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Abstract. We present the first attribute-based encryption (ABE) scheme for de-
terministic finite automaton (DFA) based on static assumptions in bilinear groups;
this resolves an open problem posed by Waters (CRYPTO 2012). Our main con-
struction achieves selective security against unbounded collusions under the stan-
dard k-linear assumption in prime-order bilinear groups, whereas previous con-
structions all rely on g-type assumptions.

1 Introduction

Attribute-based encryption (ABE) [19,11] is a generalization of public-key encryption
to support fine-grained access control for encrypted data. Here, ciphertexts are associ-
ated with a description value = and keys with a policy f, and decryption is possible
when f(z) = 1. In many prior ABE schemes, the policy f is specified using a boolean
formula, but there are many applications where we want the policy f to operate over ar-
bitrary sized input data. For example, we could imagine a network logging application
where x represents an arbitrary number of events logged. Another example is where x
is a database of patient data that includes disease history paired with gene sequences
where the number of participants is not apriori bounded or known.

Following the work of Waters in 2012 [21], we consider ABE for regular languages,
where the policies f are specified using deterministic finite automata (DFA). This al-
lows us to capture applications such as tax returns and virus scanners. In spite of the
substantial progress made in the design and analysis of ABE schemes over the past
decade, all known constructions of ABE for DFA rely on g-type assumptions in bilin-
ear groups [21,2,3,1], where the complexity of the assumption grows with the length of
the string x. In this work, we address the following open problem posed in the original
work of Waters [21]:

Can we build an ABE for DFA based on static assumptions in bilin-
ear groups, notably the k-linear assumption in prime-order bilinear
groups?

* Supported by ERC Project aSSCEND (H2020 639554) and the French ANR ALAMBIC Project
(ANR-16-CE39-0006). Part of this work was done while at ENS de Lyon.
** Supported by NSF CNS-1908611, CNS-1414082, DARPA SafeWare and Packard Foundation
Fellowship.
*** Supported by ERC Project aSCEND (H2020 639554).



From both a practical and theoretical stand-point, we would like to base cryptography
on weaker and better understood assumptions, as is the case with the k-linear assump-
tion. This is also an intriguing problem from a conceptual stand-point because prior ap-
proaches exploit g-type assumptions in a fairly inherent manner. Waters’” ABE for DFA
was based on an “embedding paradigm” where the arbitrary-length challenge string was
programmed into the public parameters, and embedding an arbitrary length string into
fixed-size parameters seems to require a g-type assumption. The dual system encryption
methodology developed in the context of ABE for boolean formula [20,15,16,18,6] al-
lows us to overcome the latter limitation, provided the ciphertext or key size is allowed
to grow with the size of the formula; this does not work in the DFA setting, since for-
mula size roughly corresponds to £ - (), where / is the length of the string x and () is the
number of states in the DFA. Indeed, a key challenge that distinguishes ABE for DFA
from ABE for boolean formula is that both the size of public parameters and the secret
keys are independent of ¢, which means that we cannot afford to unroll and embed the
entire DFA computation path into the secret key.

This work. We present the first ABE for DFA based on static assumptions in bilin-
ear groups, thereby providing an affirmative answer to the above open problem. Our
main construction achieves selective security against unbounded collusions under the
standard k-linear assumption in prime-order bilinear groups. Our proof strategy departs
significantly from prior ABEs for DFA in that we design a series of hybrids that traces
through the computation. Our proof of security carefully combines a “nested, two-slot”
dual system argument [20,15,16,18,12,6] along with a novel combinatorial mechanism
for propagating entropy along the computation path of a DFA.

We note that our high-level approach of tracing the computation path across hybrids
is similar to that used in the recent ABE for boolean formula from static assumptions
in [14], but we have to deal with the afore-mentioned challenge specific to DFAs. In
a bit more detail, in our ABE for DFA, the secret keys contain random shares “in the
exponent” corresponding to each state of the DFA; this is analogous to ABE for boolean
formula where the random shares correspond to wires in a formula. Roughly speaking,
in the 7’th hybrid, we modify the distribution of the share corresponding to the state
u; reached upon reading the first ¢ bits of the input string. In a DFA, a state could be
reached many times throughout the DFA computation on a fixed input, which means
that we need to modify the share corresponding to u; (along with the challenge cipher-
text) in such a way that it does not affect the functionality of the DFA. This difficulty
does not arise in ABE for boolean formula, because each wire is only used once during
the computation.

1.1 Technical overview — warm-up

We present an overview of our ABE scheme for DFAs. Recall that a DFA is specified by
atuple (Q, X, 6, F') where the state space is [Q] := {1,2,...,Q}; 1 is the unique start
state; F' C [Q)] is the set of accept states, and § : [Q] x X — [Q)] is the state transition
function.



Warm-up construction. The starting point of our construction is Waters’ ABE scheme

for DFA [21] over asymmetric composite-order bilinear groups (G, Hy, G, ¢) whose
order NV is the product of three primes p1, p2, ps. (The original scheme is instantiated

over prime-order bilinear groups, but relies on ¢-type assumptions.) Let g;, h; denote

generators of order p; in Gy and Hy, for i = 1,2, 3, and let h be a generator for Hy.

The scheme is as follows:

msk = (h7 O Wtarts Wends 2, {Wo oe s ) €))
mpk = (gla gqlusmv giuend7 gf? {gilu(, }0627 6(91’ h)a )
g7 970,
cte = | {oivo T e,

Se S¢Wend
gl 791 o ) e(glah)sza -m
d
h 1+'wstar("'l’h7'l’

Skf = {h_du +2z7y , hdv Fwery , hTw }’U.E[Q],U’GE,’U:(S(’U,,O') ,
{ha—du+wcndm b }uEF
Decryption proceeds as follows:

(i) compute e(g;°, h®);
(i) for i = 1,...,¢, compute e(g;", hui), where u; denotes the state reached upon
reading zy,..., ;.
(iii) compute e(g1, h)** and thus m.

To go from e(g;" ™", h*i-1) to e(g}?, h%:) in step (ii), we rely on the identity: for all
u€[Ql,o € X,

sidé(u,a) - Sifldu = S;- (dzs(u,rr) +waru) +Si—1- (_du + Z’ru) - (si—lz + siwo) “Tu

We note that our scheme differs from Waters’ scheme in that we reuse 7, for all the
transitions starting from u instead of a fresh r, , for each (u, o). This modification
yields a smaller secret key (roughly @ - | 2| + 2@Q vs 3Q) - | X| group elements), and also
simplifies the notation.

Proof strategy. At a very high level, the proof follows Waters’ dual system encryption
methodology [20,15]. This means that throughout the proof, we modify the ciphertext
and key distributions but not mpk, and only in the ps-subgroup generated by g, ho
(which we also refer to as the py-components). In fact, we will rely on the “nested two-
slot” variant of dual system encryption introduced in [16,18,12,6] for settings where the
ciphertext uses independent randomness sg, s1, . . ., as is the case for our DFA scheme.
Here, “nested” refers to the fact that the security proof interweaves a computational
argument over ciphertexts with another over secret keys, whereas “two-slot” refers to
the use of the ps-subgroup to carry out this delicate interweaving. In contrast, the ba-
sic dual system encryption framework [2,22] applies a single computational argument
over ciphertexts at the beginning and can be instantiated in asymmetric composite-order
groups whose order is the product of fwo primes.



Proof - first idea. For this proof overview, we will focus on the selective setting
where the adversary first picks a challenge z* before seeing mpk and making secret
key queries. In addition, we consider a further simplification where the adversary only
makes a single key query for some DFA f where f(z*) = 0 (i.e. rejecting). Let ug = 1
denote the start state, and let uq,...,u, denote the state in f reached upon reading
x3,...,x}. In particular, uy ¢ F.

Recall that decryption computes e(g;*, h%: ) for each i = 0, ..., £. A natural proof
strategy would be design a series of games Go, ..., Gy such that in G;, the quantity
e(gy', h%) is pseudorandom for each u # w;. In particular, since u, ¢ F, this means
that e(g;*, h®+) is pseudorandom for all u € F', which should imply that e(g}*, h®) is
pseudorandom.

Towards carrying out this strategy, we pick A < Zy and define:

Apy 1= {A if u # u;

0  otherwise

In G;, we switch the ciphertext-key distributions from (ct,, sky) to (cti., ska) where

- ct;* is the same as ct,- except we replacg 97" with (g192)%;
- sk} is the same as sk except we add a h; " term to hdvtwsTu for every u, o.

Roughly speaking, this means that in G;, the quantity e(g;j*, h%) would be masked by
e(ggi,hQA"”“) = e(gy', h5') whenever u # wu;. In particular, the quantity e(g;*, h®)
would be masked by e(g5¢, h5').

