
Explicit Rate-1 Non-malleable Codes
for Local Tampering

Divya Gupta1, Hemanta K. Maji2, ? , ??, and Mingyuan Wang2, ??

1 Microsoft Research, Bangalore, India.
divya.gupta@microsoft.com

2 Department of Computer Science, Purdue University, West Lafayette, USA
{hmaji,wang1929}@purdue.edu

Abstract. This paper constructs high-rate non-malleable codes in the
information-theoretic plain model against tampering functions with bounded
locality. We consider δ-local tampering functions; namely, each output
bit of the tampering function is a function of (at most) δ input bits.
This work presents the first explicit and efficient rate-1 non-malleable
code for δ-local tampering functions, where δ = ξ lgn and ξ < 1 is any
positive constant. As a corollary, we construct the first explicit rate-1
non-malleable code against NC0 tampering functions.
Before our work, no explicit construction for a constant-rate non-malleable
code was known even for the simplest 1-local tampering functions. Ball et al.
(EUROCRYPT–2016), and Chattopadhyay and Li (STOC–2017) pro-
vided the first explicit non-malleable codes against δ-local tampering
functions. However, these constructions are rate-0 even when the tamper-
ing functions have 1-locality. In the CRS model, Faust et al. (EUROCRYPT–
2014) constructed efficient rate-1 non-malleable codes for δ = O(logn)
local tampering functions.
Our main result is a general compiler that bootstraps a rate-0 non-
malleable code against leaky input and output local tampering functions
to construct a rate-1 non-malleable code against ξ lgn-local tampering
functions, for any positive constant ξ < 1. Our explicit construction
instantiates this compiler using an appropriate encoding by Ball et al.
(EUROCRYPT–2016).

1 Introduction

Dziembowski, Pietrzak, and Wichs [18] introduced the notion of non-malleable
codes as an extension of the standard objective of error-correction. Non-malleable
codes provide message-integrity assurances even when error-detection, let alone
error-correction, is impossible. Suppose a sender encodes a message m ∈ {0, 1}`
and transmits the codeword over a channel. If the channel adds an error that
has a small Hamming weight, then the sender can encode the message using an
? The research effort is supported in part by an NSF CRII Award CNS–1566499, an
NSF SMALL Award CNS–1618822, and an REU CNS–1724673.

?? The research effort is supported in part by a Purdue Research Foundation grant.

error-correcting code and the receiver can error-correct and retrieve the original
message. Algebraic Manipulation Detection codes [16] help the receiver detect
if the transmitted codeword is tampered using algebraic operations. For more
sophisticated classes of tampering function F , demanding manipulation detec-
tion or error-correction might be far-fetched. For example, suppose the channel
replaces the original codeword with a fixed valid codeword. In this case, error-
correction or error-detection is impossible. Non-malleable codes provide a mean-
ingful message integrity assurance against sophisticated tampering families.

Let us fix an encoding and a decoding scheme (Enc,Dec), and a tampering
function family F . Non-malleable codes ensure that for any message m ∈ {0, 1}`
and tampering function f ∈ F , the tampered message Dec(f(Enc(m))) is either
identical to the original message m or a simulator Simf can simulate this dis-
tribution (that is, it is independent of the original message). Even such a weak
message integrity assurance turns out to be cryptographically useful, for exam-
ple, in storing secret-keys for cryptographic primitives [18,28] and non-malleable
messaging [22,23]. Naturally, we measure the quality of non-malleable codes us-
ing the following two parameters.
1. Rate. The ratio of the length of the message to the length of its encoding.
2. Sophistication of the tampering family. The complexity of the tamper-

ing attacks captured by the tampering functions in this family.
Constructing explicit non-malleable codes with high rate against sophisticated
tampering function families is the guiding principle for the research in non-
malleable codes. However, both these objectives, even independently, have been
significantly non-trivial to achieve. Only recently, using elegant probabilistic ar-
guments, [20,13] constructed rate-1 non-malleable codes in the CRS model for
tampering families of bounded size.3

In this paper, for any positive constant ξ < 1, we present the first rate-
1 explicit non-malleable codes against any tampering function that has ξ lg n
output locality, i.e., at most ξ lg n input-bits influence any output bit of the
tampering function. Note that there is no bound on the input locality, i.e., the
number of output positions one input bit can influence during tampering. Here
lg represents the logarithm with base 2, and n represents the length of the
codeword. Notably, our construction is in the information-theoretic plain model.
We emphasize that our construction does not rely on any computational hardness
assumption or a CRS.

1.1 Prior Relevant Works

Note that it is impossible to construct a non-malleable code (NMC) that is se-
cure for all tampering functions. Consider a tampering function that obtains an
advantage in predicting the first bit m1 of the message m. Then, the tamper-
ing function f overwrites the codeword with a fixed encoding of m`

1, which we
hardwire into it. This result indicates that, given the codeword c, no tampering
function f ∈ F should have an advantage in predicting any bit of the message
m ∈ {0, 1}`. Consequently, we fix the class of tampering function family F , and
3 Tampering functions can access the CRS; however, they cannot tamper the CRS.

2

construct a non-malleable encoding scheme (Enc,Dec) for that tampering family.

Monte-Carlo Constructions. Dziembowski et al. [18], introduced the notion
of non-malleable codes and showed the existence of rate-1 NMC against bit-
wise tampering (each output bit is a function of the corresponding input bit).
Next, Faust et al. [20] showed the existence of rate-1 non-malleable codes against
any tampering family of size 2poly(n).4 Cheraghchi and Guruswami [13] proved
that there exists (possibly inefficient) (1− α)-rate NMC against any tampering
function family of size 22

αn

. These results are probabilistic in nature and it is
unknown whether we can derandomize them to obtain explicit constructions in

the plain model. Note that there are (roughly)
((

n
δ

)
22
δ

)n
≈ 2n2

δ

distinct δ-

local tampering functions. If δ = O(log n) then [20] indicates the existence of
an efficient rate-1 non-malleable code. Further, for δ = o(n), [13] implies the
existence of a (possibly inefficient) rate-1 non-malleable code.
Explicit Constructions. A famous line of research explores designing NMCs
against k-split-state tampering functions where k different locations store the
k shares of the encoding. The tampering of each share is performed arbitrar-
ily, albeit independently. The maximum achievable rate in this setting is R 6
1 − 1/k [13]. Dziembowski et al. [17] constructed NMC for one-bit messages
in the 2-split-state model. A sequence of highly influential works have con-
structed near-optimal constant-rate NMCs using only k = 3 shares of the encod-
ing [3,12,2,10,27,24,28]. Currently, Li’s construction [29,30] achieves the highest
rate R = O(log log log n/ log log n) for 2-split-state tampering.

Another research direction allows the tampering function to tamper the entire
codeword but constrains its computational power. For example, local tampering
functions have an a priori upper bound of how many input bits influence each
output bit. [7,11] construct explicit NMC for local tampering functions. The rate
of [7] is at most the product of inverse of locality and rate of the 2-split-state
NMC. Hence, their construction has rate-0 even for constant locality. Recently,
[6] consider constant depth circuits and construct the first explicit NMC against
AC0 tampering. Both [11] and [6] have inverse-polynomial rate.
Explicit Rate-1 Constructions. Explicit rate-1 NMC constructions are even
more scarce. Cheraghchi and Guruswami [18,14] construct a rate-1 NMC for
bit-wise tampering. Agrawal et al. [4,5] provide an explicit rate-1 NMC against
tampering functions that perform bit-wise tampering after permuting the input
bits. Both these constructions amplify the rate of a base NMC (possibly, with
additional properties) that has sub-optimal rate into a rate-1 NMC using a
compiler. We emphasize that these two particular tampering families are not
only 1-local but also have the constraint that each input bit influences at most
one output bit (that is, 1-input local). Note that the focus of this work is δ-local
tampering functions with δ > 1 and no bound on input locality.

In the computationally bounded setting, [1] construct a rate-1 NMC against
2-split-state tampering based on the existence of one-way functions. Further-
more, there are constructions of NMC that rely on a CRS [31,20,8].
4 This construction is also an efficient rate-1 construction in the CRS model.

3

Non-malleable codes have also been considered in the continual tampering
model, for example, [19,26,33]; covering which is beyond the scope of this work.

1.2 Our Contribution

Our work focuses on constructing non-malleable codes, in the information-theoretic
plain model, against tampering functions that are δ-local, i.e., at most δ input
bits influence any output bit. We emphasize that δ can be a function of n, the size
of the codeword. Our work, for any positive constant ξ < 1, constructs explicit
rate-1 NMC against δ-local tampering functions, where δ = ξ lg n, which has a
tampering family of size 2n

1+o(1)

. In our case, the locality δ = ω(1) and, hence,
the set of all δ-local tampering functions subsumes the family of NC0 tampering
functions.

We present a general black-box compiler that takes three ingredients as input
and constructs a non-malleable code for local functions. At an intuitive level, we
prove the following result.

Informal Theorem 1 For any positive constant ξ < 1, there exists an explicit
and efficient rate-1 NMC against ξ lg n-local tampering functions using the fol-
lowing primitives in a black-box manner (refer to Fig. 2).
1. Rate-1 linear error-correcting code5 with (near) linear distance and dual-

distance (see Definition 7),
2. Rate-1/ηo(1) NMC against leaky input and output local tampering for mes-

sage length η (referred to as the base NMC) (see Definition 6), and
3. A pseudorandom generator for finite state machines with super-polynomial

stretch (see Definition 9).

The compiler (refer to Fig. 1 for an outline) encodes the message m using the
error-correcting code. Then, it samples a few entries of the codeword (at a suit-
able rate) and adds errors at half of them. The compiler tabulates all the sampled
entries (both the erroneous and unaltered ones) along with their respective lo-
cations. The erroneous codeword forms the primary payload of the message m.
The list of tabulated entries is appropriately encoded using a combination of the
base NMC and the PRG and is juxtaposed (at the end) for consistency checks
during decoding. If the rate of subsampling is sufficiently low, then the overall
construction is rate-1. The security argument proceeds by demonstrating that if
the subsampling rate is sufficiently high, then any local function cannot change
the payload without being inconsistent with the tabulated entries themselves.
Section 1.3 provides an intuitive overview of our compiler’s construction.

