along with the bit ê to the receiver. The receiver now computes and
outputs (ê− bs>h+ PRFK(h)e2) mod 2.

To establish correctness, we will use the fact that, for a su�ciently large q, the
rounding function is insensitive to small perturbations. That is, for a uniformly

random z
$←− Zq, and a su�ciently small noise e, it holds that bz + ee2 = bze2,

except with small probability over the choice of z. Now, since the term PRFK(h)
is pseudorandom in Zq, it holds that

ê = bH(B, x) + PRFK(h)e2 = bs>h+ e′ + 〈y, x〉 · (q/2) + PRFK(h)e2
= bs>h+ PRFK(h)e2 + 〈y, x〉,

except with small probability over the choice over K. This is the reason why
we include the key K in the receiver's message, that is, to enable the sender to
randomize H(B, x) without increasing the size of the sender message. Correctness
of the scheme follows.

The magnitude of the correctness error depends on the modulus-to-noise
ratio. If we choose a superpolynomial modulus-to-noise ratio, the correctness
error becomes negligible. For a polynomial modulus-to-noise ration the correct-
ness error will be inverse polynomial and we have to compensate with coding
techniques.

3 Rate-1 Oblivious Transfer and More

We now present the �rst family of applications of trapdoor hash. We show how to
use rate-1 trapdoor hash to securely realize basic sender-receiver functionalities
through two-message protocols with optimal sender-receiver communication, i.e.
optimal download rate.

Formally speaking, a two-message protocol for functionality f : X × Y → Z
is de�ned through a triple of PPT algorithms Π = (Π1, Π2, Π3) where, at �rst,
the receiver computes a message msg1 ← Π1(1

λ, x) for security parameter λ and
input x ∈ X and sends it to the sender. The sender with input y ∈ Y responds
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Fig. 1: Overview of the results in this work, Part I: optimal-rate protocols for
OT-like sender-receiver functionalities and their applications. Dotted lines cor-
respond to corollaries from prior work.

by a message msg2 ← Π2(msg1, y). Lastly, given the second message msg2 and
possibly a local state st computes the output f(x, y) = Π3(msg2, st). We require
standard notions of receiver privacy and sender privacy (against a semi-honest
receiver). The download rate of a two-message is de�ned as follows.

De�nition 3.1 (Download Rate of a Two-Message Protocol). Let 0 ≤
ω ≤ 1. We say that a two-message protocol Π for functionality f : X×Y → Z has
download rate ω if there exists a polynomial B(λ) such for all polynomial-length
input sequences {(xλ, yλ)}λ∈N in the domain of f such that |f(xλ, yλ)| ≥ B(λ)
for all λ, we have

lim inf
λ→∞

|f(xλ, yλ)|
mλ

= ω

where mλ is the maximal length of the sender-receiver message when Π runs on
inputs (xλ, yλ) and security parameter λ.

The �rst fundamental functionality we investigate is oblivious transfer (OT),
where a receiver with private input bit i ∈ {0, 1} communicates with a sender
with secrets s0, s1 in order to obtain secret si. Rate-1 OT has several important
applications, for which we are able to achieve the �rst constructions under various
assumptions, using our trapdoor hash constructions. We also discuss a couple of
related primitives: oblivious linear function evaluation (OLE), where the sender
has a linear function f(x) = ax+b and the goal is to evaluate f on the receiver's
private input x, and the more general matrix-vector product where the sender
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has a matrix M , the receiver has a vector v, and the goal is to compute the
product Mv>.

3.1 Rate-1 Oblivious Transfer from Trapdoor Hash

Equipped with our newly developed tool, we show how to construct 2-message
OT protocols with rate 1 given any trapdoor hash with the same rate. We
consider two �avours of OT where download-rate-1 can be achieved. The �rst is
batch OT, where a batch of OT instances with single-bit secrets are invoked in
parallel, and the second is string OT, which consists of a single OT instance with
secrets that are assumed to be su�ciently long. In the latter case, we get optimal
overall rate (where also receiver-sender communication is taken into account).