Proof —second idea. As it turns out, we cannot hope to show that the quantity e(g;*, h%+)
is pseudorandom for each u # wu,. Consider a DFA with Q = 3,¥ = {0} and
0(1,0) = 2,6(3,0) = 2. Then, given an encryption of x = 0, an adversary can compute

e(g°, h™)

by first computing e(g;*, h92) using the transition 1 2 2, and then “back-tracking”

along the transition 3 5 2; these are so-called “back-tracking attacks” in [21].

Instead, we will only argue that e(g;’, h?+) is pseudorandom, for u € F; - for
some family of sets F; ;- C [Q)]. (Our first attempt corresponds to setting F; ,» =
[@Q]\ {u;}.) In order to argue that e(g;*, h*) is pseudorandom, we want F ;- = F'. For
1=0,...,¢—1, we will define

Fipo ={ue[Q]:0(u,xj ,...,x;) € F}.
Here, we use 4 to also denote the “extended transition” function, namely
o0(u,01,09,...,00) =0(0(d(u,01),02),...,00).
That is, I ;- is the set of states that are reachable from the accept states in F' by back-

tracking along xy, ..., z7, . In particular, if f(z*) =0,thenl ¢ Fj ,~ (recall that 1 de-

notes the start state) and more generally, u; ¢ F; ;- (recall that u; = 6(1, 2%, ..., z])).

[t



Finally, we modify A; ,, to be

A A ifueF,,-
Y10 otherwise

Intuitively, the proof starts by introducing a unit of entropy captured by A to each state
in Fp 5« in Go, and then propagates that entropy to the states in F ,+ in Gy, then F5 -
in Gg, and finally to Fy ;- = F' in Gy. We can then use A to mask «, upon which we
can argue that the plaintext is perfectly hidden via an information-theoretic argument.
Looking ahead, (5) captures precisely how we computationally propagate entropy from
F;_1 2~ in G;_; to F; z- in G;. The key insight here is that these sets F; .~ are the states
that are reachable by back-tracking from the accept states, and not the ones that are
reachable from the start state.

Proof — interlude. Now, we are ready to describe how to carry out the hybrid argument
from Gy to Gy. As mentioned earlier, we focus on the setting with a single key query f.
This means that we need to show that for each¢ =1, ..., ¢, we have:

Gi_1 = (mpk,ct'z kl Y =, (mpk, ct’ *,skz) G;

a:*7

i—1,2

To prove this, we will introduce an additional ciphertext distribution ct_. ", where:

— ct'>1" is the same as ct,~ except we replace g, ¢ with (g1g2)% ", (g192)%

and move from G;_; to G; via the following hybrid arguments:

Gi—1

mpk, ctm* , sk}*l)

(
o (mpk ety sk 1)
(
(

R

R

< (mpk, ct’ “, ) @
c mpa 7 Sk’j‘) :Gi

Note that the proof interweaves a computational argument over ciphertexts with another
over secret keys. In the proof, we will rely on the following computational assumptions
in composite-order bilinear groups:

R

SDlelep2 subgroup assumption in Gy, which says that g5 ~. (g192)%;

- DDszN in Hy (w.rt. w), which implies that (b3, hy") =~. (hb, h5 ") given
(ho, hY) for all A.

Later on, we will describe how to instantiate the scheme and these assumptions using
the k-linear assumption in prime-order bilinear groups.

Proof - third idea. We begin with the first computational transition in (2), namely:

(mpk, ct’> kz 1) &, (mpk, 7skjfl)



The only difference between ct‘_1 and ct'_ " is that we have g7" in the former, and

(g192)% in the latter. Unfortunately, we cannot directly invoke the SDpl,_,p1 p, AsSumMp-
tion to carry out this transition, because we need ho to simulate the extra hZA =1 terms
in sk} and the SDS;Nle p, assumption is trivially broken in the prgsence of hs. In-
stead, we crucially rely on the fact that the hf’"l’“ terms appear in sk}_1 as
hAi—l,u . WeTu T
2 )
where A;_q , € {0, A}. In particular, we will prove a statement of the form:
. A
gf e (g192)5 given glagiungLQ;’h’)hw?hQ .hHJT‘7h7’ (3)
where s, w,r, A < Zy. We refer to this as the (s, w)-switching lemma Note the pres-
lwz
ence of the term g4’, which we need in the reductlon to simulate the 92 ! term in
ct’. ", and which means that (h4 - h"*i-1""  h") is not pseudorandom. We will prove

the (s, w)-switching lemma by exploitmg the third p3-subgroup, using a “two slot” dual
system argument:

LHS = gj, hvT - RS, "
P17P1P3 gf . BT hQA BT
~c ) 9
DDH
Re gi-gh hvmong || )
:Dsscpz giq ' Rwr . hQA . th h"
) )
DDH
Ne 97-95, hVT-h§, h" = RHS

We now clarify that there is in fact a catch here, namely that the (s, w)-switching lemma

breaks down if the adversary is also given g7, which could indeed be the case due to
the g; “I term in ct’ L% We will circumvent this issue by modifying scheme (1) in
the next section.

Looking ahead, we note that the same argument (once we fix the catch) would allow

us to handle the third computational transition in (2), namely
(mpk, ct’2 b sk’) ¢ (mpk, ,skj‘-).

Proof - fourth idea. Next, we handle the remaining computational transition in (2),

namely
1, i—1 1 %
(mpk, ct’2 ;ski ) = (mpk, cti b )

By a standard argument based on the Chinese Remainder Theorem, it suffices to prove
the statement for the ps-components of the above expression, and since mpk has no
p2-components, this leaves us with:

(cth="[2], sk [2)) e (cths (2], sk [2]])



where xx[2] denotes the p,-components of xx. That is, we will need to prove a statement
of the form:

o dutzry hd"++w“7>“ Rl
2 ) 192 ) 12

_ dy+H Ao [FWory
{h2 dquZTu, h2 - , hgu }

w,0,v=0(u,o)

~
~c

u,0,0=0(u,o)

i—1,i
-

given ct [2]. Instead, we will sketch a proof that

—u ++zr“ dy+wory Ty
hy , hy , hg
w,0,v=0(u,o)

®)
du++woru
~ —dyt2Ty ) u
e {h2 Bl hqy , o }

w,0,0=0(u,0)

given (s;_1, 84, 8i—12 + sjwyx ). The latter will be useful for simulating the terms in
i—1,
-

ct.."[2], which is given by:

i—1,i Si—1Wgk Si_ si_lersiww; s s
Ct;* z[2}:(92 1392 lagz 792“;39‘25 Z)
We can interpret (5) as the key computational step that “propagates” the entropy from
the states in F;_1 .~ to those in F; ;. We will explain the connection between (5) and
the statement sk}_1 X, ssz we need later on in the overview.
The proof of (5) relies on the following three observations:

1. by the DDHg N assumption w.r.t. w,+ mod pa, we have

WexT e WorT+Si—17Y
( ;r’hQ ’ 7h£) e (hgr Sm?hQ ' ahg) (6)

given (S;-1, Si, Si—1 2+ 8iWgy ); this extends readily to the setting with many triplets
corresponding to the r,,’s. Note that the above triplets (X, Y, Z) satisfies a consis-
tency check X®i—1 . Y5 = z°1#Fsi%ay

2. whenever o # z}, we can again invoke the DDHgN assumption, now w.r.t. w, mod
P, to replace h¥=" with k5" ™ forall u € [Q), o # a*,v = d(u, o).

3. forall z* and ¢ € [{], u € [Q)], we have

u € Fifl,a:* <~ 5(’[14,1';‘) € Fi,r*
This is one of two steps where we crucially relies on the definition of F; .

We note that the analogue of (6) given also g5** in ct!~1![2] is false due to the consis-
tency check e(g5*, h3") = e(g5*, hl3). Again, we will circumvent this issue by modify-
ing scheme (1) in the next section.

Proof - fifth idea. To make use of (5) in the proof, we introduce an additional key
distribution sk;_l’l:

i—1,u

- skjfl’i is the same as sk except we add a hQA term to A~ %= for every u.