Finally, we instantiate the respective primitives using (1) Reed-Solomon
Codes over characteristic 2 fields, (2) An appropriate encoding introduced by
Ball et al. [7], and (3) Nisan’s PRG [32]. As a consequence, we construct explicit
efficient rate-1 NMC against ξ lg n-local tampering functions, for any positive
constant ξ < 1, with negligible simulation error (refer Theorem 2).

5 Error-correcting codes can be converted into error-correcting secret sharing schemes
using standard share-packing techniques [34,9,21].

4

Remark. We note that the resulting decoding function for our construction is
randomized. However, the randomization stems solely from the randomized de-
coding function of the base NMC construction of [7]. Given an appropriate NMC
against leaky input and output local tampering with deterministic decoding, our
construction will have deterministic decoding.

Remark. If the base NMC is only rate-1/ poly n, then our compiler with suitably
modified parameters, constructs an explicit rate-1 NMC against o(log n)-local
tampering functions. We defer this modification to the full version.

1.3 Technical Overview

As a starting point, it is instructive to understand the construction of Agrawal et al. [5]
for a rate-1 NMC against tampering functions with input and output locality 1.
The conceptual hurdles in generalizing this approach to δ-local functions, we
believe, motivates the components used in our construction.

Construction of Agrawal et al. [5]. The construction of Agrawal et al. [5]
encodes the message m with an error correcting secret sharing (ECSS) scheme
to obtain a. Then, it samples a small number of bits from a indexed by E, which
are represented by aE , and replaces aE with a (uniformly random) error e. This
creates an erroneous codeword c. Observe that half of the bits of e match the
original entries in aE and the remaining do not. Next, an NMC of rate-1/ poly
encodes the consistency checks (E, e) as cerr, and the final encoding is (c, cerr).
The decoding algorithm error-corrects c to obtain a (and hence, m) and checks
the consistency between a, c, cerr. For an appropriately chosen size of the set E,
the encoding (c, cerr) is non-malleable and has rate-1.

We represent the tampered codeword and error, respectively, by c̃ and c̃err.
The security argument proceeds, roughly, as follows.

(1) The tampering on cerr is independent of the message m. This argument
crucially relies on the output-locality of the tampering function. The indepen-
dence6 of the ECSS is sufficiently high to permit the simulation of the tampering
on cerr independent of the message m.

(2) The non-malleability of the encoding cerr ensures that c̃err encodes either
(a) the original (E, e), or (b) an entirely unrelated (E∗, e∗). The case of the
tampering function creating an invalid encoding is not particularly insightful.

(3.a.) Consider the case where the tampering function preserves error; namely,
the same* case. In this case, they argue that the only way to get a valid tampered
codeword is by keeping c̃ identical to c and that the probability of encoding being
valid independent of the original message m. For this argument, they perform
a case analysis based on the number of bits that the tampering function does
not directly copy from the codeword (a.k.a., the not-copied-bits). The tampering
function, by definition, directly copies the remaining bits from the codeword into
the tampered codeword.

6 An ECSS of independence t has the property that any t shares are uniformly and
independently random.

5

If the number of not-copied-bits in the tampering function is small, then
the simulation proceeds as follows. Since the tampering function has a small
number of not-copied-bits, most bits in c̃ are identical to their corresponding
bits in c. These copied bits define a unique codeword (using the high distance
property of ECSS7). Decoding succeeds if every not-copied-bit of c̃ matches the
corresponding bit in c. Moreover, decoding fails if any not-copied bit of c̃ does not
match the corresponding input bit in c. Since, the number of the not-copied-bits
is small and they have output locality 1, we can simulate this check independent
of the original message m by leveraging the (sufficiently large) independence of
the ECSS.

On the other hand, if the number of not-copied-bits is large, then they argue
that the tampered codeword is invalid (w.h.p.). The following intuition underlies
their argument. Due to the input-locality 1 of the tampering functions, the error
cerr can influence only a few bits in c̃. Consequently, there still remains a large
number of bits in c̃ that are not-copied-bits and are not influenced by cerr.
Therefore, the subset of these bits that is sampled in E is also large (over the
random choice of E). Among these indices, leveraging the high independence of
the ECSS and input locality 1 of the tampering function, there is a large subset
where each indexed bit in the tampered codeword independently disagrees with
the tabulated (E, e) with probability (at least)8 1/2. So, with high probability,
the tampered codeword fails the consistence check.

(3.b.) Consider the case where the tampering function replaces the error
with an unrelated (E∗, e∗). In this case, they argue that the only way to get
valid tampered codeword is by replacing c by an unrelated c∗ that is consistent
with (E∗, e∗). For this argument, they perform a case analysis based on the
number of output-bits of the tampering function that are non-constant (a.k.a.,
the non-constant-bits). If the number of non-constant-bits is small, then the
tampered message is simulatable independent of the message due to the high
independence of the ECSS and output locality 1 of tampering function. On the
other hand, if the number of non-constant-bits is large, then the decoding fails
with high probability. In this case, each bit in c̃ that is influenced by a bit in c
risks creating an independent inconsistency with (E∗, e∗) with probability 1/2.
Hence, if there is a large number of these bits where each of them is inconsistent
with (E∗, e∗) independently with probability 1/2, then the overall codeword will
be invalid with high probability. Similar to case 3.a., this argument relies on
leveraging the high independence of the ECSS, input locality 1 of the tampering
function, and the fact that E is randomly chosen.

To summarize, two key properties are crucial to our arguments.
(A) Being non-committal to the errors. We rely on randomness of errors to argue

inconsistency with tabulated errors in cerr.

7 An ECSS with distance d ensures that, for two different secrets, at least d secret
shares are different.

8 If the tampering function flips the input bit then the probability of disagreement is
1; otherwise, the probability of disagreement is 1/2.

6

(B) Independence of failure. Our objective is to identify output bits that cause
decoding failure independently.

Consequently, we have the following objective.

“Find a large subset of bits in c̃ that independently fail the consistency check” while,
simultaneously, “remaining noncommittal to (most of) the error (E, e)”

In the sequel, we elaborate the unique challenges to achieve this objective
against δ-local functions, with δ > 1, and no a priori bound on the input-locality.

Intuition underlying Our Construction. For a tampering function with
output locality δ (referred to as a δ-local function), intuitively, every bit in the
tampered codeword is influenced by some bits in c and some bits in cerr. The 2-
local tampering functions suffice to capture these two influences and we use these
to illustrate some primary challenges and key components of our construction.

Using the output locality of the tampering function, we can argue that tam-
pering on cerr would be independent of the message m. Next, we use non-
malleablity of encoding cerr to simulate whether c̃err encodes (a) the original
errrors, (2) an unrelated (E∗, e∗), or (3) ⊥. Let us consider the case when the
tampering function preserves the original errors. In this case, we perform a case
analysis on the number of not-copied-bits. So the first (somewhat minor) hurdle
is how to define not-copied-bits for δ-local functions. Since a bit in c̃ can be
influenced by δ bits, it is a not-copied-bit if it is not a copy for (at least) 1 out
of the 2δ possible inputs. Hence, in the final argument, this bit shall fail the
consistency check with probability 1/2δ. Thus, as δ increases, we need to find
exponentially more bits that independently fail to be consistent.

The second hurdle is that, unlike Agrawal et al. [5], our tampering functions
are not input-local. So, for instance, one bit in the (c, cerr) can influence every
bit of the tampered codeword. Therefore, even though there might be many
not-copied-bits, their probability of being inconsistent is possibly correlated. To
resolve this challenge, Viola [35] proposed a technique to fix the values of the
highly influential input bits (sampled from an appropriate distribution) of the
tampering function. This technique, intuitively, transforms an output local tam-
pering function into a convex combination of tampering function that are both
input and output local. We use this technique to fix the highly influential bits
in c to be uniform random bits (relying on output locality of tampering func-
tion and independence of ECSS). However, as we discuss below, many challenges
remain related to the bits in cerr that are highly influential for c̃.

Consider the following representative 2-local tampering function. Each bit is
c̃ is influenced by corresponding bit in c and a bit in cerr while ensuring that all
bits in cerr have an identical number of output neighbors.

(1) If the threshold to identify “highly influential” input bits is set too low,
then the procedure mentioned above might fix the entire cerr, because the size
of cerr is very small. Consequently, the error (E, e) gets fixed. Thereafter, it
is unclear how to proceed and catch any non-trivial tampering of c. So, the
threshold to identify “highly influential” cannot be too low. Therefore, in this
case, it is possible that no bit in cerr is fixed and cerr cumulatively influences a
lot of bits in c̃.

7

(2) Ideally, we would like that the bits we pick from c̃ to argue failure do not
depend on cerr. However, in this case, all the bits in c̃ depend on cerr.

(3) Furthermore, there is another subtle issue. Conditioning on the fact that
the tampered c̃err encodes the same error or a fixed (E∗, e∗) distorts the distri-
bution of cerr, which, in turn, influences the distribution of the tampered c̃. To
summarize, the distributions c̃ and (E, e) are correlated when conditioned on
whether the c̃err encodes the same cerr or a fixed cerr.

Message m

Valid Codeword a Random errors e at
random indices E

cL cR

(sL, αL) (sR, αR)Main codeword c

Replace
aE with e

Hide cL inside αL

using Nisan’s PRG
[32] with seed sL

Hide cR inside αR

using Nisan’s PRG
[32] with seed sR

Encode (E, e) using
NMC against leaky
local tampering [7]

ECSS scheme

Rate-0 NMC against
local tampering [7]

Fig. 1: Block diagram of the compiler to construct NMC against local tampering.

To resolve these concerns simultaneously, the high level idea is to hide the
informative bits about (E, e), i.e., cerr, in a polynomially larger string, say α
(refer to Fig. 1 for a block diagram of our compiler). We use a PRG with a
super-polynomial stretch to determine the positions with informative bits inside
α and store the PRG seed s along with α as the new payload. So our final
codeword is (c, s, α).9 We argue that for any tampering function, the number of
bits from cerr that are highly influential for c̃ is small. To simulate these bits,
we perform a small leakage on cerr. Since our base NMC from [8] is resilient to
small leakage, we stay non-committal to (E, e) even conditioned on this leakage.
Note that the rest of the bits in cerr have a bounded input locality onto c̃ and
hence, cerr influences only a small subset of bits in c̃.

