
Cryptanalysis of OCB2:
Attacks on Authenticity and Confidentiality

Akiko Inoue1, Tetsu Iwata[0000−0002−4729−0979]2, Kazuhiko
Minematsu[0000−0002−3427−6772]1, and Bertram Poettering[0000−0001−6525−5141]3

1 NEC Corporation, Kawasaki, Japan,
a-inoue@cj.jp.nec.com, k-minematsu@ah.jp.nec.com

2 Nagoya University, Nagoya, Japan, tetsu.iwata@nagoya-u.jp
3 Royal Holloway, University of London, London, United Kingdom and IBM

Research Zurich, Zurich, Switzerland. poe@zurich.ibm.com

Abstract. We present practical attacks on OCB2. This mode of opera-
tion of a blockcipher was designed with the aim to provide particularly
efficient and provably-secure authenticated encryption services, and since
its proposal about 15 years ago it belongs to the top performers in this
realm. OCB2 was included in an ISO standard in 2009.
An internal building block of OCB2 is the tweakable blockcipher ob-
tained by operating a regular blockcipher in XEX∗ mode. The latter
provides security only when evaluated in accordance with certain techni-
cal restrictions that, as we note, are not always respected by OCB2. This
leads to devastating attacks against OCB2’s security promises: We de-
velop a range of very practical attacks that, amongst others, demonstrate
universal forgeries and full plaintext recovery. We complete our report
with proposals for (provably) repairing OCB2. To our understanding, as
a direct consequence of our findings, OCB2 is currently in a process of
removal from ISO standards. Our attacks do not apply to OCB1 and
OCB3, and our privacy attacks on OCB2 require an active adversary.

Keywords: OCB2, Authenticated Encryption, Cryptanalysis, Forgery,
Plaintext Recovery, XEX

1 Introduction

Authenticated encryption (AE) is a form of symmetric-key encryption that si-
multaneously protects the confidentiality and authenticity of messages. The
primitive is widely accepted as a fundamental tool in practical cryptography,
finding application in many settings, including in SSH and TLS.

Constructions of the AE primitive include the OCB family of blockcipher
modes of operation. Its three members (OCB1, OCB2, OCB3) are celebrated
for their beautiful and innovative architecture, and their almost unrivaled effi-
ciency. In fact, the modes are fully parallelizable and thus effectively as efficient
as the fastest known confidentiality-only modes. The first version (OCB1) was
proposed at ACM CCS 2001 by Rogaway et al. [34], the second version (OCB2)

at ASIACRYPT 2004 by Rogaway [30] (hereafter Rog04), and the third version
(OCB3) at FSE 2011 by Krovetz and Rogaway [20]. While all three designs share
roughly the same construction principles, differences to note include both the ex-
ternal interface (while OCB1 is a pure AE mode, its successors OCB2 and OCB3
are AEAD modes where encryption and decryption is performed with respect
to an auxiliary associated data input), and a core internal building block (while
OCB1 and OCB3 are driven by look-up tables, OCB2 relies on the so-called
powering-up construction).

Each version of OCB has received significant attention from researchers,
standardization bodies, and the industry. In particular, OCB1 is listed in the
IEEE 802.11 standard as an option for the protection of wireless networks,
OCB2 was included in the ISO/IEC 19772:2009 [15] standard, and OCB3 is
specified as document RFC 7253 [21] as an IETF Internet standard. Moreover,
OCB3 is included in the final portfolio of the CAESAR competition4. Various
versions of OCB have been implemented in popular cryptographic libraries, in-
cluding in Botan, BouncyCastle, LibTomCrypt, OpenSSL, and SJCL.

The security of (all versions of) OCB has been extensively studied. For each
version, the designer(s) provided security reductions to the security of the under-
lying blockcipher, with additive birthday-bound tightness of roughly the form
O(σ2/2n), where σ indicates the number of processed blocks (message and asso-
ciated data) and n is the block size of the cipher. Note that this bound formally
becomes pointless if σ = 2n/2 blocks are involved, and indeed Ferguson [10] and
Sun et al. [36] showed collision attacks that get along with this many processed
blocks, implying that the bound is tight. (The attacks do not seem to be practi-
cal, though, as they require processing 300EB (exabytes) of data with a single
key, assuming n = 128.) As discussed below, all further known attacks against
the members of the OCB family are in relaxed security settings (e.g. involving
nonce misuse), with the conclusion being that their security is widely believed
to hold (up to the birthday bound, in classic security models).

In this article we invalidate this belief by presenting a series of attacks against
OCB2. The most basic attack requires one encryption and one decryption (of
short messages and ciphertexts, respectively) to create an existential forgery
with success probability one. No heavy computation or large amount of memory
is needed for this; rather performing a couple of XOR computations is sufficient
to craft the forgery. The attack is independent of the blockcipher E over which
OCB2 is defined, including of its key and block length. Further, the message
to which the forged ciphertext decrypts is strongly dependent on the message
involved in the first encryption query, so that most parts of it can be assumed
to be known to, or influenced by, the adversary. Extended versions of our attack
achieve forgeries for arbitrary messages (including full control over nonces and
associated data), and full plaintext recovery, at the expense of a slight increase
in the number of required encryption and decryption queries. Long story short:
Our attacks on OCB2 are as critical as attacks on AE schemes could ever be.

4 https://competitions.cr.yp.to/caesar.html

2

https://competitions.cr.yp.to/caesar.html

We turn to technical details of our attacks. All members of the OCB family
can be seen as modes of operation of a tweakable blockcipher (TBC, [22]): For
encrypting a message consisting of one or multiple blocks, each message block is
enciphered independently of the others using a tweak that reflects the position
of the block in the message. Special tweaking rules are deployed for the last
(possibly padded) message block and the checksum used for tag generation. In
OCB2, the tweakable blockcipher itself is derived from an underlying regular
blockcipher (e.g. AES) using the XEX∗ transform. The latter is a hybrid of XE
(“XOR-encipher”, C = EK(∆ ⊕ M)) and XEX (“XOR-encipher-XOR”, C =
∆ ⊕ EK(∆ ⊕ M)) where it can be decided on a per-evaluation basis which
of the two is used. We emphasize that the flaw of OCB2 that we identify and
exploit is located neither in the general method the AEAD scheme is constructed
from a tweakable blockcipher nor in the security of the XEX∗ primitive. The
problem is rather hidden in the interplay between the former and a technical
peculiarity of the latter: If XEX∗ is ever evaluated twice on the same input but
in different modes (XE vs. XEX), it gives up on all security promises. While
the corresponding access rule was already identified as necessary by Rog04, it
was overlooked that OCB2 actually does not always satisfy it. Indeed, as we
expose in this paper, an attacker can arrange that an XEX evaluation occurring
when encrypting a regular message block and an XE evaluation occurring when
decrypting a (padded) last block of an unauthentic ciphertext are on the same
inputs. This issue, that was overlooked by the cryptographic community for the
past 15 years, not only devalidates the formal security argument for OCB2 but
ultimately leads to attacks that completely break the security of this primitive.
As it turns out, OCB2 can be provably fixed by replacing certain XE invocations
by XEX invocations. While the price to pay for this is minor (one additional XOR
operation per encryption/decryption operation), unfortunately the fixed version
loses backward compatibility with (unmodified) OCB2 implementations.

Our attacks are technical and fairly complex, so we confirmed their effectiv-
ity by implementing them: For our most relevant attacks we have C code that
breaks the OCB2 reference implementation5 with the reported high efficiency
and success rate. We finally note that OCB1 and OCB3 do not combine the XE
and XEX modes in the way OCB2 does, and we did not find them affected by
our attacks.

1.1 Impact

OCB2 has been standardized in ISO/IEC 19772:2009 for about a decade [15].
As the scheme offers exceptional performance that was and still is challenging
to rival for AES-based constructions, it has to be assumed that industry has
widely picked up on it, ultimately incorporating the scheme into products. The
consequences of this might be severe. We have thus been in contact with members
of ISO/IEC SC 27 Working Group 2, which is responsible for the standard, to
advise on the right interpretation of our findings. The working group has issued
5 by Krovetz, http://web.cs.ucdavis.edu/~rogaway/ocb/code-2.0.htm

3

http://web.cs.ucdavis.edu/~rogaway/ocb/code-2.0.htm

a document [16] that acknowledges our findings and makes it clear that OCB2
should no longer be used. Moves are nearing completion to remove the scheme
from the international standard.

OCB2 was and possibly still is covered by Intellectual Property claims. While
such claims don’t necessarily manifest a noticeable obstacle for deployment in
industry, for open source software development efforts they routinely are. As a
consequence, a number of relevant open source crypto libraries do not have an
implementation of OCB2 and are thus not affected by our findings (an exception
to this is Stanford’s SJCL library6). The lack of open implementations suggests
that most affected parties have industrial background. By the very nature of
(IND$ secure) encryption, spotting products that rely on OCB2 for security and
now became vulnerable remains a challenge.

1.2 Further Related Work

Besides the already mentioned attacks by Ferguson and Sun et al. (that show
tightness of the birthday bound claimed for OCB), the following analyses in less
classic attack settings have been conducted: Attacks in scenarios where the AE
scheme is deployed in a somewhat sloppy way, e.g. where nonces are repeated
(nonce-misuse setting) or where message fragments emerging from partially de-
crypted (possibly invalid) ciphertexts are leaked (release of unverified plaintext
setting) are proposed by Andreeva et al. [1] and Ashur et al. [3]. In the same
vein, but also considering attacks against the birthday bound of security claims,
Vaudenay and Vizár [37] studied all third-round CAESAR candidates, including
OCB3.

Not with the aim of breaking a particular version of OCB, but with the goal of
better understanding the security of the schemes by refining the set of necessary
security requirements on the underlying blockcipher, Aoki and Yasuda [2] show
that relaxed assumptions are sufficient to establish the security of OCB. (Note
that our attacks are in conflict with their claims on OCB2, indicating that their
security arguments have to be reconsidered; the authors of [2] confirmed this
view to us.)