Instead of
(mpk, ct’2 kZ )~ (mpk, ct’ M, k;_l’i) o (mpk, ct’2 )

we will show:

(mpk, ctit sk7 Y . (mpk, ctiz?h skéfl’i)

xr*

1— 11 k;—l,i) ~. (mpk Ctl 1,2 Sk})

(mpk, ct; -

That is, we will switch from sklj}_1 to sk?l’i in the presence of ct’ ' instead of ctz Li

and employ the following strategy:

Gi_1 = (mpk, ctiz! sk;_1 )
i i—1,i
~ (mpk, etz [k ')
~c (mpk, [ct' 1 sk?l’i ) similar to st transition in (2) @)
~c (mpk, ct' b sk} ) using (5)
~. (mpk, , skl]} ) = G; identical to 3rd transition in (2)

Here, the last three computational transitions can be handled as before. This leaves
us with the first transition, namely to show that

(mpk, ct’>? skl Y . (mpk,cti:?, sk}_l’i ).

xT*

Roughly, we focus on the ps-components and prove it via the following hybrid argu-
ments:

hdl +WsanT1 hrl

S IE DO ey

Ty
4ot h2 }u,a,v:é(u,a)a
a—dy+WendTu 1,7
{h2 o >h2 }UEF

hd1—+1usmm'1 e
s 109y

2

~ —d,‘++27“u dy+Wory 17w
s | {hy 12 X

2 }u,o,v:é(u,o)v

{ 2 2 }uEF
dy — Q=TT+ Wsan™ 171
h 7h2 )

2
~ —dy+Ai—1,ut2Ty pdytwery T Il B
~c {hQ “ o 3 h’2 ) h2 }u,a,v:5(u,a)7 - Skf [2]
Qo+ LT+ Wend T 7,70,
{h2 A«ezl/ end , h2 }ueF

in the presence of ct’>'[2], which is given by:

Cti71[2] = gséwswn’g ,ggoz ifi=1
o+ = Si—1Wgx Si—1 _Si—12 )
o gt gl if2<i</



The first statistical step simply relies on the change of variable
du — du — Ai—l,u Yu € [Q]
Then we handle the second computational step by arguing
h;Ai—l,l“FwstanTl ~. h;ﬂsmn’rl and h2Ai—1,u+wcnd7’u ~. h;vendru YyeF
This is implied by DDH;IQN assumption W.r.t. Wy, Wend Mmod po With an exception:
— when i = 1, the ciphertext ct®. leaks wyy mod po via g5°**** and DDHZN

assumption W.r.t. wg,y mod ps does not hold. In this case, we use the fact that
A1 = 0 which is implied by 1 ¢ Fp o+

This is the second step where we crucially rely on the definition of F; ;.

1.2  Our construction

Here is our final “alternating” construction, where we introduce two copies of (z, {w, }),
and we alternate between the two copies in the ciphertext depending on the parity of i:

msk = ( ha Oy Wgtarty Wendy 205 215 {wcr,Oa wa,l}UGE ) (8)
mpk = (91,91 91", 97°, 91" {91 " 91" Yoex (g1, b))
91% 917",
ct, = {gii 7 giifﬂz‘ mod 2+8iWa;,i mod 2 }ie[£]7

Se S¢Wend
91,01 ) e(glvh)sza -m
d
h 1+wslar(7'17h7‘17

— —dy, u dy+wes u u
Skf - {h’ taer R Fo T ,h" }bG{O,l},ue[Q],aGZ‘,v:é(u,o)7
{ha_du"rwendru b }uEF

Note the additional ¢ mod 2 subscript in ct,, and the additional quantifier b € {0,1}
in sky. Decryption proceeds essentially as before by computing e(g;", hui) for i =
0,...,¢and finally e(g;, h)**“ and thus m.

Updating auxiliary distributions. The proof for the “alternating” construction still
follows the strategy in (7). The distributions ctl. and ctzﬁil’Z are defined analogously;
we update sk’ [2] and sk;fl’Z [2] for the “alternating” construction as follows:

h(211 +Wstart T1 h;l
9 )
{h*duszqz mod 2Tu hdv++w“’i mod 27w hru} §(u,0)
2 s 102 s 102 u,o,v=0(u,0)>"
—du+2i—1 mod 2Tu 7 dv+We,i—1 mod 2Tu 7y
{h2 ’ h2 ’ h

skj‘- [2] =
2 2 }u,a,vzé(u,o)7
{h‘;* u+wendru7hgu}u€F



(011

Game skr[2] ctz[2]
0 IIdu = d“ﬂzo,wmg [[du = d“ﬂzl,wml [[d“ - Oﬂwcndao -
1 [du — dU:[]ZOawo'.O [du — dv]]“,wa’1 [du — & = O]wypg,0 [S0Wstart];[S0];[S021 |
2.1.0 [du — do +}]Zo’ww [du = du]., [du — o > 0]wyu0 |
2.1.1 [du = o]y, [du — > dvﬂ%wml [du — &+ 0uwgy,0 !
2.1.2 [du — dv}]zo,wﬂ)0 [du — Ao,u — d”ﬂzl,wa,l [du — & = O]wypg,0 S0Wstart, 80, $021 + [S1Wat 1 \[81];[5120
2.1.3 [du = du]., ., o [du = dy+[Aso]], - [du =@ Ofugeo !
214 (R22.0)[du = o], [du = do + Arol,, b, [du — @ Ofwga0 S0, 56, ST + S1Wyt 1, S1, $120
2.2.1 [dw — — d“ﬂm,wa,o [du = dul., ., , [du — a = Oluwgg,0 !
222 [[du - Al,u — dvﬂ [[du — dv}]zl’wml [[du — O]]wend,O Slwwi‘,ly 81,8120 + 5271}1-’2‘,0 77 S221
223 [du > dy +HZO,%,0 [du = do]., [du — @ = 0]wea0 !
2.2.4(=23.0)[du — dv + Az,] [du — dv]]ZI,wa’1 [du — o = O]wyng,0 81We T, 51, 8420 + S2Way 0, 52, 5221
2.3.1 [du = dolly [du — > dv}]%wm1 [du — ¢ = Ofweg,0 1
232 ldu = dv]. 0, [du — Azu = du], o, [du — = Ofwga0 $2Wg3 0, 2, S221 +[S3Wax,1],[53],[S3Wend
233 [du = dollg [du — do + 1]21,%,1 [du — @ = 0Jwyy,0 1
2.3.4 [du — dvﬂm,w”,o [du — dv + Ag,,,]]%wg’1 [du — & = O]wypg,0 52U, 54,8227 + 853Way, 1, 53, 53Wend
3 [du = dollg [du = do]., [dw — — @ Owgy,0d
Fig. 1. Summary of game sequence for / = 3. We only describe the pa-components here. Recall the notational short-hand [d., — dy]:w =

(hy utzru pdvtwru pru) Here, secret key elements in the second and third columns are quantified over u € [Q],0 € X,v = o(u,o) while
those in the fourth column are over u € F'; we omit [0 > d1]0,wy.- For the ciphertext elements, we omitted the terms e(g53, h*) in games 2.3.% and 3.
Throughout, a | means “same as preceding row”.



h(Zil +Wstart 71 , h;l ,

7du+-Ai—l,u +2i mod 27w dy 4+ 1wy i mo " 5
{h2 o 7h2 e, a2r 7hg }u,a,v:&(u,a%

i—1,1
sk’ 2] =
f [} h*duﬂLZz‘flmod 2Ty hd7)+wa\i—1!nod 2Tu pry
{ 2 s 102 s 162 }u,tT,U:é(u,o)v
{h(;_du"l'wend"'u h;u} cF
s u

As an example, we illustrate a complete game sequence for 3-bit input in Fig. 1.

How alternation helps. We briefly describe how the alternating structure circumvents
two of the issues in the earlier proof overview:

i—1,
-

— To switch from ctiil toct given skjfl’i, we will rely on (8;, 2; mod 2)-switching

lemma. The earlier issue with the terms (g, g7**+* ¢ 2) in ct’> ™" simply goes
away because z; mod 2 #+ Zi+1 mod 2, thanks to the alternation. A similar trick works
for switching from ct’. """ to cti ..

— To switch from sk}fl’i to skl]} given ctiil’i, we will rely on the analogue of (6)

with (2; mod 2, Wa* i mod 2) in place of (2,w,+). The extra term in ctiil’i that en-
ables the earlier attack now corresponds to g,'~*"" ™% *, and the attack is no longer

applicable simply because z; mod 2 7 Zi+1 mod 2, thanks again to the alternation.

Handling many secret keys. The proof extends to selective security for many keys,
with fresh {dy, 74 }uejo) per key and the same A used across all the keys. Roughly
speaking, the fresh r, allows us to carry out the computational steps involving the
DDHgN assumption, and in the final step, we rely on the fact that all the secret keys
only leak o + A and not « itself.