Batch OT. Recall that a trapdoor hash scheme for index predicates allows one
to recover the ith bit of a string x given the hash value H(hk, x) and a single
additional bit e (which we denote ê above). With this tool at hand, we can
realize the 1-out-of-2 bit OT functionality by letting the receiver specify the
hash key hk and the encoding key ek corresponding to the choice bit i ∈ {0, 1}.
The sender then sets its input x := s0‖s1 to be the concatenation of the two
secret bits and computes h = H(hk, x) together with the encoding e. Given
such an information, the receiver can recover the chosen secret bit by running
the decoding algorithm. The obvious shortcoming of this approach is that it is
wasteful in terms of download rate, in the sense that the hash of the string must
be included to recover a single bit.

The key observation here is that the hash key hk can be reused across several
executions. Therefore the size of the hash h can be amortized across multiple
independent bit OT protocols. That is, if the bit OTs are executed in a batch,
we can boost the download rate of the construction to approach 1: Given n
independent instances of bit OT, the receiver samples a hash key hk as before,
this time for inputs of length 2n rather than 2, and samples a set of encoding
keys (ek1, . . . , ekn), where the j

th key allows the receiver to learn the input bit
at position (2j+ ij), where ij ∈ {0, 1} is the choice bit of the jth OT instance. It
is important that all of the encoding keys are generated with respect to the same
hk, since it will allow us to re-use the corresponding hash. The sender de�nes
x := s1,0‖s1,1‖ . . . , ‖sn,0‖sn,1, where sj,0, sj,1 are the secrets for the jth instance,
and computes the hash h = H(hk, x) as before, in addition to the additional
hints, i.e. TDH encodings, (e1, . . . , en). The recovery procedure is then run in
parallel for each bit OT instance. Note that the sender's message consists of a
hash (i.e., a single group element) and n bits. That is, the impact of h in the
communication vanishes as n grows, and thus, the download rate of the scheme
approaches 1. The above outline gives the following theorem.

Theorem 3.2. Assume there exists a rate-1 trapdoor hash scheme TDH, with
error probability ε(λ). Then, there exists a 2-message batch OT protocol with
download rate 1 and independent error probability of ε(λ) in every (single-bit)
OT instance. Further, if TDH is statistically input-private, then the obtained
batch OT protocol is statistically sender-private.
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String OT. We showed how to obliterate the impact of the hash value h in the
second OT message by executing multiple bit OT instances in a batch. The same
can be accomplished for a single OT instance, when executed on su�ciently long
secret strings (rather than single bits)11. The protocol can be derived generically
from the batch OT by adapting the encodings of the inputs: The receiver executes
the batch OT protocol of above by replicating the same choice bit i over each
of the n instances, whereas the sender parses the two strings (s0, s1) ∈ {0, 1}n
as n pairs of bits and encodes the string x as before. Since the choice bit of
the receiver is the same in all positions, the decoding algorithm will recover the
string si in its entirety.

In the above discussion we omitted a few important aspects of our transfor-
mation that need to be addressed in order to obtain a fully-�edged rate-1 OT.
More speci�cally, (i) some instances of trapdoor hash have a correctness error, in
the sense that the secret might not be recoverable with a certain probability ε.
Furthermore, (ii) the upload rate of the construction is inverse polynomial in λ.
To resolve the former point we preprocess the sender's inputs with a su�ciently
strong error-correcting code. One has to be careful that the encoding function
does not a�ect the download rate of the protocol. Fortunately, our error prob-
ability ε lies in a regime of parameters that allow us to e�ciently instantiate
the encoding function. For the latter issue, we show that any string OT with
download rate 1 can be generically bootstrapped to a string OT with overall
rate 1. Our method is based upon the simple observation that the �rst message
of an OT is always reusable and therefore can be amortized by executing the
same OT over blocks of a su�ciently long string. Thus, overall, our main result
in this context is as follows.