Attacks in the reforgeability setting [6,11] deliver a series of existential forg-
eries with the specific property that creating the first forgery is the hardest part.
While in most cases hardness is measured in terms of computation time, also our
attacks can be seen in the reforgeability setting, but with a different complexity
measure: While crafting the first OCB2 forgery requires two queries (one en-
cryption, one decryption) and the forgery is only existential, all further forgeries
can be universal (on arbitrary messages and associated data), and only require
one further query (encryption). In fact, one can create hundreds of universal
forgeries from the second encryption query.

6 http://bitwiseshiftleft.github.io/sjcl/

4

http://bitwiseshiftleft.github.io/sjcl/

1.3 Organization and Contributions

We recall notions of tweakable blockciphers and authenticated encryption in
Section 2. After specifying the OCB2 algorithms in Section 3 we present sim-
ple authenticity and confidentiality attacks against them in Section 4. While
the latter achieve overwhelming advantages with respect to formal notions of
unforgeability and indistinguishability and thus make evident that OCB2 is aca-
demically broken, certain restrictions on the format of forged or distinguished
messages remain. We hence develop, in Section 5, a set of advanced attacks (in-
cluding universal forgery and arbitrary decryption) that break the scheme also
in most real-world settings. In Section 6 we explore which technical component
of OCB2 is responsible for its insecurity; as many other schemes in symmetric
cryptography use structures similar to those of OCB2, these reflections might
also guide future cryptanalysis attempts of such schemes. In Section 7 we survey
the applicability of our attack strategies to related encryption modes, including
to OCB1 and OCB3; however we do not identify any further weak candidate.
Finally, in Section 8 we consider a couple of ways to repair OCB2.

2 Preliminaries

2.1 Notations

If A is a set we write a $← A for the operation of picking an element of A
uniformly at random and assigning it to the variable a. If B,B′ are sets we write
B ∪← B′ as shorthand for B ← B ∪B′.

Strings and Padding. Let {0, 1}∗ be the set of all binary strings, including
the empty string ε. The bit length of X ∈ {0, 1}∗ is denoted by |X|, and in
particular we have |ε| = 0. The sequence of c zeros is denoted with 0c, with
the convention that 00 = ε. The concatenation of two bit strings X and Y is
written X ‖Y , or XY when no confusion is possible. The XOR combination of
two same-length bit strings X,Y is denoted X ⊕ Y . We denote with msbc(X)
and lsbc(X) the first and last c ≤ |X| bits of X, respectively.

For X,n with |X| ≤ n we define the zero padding, X ‖ 0∗, and the one-zero
padding, X ‖ 10∗. Both are X when |X| = n. They are X ‖ 0∗ = X ‖ 0n−|X| and
X ‖ 10∗ = X ‖ 10n−|X|−1, respectively, when 0 ≤ |X| < n.

For X ∈ {0, 1}∗, we also define the parsing of a string into n-bit blocks
denoted by

(X[1], X[2], . . . , X[m]) n← X,

where m = |X|n
def= d|X|/ne, X[1] ‖X[2] ‖ . . . ‖X[m] = X, |X[i]| = n for 1 ≤

i < m and 0 < |X[m]| ≤ n when |X| > 0. When |X| = 0, we let X[1] n← X with
X[1] = ε.

5

2.2 (Tweakable) Blockciphers

A tweakable blockcipher (TBC) [22] is a keyed function Ẽ : K×T ×M→M such
that for each (K,T) ∈ K × T , the partial function Ẽ(K,T, ·) is a permutation
ofM. Here, K is the key and T is a public value called tweak, and typically we
haveM = {0, 1}n where n is called the block length. (It is safe to assume n = 128
from here on.) A conventional blockcipher is a TBC with T being a singleton,
and specifically written as E : K ×M→M. The enciphering of X ∈ M under
key K ∈ K and tweak T ∈ T is denoted, equivalently, Ẽ(K,T,X) or ẼK(T,X)
or ẼTK(X). For blockciphers we correspondingly write E(K,X) or EK(X). The
deciphering is written as Ẽ−1,T

K (Y) for TBCs and E−1
K (Y) for blockciphers. For

any T ∈ T and K ∈ K, when Y = ẼTK(X) we have Ẽ−1,T
K (Y) = X.

When the key K used with a blockcipher or TBC invocation is obvious from
the context, we may omit writing it. Moreover, for a mode of operation that
depends on a keyed blockcipher instance EK , we may treat EK as the key and
write ModeE (and correspondingly for a TBC Ẽ).

Security of (Tweakable) Blockciphers. Consider a TBC of the form
Ẽ : K×T ×M→M. A tweakable uniform random permutation (TURP) for sets
T ,M is an information-theoretic TBC that behaves like uniformly distributed
over all T -tweaked permutations overM (i.e., like a uniformly picked function
f : T ×M→M such that f(T, ∗) is a permutation overM for all T ∈ T .) We
denote TURP instances for Ẽ with P̃.

We define the Tweakable Pseudorandom Permutation (TPRP) advantage
and the Tweakable Strong PRP (TSPRP) advantage of an adversary A as fol-
lows:

Advtprp
Ẽ

(A) def= Pr
[
K

$← K : AẼK ⇒ 1
]
− Pr

[
AP̃ ⇒ 1

]
Advtsprp

Ẽ
(A) def= Pr

[
K

$← K : AẼK ,Ẽ
−1
K ⇒ 1

]
− Pr

[
AP̃,̃P

−1

⇒ 1
]

Here, the adversaries perform chosen-plaintext attacks and chosen-ciphertext
attacks, respectively, and in both cases with chosen tweak. (That is, they can
query any (T,X) in the enciphering direction and any (T, Y) in the deciphering
direction (if applicable), with freely chosen T .)

For blockciphers E : K×M→M we analogously define the PRP advantage
Advprp

E (A) and SPRP advantage Advsprp
E (A), using a URP P as information-

theoretic reference point. (A URP uniformly distributes over all permutations
overM.)

Galois Fields. Following [30,18], bit strings a ∈ {0, 1}n can be considered
elements of GF(2n), assuming a representation of the latter with a polynomial
basis and seeing the bits of a as polynomial coefficients. The strings 0n−210 and
0n−211 correspond with the polynomials ‘x’ and ‘x+1’, and we denote these field
elements with ‘2’ and ‘3’, respectively. It is common to refer to the multiplication

6

of a field element with 2 (read: x) as doubling. For instance, 2ia denotes i-times
doubling a. Standard calculation rules (for fields) apply; in particular we have
3a = 2a⊕ a and 2i3a = 3(2ia) = 2i+1a⊕ 2ia for all i.

In the spirit of the above, OCB2 considers the domain M = {0, 1}n of
the blockcipher it is based on a Galois field. More precisely, the fixed block
length n = 128 is assumed (which matches AES), and as the (irreducible) reduc-
tion polynomial of the GF(2n) representation the lexicographically-first primitive
polynomial is used, which is x128 + x7 + x2 + x + 1. This choice implies that all
non-zero elements of GF(2n) are (cyclically) obtained by continuously doubling
the element 2, and further that the doubling mapping a 7→ 2a can be efficiently
implemented as lsbn(a� 1) if msb1(a) = 0 and lsbn(a� 1)⊕ (012010000111)
if msb1(a) = 1, where (a � 1) denotes the left-shift of a by one bit. For more
details on this representation, see [30].

2.3 AE and AEAD

For simplicity we refer with the term AE to both: schemes implementing (pure)
Authenticated Encryption and schemes implementing Authenticated Encryption
with Associated Data (AEAD) [29]. An AE scheme Π = (Π.E , Π.D) is defined
over a key space K, a nonce space N , an associated data (AD) space A, a
message spaceM, and a tag space T = {0, 1}τ for some fixed tag length τ . The
understanding of AD is that it is an input to the encryption and decryption
algorithms that is not to be kept confidential; rather it reflects the context in
which the encryption happens and is authenticated along with the encrypted
message.7 Formally, the AEAD encryption algorithm is a function Π.E : K ×
N × A ×M → M× T , and the decryption (incl. verification) algorithm is a
function Π.D : K × N × A ×M× T → M∪ {⊥}, where symbol ⊥ is used to
report verification failures.

To encrypt plaintext M with nonce N , associated data A, and key K, com-
pute (C, T) ← Π.EK(N,A,M) to produce ciphertext C and tag T . The tuple
(N,A,C, T) is communicated to the receiver8 and the original message M re-
covered by computing Π.DK(N,A,C, T).

Security Notions. The security of AE is typically captured with two no-
tions: privacy and authenticity. Following the definitions of [5,32], authenticity
requires that ciphertexts (including nonce, associated data, and tag) cannot be
forged, and privacy requires their indistinguishability (including the tag). More
precisely, while [32, Sec. 3] defines privacy as the inability of a passive adver-
sary to distinguish ciphertext-tag pairs from random strings, [32, Sec. 6] gives
a second definition that formalizes privacy against active adversaries (that can
pose decryption queries). As noted in [32, Sec. 6], if authenticity is provided by
7 For example, if network payloads are to be encrypted, it is useful to include network
header information in the AD.

8 In many practical cases, receivers can reproduce N and/or A by themselves so that
these values do not need to be transmitted.

7

a scheme, the two privacy notions turn out to be equivalent. Since the current
article considers an AE scheme that does not provide authenticity, we emphasize
that for this scheme the equivalence of the two notions cannot be assumed (and
in fact they differ!). We correspondingly reproduce the two definitions separately.

We formalize privacy against passive attacks with a pair of games where
a nonce-respecting adversary interacts with an oracle that is called on inputs
(N,A,M) and either implements a keyed AEAD instance that returns the ci-
phertext (C, T) = EK(N,A,M), or implements a random-bits oracle that returns
a uniformly picked string of length |M |+ τ . The privacy advantage of an adver-
sary A is defined as

Advpriv
Π (A) def= Pr

[
K

$← K : AΠ.EK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·) ⇒ 1

]
.