Now, if we had a large number of not-copied-bits in c̃, we have a large number
of not-copied-bits in c̃ that are not influenced by cerr. But these bits might share
input neighbors in c and have correlated probability of failing consistency checks.
Recall that we have already fixed the highly influential bits in c. Finally, we can

9 Similar to [6], hash function families with sufficiently high independence also suffice
in this context.

8

use the bounded input and output locality to identify independent bits in c̃
(using the greedy neighbor-of-neighbor argument of Viola [35]).

This section presents only the intuitive rationale underlying the crypto-
graphic primitives needed for our construction. There are further subtleties
involved in the security arguments. Section 5.1 presents the full proof of our
compiler using a hybrid argument.
Remark: Limit of our approach. We present a simple rationale for why our
construction works for δ-local functions, where δ = ξ lg n and ξ < 1 is a positive
constant. Note that in steps 3.a. and 3.b., the probability of inconsistency with
the tabulated error was at least 1/2 in a 1-local tampering function. However,
the probability of inconsistency in a δ-local tampering function can be as low
as 2−δ. The probability of u independent consistency checks to simultaneously
pass is (1 − 2−δ)u. We need u = ω(2δ log n) for this quantity to be negligible.
On the other hand, we have u 6 n. Consequently, we must have 2δ � n/ log n,
or, in particular, δ � lg n.

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. For x = (x1, x2, . . . , xn) and S ⊆ [n],
we use xS to denote (xs1 , xs2 , . . . , xsk), where S = {s1, s2, . . . , sk} and s1 <
s2 < · · · < sk. For brevity, we write x−i for x[n]\{i}. We use US to represent
the uniform distribution over the set S. If D is a distribution, we write x ∼
D to denote that x is sampled according to distribution D. The support of a
distribution D, represented by Supp(D), is the set {x : Pr[D = x] > 0}. For any
binary strings x, y ∈ {0, 1}n, we use HD(x, y) to denote their Hamming distance
defined by HD(x, y) := |{i : xi 6= yi and 1 6 i 6 n}|.

2.1 Local Functions

Let f : {0, 1}n → {0, 1}n be a deterministic function. We write f as (f1, f2, . . . , fn)
such that f(x) = (f1(x), f2(x), . . . , fn(x)), where each fi : {0, 1}n → {0, 1} and
1 6 i 6 n. We say that the i-th bit (of the input) has influence on the j-th bit
(of the output) if there exists an x∗−i such that

fj(x
∗
1, . . . , x

∗
i−1, 0, x

∗
i+1, . . . , x

∗
n) 6= fj(x

∗
1, . . . , x

∗
i−1, 1, x

∗
i+1, . . . , x

∗
n)

For every output position 1 6 j 6 n, we define the input neighbors Inpf (j) to be
{i|1 6 i 6 n, i has influence on j}. Similarly, for an input position 1 6 i 6 n, we
define its output neighbors Outf (i) to be {j|1 6 j 6 n, i has influence on j}. We
extend this notion naturally to a set of indices. We write Inpf (S) = ∪s∈S Inpf (s)
and Outf (S) = ∪s∈S Outf (s).

A function f has input locality δ, if, for all 1 6 i 6 n, we have |Outf (i)| 6 δ.
Similarly, a function f has output locality δ, if for all 1 6 j 6 n, we have
|Inpf (j)| 6 δ.

Definition 1 (Local Functions). A function f : {0, 1}n −→ {0, 1}n is called
a δ-local function if it has output locality δ.

9

We use Localδ to represent the set of all such functions because n shall be
implicit from our context.

Recall that NC0 is the set of all functions f such that for all i, fi can be
computed by a circuit of fan-in 2 and constant depth. Trivially, NC0 ⊆ LocalO(1).

We follow the convention in the literature and define the restriction of boolean
functions as follows.

Definition 2 (Restriction). Let g : {0, 1}n → {0, 1} be a boolean function and
(I, Ī) be a partition of [n]. Let x ∈ {0, 1}I . Then, we write gI|x : {0, 1}n → {0, 1}
for function g with input of indices in I being restricted to x. For function
f : {0, 1}n → {0, 1}n such that f = (f1, f2, . . . , fn) we write fI|x to denote
((f1)I|x, (f2)I|x, . . . , (fn)I|x). We say that i ∈ Ī has influence on j if there exists
a x∗−i such that x∗I = x and

(fI|x)j(x
∗
1, . . . , x

∗
i−1, 0, x

∗
i+1, . . . , x

∗
n) 6= (fI|x)j(x

∗
1, . . . , x

∗
i−1, 1, x

∗
i+1, . . . , x

∗
n)

Note that for all j ∈ [n], InpfI|x(j) = {i|1 6 i 6 n, i has influence on j} ⊆ Ī.

2.2 Non-malleable Codes

We define non-malleable codes below similar to previous works.

Definition 3 (Coding Schemes). Let Enc: {0, 1}` → {0, 1}n and Dec: {0, 1}n →
{0, 1}`∪{⊥} be randomized functions (that is, they has access to private random-
ness). The pair (Enc,Dec) defines an encoding scheme with block length n and
message length ` if it satisfies perfect (resp., statistical) correctness. That is, for
all m ∈ {0, 1}`, over the randomness of Enc and Dec, Pr[Dec(Enc(m)) = m] = 1
(resp., Pr[Dec(Enc(m)) = m] = 1−negl(`)). The rate R of this encoding scheme
is defined as R = `/n.

Let Fn denote the set of all functions f : {0, 1}n → {0, 1}n. Non-malleable
codes are defined w.r.t. a family of tampering functions, say F ⊆ Fn, as follows.

Definition 4 ((n, `, ε)-Non-malleable Codes). A coding scheme (Enc,Dec)
with block length n and message length ` is said to be non-malleable against
tampering family F ⊆ Fn with (simulation) error ε, if for all functions f ∈ F ,
there exists a distribution Sim(f) over {0, 1}` ∪ {⊥} ∪ {same*} such that for all
messages m ∈ {0, 1}`,

Tampermf ≈ε copy (Sim(f),m)

where Tampermf stands for the following distribution of the tampered message

Tampermf :=

{
c ∼ Enc(m), c̃ = f(c), m̃ = Dec(c̃)

Output: m̃.

}
and

copy(x, y) =

{
y, if x = same*;

x, otherwise.

10

2.3 Hypergeometric Distribution

Consider a universe of sizeN withK success samples. An (N,K, n)-hypergeometric
distribution is the probability distribution of number of success samples picked
when n random samples are picked from the universe without replacement.
Specifically, we define the distribution as follows.

Definition 5. A distribution D over the sample space [n] is an (N,K, n)-hypergeometric
distribution if, for any k ∈ [n], we have

Pr[D = k] =

(
K

k

)(
N −K
n− k

)(
N

n

)−1
Using standard coupling arguments, it is known that the hypergeometric

distribution is more concentrated than the corresponding Bernoulli distribution.
Consequently, we have the following tail bound.

Lemma 1. ([25,15]) Let X be a random variable sampled from a (N,K, n)-
hypergeometric distribution. Then for any ε ∈ (0, KN),

Pr [X 6 (K/N − ε) · n] 6 exp
(
−2ε2n

)
The following corollary suffices for our proof.

Corollary 1. Let A ⊆ [n] be an arbitrary subset of size a. Let B ⊆ [n] be a
random subset of size b. Then

Pr [|A ∩B| 6 ab/2n] 6 exp
(
−a2b/2n2

)
Note that |A ∩ B| is an (n, a, b)-hypergeometric distribution. The corollary

follows from the previous lemma with ε = a/2n.

3 Building Blocks

In this section we describe the building blocks of our compiler.

3.1 Non-malleable Codes against Leaky Input and Output Local
Tampering

Our construction relies on an encoding scheme that satisfies non-malleability
against leaky input and output local tampering that we define below.

Definition 6. Let (Enc,Dec) be a coding scheme such that Enc : {0, 1}k →
{0, 1}nL × {0, 1}nR and Dec : {0, 1}nL × {0, 1}nR → {0, 1}k. We call (Enc,Dec)
a (λ, µ, `i, `o)-non-malleable code against leaky input and output local tampering
with simulation error ε if it satisfies the following conditions.

Let LL ⊆ [nL] and LR ⊆ [nR] be arbitrary subsets of size at most λnL and
λnR, respectively. Consider any function F with domain {0, 1}|L

L| × {0, 1}|L
R|

that outputs a tampering function g : {0, 1}nL × {0, 1}nR → {0, 1}nL × {0, 1}nR

such that for any x ∈ {0, 1}|L
L|, y ∈ {0, 1}|L

R|, and g = F (x, y)

11

1. The output locality of the tampering function g is at most `o, and
2. All but (at most) µnL input-bits of the first nL input-bits of g have input

locality (at most) `i.
Then, there exists a distribution Sim(LL,LR, F) over

(
{0, 1}k ∪ {⊥, same*}

)
×

{0, 1}|L
L| × {0, 1}|L

R| such that for any message m ∈ {0, 1}k,

TampermLL,LR,F ≈ε copy(Sim(LL,LR, F), m), where

TampermLL,LR,F :=

(cL, cR) ∼ Enc(m), x := cLLL , y := cRLR

g := F (x, y)

(c̃L, c̃R) = g(cL, cR), m̃ = Dec(c̃L, c̃R)

Output (m̃, x, y)

Intuitively, leaky input and output local tampering allows the adversary to

first pick a subset of indices and peek into the codeword at those places, then
use this leakage as an advice to select a output-local, (almost) input-local tam-
pering function. Then, non-malleability against leaky input and output local
tampering guarantees that the tampered message and the leakage are simulat-
able independent of the original message only given the position of leaked indices
and the map F from leakage to the tampering function. Ball et al. [7] construct
this non-malleable code as an intermediate step toward their final rate-0 non-
malleable codes against local tampering. As a corollary of their results, we have
the following lemma, which suffices for our construction.

Lemma 2 ([7]). There exist constants λ, µ such that, for any `i, `o = O(log k),
there exists an explicit and efficient (λ, µ, `i, `o)-non-malleable code against leaky
input and output local tampering with simulation error ε = negl(k) and rate
1/ko(1), where k is the length of the message.