1.3 Prime-order groups

To complete the overview, we sketch our final ABE scheme which is secure under the
k-Linear assumption in prime-order bilinear groups.* Here, we rely on the previous
framework of Chen et al. [5,10,4,6] for simulating composite-order groups in prime-
order ones. Let (G1, Ga, G, €) be a bilinear group of prime order p. We start with our
ABE scheme in composite-order groups (8) and carry out the following substitutions:

dy, o —dy, k 2y, Wep — Zy, Wop
o AL . o I
gy, gy s [SEAT Zplh, [STATW o]y h#Te hWesme s [Zyry]a, [WopTul2

where

Ay ZPFDXEand Zy, Wy, < ZEFTXE d, k- 2254 s 1, - ZF

*e.g: k = 1 corresponds to the Symmetric External Diffie-Hellman Assumption (SXDH), and
k = 2 corresponds to the Decisional Linear Assumption (DLIN).
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and [-]1, [-]2 correspond respectively to exponentiations in the prime-order groups G, G».
Note that A has height 2k + 1: we will use k-dimensional random subspaces to simu-
late each of the p; and ps subgroups, and a 1-dimensional subspace to simulate the po
subgroup; these are sufficient to simulate the SDgNlem, SDElNlepg and SDZC)’;’L)mp2
assumptions (we would need to modify the proof of the (s, w)-switching lemma in (4)
to avoid SDS’V3 Nsz assumption). It is sufficient to use Z;, W, of width k since we

only rely on the DDH;IZN , DDH;ISN assumptions.

This yields the following prime-order ABE scheme for DFA:

msk = (k, W, Wena, Zo, Z1, {Wa,o, WU,I}UGE)
mpk = ([A], AT W, AiWeng, A1 Zo, A1Z1, {AT W50, ATWs 1 toex]ts [AIk]T)
[SBATl]lv [SBAlesta:t]l
cty = [ {[s; Al]1, [Si_1A71Zi mod 2 + 5] ATWa, i mod 2]1 Fiel
[spAll1, [s) AT Wend]1, [s; ATK]r - m

[dl + Wstar[rl]Qv [rlba
Skf = {[_du + Zbrub; [d-v + Wa,bru}% [ru]2}b€{0,1},u€[Q],UEE,U:é(u,J)
{[k —-d, + Wendruba [ru]Q}ueF

Decryption proceeds as before by first computing

[siAldy,|r Vi=0,...,¢
via the associativity relations A1Z -r,, = Al - Zr,, (ditto W, Wb, Wena) [7]; and
finally recovers [sj ATk]r and thus m.

1.4 Discussion

The main open problem arising in this work is to obtain an adaptively secure ABE
scheme for DFA under the k-Lin assumption. One natural approach is to combine our
techniques with the piecewise guessing framework in [14,13] to obtain an adaptively
secure ABE scheme for DFA under the k-Lin assumption. The main obstacle here is
that in the intermediate hybrids, we need to know the sets I; ;-, for which there can be
up to 2% possibilities, where (@ is the maximal number of states in a DFA provided by
the adversary in the secret key queries. As such, naively applying the piecewise guess-
ing framework would incur a 2% security loss. Another potential approach is to appeal
to the doubly selective framework in [2,17], which reduces the problem to building a
selectively secure ciphertext-policy ABE for DFA (alternatively, a co-selectively secure
key-policy ABE for DFA) under the k-Lin assumption, in the single-key setting; again,
naively applying the techniques in this work would incur a 29 security loss. To con-
clude, achieving adaptive security under the k-Lin assumption with only a polynomial
loss appears to require new ideas that go beyond the state of the art.

Organization. The next section gives some background knowledge. We prove selective
security of the composite-order scheme in the one-key setting in Section 3. We defer
the prime-order scheme with proof in the many-key setting to the full paper.
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2 Preliminaries

Notation. We denote by s < S the fact that s is picked uniformly at random from a
finite set S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout
this paper, we use 17 as the security parameter. We use lower case boldface to denote
(column) vectors and upper case boldcase to denote matrices. We use ~, to denote two
distributions being statistically indistinguishable, and ~. to denote two distributions
being computationally indistinguishable.

Deterministic Finite Automaton (DFA). A deterministic finite automaton (DFA) f is
defined by (@, X, §, F') where

— @ is the number of states and we take [Q)] as the state space;
2 is the alphabet;

§:[Q] x X — [Q) is a transition function;

- F C [Q] is the set of accept states.

Here the (unique) start state is always state 1. We use f(z) = 1 to denote that an input
x = (x1,...,1) € X¥is accepted by DFA f, which means that there exists a sequence
of states ug, u1,...,up € [Q] satisfying: (1) ug = 1; (2) forall ¢ = 1,..., ¢, we have
0(ui—1,x;) = u;; (3) ug € F. If input x is not accepted by DFA f, we write f(z) = 0.

2.1 Attribute-based encryption for Deterministic Finite Automaton

Syntax. An attribute-based encryption (ABE) scheme for DFA consists of four algo-
rithms (Setup, Enc, KeyGen, Dec):

Setup(1*, X)) — (mpk, msk). The setup algorithm gets as input the security parameter
1* and the alphabet X. It outputs the public parameter mpk and the master key msk.
We assume mpk defines the message space M.

Enc(mpk, z, m) — ct,. The encryption algorithm gets as input mpk, an input z € X*
and a message m € M. It outputs a ciphertext ct,.. Note that x is public given ct,.

KeyGen(mpk, msk, f) — sk;. The key generation algorithm gets as input mpk, msk
and a description of DFA f. It outputs a secret key sk ¢. Note that f is public given
Skf.

Dec(mpk, sk, ct;) — m. The decryption algorithm gets as input sk and ct, such
that f(z) = 1 along with mpk. It outputs a message m.

Correctness. For all input 2 and DFA f with f(z) = 1 and all m € M, we require

(mpk, msk) < Setup(1*, X);
Pr | Dec(mpk,sky,ct,) = m : sky <— KeyGen(mpk, msk, f); | = 1.
ct, + Enc(mpk, z,m)

13



Security definition. For a stateful adversary A, we define the advantage function

(mpk, msk) — SetUP(1A7 E);
X AKeyGen(mpk,mSk,')(mpk)' 1
Ad ABE)\ =P = /;(x;m07ml)<_ -5
va (A):=Pr|f=0 B« {0,1}; cty- < Enc(mpk, 2%, mg); 2

B/ — AKeyGen(mpk,msk,-) (Ctm* )

with the restriction that all queries f that .4 makes to KeyGen(mpk, msk, ) satisfy
f(z*) = 0. An ABE scheme is adaptively secure if for all PPT adversaries A, the
advantage Adv/’"()) is a negligible function in \. The selective security is defined

analogously except that the adversary A selects z* before seeing mpk.

2.2 Composite-order Groups

A generator G takes as input a security parameter 1* and outputs group description
G := (N,Gn,Hn,Gr,e), where N is product of three primes p1, ps, p3 of O(X)
bits, G, Hy and G are cyclic groups of order N and e : Gy X Hy — Grp is
a non-degenerate bilinear map. We require that the group operations in G, Hy and
G as well the bilinear map e are computable in deterministic polynomial time with
respect to A\. We assume that a random generator g (resp. h) of Gy (resp. H ) is always
contained in the description of bilinear groups. For every divisor n of N, we denote by
G, the subgroup of Gy of order n. We use g1, g2, g3 to denote random generators
of subgroups Gy, , Gy, , Gy, respectively and define hq, ho, hs random generators of
subgroups H,,, , Hp,, H,, analogously.

Computational assumptions. We review two static computational assumptions in the
composite-order group, used e.g. in [15,8]. By symmetry, one may permute the indices
for subgroups.

Assumption 1 (SDflf\L,plpz) We say that (p1 — pi1p2)-subgroup decision assumption,

denoted by SDgN,_,plpz, holds if for all PPT adversaries A, the following advantage

function is negligible in \.

GnN

AdvS 7712 (V) = | Pr[A(G, D, Ty) = 1] — Pr[A(G, D, Ty) = 1] |
where D := (917927937 h17 h37 h12) with h12 «— Hp1p2 and

To <= ‘ Gpl

s T1 — ‘Gplpg ‘

Assumption 2 (DDHZIi N) We say that p1-subgroup Diffie-Hellman assumption, denoted

by DDH;{N , holds if for all PPT adversaries A, the following advantage function is
negligible in ).

A () = [ PHA(G, D, Ty) = 1] — PrA(G, D, T3) = 1]

where D := (g1, 92, g3, h1, ha, h3) and

Ty = (. B[], Toe= (Y[, vy, o 2,

14



3 ABE for DFA in Composite-Order Groups

In this section, we present our ABE for DFA in composite-order groups. Here, we focus
on selective security in the one-key setting under static assumptions.

3.1 Scheme
Our ABE for DFA in composite-order groups is described as follows:

- Setup(1*,X) : Run G = (N = pipops, Gn, Hy,Gr,e) < G(1*) and pick
generators g1 < Gp,, h < Hy. Sample o, Weart, Wend; 20, 21, Wo,05 Wo,1 — ZN
for all 0 € Y. Choose a pairwise-independent hash function H. Output

Wstart -, Wend

mpk = (g1,91", 91, 91, 97" { 91", 917" Yoex, e(g1,h)*,H) and
msk = (h7 Q5 Wetarty Wendy 205 215 {wU,Oa wd,l}aeﬂ )

The message space M is the image space of H.