Privacy against active adversaries is defined similarly, but with an added decryp-
tion oracle that the adversary may query on arbitrary tuples (N,A,C, T) except
those where (C, T) was returned by a EK(N,A, ·) or $(N,A, ·) query before. The
corresponding advantage definition is

Advpriv-cca
Π (A) def= Pr

K

[
AΠ.EK(·,·,·),Π.DK(·,·,·,·)⇒1

]
− Pr

K

[
A$(·,·,·),Π.DK(·,·,·,·)⇒1

]
.

where the probabilities are over the random choice K $← K.
With respect to the authenticity notion, we deem adversaries A with access

to EK and DK oracles successful if they are effective with creating forgeries.
Formally, the authenticity advantage is defined as

Advauth
Π (A) def= Pr

[
K

$← K : AΠ.EK(·,·,·),Π.DK(·,·,·,·) forges
]
, (1)

where A forges if it receives a value M ′ 6= ⊥ from the Π.DK oracle, conditioned
on it being nonce respecting and not querying tuples (N,A,C, T) to the Π.DK
oracle if it made a query (N,A,M) to Π.EK with result (C, T) before.

3 The OCB2 Mode of Operation

The OCB2 authenticated encryption scheme was initially, in [30], described as
a pure (nonce-based) AE mode without support for AD processing.9 Like its
predecessor OCB1 it is fully parallelizable and rate-1 (requiring one blockcipher
invocation per message block), but it replaced the table-driven design of OCB1
with the ‘powering-up’ construction to compute a sequence of tweaks by contin-
uously doubling them. Further, in [30, Sec. 11] it was suggested that the OCB2
AE mode can be generalized into an AEAD mode (dubbed AEM) by XOR-ing,
in all cases where the AD is non-empty, a MAC of the AD into the authenti-
cation tag of OCB2. The OCB2-related PMAC construction was identified as a
9 In that paper the mode was actually referred to as OCB1; what we call OCB1 was
referred to as OCB in [30].

8

Algorithm OCB2.EE(N,A,M)

1. L← E(N)
2. (M [1], . . . ,M [m]) n←M
3. for i← 1 to m− 1
4. C[i]← 2iL⊕ E(2iL⊕M [i])
5. Pad← E(2mL⊕ len(M [m]))
6. C[m]←M [m]⊕ msb|M [m]|(Pad)
7. Σ ← C[m] ‖ 0∗ ⊕ Pad
8. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
9. T ← E(2m3L⊕Σ)

10. if A 6= ε then T ← T ⊕ PMACE(A)
11. T ← msbτ (T)
12. return (C, T)

Algorithm OCB2.DE(N,A,C, T)

1. L← E(N)
2. (C[1], . . . , C[m]) n← C
3. for i← 1 to m− 1
4. M [i]← 2iL⊕ E−1(2iL⊕ C[i])
5. Pad← E(2mL⊕ len(C[m]))
6. M [m]← C[m]⊕ msb|C[m]|(Pad)
7. Σ ← C[m] ‖ 0∗ ⊕ Pad
8. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
9. T ∗ ← E(2m3L⊕Σ)

10. if A 6= ε then T ∗ ← T ∗ ⊕ PMACE(A)
11. T ∗ ← msbτ (T ∗)
12. if T = T ∗ return M
13. else return ⊥

Fig. 1. Algorithms of OCB2. See Appendix B for the specifications of len and PMACE .
Blockcipher E is implicitly parameterized with the AEAD key.

particularly interesting option as it would allow sharing its blockcipher instance
with that of the OCB2 encryption core.10

Our specification of OCB2 is taken from [31, Fig. 3] and supports associated
data. The key space K is that of the underlying blockcipher E, the latter is
required to have block length n = 128 (in particular, AES is suitable), the nonce
space is N = {0, 1}n, the message space M and the AD space A are the sets
of strings of arbitrary length, and the tag space is C = {0, 1}τ for any fixed
parameter τ ≤ n.

The OCB2 algorithms EE and DE are detailed in Fig. 1 (and algorithm EE is
further illustrated in Fig. 2). In the code, for X ∈ {0, 1}≤n, expression len(X)
denotes an n-bit encoding of |X|, PMACE(A) denotes the PMAC of A computed
with the (keyed) blockcipher instance E, and the field operations are with respect
to the GF(2n) setup described in Sec. 2.2. The details of functions len and
PMAC are ultimately not relevant for our attacks, so we omit their description
here. (For completeness we reproduce them in Appendix B.)

4 Basic Attacks

We prove by example that, in the formal sense, OCB2 provides neither authen-
ticity nor confidentiality. We start with specifying a minimal attack on unforge-
ability that gets along with a single encryption query to produce an existential
forgery with probability 1. This attack, while formally valid, is rather limited
10 The PMAC version from [31] is slightly different from the initial version [7] in that it

uses doublings for mask generation and was further adapted to be computationally
independent from the encryption part when combined with OCB2.

9

Fig. 2. OCB2 encryption for the case of empty AD.

with respect to the choice of involved parameters like message length and tag
length. We thus proceed with giving a more general version that extends the
basic attack in terms of these parameters.

We then focus on the confidentiality of OCB2 and observe that our attacks
against authenticity effectively also break the privacy of OCB2 (requiring one
encryption and one decryption query).

The attacks considered here neither craft universal forgeries nor decrypt ar-
bitrary ciphertexts. These more powerful attacks are described in Section 5.

4.1 Minimal Forgery

We give the minimal example of our forgery attacks against OCB2. For simplic-
ity, assume τ = n, i.e., that tags have maximum length. Note that the attack is
independent of both the AD processing function (PMAC) and the details of the
length encoding function len.

The following steps of our attack are also illustrated in Fig. 3 and specified
in pseudocode in Fig. 4.

1. Encrypt (N,A,M) where N is any nonce, A = ε is empty, and M is the
2n-bit message M = M [1] ‖M [2] where

M [1] = len(0n)

and M [2] is any n-bit block. The encryption oracle returns the pair (C, T)
consisting of a 2n-bit ciphertext C = C[1] ‖C[2] and a tag T .

2. Decrypt (N ′, A′, C ′, T ′) with |C ′| = n such that

N ′ = N,

A′ = ε,

C ′ = C[1]⊕ len(0n)
T ′ = M [2]⊕ C[2] (2)

10

Note that C ′ 6= C (they have different lengths), so we have a successful forgery
if (N ′, A′, C ′, T ′) is accepted by the decryption algorithm. To see that this is the
case, observe first that by the encryption algorithm we have

C[1] = 2L⊕ E(2L⊕ len(0n))
C[2] = M [2]⊕ Pad, (3)

where L = E(N) and Pad = E(22L ⊕ len(0n)). Let Pad′ and Σ′ be the inter-
mediate values computed during decryption. Then C ′ is decrypted to

M ′ = C ′ ⊕ Pad′

= C ′ ⊕ E(2L⊕ len(0n))
= C[1]⊕ len(0n)⊕ E(2L⊕ len(0n))
= 2L⊕ E(2L⊕ len(0n))⊕ len(0n)⊕ E(2L⊕ len(0n))
= 2L⊕ len(0n),

and the tag is recovered as

T ∗ = E(2 · 3L⊕Σ′)
= E(2 · 3L⊕ C ′ ⊕ Pad′)
= E(2 · 3L⊕M ′)
= E(2 · 3L⊕ 2L⊕ len(0n))
= E(22L⊕ len(0n)) (4)
= Pad
= T ′, (5)

where (4) follows from the identity 2 · 3L = 22L ⊕ 2L and (5) follows from (2)
and (3). The conclusion is: We have T ∗ = T ′ and thus tuple (N ′, A′, C ′, T ′) is
falsely accepted as an authentic ciphertext.

4.2 Forgery of Longer Messages

We next show that the attack of Section 4.1 can be generalized, without increas-
ing the number of encryption or decryption queries, to allow forging ciphertexts
for arbitrarily long messages. The generalized attack further drops the require-
ment for A = ε for the encryption query, and relaxes the τ = n requirement for
the tag length.

1. Encrypt (N,A,M) where N and A are arbitrary, M = M [1] ‖ · · · ‖M [m −
1] ‖M [m] is an m-block message satisfying

M [m− 1] = len(0n),

and M [m] is any s-bit string such that τ ≤ s ≤ n. The encryption oracle
returns a pair (C, T) where C = C[1] ‖ · · · ‖C[m− 1] ‖C[m].

11

Fig. 3. Minimal forgery attack (see Sec. 4.1).

2. Decrypt (N ′, A′, C ′, T ′) whereN ′ = N , A′ = ε, and C ′ = C ′[1] ‖ · · · ‖C ′[m−
2] ‖C ′[m− 1] has m− 1 blocks such that

C ′[i] = C[i] for 1 ≤ i ≤ m− 2

C ′[m− 1] =
m−2∑
i=1

M [i]⊕ C[m− 1]⊕ len(M [m])

T ′ = msbτ (M [m]⊕ C[m]).

To see that this tuple is accepted as authentic (and thus manifests a forgery),
let T ′ be the reconstructed (untruncated) tag in the decryption query. We have

T
′ = E(Σ′ ⊕ 3 · 2m−1L)

= E

(
m−2∑
i=1

M ′[i]⊕ C ′[m− 1]⊕ Pad′ ⊕ 3 · 2m−1L

)

= E

(
m−2∑
i=1

M [i]⊕ C ′[m− 1]⊕ C[m− 1]⊕ 2m−1L⊕ 3 · 2m−1L

)
, (6)

12

whereM ′[i] = M [i] is the i-th decrypted plaintext block, and Pad′ = C[m−1]⊕
2m−1L. Since 2m−1L⊕3 ·2m−1L = 2mL, the last term of (6) is further expanded
as

E

(
m−2∑
i=1

M [i]⊕ C ′[m− 1]⊕ C[m− 1]⊕ 2mL
)

= E

(
m−2∑
i=1

M [i]⊕
(
m−2∑
i=1

M [i]⊕ C[m− 1]⊕ len(M [m])
)
⊕ C[m− 1]⊕ 2mL

)

= E (len(M [m])⊕ 2mL)
= Pad .

Finally, we have

T ∗ = msbτ (T ′)
= msbτ (Pad)
= msbτ (M [m]⊕ C[m]) (∵ τ ≤ |M [m]| ≤ n)
= T ′ .