Remark 1. Note that [7] reduces the problem of constructing non-malleable
codes against leaky input and output local tampering to the problem of con-
structing non-malleable codes against 2-split-state tampering family. The rate
of their final construction will be the product of the rate of the reduction, which
is inverse of the locality (i.e., 1/max(`i, `o)) and the rate of the given 2-split-state
non-malleable code. Instantiated with the state-of-the-art 2-split-state construc-
tion by Li [29,30], which has rate Ω(log log log k/ log log k), the final rate of [7]’s
construction can be as high as 1/polylog(k), which is 1/ko(1) and satisfies this
lemma.

3.2 Error-Correcting Secret-Sharing Schemes

Definition 7. An encoding scheme (Enc,Dec) with block length n and message
length ` is said to be an (n, `, d, t)-error-correcting secret sharing scheme (ECSS
scheme) if it satisfies the following conditions.
1. Distance d. For any two codewords c, c′, HD(c, c′) > d.

12

2. Independence t. For any message m ∈ {0, 1}` and a subset S ⊆ [n] such
that |S| 6 t, the distribution of Enc(m)S is identical to the uniform distri-
bution U{0,1}|S| .

3. Error Correction d/2. There exists an error-correcting function ECorr
such that for any c ∈ {0, 1}n, ECorr(c) outputs a codeword c∗ such that
HD(c, c∗) 6 d/2. If no such codeword exists, then it outputs ⊥.

Lemma 3. For every ζ ∈ (0, 1), there exists an explicit (n, `, d, t)-ECSS scheme
with n = (1 + o(1))` and d, t > n1−ζ .

Standard Reed-Solomon codes over characteristic 2 fields achieve the prop-
erties required by Lemma 3. We defer such a construction to the full version.

3.3 Pseudorandom Generator for Finite State Machines

Definition 8 (Finite State Machine). A finite state machine (FSM) Q with
space w over the alphabet Σ satisfies the following properties.
1. There exists a state-transition function q : {0, 1}w ×Σ → {0, 1}w that takes

as input the current state s ∈ {0, 1}w and an alphabet x ∈ Σ, and outputs
the new state q(s, x).

2. There exists a subset S ⊆ {0, 1}w such that if the final state s ∈ S then the
FSM accepts the input and outputs 1. Otherwise, it outputs 0.

Definition 9. A function G : {0, 1}p → Σu is a pseudorandom generator for
FSMs with space w and alphabet Σ with error ε if for any distinguisher FSM Q
with space w and alphabet Σ we have∣∣∣Pr [Q (UΣu) = 1]− Pr

[
Q
(
G(U{0,1}p)

)
) = 1

]∣∣∣ 6 ε

Lemma 4 ([32]). There exists a constant κ > 0 such that for all integers d > 0
and u 6 κd, there is an explicit pseudorandom generator G : Σ3u → Σ2u for
FSMs with alphabet Σ = {0, 1}d and space κd with error 2−κd.

4 Our Compiler

In this section, we will present our compiler. That is, for all constants ξ < 1,
given a rate-1 ECSS scheme, a rate 1/ηo(1) non-malleable code against leaky
input and output local tampering (for η length messages) and a PRG secure
against finite state machines with appropriate parameters, we construct a rate-1
non-malleable coding scheme against all δ-local tampering family Localδ for δ =
ξ · lg n. Here n is the length of the codeword. We begin by giving some notation,
specifying the building blocks used followed by our contruction overview.

Notation: Throughout our construction and proof, we use the notation that after
the tampering is done, any variable of original codeword, for example, a, will
have a tilde on it, i.e., ã. For example, c is the original main codeword and c̃
would be the tampered version of the main codeword. Thus, when we talk about
bits from c, it refers to the input-bits of the tampering function and on the other
hand, bits from c̃ are output-bits of the tampering function.

13

Building blocks:
◦ (ECSS.Enc,ECSS.Dec) is an (n, `, d, t) ECSS scheme.
◦ (NMEnc0,NMDec0) is a (λ, µ, `i, `o)-non-malleable code against leaky input and

output local tampering.
◦ G : ({0, 1}log

2 n)3Λ logn −→ ({0, 1}log
2 n)n

Λ

is a PRG that fools all FSMs with
space κ log2 n. We set Λ below.

NMEnc1(m):
1. Sample a random E ⊆ [n] of size

n1−ε1 , where ε1 is a small constant.
2. For all i ∈ E, sample ei ∼ U{0,1}.
3. Sample a ∼ ECSS.Enc(m)

4. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

5. Let (cL, cR) ∼ NMEnc0(E, e)

6. Pick seeds sL, sR $←{0, 1}3Λ·log
3 n.

7. Let EmbedL,EmbedR be as below.
◦ αL = EmbedL(sL, cL)
◦ αR = EmbedR(sR, cR)

8. Output (c, sL, αL, sR, αR)

NMDec1(c̃, s̃L, α̃L, s̃R, α̃R):
1. Let RecoverL,RecoverR be as below.

◦ c̃L = RecoverL(s̃L, α̃L)

◦ c̃R = RecoverR(s̃R, α̃R)

2. If NMDec0(c̃L, c̃R) = ⊥, output ⊥
3. (Else) (Ẽ, ẽ) = NMDec0(c̃L, c̃R)
4. If ECSS.ECorr(c̃) = ⊥, output ⊥
5. (Else) ã = ECSS.ECorr(c̃)

6. Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

7. if c′ 6= c̃, output ⊥
8. (Else) m̃ = ECSS.Dec(ã)
9. Output m̃

Let lengths of cL and cR be nβ1 and nβ2 , respectively. First, picka a constant γ s.t.
max(β1, β2) < γ < 1. Next, let τ > 0 be a constant s.t. Λ = γ + 2τ < 1.

EmbedL,RecoverL: Let ρL : {0, 1}log
2 n −→ {0, 1} be any function with biasb

2n−(Λ−β1). First, compute G(sL) = (y1, y2, . . . , ynΛ) s.t. each yi ∈ {0, 1}log
2 n and

AdvL = (ρL(y1), ρ
L(y2), . . . , ρ

L(ynΛ)). Then, α
L = EmbedL(sL, cL) is defined as:

αLi :=

{
cLj If AdvLi is the jth 1 in AdvL

0 Otherwise.

To recover during decoding, compute G(s̃L) = (ỹ1, ỹ2, . . . , ỹnΛ) and
Ãdv

L
= (ρL(ỹ1), . . . , ρ

L(ỹnΛ)). Then, if Ãdv
L
does not contain > nβ1 many 1’s, quit

decoding by outputing ⊥. Otherwise, c̃L = RecoverL(s̃L, α̃L) is defined as:

c̃Lj := α̃Li where Ãdv
L

i is the jth 1 in Ãdv
L

EmbedR,RecoverR: Let ρR : {0, 1}log
2 n −→ {0, 1} be any function with bias

2n−(Λ−β2). Now EmbedR,RecoverR are defined analogously to above using ρR.

a This is possible because (E, e) has length η = n1−ε1(logn + 1) and
(NMEnc0,NMDec0) is a 1/ηo(1) rate coding scheme.

b Bias of a function is the probability that output is 1 for a uniformly sampled input.

Fig. 2: Our Rate-1 Non-malleable Codes against δ-Local Functions

14

Building blocks used. We use the following three building blocks. Let δ = ξ · lg n
for ξ < 1 be the locality of the tampering function.
1. An (n, `, d, t)-ECSS scheme with d, t > n1−ζ and n = (1 + o(1))` for an

appropriate constant ζ to be fixed later. This is provided by Lemma 3.
2. For any constant λ, µ and η = nΘ(1), a (λ, µ, `i, `o)-NMC against leaky input

and output local tampering for messages in {0, 1}η, rate 1/ηo(1), `o = δ =
O(log η), `i = 4δ/µ = O(log η), simulation error negligible in η. This is
provided by Lemma 2. We denote the corresponding simulator by Sim0.

3. A PRG G : ({0, 1}log
2 n

)3Λ logn −→ ({0, 1}log
2 n

)n
Λ

that is secure against all
FSMs with alphabet Σ = {0, 1}log

2 n and space κ log2 n with error 2−κ log2 n

for an appropriate constant Λ to be fixed later. Here, κ is a constant provided
by Lemma 4 for u = Λ log n and d = log2 n.

Construction Overview. Our construction starts with encoding the message m ∈
{0, 1}` using ECSS scheme a ∼ ECSS.Enc(m) such that a ∈ {0, 1}n. Next, we
sample a random subset E ⊆ [n] of size n1−ε1 for a small constant ε1 specified
later. Next, for each index i ∈ E, we sample a random bit ei. These will be
our planted errors. Then, all bits at E in codeword a are replaced by these
random bits ei to produce c. We refer to this an erroneous codeword c as the
main codeword. We note that a bit at index in E has probability 1/2 of being
an error.

Next, for the second part of our codeword, we record the error indices E
as well as planted errors e = (e1, e2, . . . , e|E|) using (poor-rate) non-malleable
codes against leaky input and output local tampering. We sample (cL, cR) ∼
NMEnc0(E, e). Finally, we hide the codeword (cL, cR) inside a larger code (αL, αR)
at pseudorandom locations as follows: We will sample two seeds sL, sR of ap-
propriate length (See Fig. 2). And invoke our pseudorandom generator G on sL
(resp., sR) and use appropriate bias function ρL (resp., ρR) to generate advice
string AdvL (resp., AdvR). At a high level, positions having a 1 in the advice
string will store an actual bit of the code, and positions with 0 will store a re-
dundant 0. Intuitively, this step ensures that when bits from αL or αR are used
for tampering, most of these bits would be redundant 0’s. Our final codeword is
(c, sL, αL, sR, αR).

Conversely, to decode, we use seeds s̃L, s̃R to determine the indices of c̃L, c̃R

in α̃L, α̃R. Then, we decode (c̃L, c̃R) to get the error index set Ẽ and error bits
ẽ. Next, we compare c̃ with planted errors (Ẽ, ẽ) to check (1) whether all the
bits from c̃ with index in Ẽ and ẽ are equal; (2) we error correct c̃ to obtain
correct codeword ã and check whether all the errors in c̃ were recorded in Ẽ.
If both conditions are satisfied, we will consider the codeword valid and output
the decoding of ã as the decoded message.

Setting the parameters. Next, we will set the various constants used in our
construction (as well as proof of non-malleability).
◦ λ, µ: We pick constants λ, µ arbitrarily.