Theorem 3.3. Assume there exists a 2-message batch OT protocol with down-
load rate 1 and independent error probability of ε(λ) = O(1/λ) in every (single-
bit) OT instance. Then, there exists a 2-message string OT protocol with overall
rate 1 and negligible error.

The same techniques can be generalized to 1-out-of-k OT, for any k ∈ N.

3.2 Applications of Rate-1 OT

We now discuss few interesting applications of rate-1 OT.

Private Information Retrieval. Given a 1-out-of-2 string OT with rate 1, a
(block) single-server PIR protocol [44], with optimal download rate and polyloga-
rithmic overall communication, follows as a simple corollary of the main theorem
of Ishai and Paskin [40]. We hereby recall the transformation for completeness.

Recall that in (block) PIR, a client queries a server, that holds a database
consisting of N blocks, each of length β bits, in order to privately retrieve a
block of his choice. Observe that a 1-out-of-2 string OT can be seen as a hash

11 In fact, string OT can be thought of as a special case of batch OT, where all the
choice bits ij are equal.
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function that compresses the size of its input by a factor of roughly two. The
idea is to use such a hash function and let the server compute a Merkle tree
over the database x ∈ {0, 1}N ·β . Every node in the tree consists of a block and,
for simplicity, we assume that N = 2d for some d ∈ N, which is the depth of
the tree. Thus, the lowest level in the tree consists of the N database blocks:
x0, . . . , xN−1, and every other level ` = 1, . . . , d in the tree consists of N/2`-many
blocks: h`,0, . . . , h`,N/2`−1, that are hashes of the nodes in level `. Notice that
every index i ∈ {0, . . . , N−1} corresponds to a path in the tree, which we denote
by (i1, . . . , id), which represents the path from database block xi to the root of
the tree.

The protocol proceeds as follows: First, the client generates the receiver mes-

sage msg
(`)
1 of an OT for strings of appropriate length, for each layer ` = 1, . . . , d

in the tree, where the choice bit is set to be the index i`. Then the client sends

(msg
(1)
1 , . . . ,msg

(`)
1 ) to the server, who computes all of the hash values in the

Merkle tree, i.e. OT sender messages, and sends the root msg
(d)
2 to the client.

The client can recover the entry of interest by recursively applying the decoding
algorithm of the OT, starting from the top level d.

Evaluating Branching Programs over Encrypted Data. Another result in the
work of Ishai and Paskin [40], which can be seen as a generalization of the
above, is a compiler that takes any 2-message rate-1 OT12 into a semi-compact
homomorphic encryption scheme for branching programs (a superclass of NC1),
where the size of the evaluated ciphertexts depends only on the length of the
branching program but not on its size. This immediately yields a sublinear secure
function evaluation protocol where the client's work is independent of the size
of the branching program (which is in fact hidden to its eyes).

Lossy Trapdoor Functions. As a yet another application, we show a simple con-
struction of lossy trapdoor functions [51, 35] with optimal rate from any 2-
message rate-1 OT, and therefore obtain schemes based on DDH, QR, or LWE.
Prior to our work, rate optimal schemes were known to exist only under the
DCR assumption.

3.3 Rate-Optimal Protocols for Other OT-like Functionalities

It turns out that using trapdoor hash for index predicates, we can already cap-
ture a wide variety of predicate classes through a simple transformation. More
speci�cally, if a given predicate class F is �small�, i.e. contains poly(n) predicates
for input size n, then we can obtain TDH for F on input x by applying TDH for
index predicates on input x′, where the ith bit in x′ is the evaluation of the ith

predicate in F on x.
We use this observation to extend the range of functionalities for which we

can construct rate-optimal protocols. For instance, an interesting special case of

12 In fact they require an OT protocol with a strong notion of sender privacy, which is
satis�ed by all of our constructions.
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Fig. 2: Overview of the results in this work, Part II: secure function evaluation
with sublinear communication. Thin lines correspond to non-generic transfor-
mations.

small predicate classes are functions f(x) = ax + b over F2, which essentially
allow realizing batch oblivious linear function evaluation (OLE) [47] by replacing
the TDH for index predicates, in the batch OT construction described above,
with TDH for such predicates. Further, one can extend the idea to OLE over
other constant size rings (e.g. �elds Fp for constant prime p), by evaluating each
output bit separately.