4.3 Confidentiality Attack
In Sec. 4.1 we have seen a basic attack that breaks the authenticity of OCB2.
Perhaps surprisingly at first, the very same attack (formally) also breaks the
privacy of the scheme. More precisely, we describe a two-query adversary against
the PRIV-CCA notion that achieves a distinguishing advantage of almost 1.

The intuition behind our adversary is quite simple: It poses the same en-
cryption and decryption queries as adversary A in Sec. 4.1, but then considers
whether the value M ′ returned by the decryption oracle indicates that the ci-
phertext was valid or not: A outputs b = 1 if M ′ ∈ M; otherwise, if M ′ = ⊥,
it outputs b = 0. Note that if A interacts with legit E and D oracles then the
forgery will be successful (by what we proved) and we have the b = 1 case. On
the other hand, if A interacts with $ and D, the probability that M ′ 6= ⊥ and
thus A outputs b = 1, is only 2−τ .

Attacking the PRIV-CV notion. In Sec. 2.3 we formalized the privacy
notions PRIV and PRIV-CCA, where the former did not have a decryption
oracle and targeted fully passive adversaries. We note that a version that is like
the plain PRIV notion but adds a ciphertext verification oracle would interpolate
between the two; we call this notion PRIV-CV (for ciphertext verification). The
new oracle tries to decrypt any provided ciphertext and returns a bit (encoded
as >/⊥) indicating whether the ciphertext was valid. It is not hard to see that
our attack against PRIV-CCA is actually an attack against PRIV-CV. (Note
that this increases its applicability and thus makes it more powerful.) We give
the full details of the attack in Fig. 4, where we denote the verification oracle
with V.

13

Adversary AE(·,·,·),D(·,·,·,·)

1. Step 1:
2. M [1]← len(0n)
3. Pick any M [2] ∈ {0, 1}n
4. M ←M [1] ‖M [2]
5. Pick any N ∈ {0, 1}n
6. Query (C, T)← E(N, ε,M)
7. Step 2:
8. C[1] ‖C[2] n← C
9. C′ ← C[1]⊕ len(0n)

10. T ′ ←M [2]⊕ C[2]
11. Query M ′ ← D(N, ε, C′, T ′)
12. Stop

Adversary AE/$(·,·,·),V(·,·,·,·)

1. Step 1:
2. M ← len(0n) ‖ 0n
3. Pick any N ∈ {0, 1}n
4. Query (C, T)← [E/$](N, ε,M)
5. Step 2:
6. C[1] ‖C[2] n← C
7. C′ ← C[1]⊕ len(0n)
8. T ′ ←M [2]⊕ C[2]
9. Query z ← V(N, ε, C′, T ′)

10. if z = > then b← 1 else b← 0
11. Stop with b

Fig. 4. Left: Minimal attack on authenticity. Right: Minimal attack on privacy (ver-
sion with ciphertext verification oracle).

Attacking the IND-CCA notion. A different formalization of confidentiality
is given by the IND-CCA notion [32] which does not require that ciphertexts
look like random strings but focuses on the bare semantic security aspect of
encryption. It is easy to modify our above attack to be successful in the IND-
CCA sense: In the classic left-or-right setting, the left message would be chosen
according to our authenticity attack, while the right message would be chosen
to be the all-zero message (of the same length). As above, the adversary would
output b = 1 iff its forgery attempt is deemed valid.

4.4 Observations

The attacks of Sec. 4.1 and 4.2 can be extended to several directions.

Truncated Tag. Since the tag T returned by the first encryption query is
not needed by our attacks, they also work if AD is chosen non-empty (for the
encryption query). However, the decryption query needs the empty AD. For the
same reason, our attacks also work when τ < n; we just set T ′ = msbτ (M [2] ⊕
C[2]) and the forgery will be accepted with probability one.

Almost-Arbitrary Message. Most of the blocks of the message involved in
the first encryption query can be freely chosen by the attacker. Only the last
but one block requires a special format: len(0n) = 0120107 (see Appendix B).
This format is not too special and could even occur naturally, e.g. if plaintexts
receive a certain padding before being encrypted.

The condition on M [m−1]. Our attacks also work for some values M [m−1]
that differ from len(0n). When M [m − 1] = len(0n−s) for some 0 < s < n,

14

by making (n − s)-bit C ′[m − 1] = msbn−s(C[m − 1]) ⊕ msbn−s(len(0n)) the
forgery is still successful if s is small. In more detail, the success probability is
1/2s which is the probability that lsbs(Pad) equals to lsbs(2L⊕len(0n)). If we
create 2s forgeries for 2s encryption queries, there will be at least one successful
forgery with a high probability.

When len(M [m]) < τ , the adversary can forge T ∗ with probability
1/2τ−len(M [m]), since the adversary only knows msblen(M [m])(Pad) and has to
guess the remaining (τ − len(M [m])) bits.

5 Advanced Attacks

In this section we target some of the most powerful goals of encryption scheme
cryptanalysis: We contribute a universal forgery attack and a full plaintext re-
covery attack for arbitrary ciphertexts.

5.1 Universal Forgeries

In a universal forgery attack the adversary freely chooses any M$ ∈ {0, 1}∗, any
A$ ∈ {0, 1}∗, and any N$ ∈ {0, 1}n, and creates a forgery (C$, T $) such that
OCB2.DE(N$, A$, C$, T $) returnsM$. We present a universal forgery attack for
OCB2 that is based on two sub-routines that we describe first.

Extracting random blockcipher mappings. Given a fixed blockcipher in-
stance E = EK , we refer to any pair (X,Y) ∈ ({0, 1}n)2 satisfying E(X) = Y
as an input-output pair or mapping of the blockcipher. Note that the regular de-
ployment of OCB2 does not expose such pairs. (This is not a coincidence as the
XEX∗ construction becomes insecure when such pairs become public.) However,
as we observe and explore in the following, if forged OCB2 ciphertexts surface
and are decrypted then the resulting messages do leak one or more input-output
pairs. We develop pseudocode for a procedure that, on input an integer m, per-
forms a specific OCB2 forgery and extracts roughly m-many input-output pairs
from the result. As our procedure does not control the positions X,Y for which
it finds the pairs we refer to the process as ‘random mapping extraction’.

Recall that in our authenticity attack from Section 4.1 the adversary learns
value M ′ = 2L ⊕ len(0n) and thus E(N) = L = (M ′ ⊕ len(0n))/2 from the
forgery. Note that (N,L) is the first example of an extracted input-output pair.
In fact, inspection of the OCB2 algorithms in Fig. 1 shows that also (2L ⊕
len(0n), 2L ⊕ C[1]) and (22L ⊕ len(0n), C[2] ⊕ M [2]) are input-output pairs
of E. (In addition, but only if τ = n, we can obtain one more such pair from Σ
and T ; however, for generality we ignore this observation in the following.)

Similar observations hold for our long-message forgery attack of Section 4.2,
and the number of extractable input-output pairs is even higher (linear in the
length of the message). Our SamplePairs procedure, specified in Fig. 5 (left),
mechanizes the input-output pair gathering by crafting, in the spirit of Sec-
tion 4.2, a forgery for a long all-zero message. More precisely, the procedure

15

takes on input a value m ≥ 2 and extracts m+ 1 input-output pairs11, assuming
it is provided with access to E and D oracles. (Again we ignore the extra pair
obtainable when τ = n.) The resulting pairs (X,Y) are collected in a global
set E. While the latter is shared with other algorithms that we describe below,
the set can be characterized by the implication (X,Y) ∈ E ⇒ E(X) = Y (for
one fixed blockcipher key K).

Extracting specific blockcipher mappings. Once a non-empty set E is
obtained with the SamplePairs procedure, we can implement a second procedure
that takes an arbitrary vector (X1, X2, . . .) of blockcipher inputs and returns the
vector (Y1, Y2, . . .) such that E(Xi) = Yi for all i. The underlying idea is to pick
from E a random input-output pair (N,L), to use N as a (hopefully fresh) nonce
in an encryption query of a message M , and to exploit the a priori knowledge of
value L (that would normally remain hidden) to carefully prepare message M
such that the blockcipher invocations induced by the encryption process coincide
exactly with the points Xi. The corresponding values Yi can then be extracted
from the ciphertext.

The specification of the corresponding Encipher procedure is in Fig. 5 (right).
The nonce generation in line 2 assumes that set E was populated before by at
least one invocation of procedure SamplePairs. The likely most interesting detail
of the procedure is that while the first m − 1 values Xi are embedded directly
into (the first m − 1 blocks of) the message M , the one remaining value Xm

is only implicitly embedded: We carefully choose the last message block M [m]
such that the sum Σ = M [1] ⊕ . . . ⊕M [m] used to derive the authentication
tag is such that the tag is computed as T = E(Xm). Observe that the full T ,
and thus Ym, is visible to the adversary only if τ = n, i.e., if the tag is not
truncated. Correspondingly, our procedure translates Xm to Ym only in this
case. Otherwise, if τ < n, only for X1, . . . , Xm−1 the corresponding value Yi is
identified and returned. Note that we feed back all extracted pairs (Xi, Yi) into
the set E, giving more choice to pick a fresh nonce in line 2 of a later invocation
of Encipher.

Universal Forgery Attack. Note that with the development of the Encipher
algorithm it became trivial to compute forgeries on any combination of nonce N ,
message M , and AD A: It simply suffices to execute OCB2’s encryption algo-
rithm E from Fig. 1 on input N,A,M , emulating all blockcipher evaluations with
invocations of Encipher. The resulting forgeries are perfect. Note further that
OCB2 is parallelizable, i.e., most of the blockcipher evaluations of an encryption
operation happen concurrently of each other. This property makes forging very
efficient (in terms of the number of required encryption queries), as all concurrent
enciphering operations can be batch-processed with a single Encipher call.

When closely looking at the details it however becomes apparent that univer-
sally forging cannot be performed with a single Encipher invocation. As a matter
11 The number of pairs can be fewer than m + 1 when collisions occur, however this

event has a negligible probability.