15

◦ Λ, γ, τ : Let |cL| = nβ1 and |cR| = nβ2 . Since η = |(E, e)| = n1−ε1(log n) and
rate of NMEnc0 is 1/ηo(1), we have that max(β1, β2) < 1. We pick positive
constants γ, τ such that max(β1, β2) < γ < 1 and γ+2τ < 1. Set Λ = γ+2τ .

◦ ε1, ε2: The number of erroneous indices |E| = n1−ε1 . In our security hybrids,
we have another small constant ε2 and we require ε1 + 2ε2 < 1 − ξ, where
ξ is defined by the tampering family. Hence, given ξ, we pick two positive
constants satisfying the condition.

◦ ζ: In our construction, we use an (n, `, d, t)-ECSS scheme with d, t > n1−ζ .
In our security proof, we require ζ < min(ε1, ε2, τ, 1 − Λ) and hence, ζ can
be picked as a sufficiently small positive constant satisfying the constraint.

Theorem 1. Let {0, 1}` be the message space and δ = ξ · lg n, for some constant
ξ < 1. There exists an explicit and efficient rate-1 NMC against Localδ with
simulation error that is negligible in n and uses the following primitives in a
black-box manner.
1. For appropriate ζ > 0, an (n, `, d, t)-ECSS scheme with d, t > n1−ζ and

n = (1 + o(1))`.
2. For some constant λ, µ and η = nΘ(1), a (λ, µ, `i, `o)-NMC against leaky

input and output local tampering for messages in {0, 1}η, rate 1/ηo(1), `o =
O(log η), `i = O(log η), simulation error negligible in η.

3. For some constant Λ > 0, a PRG G : ({0, 1}log
2 n

)3Λ logn −→ ({0, 1}log
2 n

)n
Λ

that is secure against FSM with alphabet size log2 n and space Θ(log2 n) with
error that is negligible in n.

The above theorem when instantiated with Lemma 3, Lemma 2 and Lemma 4
gives following theorem.

Theorem 2. For all constants ξ < 1, there exists an explicit rate-1 non-malleable
code against Localξ·lgn with negligible in n simulation error, where n is the length
of the codeword.

In particular, this implies an explicit rate-1 non-malleable code against NC0

tampering.

4.1 Proof of Theorem 1

Here, we will prove that the our construction has rate-1 and perfect correctness.
We provide proof of non-malleability in the next section.

Rate of our construction. Our codeword is (c, sL, αL, sR, αR). Note that our
main codeword c has length n = ` + o(`). Next, |sL| = |sR| = 3Λ log3 n. And,
|αL| = |αR| = nΛ. Since, Λ = γ + 2τ < 1 (see parameter setting above), the
overall codeword has length `+ o(`).

Correctness. We first argue that our scheme has statistical correctness, and then
show how the scheme in Fig. 2 can be tweaked slightly to give perfect correctness.
It is easy to see that the correctness of our scheme in Fig. 2 is broken only when

16

AdvL does not have enough number of 1’s to store all of cL in αL or similarly,
when AdvR does not have enough number of 1’s to store all of cR in αR. If this
happens, the decoding algorithm would output ⊥. Note that whether this event
happens or not depends on the choice of seeds sL and sR only. We prove the
following lemma that states that probability of this event happening is negligible.

Lemma 5. With probability at least 1 − 2−Ω(log2 n) over the random choice of
sL and sR, αL and αR will contain all the bits from cL and cR.

Proof. We will prove the lemma for (sL, αL) and same argument holds for
(sR, αR). We first show that the lemma holds when G is a random function.
Next, we argue that if lemma does not hold for a PRG G, then there exists a
distinguisher FSM Q with space κ log2 n that breaks PRG security with non-
negligible probability in n.

Firstly, when G(sL) outputs uniform random string, the expected number
of 1’s in AdvL is nΛ · 2n−(Λ−β1) = 2nβ1 . Next, using Chernoff bound, with
probability at least 1− exp(−Θ(nβ1)), there are at least nβ1 many 1’s in AdvL

and hence, αL will contain all the bits from cL.
Now suppose that the lemma does not hold when we use PRG G that fools

FSMs with space κ log2 n. Consider the following FSMQ that takes (y1, y2, . . . , ynΛ)
as input and a state in Q stores ctr, which denotes number of indices i for which
ρL(yi) output 1. The final output of Q is 1 when ctr > nβ1 . Clearly, by our
argument above, on a true uniform string, Q will output 1 with probability at
least 1− exp(−Θ(nβ1)). If this lemma is incorrect for a PRG G, Q will output 1
with probability at most 1 − 2−Ω(log2 n) and hence Q will break the underlying
PRG with success probability greater than 2−Ω(log2 n). Finally, note that Q only
needs Λ log n < κ log2 n space to record A. This completes the proof. ut

Getting perfect correctness. We can tweak our scheme slightly to give perfect
correctness as follows: If sL or sR is bad, i.e., (αL, αR) will not contain all bits in
(cL, cR), then we ignore AdvL,AdvR and store the codeword in default location.
More precisely, we store cL in first |cL| locations in αL and similarly for cR. It is
easy to see that this gives perfect correctness. In the proof of non-malleability,
our simulator can simply give up when this case happens. (Since sL, sR are
uniform seeds independent of the message, it is easy to check for this case.) This
would increase the simulation error by the probability of this event occurring.
But, above Lemma 5 proves that this happens with negligible probability. Hence,
this only increases the simulation error by negl(n).

5 Proof of Non-malleability of Our Compiler

Non-malleability. Recall that to prove non-malleability of the resulting scheme
against δ-local tampering family Localδ, we need to show that for any f ∈ Localδ,
there exists a simulator Sim1(f) such that, for all message m ∈ {0, 1}`, we have
the following

17

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}
2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}
3. Let X = P ∪Q. Sample aX ∼ U{0,1}|X|
4. Sample a random E1 ⊆ X s.t. |E1| ∼ (n, |X|, n1−ε1)-hypergeometric distribution.
5. For all i ∈ E1, sample ei ∼ U{0,1}.
6. For all i ∈ E1, replace ai with ei, we get cX .
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n.
8. Given sL (resp., sR), indices of cL (resp., cR) in αL (resp., αR) are determined.

Let BadL={Indices of cL with more than n1−γ−τ output neighbors in c̃},
LeakL={Indices of cL with output neighbors in either s̃L or s̃R},
BadR={Indices in cR with more than n1−γ−τ output neighbors in c̃}, and
LeakR={Indices in cR with output neighbors in either s̃L or s̃R}

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.
10. Let f0 be the following mapping from leakage at (LL,LR) to tampering function

g for NMEnc0: First, use (sL, sR), leakage at (LeakL,LeakR) and cQ to compute
s̃L and s̃R. These determine indices of c̃L and c̃R in α̃L and α̃R. Then, define g to
be the tampering function from indices of (cL, cR) to indices of (c̃L, c̃R).

11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy Definition 6), output ⊥
12. (Else) (ans, x, y) = Sim0(LL,LR, f0).
13. Let SL, SR denote indices of sL, sR. Define function h as a restriction of f1:

h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y) (See Definition 2)

14. V := {i|i ∈ [n], Inph(i) 6= ∅}
15. W := {i|i ∈ [n], Inph(i)\[n] 6= ∅}
16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , s

L, sR, x, y), hi(z) 6= zi}
17. Sample a ∼ ECSS.Enc(0`)|(ECSS.Enc(0`))X = aX
18. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2

19. For all i ∈ E2, sample ei ∼ U{0,1}

20. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

21. (Ẽ, ẽ) = copy(Sim0(LL,LR, f0), (E, e))
22. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(c

L, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y
23. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
24. c̃ = f1(c, s

L, αL, sR, αR)
25. If ans =

◦ ⊥: Output ⊥
◦ same*: If |Z\(W ∪X)| > n1−ε2 , output ⊥

(Else) If c̃Z = cZ , output same*; (Else) Output ⊥.
◦ (E∗, e∗): If |V \W | > n1−ε2 , output ⊥

(Else) If ECSS.ECorr(c̃)⊥, output ⊥;
(Else) ã = ECSS.ECorr(c̃)

Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

If c′ 6= c̃, output ⊥; (Else) Output m̃ = ECSS.Dec(ã)

Fig. 3: Simulator Sim1(f)

18

(c, sL, αL, sR, αR) ∼ NMEnc1(m)

(c̃, s̃L, α̃L, s̃R, α̃R) = f(c, sL, αL, sR, αR)

m̃ = NMDec1(c̃, s̃L, α̃L, s̃R, α̃R)

Output m̃

 = Tampermf ≈ε copy(Sim1(f),m)

Our simulator is formally defined in Fig. 3. In the simulator and the hybrids,
ne = |(sL, αL, sR, αR)|. A detailed proof using a sequence of indistinguishable
hybrids is presented in the next section. We shall use the following lemma in our
hybrid argument. We defer the proof of this lemma to the full version.
Lemma 6. For any δ-local tampering function, with probability at least 1 −
2−Ω(log2 n) over the random choice of sL and sR, the following conditions hold.
(1) At most µnβ1 bits from cL will have input locality higher than 4δ/µ onto α̃R;
(2) Number of bits in cL and cR that have greater than n1−γ−τ input locality
onto c̃ are bounded by 4δnβ1−τ and 4δnβ2−τ , respectively.
And as a consequence, we have
(3) Number of bits in c̃ that are influenced by low input locality bits from cL

and cR are bounded by nβ1 · n1−γ−τ = o(n1−τ) and nβ2 · n1−γ−τ = o(n1−τ),
respectively.

5.1 Detailed hybrid argument

In this section, we are going to use a series of statistically close hybrids to
prove that Tampermf and copy

(
Sim1(f),m

)
are indistinguishable. Throughout

this subsection, we use the following color/highlight notation. In a current hy-
brid, the text in red denotes the changes from the previous hybrid. The text
in shaded part represents the steps that will be replaced by red part of the
next hybrid. We call c (resp., c̃) the main codeword and (sL, αL, sR, αR) (resp.,
(s̃L, α̃L, s̃R, α̃R)) the error codeword.

H1(f,m) : Our first hybrid is the real world Tampermf , we simply open up the
definition of NMEnc1 and NMDec1 and write tampering function f as (f1, f2).
Both functions are given as input the entire codeword and f1 is doing the tam-
pering on the main codeword, i.e., outputs c̃, while f2 is doing the tampering on
the error codeword, i.e., outputs (s̃L, α̃L, s̃R, α̃R). This way of writing f would
be useful in later hybrids.