An even more general functionality, that allows evaluating matrix-vector
products over F2 (with the vector and matrix respectively being the receiver's
and sender's input), can be realized using the same technique by relying on
TDH for linear predicates, which can be instantiated, as mentioned earlier, un-
der the LWE and QR assumptions. The LWE-based TDH scheme can be fur-
ther extended to allow trapdoor-evaluation of linear functions over small �elds,
thus yielding oblivious matrix vector multiplication (OMV) over such �elds. It
is worth mentioning that OMV can be also seen as a variant of rate-1 addi-
tively homomorphic encryption, where inner products (and in particular matrix
multiplication) can be evaluated over encrypted vectors.

Lastly, we note that using OLE and OMV schemes over small �elds, we
can realize similar functionalities over larger algebraic structures through stan-
dard algebraic manipulations. More speci�cally, we can get OLE and OMV over
smooth rings, via the Chinese Remainder Theorem, and over extension �elds of
small characteristic using basic extension �eld algebra.

4 Private Laconic Oblivious Transfer

In this section we outline another application of trapdoor hash: private laconic
oblivious transfer. As discussed in the introduction, private laconic OT has strong
applications in secure computation. In particular, following the outline presented

13 We also assume correlated-input secure hash over bilinear groups.
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in [16] to utilize laconic OT for non-interactive secure RAM computation with
unprotected memory access, we can use private laconic OT to obtain secure
RAM computation where the access pattern to the memory is also hidden, and
therefore achieve a stronger notion of security.

Recall that in laconic OT (`OT) [16], a receiver with an input database
x ∈ {0, 1}n communicates with a sender, with two secrets s0, s1 ∈ {0, 1} and an
index i ∈ [n] as input, in order to learn sx[i] ,while keeping both x and s1−x[i]
private. In private laconic OT (p`OT), we also require that the index i remains
hidden from the receiver.

Our end goal is to realize the p`OT functionality through a two-message
protocol where the overall communication is sublinear in n in order to obtain
sublinear SFE protocols (due to [16]).

As a start, however, we aim for receiver-compact p`OT where the upload
communication (i.e., the communication from the receiver to the sender) is inde-
pendent of the receiver's database size n, and set no restrictions on the communi-
cation from the sender to the receiver. We then describe such a receiver-compact
p`OT construction with linear sender-receiver communication through our DDH-
based trapdoor hash, and then show to get sublinear communication (namely√
n) using pairings.

Lastly, we show that if we are willing to compromise receiver-compactness,
then we can balance our protocols using what we call reusable private laconic
OT and obtain more e�cient SFE protocols with sublinear communication under
both DDH and pairings. We start with the basic de�nition of private laconic OT.

De�nition 4.1 (Private Laconic OT). A private laconic OT scheme is a tu-
ple of four PPT algorithms p`OT = (Gen,Hash,Send,Receive) with the following
properties.

� Syntax:

• pp ← Gen(1λ, 1n). The generating algorithm takes as input the security
parameter 1λ, and the size of the database n, and outputs public param-
eters pp ∈ {0, 1}∗.

• h ← Hash(pp, x; ρ). The hashing algorithm takes as input the public pa-
rameters pp, a database x ∈ {0, 1}n, and randomness ρ ∈ {0, 1}∗, and
deterministically outputs a hash value h ∈ {0, 1}η.

• ct ← Send(pp, h, i, (s0, s1)). The sending algorithm takes as input the
public parameters pp, a hash value h, an index i ∈ [n], and a pair of
secrets (s0, s1) ∈ {0, 1} × {0, 1}, and outputs a ciphertext ct ∈ {0, 1}∗.

• s← Receive(pp, ct, x; ρ). The receiving algorithm takes as input the public
parameters pp, a ciphertext ct, a database x ∈ {0, 1}n, and randomness
ρ ∈ {0, 1}∗, and deterministically outputs a secret s ∈ {0, 1}.