16

Procedure SamplePairsE(),D()(m)

1. Global variable: E
2. M [1, . . . ,m− 2,m]← 0n
3. M [m− 1]← len(0n)
4. M ←M [1] ‖ . . . ‖M [m]
5. N $← {0, 1}n
6. (C, T)← E(N, ε,M)
7. C[1] ‖ . . . ‖C[m] n← C
8. C[m− 1]← C[m− 1]⊕ len(0n)
9. C′ ← C[1] ‖ . . . ‖C[m− 1]

10. T ′ ← msbτ (C[m])
11. M ′ ← D(N, ε, C′, T ′)
12. M ′[1] ‖ . . . ‖M ′[m− 1] n←M ′

13. L← 2−(m−1)(M ′[m− 1]⊕ len(0n))
14. for i← 1 to m− 1:
15. (Xi, Yi)← (2iL⊕M [i], 2iL⊕C[i])
16. Xm ← 2mL⊕ len(0n)
17. Ym ← C[m]
18. E ∪← {(N,L)}
19. E ∪← {(X1, Y1), . . . , (Xm, Ym)}
20. if τ = n then
21. XT ← len(0n)⊕ 2m3L
22. YT ← T
23. E ∪← {(XT , YT)}
24. return

Procedure
EncipherE()(X1, . . . , Xm−1, Xm)

1. Global variable: E
2. (N,L) $← E
3. for i← 1 to m− 1:
4. M [i]← 2iL⊕Xi
5. Σ ← 2m3L⊕Xm
6. M [m]←M [1]⊕ . . .⊕M [m− 1]⊕Σ
7. M ←M [1] ‖ . . . ‖M [m]
8. (C, T)← E(N, ε,M)
9. C[1] ‖ . . . ‖C[m] n← C

10. for i← 1 to m− 1:
11. Yi ← 2iL⊕ C[i]
12. X ′ ← 2mL⊕ len(0n)
13. Y ′ ←M [m]⊕ C[m]
14. E ∪← {(X1, Y1), . . . , (Xm−1, Ym−1)}
15. E ∪← {(X ′, Y ′)}
16. if τ = n then
17. Ym ← T
18. E ∪← {(Xm, Ym)}
19. return (Y1, . . . , Ym−1, Ym)

Fig. 5. Left: Procedure that generates a random collection of m+1 pairs (Xi, Yi) such
that E(Xi) = Yi for all i. If τ = n (gray part) then this is improved to m + 2 pairs.
Right: Procedure that given X1, . . . , Xm−1 finds Y1, . . . , Ym−1 such that E(Xi) = Yi
for all i. If τ = n (gray part) then one more mapping Xm → Ym can be processed. (If
τ < n use any value for Xm in line 5, e.g., Xm = 0.) Both: The procedures share a
common set variable E that is assumed to initially be empty. Procedure Encipher may
only be invoked after SamplePairs has been (this is to ensure well-defined behavior in
line 2 of the former).

of fact, not all enciphering operations related to an encryption are concurrent:
In OCB2’s E algorithm, tag T is computed by enciphering a value dependent
on Pad which is a blockcipher output by itself. These computations cannot be
parallelized, and it becomes clear that universal forging requires at least two suc-
ceeding Encipher invocations. A similar observation can be made for the PMAC
algorithm (see Fig. 9 in Appendix) where the finalization step requires enci-
phering an intermediate sum that is computed by adding up outputs of other
enciphering operations. The latter, by themselves depend on the value E(0n), so
the minimal number of Encipher invocations increases to three. (Of course E(0n)

17

could be cached from a prior forgery but a worst-case analysis cannot assume
that.)

We complete this discussion by showing that three Encipher invocations are
sufficient in all cases. We do this by describing the full set of instructions to
compute a forgery (C$, T $) for input data N$,M$, A$.

The attack successively calls SamplePairs and Encipher. The first call is to
obtain E(N$) and E(0n), the second is to obtain those needed for encryption of
M$ and PMAC of A$ except the tag and the last AD block, and the third is for
the tag and the last AD block. Specifically, the steps for the universal forgery
are as follows:

1. The adversary performs SamplePairs(2). With overwhelming probability, we
assume nonce sampled in SamplePairs(2), N ′, is different from N$. Then she
obtains a set of distinct pairs written as E = {(N ′, L′), (X ′, Y ′), (X ′′, Y ′′)}.

2. If (N$, EK(N$)), (0n, EK(0n)) ∈ E, she goes to the next step. Otherwise, she
performs
Encipher(N$, 0n, 0n) and obtains L := EK(N$) and V := 32EK(0n).

3. Let

Xi := M$[i]⊕ 2iL for 1 ≤ i ≤ m− 1,
Xm := len(M$[m])⊕ 2mL,
XA
i := A$[i]⊕ 2iV, for 1 ≤ i ≤ a− 1,

where M$[1], . . . ,M$[m] n← M$ and A$[1], . . . , A$[a] n← A$. She obtains
Yi = EK(Xi) (1 ≤ i ≤ m) and Y Ai = EK(XA

i) (1 ≤ i ≤ a−1) by performing
Encipher(X1, · · · , Xm, X

A
1 , · · · , XA

a−1, 0n).
4. Let Xm+1 := Σ$ ⊕ 2m · 3L, where

Σ$ =
m−1⊕
i=1

M$[i]⊕ (M$[m] ‖ lsbn−|M$[m]|(Ym)).

If |A$[a]| = n, letXA
a := Σa−1

i=1 Y
A
i ⊕A$[a]⊕2a·3V and else,XA

a := Σa−1
i=1 Y

A
i ⊕

ozp(A$[a])⊕ 2a · 32V . She obtains Ym+1 = EK(Xm+1) and Y Aa = EK(XA
a)

by calling Encipher(Xm+1, X
A
a , 0n).

5. She creates (N$, A$, C$, T $), where

C$ = (Y1 ⊕ 2L) ‖ · · · ‖ (Ym−1 ⊕ 2m−1L) ‖ (msb|M$[m]|(Ym)⊕M$[m]),

T $ = msbτ (Ym+1 ⊕ Y Aa).

This tuple (N$, A$, C$, T $) will be accepted as valid by D, with return value
M$.

5.2 Plaintext Recovery

Security Model of Plaintext Recovery Attack. We consider an attack
model that closely follows [25]. A challenger has a secret key K. Let (C∗, T ∗) be

18

the encryption of (N∗, A∗,M∗), where a nonce N∗, associated data A∗, and a
plaintext M∗ are arbitrarily chosen by the challenger.

Then (N∗, A∗, C∗, T ∗) is given to the adversary as a challenge. She has access
to the encryption and decryption oracles, and the goal is to recover M∗. She
cannot use N∗ as a nonce in encryption queries (as N∗ was already used in
encryption to generate the challenge). Also, the adversary is nonce-respecting
and hence cannot repeat the same nonce in encryption queries. To avoid a trivial
win, she cannot use the challenge (N∗, A∗, C∗, T ∗) in decryption queries.

Plaintext Recovery Attack. (C∗, T ∗) is the encryption of (N∗, A∗,M∗),
and (N∗, A∗, C∗, T ∗) is given to the adversary as a challenge. We first make an
assumption that M∗ is long and C∗ has many blocks (for instance 3 or more
blocks), and the goal is to recover M∗ (We will later show how to recover short
plaintexts).

We first recover L∗ := EK(N∗). This can be done by using SamplePairs and
Encipher as follows: The adversary first calls SamplePairs(2), and with overwhelm-
ing probability, we assume nonce N ′ sampled in SamplePairs(2) is different from
N∗. Then she obtains a set of distinct pairs E = {(N ′, L′), (X ′, Y ′), (X ′′, Y ′′)}. If
(N∗, EK(N∗)) ∈ E, then we have L∗. Otherwise, she performs Encipher(N∗, 0n)
and obtains L∗ from the first block of the output of Encipher(N∗, 0n).

With the knowledge of L∗, we modify C∗ to make a decryption query. Specif-
ically, let C∗ = (C∗[1], . . . , C∗[m∗]) be the challenge ciphertext broken into
blocks, and we first fix two distinct indices j, k ∈ {1, . . . ,m∗−1}. Note that we are
assuming thatM∗ is long and m∗ ≥ 3. We then define C$ = (C$[1], . . . , C$[m∗])
as follows:

– C$[i] := C∗[i] for i ∈ {1, . . . ,m∗} \ {j, k}
– C$[j] := C∗[k]⊕ 2kL∗ ⊕ 2jL∗
– C$[k] := C∗[j]⊕ 2kL∗ ⊕ 2jL∗

Next, the adversary makes a decryption query (N∗, A∗, C$, T ∗), i.e, this is al-
most the same as the challenge, but the j-th and k-th blocks of C∗ are modi-
fied. This step can fail only with a negligible probability (e.g., if C∗[j] = C∗[k]
and L∗ = 0n). We see that the query will be accepted since the checksum re-
mains the same, and the adversary obtains M$. The goal of the attack, M∗,
is obtained by swapping the j-th and k-th blocks of M$ and making neces-
sary modifications. More precisely, from M$ = (M$[1], . . . ,M$[m∗]), we obtain
M∗ = (M∗[1], . . . ,M∗[m∗]) as follows:

– M∗[i] := M$[i] for i ∈ {1, . . . ,m∗} \ {j, k}
– M∗[j] := M$[k]⊕ 2kL∗ ⊕ 2jL∗
– M∗[k] := M$[j]⊕ 2kL∗ ⊕ 2jL∗

See Fig. 6 for the encryption process of (N∗, A∗,M∗) and the decryption process
of (N∗, A∗, C$, T ∗).

19

EKEK

N∗

L∗

M∗[j] M∗[k]

C∗[j] C∗[k]

2jL∗ 2kL∗

2jL∗

EK

2kL∗

EK

N∗

L∗

2jL∗ 2kL∗

2jL∗ 2kL∗

C$[j] C$[k]

M$[j] M$[k]

E−1
KE−1

K

Fig. 6. Left: The encryption process of (N∗, A∗,M∗). Right: The decryption process
of (N∗, A∗, C$, T ∗). In the right figure, we have C$[j] = C∗[k] ⊕ 2kL∗ ⊕ 2jL∗ and
C$[k] = C∗[j] ⊕ 2kL∗ ⊕ 2jL∗, and it follows that M∗[j] = M$[k] ⊕ 2kL∗ ⊕ 2jL∗ and
M∗[k] = M$[j]⊕ 2kL∗ ⊕ 2jL∗. We see that the checksum remains the same.