— Enc(mpk,z,m) : Let x = (x1,...,1,) € X* Pick sg,51,...,8¢ + Zy and
output
gfo’ gfowsmn,
_ $; Si—1Zi mod 2+SiWa, i mod 2
cty = {91 » 91 }ie[e]a

1% 97", Hie(gr, h)**) - m
- KeyGen(mpk, msk, f) : Pick d,, 7, + Zy for all u € [Q] and output
hd1FWsanr JhT,

skf = {h*du“l’Zh’l”u’ hd‘u“l’wa,b’r’u,h’l"u }bE{O,l},ue[Q],UEE,U:&(u,a)a

{hafdu+wendru R }uGF
— Dec(mpk, sk, ct;) : Parse ciphertext for input = (z1,...,2¢) as
cty = (Co,1,Co,2,{Ci,1, Ciaticles Cend.t, Cend2, C)
and key for f = (Q, X, 9, F) as
sky = (Ko,1, Ko,2, {Kvus Kvu,or Kuto,u,00 { Kend,us Kuuer )-

If f(x) = 1, compute (ug = 1,u1,...,u) € [Q]“! such that 6(u;_1,7;) = u;
fori € [/] and u, € F, and proceed as follows:

1. Compute By = 6(00,1, K071) . 6(00,2, K072)_1;

2. Foralli=1,...,¢, compute

Bi=e(Ci—11, Kimod 2,us 1) * €(Ci1y Ki mod 2,u; 1.2:) - €(Cizy Kuy )77
3. Compute Beng = €(Cend,1, Kend,uy) - €(Cend2s Kw)*1 and

4
B=By-[[Bi- Bena

i=1
4. Output the message m’ < C - H(B)~ L.

Due to the lack of space, we defer the proof of correctness to the full paper.
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Security. We will prove the following theorem for the one-key setting where the adver-
sary asks for at most one secret key. We explain how to handle many keys in Section 3.9.

Theorem 1 (composite-order ABE for DFA). The ABE scheme for DFA in composite-
order bilinear groups described above is selectively secure (cf. Section 2.1) in the one-
key setting under the following static assumptions: SDS™ SDEN SDEN

p1—=p1p2’ P1—p1p3’ p3—p3p2’
DDH;'N and DDH;!~.

3.2 Game sequence

Let z* € X' denote the selective challenge and let £ = ¢ mod 2. WLOG, we assume
£ > 1. Recall that g5, hy denote random generators for Gy, , Hp, respectively.

Auxiliary distributions. We describe the auxiliary ciphertext and secret key distribu-
tions that we use in the proof of security. Throughout, the distributions are the same as
the original distributions except for the ps-components. For notational simplicity, we
will only write down the pa-components and use xx[2] to denote pz-components of xx.

Ciphertext distributions.

- fori=0,1,...,¢ ctffo is the same as ct,- except we replace g7* with (g192)°;
- fori: =1,2,...,¢: ct;:M is the same as ct,~ except we replace gfi‘l,gfi with
(9192)°, (9192)°"

That is, we have: writing 7 = ¢ mod 2,

g;()wslan’gg()’ g;ozl le — O
. SiW gk
7 _ ReET 8y SiZ1—1 : .
cty- 2] = < 9 LG5 95 ifo<i</?
SEWaF L sy SpWend St po ifi=1¢
9o y 92 5 92 76(.92 ’ 2) ifti=
. S021+S1We* . ;
S0 Wtart S0 1 S1 . S120 if 1 =
92 l“792 392 792 792 lfl—]_
i—lire Si—1Wg* -7 g | Si—1ZrFSiWgr o o g . .
ctye 2] =4 g, LG5 " s TS gs ifl<i<dt
Sp_1W,x 1-7 Sg_127FSpw * 7
-1 Se—1 Tgo Se S¢Wend Se (e f7 —
g2 792 192 792 792 “76(927h2) lfl_g

The A-distributions. Fix aDFA f.Let Fy z« = F;fori =0,...,¢ — 1, we will define
Fipo i ={uc[Q]:0(u,xj ,...,x7) € F}.
Here, we use J to also denote the “extended transition” function, namely
0(u,01,02,...,00) =0(8(6(u,01),02),...,00).

That is, F; .~ is the set of states that are reachable from the accept states by back-
tracking along xy, ..., z7, . In particular, if f(z*) =0,thenl ¢ F{ ,~ (recall that 1 de-

*

notes the start state) and more generally, u; ¢ F; ;- (recall that u; = 6(1,z%, ..., z])).
Finally, we pick A < Zx and define A, ,, to be

A =

s

A ifu € F -
0 otherwise
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Secret key distributions.

- fori=0,1,...,¢ sk? is the same as sky except we add hZA” to hdvtWo,i mod 2Tu
forevery u € [Q],0 € X and v = §(u, 0).
- fori=1,2,...,¢: sk}_l”’ is the same as sk s except we add hQA“L” to h~%utzi mod 27w

for every u € [Q)].
- sk? is the same as sk ¢ except we add hZA’Z'” to h@~dutwenTu for every u € F.

That is, we have: writing 7 = ¢ mod 2,

d .
h21 +Wstart 71 , h£1 ,

. {h_du+ZTru hd'”++w"*”'“ h'r-u}
ski[2] = | 1" + M2 112" fue(Qloe X v=5(u,0)
f h7d11.+zl—r7"u hd'zf+wa.1—77u Bru
{ 2 s 102 J s 169 }uE[Q],an‘,vzé(u,o)v
{hg— 'u"l‘wend"‘u, hgu }ueF
hgl +Wstart 1 , hgl ,
i—1,3 {h_du_‘_-Ai_l’“ T2y hd1)+w0,7’ru hr“}
sk’ 2] = 2 2 Ibg 1 19" sue(QloeZv=6(u,0)>
f hfdu+z177ru h vt Wo 1—7Tu hru
{ 2 > 102 s 109 }uG[Q],UGE,v:E(u,U)7
{h(;—du-‘rwendm , hgu }ueF
h;ll"l‘wswn""l , h£17
—du4zpry 1o FWo bTu 17y
skij[2] = | {2 ™ hy s D5 Yo (0,1} ue[Qloe S v=5(u,0) >
a—du++wenaru -
{hz ahz }ueF

Game sequence. We prove Theorem 1 via a series of games described below and
summarized in Fig 2.

— Go: Identical to the real game.

— G;: Identical to G except that the challenge ciphertext is ctV..

- Ga.,.0,% =1,...,¢: In this game, the challenge ciphertext is ct;?1 and the secret
key is sk}_l. Note that G 1 g is identical to G; except that the secret key is sk? and
we have Gg ;0 = Gg ;1.4 forall 2 <7 < /.

- Go41,4=1,..., ¢ Identical to Gs ; o except that the secret key is skjfl’i.

i—1,i
-

- Ga.2,7=1,..., ¢ Identical to Gy ; 1 except that the challenge ciphertext is ct
- Go,3,4=1,...,¢: Identical to Gy ; o except that the secret key is sk’f.

— Ga.ia,i=1,...,0 Identical to Gy ; 3 except that the challenge ciphertext is ct..
— Gg: Identical to G4 4 4 except that secret key is sk’}.

We use Adv’5*(A) to denote the advantage of adversary A in G,y With parameter 17,

3.3 Useful lemmas

We begin with a few useful lemmas which will be used throughout the proof of security.
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81

p2-components of sk s

Remark

Game Cty+

0 Ctgr sk [du — dv]]z(]’wm0 [d.
1 sk [du = dul, [du
210 ctl. [du = do+[Aou]) - [
200 et skit [du o do], [du

241 ctzt sk ldu — Sd [d

Zr ,Wo, T

242 [eth Mk [dy — Aicr s 4, [
23 et sky|  [du o dy +[Ai ] [du

*
T
T Wo,T

— dv]]Zl’wU,1 [du — &+ 0] w0
— d”]]n’wa,l [du — @+ O0]we,0
— dv]]zl,w,,,l [du — & = 0]weg,0
— dy +]]21777w0l177 [du — & = O]lunguy 0

— dy]
— do]
— dy]

IIdu —a— OﬂwenLhO

Zl—7rWo 1—7

[[du - Ol]wendvo

Zl—71:Wo,1—7

[[du - Ol]wendvo

211 Wo,1—7

Real game

SD

DDH

Go.i0=G2.i-14V2 <5 </

“dy — dy — Aj—1,,” + DDH (+ Lem 1-1)
Lem2

Lem 3 + DDH + Lem 1-2

2.i.4 ki [dumdo+ Al e dd [du — @ = Oup.0 Lem 2 + DDH
3 Ctﬁ* Hdu = dv]]z(hwo,o Hd'“‘ = dvﬂzl,wg,l [[du - o O]]wendso“d’u« = du - A@,u” + DDH
Fig. 2. Game sequence for composite-order ABE for DFA with ¢ = 1,...,¢. Recall that 7 = ¢ mod 2. We only describe the p2-components for keys

with the notational short-hand [dy, — dy ]z 1= (hy 7™ hdvTwre pru) Al secret key elements in the fourth and fifth columns are quantified over
u € [Q],0 € X,v = o(u, o) while those in the sixth column are over u € F’; we omit [0 — d1]o0,wy- In the “Remark” column, “SD” and “DDH” mean
G

Hp

SD, Vs p1po assumption and DDHp,,V assumption, respectively, cf. Section 2.2; all lemmas will be described in Section 3.3; “Lem 1-1” and “Lem 1-2”
indicate the two statements in Lemma 1, respectively. Note that we use Lemma 1 for “Gz.;.0 — Gz.;.1” only when ¢ = 1 which is indicating by brackets.