H2(f,m) : In the next hybrid H2, we change the way we sample ECSS codeword
of m. We define two subsets of indices P and Q. Intuitively, P is the popular
input bits of the main codeword, i.e., bits in c that influence more than nε2

bits of c̃. And Q is the set of bits in main codeword c that influence the error
codeword (s̃L, α̃L, s̃R, α̃R). Now, let X = P ∪ Q. We first sample a uniform
string aX of length |X| and then sample a ∼ ECSS.Enc(m) condition on that
ECSS.Enc(m)X = aX . We argue that this does not change the distribution of
a and hence it is identical to the previous hybrid.

19

H1(f,m):
1. Sample a random E ⊆ [n] of size n1−ε1

2. For all i ∈ E, sample ei ∼ U{0,1}
3. Sample a ∼ ECSS.Enc(m)

4. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

5. Let (cL, cR) ∼ NMEnc0(E, e)

6. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

7. αL = EmbedL(sL, cL) and αR = EmbedR(sR, cR)
8. c̃ = f1(c, s

L, αL, sR, αR)

9. (s̃L, α̃L, s̃R, α̃R) = f2(c, s
L, αL, sR, αR)

10. c̃L = RecoverL(s̃L, α̃L) and c̃R = RecoverR(s̃R, α̃R)

11. If NMDec0(c̃L, c̃R) = ⊥, output ⊥; (Else) (Ẽ, ẽ) = NMDec0(c̃L, c̃R)
12. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

13. Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

14. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)
15. Output m̃

H2(f,m):
1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}
2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}
3. Let X = P ∪Q. Sample aX ∼ U{0,1}|X|
4. Sample a ∼ ECSS.Enc(m)|(ECSS.Enc(m))X = aX
5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ∼ U{0,1}

7. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

8. Let (cL, cR) ∼ NMEnc0(E, e)

9. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

10. αL = EmbedL(sL, cL) and αR = EmbedR(sR, cR)

11. c̃ = f1(c, s
L, αL, sR, αR)

12. (s̃L, α̃L, s̃R, α̃R) = f2(c, s
L, αL, sR, αR)

13. c̃L = RecoverL(s̃L, α̃L) and c̃R = RecoverR(s̃R, α̃R)

14. If NMDec0(c̃L, c̃R) = ⊥, output ⊥; (Else) (Ẽ, ẽ) = NMDec0(c̃L, c̃R)

15. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

16. Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

17. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)
18. Output m̃

To argue this we use the independence property of our ECSS scheme. In
particular, since t > n1−ζ , the distribution of aX is indeed uniform as long as
|X| = o(n1−ζ). Now, |P | can be bound as follows: The total number of input

20

neighbors of c̃ is δn and at most δn1−ε2 many bits in c can influence more than
nε2 bits from c̃. Hence |P | = o(n1−ζ) as long as we pick ζ < ε2 . Next, the length
of the error codeword is |sL|+ |αL|+ |sR|+ |αR| = O(nΛ) and hence, by output
locality δ, the size of Q is at most δ ·O(nΛ) = o(n1−ζ) as long as ζ < 1− Λ .

H3(f,m):
1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}
2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}
3. Let X = P ∪Q. Sample aX ∼ U{0,1}|X|
4. Sample a ∼ ECSS.Enc(m)|(ECSS.Enc(m))X = aX
5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ∼ U{0,1}

7. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

8. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

9. Given sL (resp., sR), indices of cL (resp., cR) in αL (resp., αR) are determined.
Let BadL={Indices of cL with more than n1−γ−τ output neighbors in c̃},
LeakL={Indices of cL with output neighbors in either s̃L or s̃R},
BadR={Indices in cR with more than n1−γ−τ output neighbors in c̃}, and
LeakR={Indices in cR with output neighbors in either s̃L or s̃R}

10. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.
11. Let f0 be the following mapping from leakage at (LL,LR) to tampering function

g for NMEnc0: First, use (sL, sR), leakage at (LeakL,LeakR) and cQ to compute
s̃L and s̃R. These determine indices of c̃L and c̃R in α̃L and α̃R. Then, define g
to be the tampering function from indices of (cL, cR) to indices of (c̃L, c̃R).

12. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy Definition 6), output ⊥
13. (Else) (Ẽ, ẽ, x, y) = Tamper

(E,e)

LL,LR,f0

14. If (Ẽ, ẽ) = ⊥, output ⊥
15. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(c

L, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y
16. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
17. c̃ = f1(c, s

L, αL, sR, αR)
18. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

19. Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

20. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)
21. Output m̃

H3(f,m) : In the next hybrid H3, we rewrite the way how (Ẽ, ẽ) is generated
from (E, e) given seeds sL and sR. Here, we would generate (Ẽ, ẽ) as output
of a tampering experiment on (E, e) with an appropriate tampering function
from the leaky input and output local tampering family. Note that (E, e) is first
encoded to (cL, cR) and then is hidden among (αL, αR) using seeds sL, sR. We
note that if we are given the seed sL and sR, the places where cL are cR are
stored among αL and αR is known. Similarly, if we know s̃L and s̃R, the places
where c̃L and c̃R are stored among α̃L and α̃R are also known. Therefore, we
define LeakL and LeakR as the input neighbors of both s̃L and s̃R from cL and cR

21

respectively. Now let f0 be the mapping that given the leakage LeakL and LeakR,
first computes10 s̃L and s̃R, and then outputs the tampering function g. Now that
we know indices of (cL, cR) and (c̃L, c̃R), function g maps (cL, cR) to (c̃L, c̃R).11
We note that leaking bits at BadL and BadR from cL and cR would be used in
later hybrids. So the total leakage from cL and cR are LL = LeakL ∪BadL and
LR = LeakR ∪BadR. Now we need to argue that the tampering f0 and leakage
LL,LR forms a valid tampering experiment onto our base NMC against leaky
input and output local tampering. It is easy to see that if it is valid, then the
two hybrids are identical. When they are not valid we output ⊥ in this hybrid
and we need to argue that probability of output ⊥ due this is negligible.

H4(f,m):
1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}
2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}
3. Let X = P ∪Q. Sample aX ∼ U{0,1}|X|
4. Sample a ∼ ECSS.Enc(m)|(ECSS.Enc(m))X = aX

5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ∼ U{0,1}

7. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

8. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

9. Given sL, define: BadL,LeakL as in H3(f,m)
Given sR, define: BadR,LeakR as in H3(f,m)

10. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.
11. Define mapping f0 and its output g as in H3(f,m)
12. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy Definition 6), output ⊥
13. (Else) (ans, x, y) = Sim0(LL,LR, f0)
14. If ans = ⊥, output ⊥; (Else) (Ẽ, ẽ) = copy(ans, (E, e))

15. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(c
L, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

16. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
17. c̃ = f1(c, s

L, αL, sR, αR)
18. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

19. Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

20. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)
21. Output m̃

Firstly, f0 might not satisfy Definition 6 if one of the following happens: (i)
Not all the bits from cL, cR are contained in αL and αR, respectively and thus,
f0 cannot produce function g; (ii) g has output locality higher than `o = δ; (iii)
under g, more than µnβ1 many bits from cL have input locality higher than
`i = 4δ/µ to c̃R. Note that our tampering function f is δ-local and therefore,

10 Note that at this point, the original seed sL and sR and their input neighbors cQ
from main codeword c is already fixed.

11 If c̃L or c̃R are not contained in α̃L or α̃R, f0 will simply set g to be a ⊥ function.

22

the output function g will also be δ-local, thus (ii) will never happen. And the
probability of (i) or (iii) happening is negligibe as guaranteed by Lemma 5 and
(1) from Lemma 6, respectively.

We bound the size of the leakage |LL| = |LeakL ∪BadL | by o(nβ1). First,
we observe that our seeds sL and sR are of length O(log3 n) and hence |LeakL|
is at most O(δ log3 n) = o(nβ1). And the size of BadL is o(nβ1) is guaranteed by
(2) of Lemma 6. The argument for LR is analogous to LL. This proves that this
hybrid and the previous one are 2−Ω(log2 n)-close.

Note that we still need the error codeword (sL, αL, sR, αR) to do the tam-
pering f1 onto c̃. Hence, we sample cL and cR under the condition that the
tampering experiment outputs (Ẽ, ẽ, x, y) and construct the error codeword as
defined by our compiler.

H5(f,m):
1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}
2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}
3. Let X = P ∪Q. Sample aX ∼ U{0,1}|X|
4. Sample a random E1 ⊆ X s.t. |E1| ∼ (n, |X|, n1−ε1)-hypergeometric distribution
5. For all i ∈ E1, sample ei ∼ U{0,1}
6. For all i ∈ E1, replace ai with ei, we get cX
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL,LeakL as in H3(f,m)
Given sR, define: BadR,LeakR as in H3(f,m)

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.
10. Define mapping f0 and its output g as in H3(f,m)
11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy Definition 6), output ⊥
12. (Else) (ans, x, y) = Sim0(LL,LR, f0).
13. If ans = ⊥, output ⊥
14. Sample a ∼ ECSS.Enc(m)|(ECSS.Enc(m))X = aX
15. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, Let E = E1 ∪ E2

16. For all i ∈ E2, sample ei ∼ U{0,1}

17. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

18. (Ẽ, ẽ) = copy(ans, (E, e))

19. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(c
L, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

20. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
21. c̃ = f1(c, s

L, αL, sR, αR)
22. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

23. Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

24. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)
25. Output m̃

H4(f,m) : In the next hybrid H4, we simply replace the tampering experiment
onto our base non-malleable codes with its corresponding simulator Sim0 and
incur a negligible error by Lemma 2.

23

H5(f,m) : In this hybrid, we break the error indices E into two parts: E1 = E∩X
and E2 = E\E1. Next, we note that cQ is needed to define the tampering on the
error codeword. Hence, we sample E1 and the error bits from E1 early before
defining tampering on error codeword. However, rest of errors, i.e., E2 is not used
before we invoke simulator Sim0. Based on these observations, we re-arrange
parts of the hybrids and this hybrid is identical to the previous one. Note that
the size of E1 and E2 are distributed according to (n, |X| , n1−ε1)-hypergemetric
distribution and (n, n − |X| , n1−ε1)-hyper geometric distribution, respectively.
By Corollary 1, it is easy to see that with probability 1− exp(−Θ(n1−ε1)), the
size of E2 is at least n1−ε1/2.