� Correctness: p`OT is correct if there exists a negligible function ε(λ) such
that the following holds for all λ, n ∈ N, any database x ∈ {0, 1}n, any index
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i ∈ [n], and any pair of secrets s0, s1 ∈ {0, 1}.

Pr

s = sx[i]

∣∣∣∣∣∣∣∣∣∣

pp← Gen(1λ, n)

ρ
$←− {0, 1}∗

h ← Hash(pp, x; ρ)
ct ← Send(pp, h, i, (s0, s1))
s ← Receive(pp, ct, x; ρ)

 ≥ 1− ε(λ).

� Receiver Privacy: p`OT is statistically, resp., computationally, receiver-
private if for any polynomial-length {xλ, x′λ}λ∈N where nλ := |xλ| = |x′λ| for
all λ ∈ N, the following two distribution ensembles

{(ppλ, hλ)}λ∈N {(ppλ, h′λ)}λ∈N

where ppλ
$←− Gen(1λ, 1nλ) and hλ := Hash(ppλ, xλ; ρ), h

′
λ := Hash(ppλ, x

′
λ; ρ
′)

for ρ, ρ′
$←− {0, 1}∗, are statistically, resp. computationally, indistinguishable.

� Sender Privacy (against a semi-honest receiver): p`OT is (compu-
tationally) sender-private if there exists a PPT algorithm Sim such that for
any s0, s1 ∈ {0, 1}, any polynomial-length {xλ}λ∈N and any {iλ}λ∈N, where
nλ := |xλ| and iλ ∈ [nλ] for all λ ∈ N, the distribution ensembles {Realλ}λ∈N
and {Idealλ}λ∈N, where

Realλ = (ppλ, xλ, (ctλ, ρ)) Idealλ = (ppλ, xλ,Sim(1λ, ppλ, xλ, sxλ[i]))

such that ρ
$←− {0, 1}∗, ppλ

$←− Gen(1λ, 1nλ) and ctλ
$←− Send(ppλ, hλ, iλ, (s0, s1))

for hλ = Hash(ppλ, xλ; ρ), are computationally indistinguishable.
� Receiver Compactness: p`OT is receiver-compact if the output length of

Hash, η, is independent in n, and is bounded by some polynomial in the
security parameter λ.

4.1 Basic Construction from Trapdoor Hash

Let us �rst try to realize the relaxed notion of `OT using trapdoor hash in a
straight-forward way. In order to that, the roles of Alice and Bob from Section 2,
as a sender and a receiver, must be swapped.

Given a TDH for index predicates, the construction proceeds as follows. The
public parameters of the `OT scheme simply consist of a hash key hk of the
TDH. The receiver (which is now played by Alice) computes a hash value of his
database h = H(hk, x), which he sends to the sender (now Bob). Observe that
the size of h is independent of the size of x, and thus satisfying our requirement
regarding upload communication.

The sender generates a pair (ek, td) of an encoding key and a trapdoor corre-
sponding to the hash key hk and his input index i. Using td and h, he computes
two symmetric encryption keys (e0, e1) = D(td, h), using which he encrypts his
secret inputs s0 and s1, respectively, to obtain two ciphertexts. He now sends the
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key ek as well as the two ciphertexts to the receiver, who will be able to decrypt
one of them by recovering ex[i] using the encoding algorithm E of the TDH.

To establish security of this `OT construction, we need the following to ensure
that (i) the hash h hides x (receiver privacy), and (ii) the encoding key ek hides
e1−x[i] (sender privacy). While receiver privacy is implied directly from the input
privacy of the underlying TDH, sender privacy does not generically follow. Thus,
we need to augment our de�nition of TDH with the requirement that, for every i,

the value e1−x[i] is uniformly random given hk, ek and x, where (ek, td)
$←− G(hk, i)

and (e0, e1) = D(td,H(hk, x)). A TDH that satis�es this requirement is said to
have secret encoding.