Basic facts. We first state several facts which we will use in the proof.
Lemma 1. For any x* € X* and f such that f(x*) = 0, we have:

1. AO,l = 0,‘
2. foralli € [{],u € [Q], we have

U € Fi_q g+ <= 0(u,z]) € Fj 4~.

Proof. The first statement follows from the fact 1 ¢ Fj ,-. The second one can be

proved as follows: For direction =, we know 6 (u, },z} ,...,2;) € F forallu €
F;_1,2-. This means §(0(u, z}), 2}, ,...,2;) € F and thus 6(u,x}) € F; .~ by the
definition. The direction <= can be proved analogously. a

Ciphertext switching. We use (s, w)-switching lemma (Lemma 2) when switching
ciphertext distributions in Section 3.6. This extends the statement described in (3) by
considering many tuples of form (h*" - h§', h") each with fresh r. To prove Lemma 2,
we follow hybrid arguments described in (4) except that (i) we use SDIC,’;JLPS P2 instead
of SDE;\’,_,I)2 assumption and (ii) we apply SDICJ’YINle ps assumption once more. Looking
ahead, this allows us to derive a prime-order scheme with better parameters.

Lemma 2 ((s, w)-switching lemma). For all ) € N, we have
aux, gf? { hwiu : hQA:7 hi" }UE[Q]
N auX, gig : ’ { I h2A7 hT }uE[Q]

where aux = (g1, g2, h, h*, g, g¥) and w, s, A, 7, + Zn for all u € Q). Concretely,
the advantage function Advy'"" " (\) is bounded by

g DDH,Y o

2 Advi P (A) 4 Advi 7S (A) 4 Adv 92 ()
with Time(B1), Time(Bz), Time(Bs) ~ Time(B).

Proof. We prove the lemma via the following hybrid arguments:

LHS = aux, g5, { hwrs -hQA:, hu }u
Rc aux, gi ‘7 { hvTe - hg, hT }u using SDziNHmps
/2 aux, g5 - g5, { here . hs -, hre ) using DDH'~
~eaux, g7 -[g5]- g5, { U7 hgt - hg, AT} using SD7Y, .,
~caux, gf - g5 - g5, { BV hQA: ﬁfgz, hu }u using DDHgN
A aux, g5 - g5 %” { h¥Tu . hE, hTu }u = RHS using SDflf\’lep3

We proceed as follows:

GnN

— The first and the last ~. rely on the SDY, |

assumption stating that:
gf Re 919 g; giVCIl g17g27hah2

where s <— Z . All reductions are straight-forward.
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— The second and the fourth ~,. rely on the following statement implied by DDHZ N
assumption w.r.t. w mod ps: for all A € Zy, we have

{hy™ by ueiq) e {5205 Yuerg)

given g1, g2, g3, h1, ha, hs, hY where w, 7, « Zy for all u € [Q]. All reductions
are straight-forward.

— The third ~, relies on the SngNHp sp» ASsumption stating that:
935 e g; : g§ given 91,92, h7 h’23 (9)

where s <— Zy and hoz is a random generator for H,,,,,. The reduction works as
follows: On input (S, g1, g2, h, haz) where either S = g5 or S = g5 - g5, we sample
w, A, 7y, § + Zy forallu € [Q]. First, we can trivially compute aux and challenge
term g§ - S. Second, we simulate h3' - b5 with h3} by the fact: h3' - h3' ~, hiy for
all ha, hs, hos when A < Zy; this is sufficient for simulating all remaining terms.

Combining all five steps proves the lemma. a

Remark 1. Observe that the distributions in the lemma are easily distinguishable if the
view also contains g5* or (g1g2)*" (on the LHS and RHS respectively).

Key switching. We use (z, w)-transition lemma (Lemma 3) for switching key distri-
butions (see Section 3.7), which captures the core argument in the statement (5) in the
Introduction. Due to the lack of space, we defer the detailed proof to the full paper.

Lemma 3 ((z, w)-transition lemma). For all Q € N, s;_1,8; # 0 and A € Zy, we
have

-JFZFu Wy 7T
hQ ) h2 7h2 }uE[Q]
= -si, A Hw, =
h3™, hy— s hy' Yuelq)
where aux = (g1, go, h1, ha, hs, h3, hY) and z,w, T, < Zy for all u € [Q]. Con-

H
cretely, the advantage function Advg*"*(\) is bounded by 2 - Advg?H”QN (\) with
Time(B1) ~ Time(B).

aux, s;—1z + s;w, {

R2c aux, $;—12 + s;w, {

3.4 Initialization: Go — G1, Gy — Ga.1.0

The first two transitions are straight-forward; we describe the following two lemmas
with the first proof omitted.

Lemma 4 (Gg ~. Gy). There exists B with Time(B) ~ Time(.A) such that

AV () — Advl (V)] < AdvSF ez (3
A A = B :

Lemma 5 (G =, Ga 1.0). There exists B with Time(B) =~ Time(.A) such that

Adv (3) — AdvEO(N)] < 213] - Adva e ().
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Proof. This roughly means that

(mpk, ct., sky) ~. (mpk, ctl., )

By the Chinese Reminder Theorem, it suffices to focus on the ps-components; con-
cretely, we prove that

d1+Wstant 1 T1
h2 start , h2 ,

—dy+2z07 dy+weor T
{hg SO By o FuelQloe S o=8(u,0)

—dy+z17y vt Wo 1Tu p Ty,
{h2 “ s hy J s ha }’U«E[QLUEE,U:(S(U,U)’
a—dy +WendTy Tu
{h2 ™ vhz }ueF

hgl +Wstant 71 , hgl ,

—d, . dv+-A0,v W, 07w .
{h2 +2zo7 ,h2 >h£ }uE[Q],UEE,U:é(u,o’)? — Sk(])c [2]

—dy+z17ry vt Wo1Tu 77y,
{h2 ! 7h2 ’h2 }uG[Q],o’GE,v:&(u,a)7
a—dy+WendTu 3,7
{hQ ¢ vh2u }UGF

sky[2] =

given g1, h1, hs and

cty-[2] 1= (957, 65°, 95" ).
Here terms g1, b1, hs allow us to simulate the p;- and ps-components of ctg* and sk
(or sk?) as well as mpk, which is sufficient for proving the lemma. Furthermore, this

statement immediately follows from the statement below which are implied by DDHZN
assumption W.r.t. w, o mod pp with o € X: forall o € X and A € Zy, we have

Tu We,0Tu ~ T A4 we 07w
{hos by ™" Yueiq) e {ho", hy 7 Tuelq)

given g1, ga, b1, ha, hs and hy ”° where w, o, 7, < Zx for u € [Q]. Here we crucially
rely on the fact the ciphertext ct. [2] does not leak w, o mod ps with o € X. ad

3.5 Switching secret keys I: G2 ; 0 — G2.;.1
In this section, we prove the following lemma.

Lemma 6 (G ;0 ~. Go,1). Foralli = 1,...,¢, there exists B with Time(B) =~
Time(A) such that

DDHEN

IAdVEO(A) — AdvEH (V)] < 2(18] +3) - Advg 72 (V).
Proof organization. We need two auxiliary games Gs ; 1., and Go ;.15 and prove that:

Lemma 7 Lemma 8 Lemma 9
G2io ~s G2i1a e Goirp ~c G2y

where the py-components of the secret key in these games are recalled/defined as below
hgl +Wtan 1 , hgl ,