H6(f,m) : In this hybrid, we only introduce some new notation to be used in
later hybrids and hence, this hybrid is identical to the previous one.

We focus on the tampering of the main codeword using function f1. Note
that so far in the previous hybrid, we have already fixed certain bits in the input
main codeword c (that is, cX), picked PRG seeds sL, sR and also leaked certain
parts of cL, cR, i.e., LL,LR.12 Using this information, we define a restriction h
of function f1 that fixes all the above bits in the input.

We next define three subsets of [n] corresponding to h, namely, V , W and Z
as follows. V is the subset of bits i such that c̃i is not fixed given the fixing of
bits done so far. And W is the subset of bits that are influenced by some bits in
the error codeword (that have not been leaked and fixed so far). And Z is the
subset of bits i, such that the output of hi is not always the i-th input bit (In
the definition of Z, recall that ne = |(sL, αL, sR, αR)|).

Intuitively, Z is the set of bits that are not-copied-bits under the tamper-
ing function h, V is the set of non-constant-bits and W is the set of bits that
are influenced by the error codeword. As we explained in technical overview
Section 1.3, if ans = same* and the size of Z\W is large or if ans = (E∗, e∗)
and the size of V \W is large, then the tampered codeword will be invalid with
probability 1− negl(n). This intuition is formally proved in the next hybrid.

H7(f,m) : In the next hybrid H7, we add a sanity check right after we define
V,W,Z. (a) When ans = ⊥, we will output ⊥ immediately. This is the same as
the previous hybrid. (b) When ans = same*, we check the size of Z\(W∪X). If it
is larger than n1−ε2 , we directly output ⊥ without any further computation. On
the other hand, if it is less than n1−ε2 , we only compare c and c̃ at locations Z.
If they are the same, we output same*, otherwise, we output ⊥. (c) When ans =
(E∗, e∗), we check the size of V \W . If |V \W | > n1−ε2 , we directly output ⊥
without further computation. Below, we prove that the previous hybridH6(f,m)

12 Note that those places in αL, αR that are not used to store cL and cR are also fixed
(to be 0 by the compiler).

24

and copy(H7(f,m),m) are statistically close. We break the proof into two parts:
ans = same* case and ans = (E∗, e∗) case.
H6(f,m):
1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}
2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}
3. Let X = P ∪Q. Sample aX ∼ U{0,1}|X|
4. Sample a random E1 ⊆ X s.t. |E1| ∼ (n, |X|, n1−ε1)-hypergeometric distribution.
5. For all i ∈ E1, sample ei ∼ U{0,1}
6. For all i ∈ E1, replace ai with ei, we get cX
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL,LeakL as in H3(f,m)
Given sR, define: BadR,LeakR as in H3(f,m)

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.
10. Define mapping f0 and its output g as in H3(f,m)
11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy Definition 6), output ⊥
12. (Else) (ans, x, y) = Sim0(LL,LR, f0).
13. Let SL, SR denote indices of sL, sR. Define function h as a restriction of f1

(Definition 2): h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y)
14. V := {i ∈ [n]| Inph(i) 6= ∅}.
15. W := {i ∈ [n]| Inph(i)\[n] 6= ∅}.
16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , s

L, sR, x, y), hi(z) 6= zi}.
17. If ans = ⊥, output ⊥
18. Sample a ∼ ECSS.Enc(m)|(ECSS.Enc(m))X = cX
19. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2

20. For all i ∈ E2, sample ei ∼ U{0,1}

21. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

22. (Ẽ, ẽ) = copy(Sim0(LL,LR, f0), (E, e))
23. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(c

L, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y
24. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
25. c̃ = f1(c, s

L, αL, sR, αR)

26. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

27. Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

28. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

29. Output m̃

Case ans = same*: Let us first look at that the case when |Z\(W ∪X)| < n1−ε2 .
Note that by the definition of Z, all the bits of c̃ in [n]\Z are identical to
those in c. Recall c is obtained by planting |E| = n1−ε1 errors into a valid
ECSS codeword a. We have HD(c̃, a) 6 HD(c̃, c) + HD(c, a) = |Z| + |E| 6
(|Z\(W ∪X)|+ |W |+ |X|) + |E|. Using |W | = o(n1−τ) from (3) of Lemma 6,
|X| = o(n1−ζ) from hybrid 2, and |E| = n1−ε1 , we get HD(c̃, a) 6 n1−ε2 +

o(n1−τ) + o(n1−ζ) + n1−ε1 = o(n1−ζ) by setting ζ < ε2 , ζ < τ and ζ < ε1 .
Hence, using the fact that the distance of the ECSS scheme, d > n1−ζ , we get

25

ECSS.ECorr(c̃) = a. Consequently, if we error-correct c̃ and plant in the orig-
inal errors (E, e), we get c. Hence, experiment would output ⊥ iff c̃ 6= c. This
happens only when c̃Z 6= cZ .

Now consider the case when |Z\(W ∪X)| > n1−ε2 . We begin by computing
a lower bound on number of error indices in Z\(W ∪ X), i.e., size of set A =
(Z\(W ∪X))∩E2. First, note that E2 is a random subset of [n]\X of size at least
n1−ε1/2 with probability 1− exp(−Ω(n1−ε1)) by Corollary 1. Next, we observe
that sets Z,W,X are defined independent of E2 and hence, by Corollary 1,
|A| > 1

4 · n
1−ε1−ε2 with probability at least 1− exp(−Ω(n1−ε1−2ε2)).

Next, we pick a subset A′ ⊆ A such that bits in A′ have disjoint input
neighbors. That is, ∀i, j ∈ A′, Inph(i) ∩ Inph(j) = ∅. We use following two
properties to ensure that we can pick A′ of sufficiently large size. First, for
every bit i ∈ A, Inph(i) ⊆ [n] (because A ∩W = ∅). Second, all the bits in [n]
with more than nε2 output neighbors in [n] belong to subset P and have already
been fixed. This implies that for any bit i ∈ A, all bits in Inph(i) have at most
nε2 output neighbours in [n]. Therefore, it is guaranteed that we can pick a set
A′ ⊆ A s.t. |A′| > |A|

δnε2 = n1−ε1−2ε2

4δ . (This can be done greedily by picking an
arbitrary index i ∈ A and discarding all the bits in A that are influenced by
Inph(i). Since h has at output locality δ and each bit in Inph(i) influences at
most nε2-many bits in A, we discard at most δnε2 indices from A for picking one
index in A′. Now, we recurse on the remaining indices in A.)

For the rest of the proof, we consider such a set A′ of size exactly n1−ε1−2ε2

4δ .
We note that for all indices i ∈ A′ following conditions are satisfied (1) ci is a
planted error ei (A′ ⊆ E2); (2) hi does not always output ei (A′ ⊆ Z); (3) the
input neighbors of i are all in [n] (A′∩W = ∅). For the tampered main codeword
to be consistent with recorded errors, we need that for all i ∈ A′, The i-th bit
after tampering, i.e. c̃i needs to be equal to ei. We show that this happens with
probability at most (1− 1/2δ)

n1−ε1−2ε2
8δ , which is negligible for δ = ξ · lg n when

ε1 + 2ε2 < 1− ξ . Hence, it suffices to output ⊥ always.

We first argue that all of A′ input neighbors are independent uniform bits. We
use the fact that A′ is of size n1−ε1−2ε2

4δ and its (at most δ · n
1−ε1−2ε2

4δ -many) input
neighbors are all from our ECSS codeword with planted errors. Since we have
only fixed X of size o(t) from c so far and our ECSS has independence t > n1−ζ

and n1−ε1−2ε2 = o(t), all the input neighbors of A′ are indeed independent
uniform bits. Given the uniformly random input, we examine the bits from A′

one by one. For any i ∈ A′, there are following two possibilities
◦ If ci (i.e., ei) is the input neighbor of c̃i, then since hi does not always output
ci, there exists a setting of the other (at most) δ − 1 neighbors, such that c̃i
is either fixed 0, fixed 1, or flipped ei. Because of uniformity of value at input
neighbors, this setting happens with probability at least 1

2δ−1 and when it
happens, with probability at least 1/2, c̃i 6= ei. Hence, c̃i = ei with probability
at most 1− 1

2δ
. We remove i from A′ and recurse on remaining bits.

◦ If ci (i.e., ei) is not the input neighbor of c̃i, then since all of the input neighbors
are independent of uniform bit ei, the probability c̃i = ei is at most 1/2.

26

However, we need to address a small subtlety here. Since ei is not the input
neighbor of itself, it can be in the input neighbor of another bit in A′. To
keep failure probabilities independent, if such a bit j exists (s.t. ei is an input
neighbor of c̃j), we only include i in our witness set of failed indices but we
remove both indices i and j before recursing to remaining bits in A′.

H7:
1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}
2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}
3. Let X = P ∪Q. Sample aX ∼ U{0,1}|X|
4. Sample a random E1 ⊆ X s.t. |E1| ∼ (n, |X|, n1−ε1)-hypergeometric distribution
5. For all i ∈ E1, sample ei ∼ U{0,1}
6. For all i ∈ E1, replace ai with ei, we get cX
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL,LeakL as in H3(f,m)
Given sR, define: BadR,LeakR as in H3(f,m)

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.
10. Define mapping f0 and its output g as in H3(f,m)
11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy Definition 6), output ⊥
12. (Else) (ans, x, y) = Sim0(LL,LR, f0).
13. Let SL, SR denote indices of sL, sR. Then, h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y)
14. V := {i|i ∈ [n], Inph(i) 6= ∅}
15. W := {i|i ∈ [n], Inph(i)\[n] 6= ∅}
16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , s

L, sR, x, y), hi(z) 6= zi}
17. If ans = ⊥, output ⊥

If ans = same* and |Z\(W ∪X)| > n1−ε2 , output ⊥
If ans = (E∗, e∗) and |V \W | > n1−ε2 , output ⊥

18. Sample a ∼ ECSS.Enc(m) |(ECSS.Enc(m))X = cX

19. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2

20. For all i ∈ E2, sample ei ∼ U{0,1}

21. Define c as ci =

{
ai, i /∈ E
ei, i ∈ E

22. (Ẽ, ẽ) = copy(Sim0(LL,LR, f0), (E, e))
23. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(c

L, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y
24. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
25. c̃ = f1(c, s

L, αL, sR, αR)
26. If ans =

◦ same*: If c̃Z = cZ , output same*
(Else) Output ⊥.