Notice that the secret encoding property is in con�ict with achieving high rate
in a TDH. In particular, in any rate-1 TDH, correctness requires that e1−x[i] =
1− ex[i] with a high probability.

Fortunately, the basic DDH-based TDH construction without the rate op-
timization, which is sketched above, ful�lls the secret encoding property under
DDH. This is not surprising, as so far, this construction is very similar to the
original `OT construction of [16].

In fact, the above outlined protocol realizes the stronger notion of p`OT. By
relying on the function privacy of the underlying TDH, we immediately get that
the sender's input index i is kept hidden from the receiver, and hence, we get
the following theorem.

Theorem 4.2. There exists a receiver-compact p`OT scheme, with statistical
receiver privacy and sender privacy under the DDH assumption, that has com-
munication complexity O(poly(λ)n).

As hinted earlier, the above construction su�ers from an undesired property:
download communication is linear in the size of the receiver's database. We
propose two solutions. The �rst relies on the SXDH assumption over bilinear
groups and uses pairings in order to reduce the communication to O(

√
n). In

the second, we introduce a resuablitiy notion of p`OT, that can be realized
under both DDH and SXDH with similar communication. We then show how to
transform any reusable p`OT into a (non-reusable) p`OT scheme while reducing
the overall communication complexity, to obtain e�cient p`OT protocols under
DDH, resp. SXDH, with download communication proportional to

√
n and 3

√
n,

respectively.

4.2 Shrinking the Keys Using Pairings

The bottleneck in the e�ciency of the DDH-based p`OT scheme from above lies
in the size of the public parameters and sender's message, namely the keys hk
and ek of the trapdoor hash, which both grow linearly in n.

Towards achieving sublinear communication, we start with the following ob-
servation. The high entropy of the public parameters, i.e. matrix A in hk, is not
essential for security in the DDH-based TDH scheme. Thus, if we could produce
such a matrix A = (gj,b)j∈[n],b∈{0,1} using a shorter �seed�, and then let Alice
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compute a short �seed� that expands to a matrix B = (uj,b)j∈[n],b∈{0,1} which
can be used as an encoding key ek, then we are able to reduce the size of hk and
ek and, therefore, the communication of the resulted p`OT.

Roughly speaking, we choose the seed for A to be two 2 ×
√
n matrices,

A1 ∈ G2×
√
n and A2 ∈ H2×

√
n, for two di�erent groups G and H. We then use a

bilinear map e : G×H→ Ĝ to pair elements in A1 with elements in A2 and get
2×n elements in Ĝ, which we use as the hash key hk = A ∈ Ĝ2×n. To generate a
seed to the corresponding encoding key B, we begin by de�ning B1 = A1

s1 and
B2 = A2

s2 , which would expand to B = As1+s2 using the pairing. To achieve
functionality, we would want to �puncture� the (i, 1)th entry inB and multiplying
it by a random group element (see Equation 2.1). For this task, we use a bilinear
pairing with a special property, that allows us to multiply every element in B1

and B2 by carefully sampled random elements from G and H (resp.). We do this
in a way that when pairing elements from the two matrices to generate B, these
random factors cancel each other out, except at the (i, 1)th element, which will
be randomly distributed. The above idea gives us the following result.

Theorem 4.3. There exists a receiver-compact p`OT scheme, with statistical
receiver privacy and sender privacy under the SXDH assumption, that has com-
munication complexity O(poly(λ)

√
n).

4.3 Balanced Protocols Through Resuable Private Laconic OT

Having shown how to obtain receiver-compact private laconic OT from DDH
and SXDH, we next describe in a high level how to transform such �unbalanced�
schemes to p`OT schemes which, despite being non-receiver-compact, have lower
overall communication, and in particular, give us sublinear non-interactive secure
computation protocols also from DDH.

Theorem 4.4. There exists a (non-receiver-compact) p`OT scheme, with statis-
tical receiver privacy and sender privacy under the {DDH,SXDH14} assumption,
that has overall communication complexity {O(poly(λ)

√
n), O(poly(λ) 3

√
n)}.