—dy+2zr7y 1ot Wo rTu 77y
{h2 ’ h’2 ) h2 }uE[Q],UEE,v:cS(u,U)a

Goio:
2001 | g o A s
{hy by 5 YueQloe s v=6(u.0);

a—dy +WengT Tu
{h2 u end u7h2 }uEF

= ski’c_1 2]
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hgl —+wstanT1 ’ h;l ’
P L LR P LR
2

5 109 ) hgu }ME[Q],UEE,v:(s(u,o)a

Goita {h,du++zl,7ru

dp+Wo 1—7Tu 774
2 ’ h2 ' ’ h2 }uG[Q],UGZ,vzﬁ(u,a)7

{ha —dy ++wend Tu

Tu
2 7h2 }UEF
dy — DT T+ Wstan ™ 371
hqy ,hy',

—dy+Ai—1,utzer dy—Ai_1,0F+Wo,rTu 77

Gy oo [ LT Ry T B b Qo€ B v=s(uo)
2.1.1.b - h—du—&-Ai,l,u—&-zl,Tru hdu"rwa.l—rTu Bl

{ 2 s g s g }ue[

dA N Ql,ceX v=56(u,0)»
a—dy+Ai_1 utWendTu } 7y
{hy ' "y buer

hg1+wstan7"1 h72‘1
) )
—dy+Ai 1wt 2Ty Ao —DieT o Wo 7 Tu 37y
{hQ A ,h2 7h2 }uE[Q],UEE,vzé(uJ); o skifl,i[Q}
—du+Li=T 21— 7Tu Aot Wo 17Ty 77y -
{h‘2 ' 7h‘2 7h2 }uE[Q],UEE,vzé(u,U)v J

a—dy+LDeeT G+ WendTu 3.7y
{n h
2 » 102

Goig:

}uEF

and the ps-components of ciphertext are recalled as follows

ERSTND E AT Y ifi=1
har [ ] - Sim1Wal ya-1 sy sii12r <i<y
9o ;9o ;9o if 2 <1<

The p;- and ps-components of secret key and ciphertext as well as mpk remain un-
changed among all the four games.

Lemmas and Proofs. We describe and prove the following lemmas. Combining them
together proves Lemma 6.

Lemma 7 (Go ;o ~; Goj1.4) Foralli =1,...,¢ we have

AdviO(N) = Advy (0.
Proof. This immediately follows from the change of variables: d,, — d,, —A;_1 ,, mod
po forall u € [Q)]. O

Lemma 8 (Go ;1.4 ~c Gai1p). Foralli = 1,... ¢, there exists B with Time(B) =~
Time(A) such that

. . H
AV () = AdVEFP O] < 2 Adv ().

Proof. We prove the lemma via a case analysis for i:

- Case ¢ = 1: The two games are exactly identical due to the fact that Ay ; = 0, see
Lemma 1.

— Case 7 > 1: The lemma follows from the statement below implied by DDH;;I2 o
assumption w.r.t. Wy mod po: for all A € Zy, we have

{h;’ h;)smnrl } ~, {h;’ thAan,mm }

given g1, go, h1, ho, hs and hy™™ where wse, r1 ¢ Zy. Here we crucially rely on
the fact the ciphertext ct’>[2] with i > 1 does not leak wyi mod py. O
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Lemma9 (Go ;1 ~c Goj1). Foralli = 1,... 4, there exists B with Time(B) ~
Time(A) such that
2.i.1.b 2.1 DDH, N
AV P (A) — AdvE T (V)] < 23] +2) - Advp 72 (V).

Proof. This follows from statements below implied by DDHgN assumption W.r.t We. -,
21— 7, Wend Mod po With o € X

— Forall A € Zy, we have

T Z1—7Ty Wend T ~ Tu Atz1_ 77y A+ Wend T
{h2 ) h2 ) hz ¢ }ue[Q] ~c {h2 ’ h2 ) hz ¢ }ue[Q]

given g1, g2, h1, ha, hg and hy' =", hiy™ where 21, Wend, T < Zy for all u € [Q)].

— Forall o € Y and A € Zy, we have

Tu Wo, Ty " Tu —A4we, 7Ty
{ hy", hy }ue[Q] ~e {hy', hy }ue[Q]

Wo, T

given g1, g2, h1, he, hs and hy *7 where w, -, 7y, < Zy for u € [Q)].
Here we use the fact that cti;1 [2] with 1 <4 < £does not leak w, -, 21—+, Wend MOd P2
with o € X, O
3.6 Switching ciphertexts: G5 ;.1 — G2.4.2,G2.5.3 — G2.;.4

In this section, we prove the following two lemmas for Go ;1 — Go ;.2 and Go ;.3 —
Go.;.4, respectively. The proofs are similar, we give the details for the first proof and
only sketch the differences in the second proof.

Lemma 10 (Gy;1 =~ Gao;2). For i = 1,...,4, there exists B with Time(B) =
Time(A) such that

[AdVEE (N) = AdvE2(N)] < Adv ™R (N).

Proof. This roughly means that

(mpk, [cti=" | sk~ . (mpk, ety 7], sk ™).

Recall that 7 = i mod 2. We prove the lemma using (s;, z;)-switching lemma (see
Lemma 2). On input )
aux, Si? {h’ZTFu : h2A7 hfu }uE[Q]

with aux = (g1, g2, h, h*", 957, ¢57) and
Si=gi' or Si=gi' g3
where 2., s;, A, 7, < Zy for all u € [Q)], the reduction proceeds as follows:

(Simulating mpk) We sample o, Wsgart, Wend, 21— Wo,rs Wo,1—7 < Ly forallo € X
then we can trivially simulate mpk with terms g1, h, g;~ given out in aux.
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(Simulating key for /) We want to simulate sk}_l’i in the form

d
h 1+ Wstart 71 hT17

) ) r 7:1
sk}—lﬂ = " v L buelQloe s v=5(u,0)
777717777;17771 o l—7Tu_ hTu
{h A y hovtwe,1—rT y h" }uG[Q],aEZ,v:(s(u,a)»

{ha—du-i-wendm JhTe }ueF

On input f, we build F;_; ,« C [Q] from f, then sample d,, < Zy for all u € [Q] and
Ty < Zy forallu ¢ F;_; ,~. We implicitly set

A=A and r,=7, forall u € F;_j ;.

and simulate skifl’i as follows:

— By the definition of {A;_4 , },, and our implicit setting, we can rewrite all terms in
the dashed boxes as:

hru7h7du+z1'7‘u ) if u ¢ Fi_Lm*
hr‘ujhfdlﬁzﬁu . h2A ifu€ Fy_q .-

Terms for u ¢ F;_1 .~ can be computed honestly from {r,,dy}.¢ Fy_y . WE
sampled and h, h*" given in aux; terms for u € F;_; ;« can be computed from
{du}uer,_, .. we sampled and {n* "« . h§, h™}uep, , .. given outin the input.

— All remaining terms can be trivially s1mu1ated using {ru}u¢ Fi_y,. and {h™ =
W Yuer, . as well as o, {du}ue() Wstars 21—+ {Wo,r, W11 foe 5, Wend WE
sampled.

(Simulating ciphertext for ™) We want to generate a ciphertext for * which is dis-

’Ll.

tributed as either ct’. " or ct,.

e .
’ 92 )| 92 e =

9o 79 .9,

Si—1Wg* 1 Sq— IZT+ Sq 'LUq;* —
i—1’ Si—1 9 SiZ1—7 . .
9o y 9o » 9o 7@7 92 fl<i</?

Se—1Wgx 1.7 s Sp—_12ptH|sew, ff o
-1 -1 M ‘e(g§z7ho¢)‘ ifi=2¢

S¢Wend

92 92 192 195" )| 95

)

On input (mg, m1) € M x M, we sample 3 < {0,1} and s; < Zy for all j # 4, and
output the challenge ciphertext
(...,(gng)ngl'S 517520 mego,...) ifi=1
* Si41Wg* 17

(...,(glgz)s’;lzT‘SmlTSZ,SZIT‘ R ,) ifl<i<?

( ...,(g1g2)‘9[*122~5’€ ,S@,Sgue"d,H( (Sg,ha)) -mg) ifi =1/
Here we use the fact that the ciphertext contains no term with s;z, in the exponent
(cf. Remark 1). All omitted terms can be honestly computed from aux and exponents

{s;}jsi sampled by ourselves. Clearly, when S; = gl’, the output is identical to ctx* ;
when S; = g7* - g5', the output is identical to th L% This completes the proof. a
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Lemma 11 (Go ;3 =, Gao;4). Fori = 1,...,4, there exists By, Bs with Time(By),
Time(By) ~ Time(A) such that

AVE3(A) — AdvE(0)] < AdvEITOR(3) 4 4(1 5] — 1) - AdvEPRE" (o
[AdV"(A) = Adv™ ()] < Advis, 7 (A) +4(]2] = 1) - Advg, ™ ().