◦ (E∗, e∗): If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

Define c′ as c′i =

{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)
Output m̃

Now, we have shown that either a bit has probability at most 1 − 1
2δ

to be
consistent or two bits have probability at most 1/2 to be consistent at the same
time. And all of those events are independent, hence, the probability that all the
bits are consistent with errors (E, e) is at most (1− 1

2δ
)|A
′|/2.

27

Case ans = (E∗, e∗): For the case when ans = (E∗, e∗), this hybrid is only
different from previous one when |V \W | > n1−ε2 . We show that if this happens,
the output of previous hybrid is not ⊥ with only negligible probability.

We first pick a B ⊆ (V \W) such that ∀i, j ∈ B, Inph(i)∩Inph(j) = ∅. Similar
to above, all the input neighbors of V \W are contained in [n] and have output
locality at most nε2 in [n]. Hence, it is guaranteed that we could pick B such that
|B| = n1−2ε2

δ . (Similar to same* case, this can be done greedily by picking an
arbitrary index from V \W into B and removing all the bits its input neighbors
have influence on. We only discard at most δnε2 bits for picking one bit.)

Note that B ⊆ V implies that for all i ∈ B, Inph(i) 6= ∅ and since all the
bits in B has disjoint input neighbors, we have |Inph(B)| > |B|. Now, consider
a subset B′ ⊆ B such that each bit in B′ has an input neighbour in errors E2.
That is,

B′ =
{
i
∣∣∣i ∈ B, Inph(i) ∩ E2 6= ∅

}
Again E2 is a random subset of size at least n1−ε1/2 with probability 1 −

exp(−Ω(n1−ε1)) and is independent of B. Thus, by Corollary 1, with probability
at least 1 − exp(−Ω(n1−ε1−4ε2)), |Inph(B) ∩ E2| > 1

4δn
1−ε1−2ε2 . Hence, |B′| >

n1−ε1−2ε2

4δ2 (Because of δ-locality).
For the rest of proof, we consider such a set B′ of size exactly n1−ε1−2ε2

4δ2 . Next,
we argue that input neighbors of B′ (at most δ ·n1−ε1−2ε2/(4δ2) in number) are
independently uniformly distributed. This is because they are all from our ECSS
codeword with planted errors. Since we have only fixed X of size o(t) from c so
far and our ECSS has independence t = n1−ζ with ζ < ε1 + 2ε2 , all the input
neighbors of B′ are indeed independent uniform bits. So, bits in B′ satisfy the
following conditions: its input neighbors (1) are disjoint; (2) contain at least one
bit from E2; (3) are contained in [n]; (4) are independently uniform bits.

Next, we define M = Outh(Inph(B′)). This is the set of all indices that is
being influenced by the input neighbor of B′. Obviously B′ ⊆M . And the size of
M is bounded by nε2 · δ ·n1−ε1−2ε2/(4δ2) = n1−ε1−ε2/(4δ). We first observe that
fix any c∗[n]\M , there is at most one c∗M that is consistent with c∗[n]\M and the

fixed errors E∗, e∗. This is because if there exist two c(1), c(2) s.t. c(1)[n]\M = c
(2)
[n]\M ,

their distance is bounded by n1−ε1−ε2/(4δ) which is smaller than the distance
d > n1−ζ as long as ζ < ε1 + ε2 . Therefore, those two codewords will be error-
corrected to the same correct codeword and after being reconstructed from errors
(E∗, e∗), they will be the same. Therefore, for every fixing c∗[n]\M , there is at most
one codeword c∗ (equivalently, one c∗M), which is consistent with (E∗, e∗). Since
B′ ⊆M , there is at most one choice for c∗B′ as well.

Finally, we prove that the probability that c∗B′ takes the fixed value needed
to be consistent is negligible. Now,for any i ∈ B′, we know some bit Ej is the
input neighbors of i. Therefore, at least one out of at most 2δ−1 possible settings
of all the other input neighbprs Inph(i)\[j], flipping the value of ej will flip the
output of hi. Note that by definition of M , Ej cannot be the input neighbors of
any bits in [n]\M , hence ej is independent of c∗[n]\M . And thus, whenever this

28

setting happens, with probability 1/2, the output at i will not be consistent with
(E∗, e∗). Therefore, since the input neighbors of i are uniformly distributed, the
probability that c̃i is not consistent with fixed errors (E∗, e∗) is at least 1

2δ
. Since

all the input neighbors of B′ are all independent uniform bits, the probability
that all the bits from B′ are consistent is at most (1− 1

2δ
)n

1−ε1−2ε2/(4δ2), which
is negligible when δ = ξ · lg n with ε1 + 2ε2 < 1− ξ .

H8(f,m) : Our final hybrid is identical to our simulator Fig. 3. In this final
hybrid, we simply switch message m with 0`.

Note that the only bits from ECSS.Enc(m) that affect the output of the
hybrid is (1) the neighbors of Z and also cZ when ans = same* and |Z\(W ∪
X)| < n1−ε2 ; (2) the neighbors of V , when ans /∈ {same*,⊥} and |V \W | <
n1−ε2 .13 For (1), as shown in hybrid 7, the size of Z is o(t) when |Z\(W ∪X)| <
n1−ε2 and hence the neighbor of |Z| is of size at most δ · |Z| = o(t). For (2),
|V | 6 |V \W |+ |W |. Both are o(t) as require in hybrid 7 and therefore so is |V |
and the size of the neighbors of V . Hence the number of bits in c that influence
the hybrid output is at most o(t). Any o(t) bits from ECSS.Enc(m) condition
on cX is uniformly distributed. Hence, we can switch the encoding of m with
encoding of 0`.

This completes our hybrid argument.

References

1. D. Aggarwal, S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran.
Optimal computational split-state non-malleable codes. In TCC 2016-A, 2016.

2. D. Aggarwal, Y. Dodis, T. Kazana, and M. Obremski. Non-malleable reductions
and applications. In STOC, 2015.

3. D. Aggarwal, Y. Dodis, and S. Lovett. Non-malleable codes from additive combi-
natorics. In STOC, 2014.

4. S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran. Explicit
non-malleable codes against bit-wise tampering and permutations. In CRYPTO,
2015.

5. S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran. A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In TCC, 2015.

6. M. Ball, D. Dachman-Soled, S. Guo, T. Malkin, and L.-Y. Tan. Non-malleable
codes for small-depth circuits. In FOCS, 2018.

7. M. Ball, D. Dachman-Soled, M. Kulkarni, and T. Malkin. Non-malleable codes for
bounded depth, bounded fan-in circuits. In EUROCRYPT, 2016.

8. M. Ball, D. Dachman-Soled, M. Kulkarni, and T. Malkin. Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. In EUROCRYPT, 2018.

9. G. R. Blakley and C. A. Meadows. Security of ramp schemes. In CRYPTO, 1984.

13 Note that, by the definition of V , all the output bits from [n]\V are fixed to some
values with no input neighbors. Hence, it suffices to have the neighbor of V to finish
the hybrid completely.

29

10. E. Chattopadhyay, V. Goyal, and X. Li. Non-malleable extractors and codes, with
their many tampered extensions. In STOC, 2016.

11. E. Chattopadhyay and X. Li. Non-malleable codes and extractors for small-depth
circuits, and affine functions. In STOC, 2017.

12. E. Chattopadhyay and D. Zuckerman. Non-malleable codes against constant split-
state tampering. In FOCS, 2014.

13. M. Cheraghchi and V. Guruswami. Capacity of non-malleable codes. In ITCS,
2014.

14. M. Cheraghchi and V. Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In TCC, 2014.

15. V. Chvátal. The tail of the hypergeometric distribution. Discrete Mathematics,
25(3), 1979.

16. R. Cramer, Y. Dodis, S. Fehr, C. Padró, and D. Wichs. Detection of algebraic
manipulation with applications to robust secret sharing and fuzzy extractors. In
EUROCRYPT, 2008.

17. S. Dziembowski, T. Kazana, and M. Obremski. Non-malleable codes from two-
source extractors. In CRYPTO, 2013.

18. S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In ICS, 2010.
19. S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi. Continuous non-malleable

codes. In TCC, 2014.
20. S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes

and key-derivation for poly-size tampering circuits. In EUROCRYPT, 2014.
21. M. K. Franklin and M. Yung. Communication complexity of secure computation

(extended abstract). In STOC, 1992.
22. V. Goyal and A. Kumar. Non-malleable secret sharing. In STOC, 2018.
23. V. Goyal and A. Kumar. Non-malleable secret sharing for general access structures.

In CRYPTO, 2018.
24. D. Gupta, H. K. Maji, and M. Wang. Non-malleable codes against lookahead

tampering. In INDOCRYPT, 2018.
25. W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American statistical association, 58(301), 1963.
26. Z. Jafargholi and D. Wichs. Tamper detection and continuous non-malleable codes.

In TCC, 2015.
27. B. Kanukurthi, S. L. B. Obbattu, and S. Sekar. Four-state non-malleable codes

with explicit constant rate. In TCC, 2017.
28. B. Kanukurthi, S. L. B. Obbattu, and S. Sekar. Non-malleable randomness en-

coders and their applications. In EUROCRYPT, 2018.
29. X. Li. Improved non-malleable extractors, non-malleable codes and independent

source extractors. In STOC, 2017.
30. X. Li. Pseudorandom correlation breakers, independence preserving mergers and

their applications. ECCC, 25, 2018.
31. F. Liu and A. Lysyanskaya. Tamper and leakage resilience in the split-state model.

In CRYPTO, 2012.
32. N. Nisan. Psuedorandom generators for space-bounded computation. In STOC,

1990.
33. R. Ostrovsky, G. Persiano, D. Venturi, and I. Visconti. Continuously non-malleable

codes in the split-state model from minimal assumptions. In CRYPTO, 2018.
34. A. Shamir. How to share a secret. Commun. ACM, 22(11), 1979.
35. E. Viola. Extractors for circuit sources. In FOCS, 2011.

30

	Explicit Rate-1 Non-malleable Codes for Local Tampering