How to Reuse the Sender's Message. Let us reexamine the p`OT scheme from
TDH. The sender's message consists of an encoding key ek and encryptions of the
two sender's secrets, each under a corresponding TDH encoding. We observe that
the encoding key ek, which is actually the larger part of the sender's message, is
actually independent of the hash value h = H(hk, x). It can therefore be reused
for di�erent p`OT invocations corresponding to di�erent values of the receiver's
database x and the sender's secrets s0, s1 (but that share the same index i).

This brings us to de�ne a notion of reusable p`OT, where we distinguish
between two parts of the sender's message: (i) a reusable part, of size sublinear
in n, that depends only on i and, therefore, can be reused for di�erent inputs

14 for the SXDH-based construction we further assume the existence of correlated-input
secure hash for group-induced correlations over bilinear groups [32, 3].
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x, s0, s1, and (ii) a compact part, of size independent in n, that is generated w.r.t.
a speci�c receiver's database x and sender's secrets s0 and s1.

As mentioned above, the p`OT construction from TDH already gives reusabil-
ity, with ek being reusable. However, a subtle issue concerning the sender privacy
has to be resolved. Take for instance the p`OT construction from the DDH-based
TDH. Above, we argued that the encoding e1−x[i] is uniformly distributed given
hk and ek, in what we called the secret encoding property. Notice, however,
that this is not su�cient for reusable p`OT, where many such encodings e1−x[i],
namely symmetric encryption keys, are generated w.r.t. di�erent values of x.
Although each of these encryption keys is individually uniform, they are highly
correlated. Encryption under correlated keys is clearly insecure. Thus, we do not
get sender privacy when ek is reused.

We handle this issue by de�ning a related reusable secret encoding property
for TDH. Both the DDH-based and pairings-based TDH schemes can be ex-
tended to have reusable secret encoding using suitable correlated-input secure
hash [3], which can be fortunately realized under DDH and, resp., appropriate
hardness assumptions over bilinear groups.

Reusable p`OT can be useful by itself for applications in secure computation,
in particular when we allow to amortize the communication cost over many
computations of the same functionality on di�erent inputs. Further, as mentioned
earlier, reusable p`OT turns out to be useful to achieve p`OT schemes which,
although non-reusable, have smaller download communication.

Exploiting Reusability for More E�cient Schemes. Lastly, we show how to use
reusable p`OT to achieve more e�cient p`OT schemes. Our �nal results are
a DDH-based p`OT with communication proportional to

√
n, and a pairing-

based p`OT with communication proportional to 3
√
n. Although the construction

is generic, it is parameterized di�erently according to the underlying reusable
p`OT. For presentation, we take the DDH-based reusable p`OT, where the public
parameters and sender's message grow linearly in n as a special case.

The idea is as follows. We divide the receiver's database x to
√
n smaller

databases, x1, . . . , x√n, each of size
√
n. Consequently, every index j ∈ [n] is

interpreted as (j1, j2) ∈ [
√
n]2 (particularly, i = (i1, i2)) where xj := xj1 [j2]. On

the sender's side, each of the secrets s0, s1 is additively shared to s0,1, . . . , s0,
√
n ∈

{0, 1} and, respectively, s1,1, . . . , s1,√n ∈ {0, 1} s.t.
∑
j sj,b = sb for b ∈ {0, 1}. In

fact, the sender generates the shares such that sj,0 = sj,1 for any j 6= i1.

The idea is to use the underlying reusable p`OT to send to the receiver, for
every j ∈ [

√
n], either sj,0 or sj,1, conditioned on xj [i2]. For any j 6= i1, both

bits are equal, and therefore, the receiver obtains sj , regardless of the value of
xj [i2]. The only database bit that matters is x[i] := xi1 [i2], which determines
whether the receiver receives sj := sj,0, and therefore can compute

∑
j sj = s0,

or sj := sj,1, which would allow him to compute
∑
j sj = s1.
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