Emulating Blockcipher Decryption. We show that, for any Y ∗, the adver-
sary can compute X∗ = E−1

K (Y ∗). This complements the extraction of a specific
blockcipher mapping in Section 5.1, and this will be useful in the plaintext re-
covery for plaintexts of two blocks.

The adversary first calls SamplePairs(2), and let N be the nonce sampled in
the call. Then she obtains E = {(N,L), (X[1], Y [1]), (X[2], Y [2])}.

Let (N ′, L′) = (X[1], Y [1]), where we assume that N ′ 6= N , and define

M∗ = (X∗ ⊕ 2L′, X∗ ⊕ 22L′, 0n) ∈ {0, 1}3n.

The approach we take is to compute C∗ and T ∗ under the nonce N ′ and empty
A∗, and make a decryption query (N ′, A∗, C∗, T ∗). The adversary obtains M∗,
and X∗ can be obtained in an obvious way.

The observation here is that the checksum of M∗ is Σ∗ := 2L′⊕ 22L′, which
is independent of X∗, and we know all the blockcipher input values to compute
C∗ and T ∗. See Fig. 7 for the encryption process of (N ′, A∗,M∗). We need
to derive the values of C∗[3] and T ∗ in Fig. 7. This can be done by calling
Encipher(X[1], X[2], 0n), where X[1] = len(0n)⊕ 23L′ and X[2] = 2L′ ⊕ 22L′ ⊕
233L′. From the output (Y [1], Y [2], Y [3]) of Encipher(X[1], X[2], 0n), C∗[3] is
Y [1] and T ∗ is msbτ (Y [2]).

The final step is to make a decryption query (N ′, A∗, C∗, T ∗), where A∗
is empty, C∗ = (Y ∗ ⊕ 2L′, Y ∗ ⊕ 22L′, C∗[3]), and C∗[3] and T ∗ are obtained as
above. The query will be accepted, and the oracle returnsM∗ = (X∗⊕2L′, X∗⊕
22L′, 0n). The adversary can compute X∗ from the knowledge of L′, and we see
that the entire process succeeds with an overwhelming probability.

Plaintext Recovery Attack (Short Plaintext). Here, we show that
the plaintext recovery is possible even for short plaintexts. We first consider
the case where M∗ = (M∗[1],M∗[2]) is the target plaintext of two blocks.
Let (N∗, A∗, C∗, T ∗) be a challenge, where C∗ = (C∗[1], C∗[2]) has two blocks.
L∗ := EK(N∗) can be recovered as in case for the plaintext recovery for long

20

N ′

L′

X∗ 2L′

2L′

Y ∗ 2L′

EKEK EK

2L′

EK EK

22L′

22L′ 23L′ 233L′

0n

X∗ 22L′

Y ∗ 22L′

len(0n)

C∗[3]

2L′ 22L′

T ∗

C∗

Fig. 7. The encryption process of (N ′, A∗,M∗). C∗[3] and T ∗ are unknown.

plaintexts. We can then compute Pad∗ := EK(len(C∗[2]) ⊕ 22L∗) by calling
Encipher(len(C∗[2])⊕22L∗, 0n), andM∗[2] can be obtained as msb|C∗[2]|(Pad∗)⊕
C∗[2]. To recoverM∗[1], we need to compute E−1

K (C∗[1]⊕2L∗)⊕2L∗, which can
be done with the emulation of the blockcipher decryption we have just described.

When the target plaintext M∗ = M∗[1] has one block, we first recover
L∗ := EK(N∗), and then compute Pad∗ := EK(len(C∗[1]) ⊕ 2L∗) by calling
Encipher(len(C∗[1])⊕ 2L∗, 0n). This gives M∗[1] = msb|C∗[1]|(Pad∗)⊕ C∗[1].

Therefore, it is possible to mount a plaintext recovery attack against any
challenge (N∗, A∗, C∗, T ∗).

6 Design Flaw of OCB2

The root of the flaw in OCB2 is in the instantiation of AE using XEX∗. For
blockcipher EK , let

XEXN,i,jE (X) def= E(2iL⊕X)⊕ 2iL,

XEN,i,jE (X) def= E(2i3jL⊕X),

where L = E(N) for nonce N , for i = 1, 2, . . . and j = 0, 1, Here, j is always
set to 0 for XEX. XEX∗ unifies them by introducing one bit b to the tweak. That
is,

XEX∗,b,N,i,jE (X) =
{
XEXN,i,jE (X) if b = 1;
XEN,i,jE (X) if b = 0.

Decryption is trivially defined, and is never invoked when b = 0. Rog04 refers b
to tag; not to be confused with the tag in the global interface of AE.

Suppose an encryption query (N,A,M), where A = ε and M is parsed as
(M [1], . . . ,M [m]), is given to OCB2. It encrypts M by using XEX∗,1,N,i,0E for
M [i] with i = 1, . . . ,m − 1, and XEX∗,0,N,m,0E for M [m]. The checksum, Σ, is
encrypted by XEX∗,0,N,m,1E to create the (untrancated) tag.

21

In the proof of OCB2, we first apply the standard conversion from compu-
tational to information theoretic security [4] and focus on the security of OCB2
instantiated by an n-bit uniform random permutation (URP), P, denoted by
OCB2P. Then, the proof of OCB2P has two main steps: the indistinguishability
of XEX∗P, and the privacy and authenticity of AE12 which replaces XEX∗P in
OCB2P with an ideal primitive, a tweakable random permutation P̃. The latter
step is not relevant to our attacks.

For the first step, Rog04 proved that XEX∗P is indistinguishable from P̃ for
any adversary who queries to both encryption and decryption of XEX∗P and
respects the semantics of tag b. More precisely, the conditions for the adversary
are as follows.
Definition 1. We say an adversary querying XEX∗ is tag-respecting when

1. XEX∗,0,N,i,j is only queried in encryption queries for any (N, i, j);
2. Once XEX∗,b,N,i,j is queried in either encryption or decryption, then it is

not allowed to query XEX∗,1−b,N,i,j, for any (N, i, j).

Let ΘCB2
Ẽ

be the mode of operations of TBC ẼK which has the same
interface as XEX∗E . The pseudocode is shown in Fig. 8. Then, ΘCB2XEX∗

E
is

equivalent to OCB2E .
Let P̃ be TURP which has the same interface as XEX∗. Rog04 showed that,

for any privacy-adversary A and authenticity-adversary A±,

Advpriv
OCB2P

(A)=Advpriv
ΘCB2XEX∗P

(A) ≤ Advtprp
XEX∗P

(B) + Advpriv
ΘCB2̃

P
(A), (7)

Advauth
OCB2P

(A±)=Advauth
ΘCB2XEX∗P

(A±) ≤ Advtsprp
XEX∗P

(B±) + Advauth
ΘCB2̃

P
(A±)(8)

hold for some CPA-adversary B and CCA-adversary B±, which are tag-
respecting and can simulate the privacy and the authenticity games involving
ΘCB2XEX∗P and A and A±, respectively. From Rog04, we have

Advtprp
XEX∗P

(B) ≤ 4.5q2

2n , and Advtsprp
XEX∗P

(B±) ≤ 9.5q2

2n (9)

for any B and B± that are tag-respecting and use at most q queries. The last
terms of (7) and (8) are proved to be almost ideally small: zero for privacy and
2n−τ/(2n − 1) for authenticity with single decryption query.

The privacy bound is obtained from (9) and (7). However, to derive the
authenticity bound, we need to identify B± that can simulate A±, where A±
must compute the decryption of ΘCB2, even with single decryption query 13.
12 An equivalent mode for OCB3 is called ΘCB3 [20].
13 Rog04 defines the authenticity notion in the game that the adversary queries to the

encryption oracle then outputs a query to the decryption oracle, but the response
is not returned. The decryption oracle is not involved in the game and the success
or failure of the forgery is determined outside the game. This definition itself is
essentially the same as Equation (1), and has no problem. However, because the
adversary’s final output does not tell whether the adversary wins or loses, we do not
know how to apply a hybrid argument of (8) using this definition.

22

Algorithm ΘCB2.E
Ẽ

(N,A,M)

1. (M [1], . . . ,M [m]) n←M
2. for i = 1 to m− 1
3. C[i]← Ẽ∗,1,N,i,0(M [i])
4. Pad← Ẽ∗,0,N,m,0(len(M [m]))
5. C[m]←M [m]⊕ msb|M [m]|(Pad)
6. Σ ← C[m] ‖ 0∗ ⊕ Pad
7. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
8. T ← Ẽ∗,0,N,m,1(Σ)
9. return (C, T)

Algorithm ΘCB2.D
Ẽ

(N,A,C, T)

1. (C[1], . . . , C[m]) n← C
2. for i = 1 to m− 1
3. M [i]← (Ẽ∗,1,N,i,0)−1(C[i])
4. Pad← Ẽ∗,0,N,m,0(len(C[m]))
5. M [m]← C[m]⊕ msb|C[m]|(Pad)
6. Σ ← C[m] ‖ 0∗ ⊕ Pad
7. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
8. T ∗ ← Ẽ∗,0,N,m,1(Σ)
9. if T = T ∗ return M

10. else return ⊥

Fig. 8. Algorithms of ΘCB2. For simplicity, τ = n and A = ε.

Depending on A±, there are cases that no tag-respecting B± can simulate A±.
For example, let us assume that A± first queries (N,A,M) of |M | = 2n to
the encryption oracle and then queries (N ′, A′, C ′, T ′) to the decryption ora-
cle, where N ′ = N , A′ = ε and |C ′| = n, as well as the attack of Section 4.1.
Then, B± who simulates A± first queries to XEX∗,1,N,1,0 and XEX∗,0,N,2,0 and
XEX∗,0,N,2,1. For the second query, it queries to XEX∗,0,N,1,0 and XEX∗,0,N,1,1.
Thus both XEX∗,1,N,1,0 and XEX∗,0,N,1,0 are queried, which implies a violation
of the second condition of Definition 1. Consequently, the authenticity proof of
Rog04 does not work, hence our attacks. At the same time, this also implies
that the privacy (confidentiality) attack under CPA, i.e. distinguishing the ci-
phertext from random using only encryption queries, is not possible. This shows
a sharp difference between CPA and CCA queries, where the latter easily breaks
confidentiality (Section 4.3).

7 Applicability to Related Schemes

Other OCB Versions. Our attacks are only applicable to OCB2. For OCB1,
the last block is encrypted by XE with a clearly separated mask. For OCB3, the
last block is encrypted by XEX when it is n bits and otherwise by XE with a
mask separated from those used by XEX.

Other Designs based on OCB. We have not found other AE algorithms
based on OCB that could be affected by our attacks. OTR [24] is an inverse-free
(for the absence of the blockcipher decryption in the scheme) parallelizable AE
having a similar structure as OCB. As it only uses XE for the whole process, it
is safe from our attacks. OPP [12] is a permutation-based AE based on OCB.
It always uses XEX, or more precisely, a variant of XPX [23], because otherwise
an offline permutation inverse query easily breaks the scheme. It is safe because
of this consistent use of XPX.

23

Aoki and Yasuda [2] presented security bounds of OCB when the block cipher
has indistinguishability against encryption queries, however only unpredictabil-
ity for decryption queries (thus is weaker than normal SPRPs). The presented
bounds were claimed to cover all versions of OCB including OCB2. Therefore,
our attacks invalidated them regarding OCB2.

8 Fixing OCB2

We discuss several ways to prevent our attacks in practice. In principle each of our
suggestions would require its own formal security analysis, but we provide one
only for the “XEX for the last plaintext block” fix presented in Section 8.1. While
also our other proposals intuitively lead to a secure scheme, without conducting
further research we cannot fully vouch for their security.

Always using AD. Our forgery attacks from Section 4 have the property that
the AD of the forgeries have to be the empty string. This was unavoidable as
for A 6= ε we would have had to predict PMAC(A) but we are not aware of a
way to do so. (Of course, if we could use the Encipher algorithm of Section 5.1
then computing PMAC values is not a challenge; however, Encipher can only
be invoked after SamplePairs, and the latter implicitly conducts a forgery with
A = ε.) Overall we note that a forgery with A = ε is a key component of
all our attacks on OCB2. This observation immediately suggests a fix: If the
involved users agree that all encryption/decryption operations are with respect
to a non-empty AD, then it seems (to us) that all problems go away. An easy
way to implement this strategy generically is to prepend a fixed string (e.g. the
single letter “A” or the all-zero block 0n) to every occurring AD (including the
empty AD).

Always using PMAC. Recall from Line 10 of E in Fig. 1 that PMAC(A) is
XOR-ed into the tag only if A 6= ε. We discuss the case that this condition
is removed, and PMAC(A) is always XOR-ed into the tag, also when A = ε.
An initial analysis of the PMAC algorithm (see Fig. 9 in Appendix) shows that
the value PMAC(ε) is unpredictable, and also cannot be replayed from other
ciphertexts, so that also this modification of OCB2 promises to be a secure
candidate.

Counter-cryptanalysis. The two countermeasures just discussed require
that the code of both the sender and the receiver would have to be adapted. It
might be impossible to do so for instance if OCB2 is included in already shipped
products that cannot be updated remotely. In such settings the following two
options might be interesting: The sender is modified to never encrypt a message
where the second-last block is len(0n) while the receiver remains unchanged, or
the sender remains unchanged and the receiver is modified to never decrypt to a
message where the last block would be of the form 2mL⊕len(0n).14 While such
14 We caution that this change might not be sufficient. Our results from Section 4.4

indicate that more plaintexts and ciphertexts have to be rejected: on the encryptor’s

24

changes would (marginally) influence the correctness of the encryption scheme,
they seem to make our attacks impossible. To patch a live system this might be
a viable option.

Use XEX+. Minematsu and Matsushima [26] proposed an extension of XEX∗
called XEX+. The latter allows to use plain blockcipher calls in combination with
XEX and XE. The authors in particular suggest how to use XEX+ to instantiate
a variant of OCB, where the last message block is encrypted by an unmasked
blockcipher. This variant of OCB is not affected by our attacks and provably
secure.

8.1 XEX for The Last Message Block

Recall that the vulnerabilities of OCB2 stem from a bad interaction of the XE
and XEX components in XEX∗ and the fact that XE is used for the last block of
encryption. A simple way to fix OCB2 is to use XEX also for the last block. We
call the resulting scheme OCB2f. Its pseudocode is obtained by changing line 5
of OCB2.EE and OCB2.DE in Fig. 1 to

Pad← 2mL⊕ E(2mL⊕ len(M [m]))

and
Pad← 2mL⊕ E(2mL⊕ len(C[m])),

respectively. As well as OCB2, OCB2f is a mode of XEX∗, since the tweak
spaces of XE and XEX in OCB2f are distinct. Specifically, we define ΘCB2f

Ẽ
as

a mode obtained by changing Ẽ∗,0,N,m,0 to Ẽ∗,1,N,m,0 in line 4 of ΘCB2.E
Ẽ
and

ΘCB2.D
Ẽ
in Fig. 8. Then ΘCB2f

Ẽ
is equivalent to OCB2fE if ẼK is XEX∗E . To

handle a non-empty AD, we also define PMAC
Ẽ
as a mode of TBC ẼK defined

in the same way as ΘCB2 so that PMACXEX∗
E

is equivalent to PMACE (see
Fig. 9 in Appendix). We finally add the following line after line 8 (for ΘCB2.E

Ẽ
and ΘCB2.D

Ẽ
) in Fig. 8

if A 6= ε then T ← msbτ (T ⊕ PMAC
Ẽ

(A))

to make it AEAD. We prove the security of OCB2f using a hybrid argument
involving ΘCB2f. To simplify the argument, we also define ΘCB2f′ by converting
PMAC

Ẽ
in ΘCB2f to a URF (uniform random function) R : {0, 1}∗ → {0, 1}n.

The security bounds of OCB2f are the same as those claimed for OCB2:

side all messages with M [m − 1] = len(0n−s) for some s = 1, . . . , n, and on the
decryptor’s side all ciphertexts that would result inM∗[m−1] = len(0n−s) for some
s = 1, . . . , n. We are still investigating which conditions would be necessary/sufficient
for security.

25

Theorem 1. Let A and A± denote the adversary against AEAD in the privacy
and authenticity games. We assume A± uses qv decryption queries. We have

Advpriv
OCB2fP

(A) = Advpriv
ΘCB2fXEX∗P

(A) ≤
5σ2

priv

2n ,

Advauth
OCB2fP

(A±) = Advauth
ΘCB2fXEX∗P

(A±) ≤ 5σ2
auth
2n + 4qv

2τ ,

where σpriv and σauth are the number of queried blocks (the number of invocations
of XEX∗) in the privacy game and the authenticity game, respectively.

Intuitively, the security of OCB2f holds because (1) OCB2f is ΘCB2f using Ẽ
instantiated by XEX∗, and (2) ΘCB2f and ΘCB2f′ are indistinguishable (up to
collision), and (3) ΘCB2f′ in the privacy and authenticity games do not force
the adversary to violate the access rules (Definition 1). Combining the known
bounds of XEX∗ and PMAC

Ẽ
and the proofs of ΘCB2P̃ with minor changes gives

the desired results. A full proof is given in the full version of this article [13].

9 Conclusions

We have presented practical forgery and decryption attacks against OCB2, a
high-profile ISO-standard authenticated encryption scheme. This was possible
due to the discrepancy between the proof of OCB2 and the actual construction,
in particular the interpretation of OCB2 as a mode of a TBC which combines
XEX and XE. While the latest OCB3 has a superior software performance than
the previous ones, and is clearly recommended by the designers, we think OCB2
is still quite influential for its simple description and the sophisticated modular
design based on a TBC. Our attacks show that, while the approach introduced
by Rog04 is invaluable, we could not directly derive a secure AE from it without
applying a fix.

We comment that, due to errors in proofs, ‘provably-secure schemes’ some-
times still can be broken, or schemes remain secure but the proofs need to be
fixed. Even if we limit our focus to AE, we have many examples, such as NSA’s
Dual CTR [33,9], EAX-prime [25], GCM [19], and some of the CAESAR submis-
sions [27,8,35] and more. We believe our work emphasizes the need for quality
of security proofs, and their active verification.

Acknowledgements

The authors would like to thank Phil Rogaway for his response to our findings,
and officials of ISO SC 27 for feedback and suggestions. We also would like to
thank the reviewers of CRYPTO 2019 for useful comments.

26

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125.
Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014).
https://doi.org/10.1007/978-3-662-45611-8_6

2. Aoki, K., Yasuda, K.: The security of the OCB mode of operation without the
SPRP assumption. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS,
vol. 8209, pp. 202–220. Springer, Heidelberg, Germany, Melaka, Malaysia (Oct 23–
25, 2013). https://doi.org/10.1007/978-3-642-41227-1_12

3. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403, pp. 3–33. Springer, Heidelberg, Germany, Santa Bar-
bara, CA, USA (Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63697-9_1

4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete secu-
rity treatment of symmetric encryption. In: 38th FOCS. pp. 394–403.
IEEE Computer Society Press, Miami Beach, Florida (Oct 19–22, 1997).
https://doi.org/10.1109/SFCS.1997.646128

5. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.K.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg,
Germany, New Delhi, India (Feb 5–7, 2004). https://doi.org/10.1007/978-3-540-
25937-4_25

6. Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 345–362. Springer, Heidelberg, Germany, Leuven, Belgium
(Feb 22–25, 2009). https://doi.org/10.1007/978-3-642-03317-9_21

7. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Apr 28 –
May 2, 2002). https://doi.org/10.1007/3-540-46035-7_25

8. Bost, R., Sanders, O.: Trick or tweak: On the (in)security of OTR’s tweaks. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031,
pp. 333–353. Springer, Heidelberg, Germany, Hanoi, Vietnam (Dec 4–8, 2016).
https://doi.org/10.1007/978-3-662-53887-6_12

9. Donescu, P., Gligor, V.D., Wagner, D.: A Note on NSA’s Dual Counter Mode of
Encryption (2001), http://www.cs.berkeley.edu/~daw/papers/dcm-prelim.ps/

10. Ferguson, N.: Collision attacks on OCB. Comments to NIST (2002),
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/
documents/BCM/Comments/general-comments/papers/Ferguson.pdf/

11. Forler, C., List, E., Lucks, S., Wenzel, J.: Reforgeability of authenticated encryption
schemes. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 17, Part II. LNCS, vol. 10343,
pp. 19–37. Springer, Heidelberg, Germany, Auckland, New Zealand (Jul 3–5, 2017)

12. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for
tweakable blockciphers with applications to authenticated encryption. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665,
pp. 263–293. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016).
https://doi.org/10.1007/978-3-662-49890-3_11

13. Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis of OCB2: At-
tacks on authenticity and confidentiality. IACR Cryptology ePrint Archive 2019,
311 (2019), https://eprint.iacr.org/2019/311

27

https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-642-41227-1_12
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/978-3-540-25937-4_25
https://doi.org/10.1007/978-3-540-25937-4_25
https://doi.org/10.1007/978-3-642-03317-9_21
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-662-53887-6_12
http://www.cs.berkeley.edu/~daw/papers/dcm-prelim.ps/
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Ferguson.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Ferguson.pdf/
https://doi.org/10.1007/978-3-662-49890-3_11
https://eprint.iacr.org/2019/311

14. Inoue, A., Minematsu, K.: Cryptanalysis of OCB2. IACR Cryptology ePrint
Archive 2018, 1040 (2018), https://eprint.iacr.org/2018/1040

15. ISO: Information Technology - Security techniques - Authenticated encryption,
ISO/IEC 19772:2009. International Standard ISO/IEC 19772 (2009)

16. ISO/IEC JTC 1/SC 27: STATEMENT ON OCB2.0 – Major weak-
ness found in a standardised cipher scheme (2019-01-09, press release),
https://www.din.de/blob/321470/da3d9bce7116deb510f6aded2ed0b4df/
20190107-press-release-19772-2009-1st-ed-ocb2-0-data.pdf

17. Iwata, T.: Plaintext Recovery Attack of OCB2. IACR Cryptology ePrint Archive
2018, 1090 (2018), https://eprint.iacr.org/2018/1090

18. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg, Germany, Lund,
Sweden (Feb 24–26, 2003). https://doi.org/10.1007/978-3-540-39887-5_11

19. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23,
2012). https://doi.org/10.1007/978-3-642-32009-5_3

20. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidel-
berg, Germany, Lyngby, Denmark (Feb 13–16, 2011). https://doi.org/10.1007/978-
3-642-21702-9_18

21. Krovetz, T., Rogaway, P.: The OCB Authenticated-Encryption Algorithm. IRTF
RFC 7253 (2014)

22. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 18–22, 2002). https://doi.org/10.1007/3-540-45708-9_3

23. Mennink, B.: XPX: Generalized tweakable Even-Mansour with improved secu-
rity guarantees. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 64–94. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2016). https://doi.org/10.1007/978-3-662-53018-4_3

24. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudoran-
dom functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 275–292. Springer, Heidelberg, Germany, Copenhagen, Denmark
(May 11–15, 2014). https://doi.org/10.1007/978-3-642-55220-5_16

25. Minematsu, K., Lucks, S., Morita, H., Iwata, T.: Attacks and security proofs of
EAX-prime. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 327–347. Springer,
Heidelberg, Germany, Singapore (Mar 11–13, 2014). https://doi.org/10.1007/978-
3-662-43933-3_17

26. Minematsu, K., Matsushima, T.: Generalization and Extension of XEX* Mode.
IEICE Transactions 92-A(2), 517–524 (2009)

27. Nandi, M.: Forging attacks on two authenticated encryption schemes COBRA and
POET. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873,
pp. 126–140. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–
11, 2014). https://doi.org/10.1007/978-3-662-45611-8_7

28. Poettering, B.: Breaking the confidentiality of OCB2. IACR Cryptology ePrint
Archive 2018, 1087 (2018), https://eprint.iacr.org/2018/1087

29. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002. pp. 98–107. ACM Press, Washington, DC, USA (Nov 18–22,
2002). https://doi.org/10.1145/586110.586125

28

https://eprint.iacr.org/2018/1040
https://www.din.de/blob/321470/da3d9bce7116deb510f6aded2ed0b4df/20190107-press-release-19772-2009-1st-ed-ocb2-0-data.pdf
https://www.din.de/blob/321470/da3d9bce7116deb510f6aded2ed0b4df/20190107-press-release-19772-2009-1st-ed-ocb2-0-data.pdf
https://eprint.iacr.org/2018/1090
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-642-32009-5_3
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.1007/978-3-662-43933-3_17
https://doi.org/10.1007/978-3-662-43933-3_17
https://doi.org/10.1007/978-3-662-45611-8_7
https://eprint.iacr.org/2018/1087
https://doi.org/10.1145/586110.586125

30. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg, Germany, Jeju Island, Korea (Dec 5–9, 2004).
https://doi.org/10.1007/978-3-540-30539-2_2

31. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. Full version of [30] (2004), available from http://www.
cs.ucdavis.edu/~rogaway/papers/

32. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg, Germany, New
Delhi, India (Feb 5–7, 2004). https://doi.org/10.1007/978-3-540-25937-4_22

33. Rogaway, P.: On the Role Definitions in and Beyond Cryptography. In: ASIAN.
LNCS, vol. 3321, pp. 13–32. Springer (2004)

34. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM CCS 2001. pp. 196–205. ACM Press, Philadelphia, PA, USA (Nov 5–
8, 2001). https://doi.org/10.1145/501983.502011

35. Schroé, W., Mennink, B., Andreeva, E., Preneel, B.: Forgery and subkey recov-
ery on CAESAR candidate iFeed. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. LNCS, vol. 9566, pp. 197–204. Springer, Heidelberg, Germany, Sackville,
NB, Canada (Aug 12–14, 2016). https://doi.org/10.1007/978-3-319-31301-6_11

36. Sun, Z., Wang, P., Zhang, L.: Collision Attacks on Variant of OCB Mode and Its
Series. In: Inscrypt. LNCS, vol. 7763, pp. 216–224. Springer (2012)

37. Vaudenay, S., Vizár, D.: Can caesar beat galois? - Robustness of CAESAR can-
didates against nonce reusing and high data complexity attacks. In: Preneel, B.,
Vercauteren, F. (eds.) ACNS 18. LNCS, vol. 10892, pp. 476–494. Springer, Heidel-
berg, Germany, Leuven, Belgium (Jul 2–4, 2018). https://doi.org/10.1007/978-3-
319-93387-0_25

A Brief History of This Paper

A frequent question we have received is how we came to find the flaws, and how
they lead to the devastating attacks. The current article is based on three prior
ones [14,28,17] that appeared in late 2018 on the IACR ePrint archive. That
OCB2 might be flawed was first identified by the authors of [14] when they re-
examined the proofs of OCB2 for educational purposes and searched for potential
improvements. Instead they came to find a seemingly tiny crack in the proof that
they first tried to fix as they strongly believed OCB2 was a secure design, but
after several tries they ended up with existential and (near-)universal forgeries.
Only two weeks after these findings became public (in [14]), the author of the
second ePrint article [28] announced an IND-CCA vulnerability and first steps
towards plaintext recovery, and again three days later, the author of the third
ePrint article [17] announced full plaintext recovery. This series of happenings
is a good example of “attacks only get better” and how seemingly minor error
conditions can rapidly grow to nullify the security of a renowned scheme.

29

https://doi.org/10.1007/978-3-540-30539-2_2
http://www.cs.ucdavis.edu/~rogaway/papers/
http://www.cs.ucdavis.edu/~rogaway/papers/
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1145/501983.502011
https://doi.org/10.1007/978-3-319-31301-6_11
https://doi.org/10.1007/978-3-319-93387-0_25
https://doi.org/10.1007/978-3-319-93387-0_25

Algorithm PMACE(A)

1. S ← 0n
2. V ← 32E(0n)
3. (A[1], . . . , A[a]) n← A
4. for i← 1 to a− 1
5. S ← S ⊕ E(2iV ⊕A[i])
6. S ← S ⊕A[a] ‖ 10∗
7. if |A[a]| = n
8. Q← E(2a3V ⊕ S)
9. else Q← E(2a32V ⊕ S)

10. return Q

Algorithm PMAC
Ẽ

(A)

1. S ← 0n
2. (A[1], . . . , A[a]) n← A
3. for i← 1 to a− 1
4. S ← S⊕ Ẽ∗,0,0

n,i,2(A[i])
5. S ← S ⊕A[a] ‖ 10∗
6. if |A[a]| = n

7. Q← Ẽ∗,0,0
n,a,3(S)

8. else Q← Ẽ∗,0,0
n,a,4(S)

9. return Q

Fig. 9. Left: The algorithm PMACE for the use in OCB2. Right: A TBC-based
PMAC, PMAC

Ẽ
.

B Left-out Details of OCB2

We complete our OCB2 description from Sec. 3 by specifying the details of the
PMAC and len functions. For the former see Fig. 9. The latter takes a string
X ∈ {0, 1}≤n and encodes its lengths |X| as per len(X) = 0n−8‖`X , where `X
denotes the standard binary encoding of |X|. For example, len(0n) for n = 128
is 0120107.

30

	Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality
	Introduction
	Impact
	Further Related Work
	Organization and Contributions

	Preliminaries
	Notations
	(Tweakable) Blockciphers
	AE and AEAD

	The OCB2 Mode of Operation
	Basic Attacks
	Minimal Forgery
	Forgery of Longer Messages
	Confidentiality Attack
	Observations

	Advanced Attacks
	Universal Forgeries
	Plaintext Recovery

	Design Flaw of OCB2
	Applicability to Related Schemes
	Fixing OCB2
	XEX for The Last Message Block

	Conclusions
	Brief History of This Paper
	Left-out Details of OCB2