Proof. This roughly means that

(mpk, [cti- 1], skip) =, (mpk, [cti. |, ski)

We prove the lemma using (s;_1, Wy 7 )-transition lemma (see Lemma 2). Recall that
7 = ¢ mod 2. The reduction is analogous to that for Lemma 10: On input

aux, S;_1, {hwzf"'r_“ . hZA, BT }uG[Q]

Wk

« o Wer o
with aux = (gl,gg,h,hw“’i”,gl g ) and

1 Si—1

Sic1=g7"" or Sic1=97"" g5

where wyr 7,81, A, Ty 4 Zy for all u € [Q], we sample @, Wyarts Wends 20, 21,
Wo—7 — Zy forall o € X, wy, < Zy forall o # x} and s; < Zy for all
j # i — 1; then we can simulate mpk and the challenge ciphertext analogously. The
main difference locates at the simulation of secret key.

(Simulating key for /) We want to simulate skz} in the form:

d1 +wsan ™ T
hl slan17h 17

P A )
skf {hdv+wo,rru hy " }ue[Q],a;éz;,u:é(u,a)
{h_du+zl—77"u7hdv"l‘wa,lfw"'u’ hTu }ue[Q]756271}:5(%0)7

{ha_du“!‘U)endTu A Yuer

On input f, we sample d,, < Zy for all u € [Q] and implicitly set A = A as before
but we set {r, },¢[q] as follows:

- We build F; ,« C [Q)], sample r,, <— Zy for all u such that 6(u, z}) ¢ F; »~ and
implicitly set r,, = 7, for all u such that 6(u, z}) € Fj; z=.

Then we simulate Skj{' as follows:

— By the definition of {A; , }, and our implicit setting, we can rewrite all terms in
the dashed box as below

{hm,hda(u,zf)+w1;,m if (u, ;) ¢ Fion

7 o.d x . T A .
h”,h 6(u,zi)+’ll)zl,-r7u hQA if (S(U,l‘f) c Fi,x*

and simulate them from either {7y} 5(u,zx)¢F, . OF (R T p BT Yo(uwt)eFr
with the help of {d, },c|q) and aux. This is similar to the simulation of terms in the
dashed boxes in the proof for Lemma 10.
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— The terms in the gray box are computationally simulated in the following form

A
{RErt e, R2TY 1ot =)

using {dy }ue(q)s {Wo,r }o2r We sampled and {h"™ },¢[) We have simulated. This
follows from DDH;‘;N assumption w.r.t w, » mod pp with o # x; which implies
that: for all o # =} and A € Zy, we have

T wa T A-‘rwa Ty
{h2 a }uE[Q] ~c {h }uE[Q

given g1, g2, h1, ha, hs and hy>” where w, ,, 7, + Zy for all u € [Q]. Here we

1, i .
use the fact that both ct2 * and ct’. does not leak We,r mod pg With o # 7.

— All remaining terms can be easily handled as in the proof of Lemma 10.

This completes the proof. d

3.7 Switching key II: G5 ; 2 — G2 ;.3
In this section we prove the following lemma.

Lemma 12 (Go ;2 =~ Ga.;3). Foralli =1,... ¢, there exists By, Bs with Time(B1),
Time(Bs) ~ Time(A) such that
. . H
AdVE2(A) — AdVE3 ()] < AdVENS (V) 4 2(1] — 1) - Advg, 7 (A).
Proof. Recall 7 = i mod 2. By the Chinese Reminder Theorem, it suffices to focus on
the p2-components; concretely we prove

hgler’lmrl th
R ETEm O T
{ 2 s 109 }ue Q]
hd”er" 7Tu
dut {2 N }uGQ]a;ﬁz 2w=08(u,0)
- 21—7T v FWo1—rTu 77y
{h “ h h }uE[Q lioeX v=6(u,0)>
}ueF
hgl+ws!anrl h£1
b b
(hydutaere, hdé(u‘m:ﬁw‘”?”“
2

Tu
2 s hs Yuelq)s
. {hdv"l'wa T

sk 2] =

{hoé dy +wendru h?”

dut dot }ue [Ql,o#zs ,v=06(u,0)>
- 7Ty Wo,1—7Tu "
{h o h " hr }uE[Q ceX, v=0(u,0)>

}ueF

a—dy,+we Tu Ty
{h2 end ,h

hdl +Wstart 71 th

{h_d ot 2r T hda(u Js*)+A1 5(u, L*)'HUJE T

~ +wo,7m
€ fhy'" buelQloat v=8(u,0) 5
—dy+z1-77 dy+Wo,1—7Tu 7.7y
{h2 “ T hy s hg }ue[Q],aez,vzé(um))

{h?*du‘f’wcnd"‘u , hgu }UEF

hgu }ue[Q]a '
— ski[2]
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given g1, h1, hsg and

S[)ZlJrSl’sz 1

Sow, S0 S1 8120 : .
92 stan’ 92 792 792 592 le = 1
i—1,i o Si—1Wgk  1—7 g | Si—1Z7FSiWgr o o g . .
Ctz* [2] - 92 792 392 ’ a92lvg2 lf]- <1< £
Se—1Wyx 17 Se—127tSeWax 7
—1° Sp—1 0 Se 8¢ Wend Se @ o
go y 92 199 199 595 ° ,6(92,h2) ifi=1¢
) y
Here terms g, hy, hs allow us to simulate the p;- and p3-components of ct,.. " and

skéc_l’i (or sk}) as well as mpk, which is sufficient for proving the lemma. We then
proceed as follows:

— The first =, relies on (2, Wy 77)-transiti0n lemma (see Lemma 3). On input

+w,,*

A ~ A o ~
Ag+z,Ty 1T Wer rTu o7y,
aux, s; 127 + 8iWer r, {h5° By A o)

. Wy o _
with aux = (g1, g2, b1, ho, h3, si—1,8i,h57, hy *'") Where 2., wyr -, Ty  Zn
for all u € [@Q] and

(Ao, Ay) € {(5:4,0),(0,5,1A)}  with A« Zy,
we simulate ps-components of the ciphertext and keys as follows:

(Simulating ciphertext) We sample o, Wyart, Wend, 21—+, Wo,1—7 < Zp for all
o € ¥, and w, .  Zy for o # x}. It is straight-forward to simulate ct’>""*[2]
from g2, 8;_1,Si,Si_12+ + 8iWg - This relies on the fact that neither z, mod po
nor wy+ » mod py appear elsewhere in et b2).
(Simulating key for f) We want to generate a challenge key which is either
sk;_l"z[Q] on the LHS or the key on the RHS depending on (Ag, A;). On input
f, we build F;_1 4« C [Q] from f and sample d,, < Zy for all u € [@Q] and
Ty < Zn forall u ¢ F;_; ,~. We implicitly set
A for the LHS
= {S orthe and r, =7, forall u € F;_; ;-

si_lA_ for the RHS

and proceed as follows:
o We rewrite all terms in the second row of keys on the two sides in terms of
Si—1, 5S4, A, Ty

_du++Z1—Fu hgé(u,z;‘)+wmj,77‘u
)

T _
Tu 3
LHS _ h2 R h21 ifu € Fifl"z*
row2 = —dytz.T A5 (u,o*) TWa +Tu o,
hyduterra e T e By e
s dutzetu hd5<u,1;>++wzf, T T i S ) € B
RHS — 2 y Mg , hot if 8(u, x}) € Fj o
row 2

5(u,z:‘)+wz:,7‘ru

d
hy ®etEre b, : Ry if 6(u, %) ¢ Fj g
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and generate the second row of the challenge key as

_du++szu hdé(u,m:)++w‘t:,7”:u

Tu 3
hy » iy yhot ifu € Fy_q o=
_ S(u,x*) T We* Tu .
hy du+zTTu, hey i i , h;u ifu ¢ Fi 14

where, with {dy},c[q), all terms for u € Fj_; ,+ can be built from terms

Aotz 7y Al_‘_wwfv’j“ Fu . . . .
{h3 ,ho ,hy" buer,_, .. provided in the input; all terms for
W .
u ¢ F;_1 .+ can be built from hy, h3™, hy, " in aux and {ry}ugr, , . we
sampled.

o We can trivially generate all remaining terms in the challenge key which are
identical to sk}_l’l[Q] (and also the key on the RHS) using {ry}u¢r, , . and
{hg“ = h;“ }uEFi,LI* as well as &, Wstarts Z1—7> {wa,T}a;ﬁz:‘, {wa,l—T}GEZ’
Wend-
Observe that, B
o when (4¢, 41) = (s:4,0), the output distribution is identical to the LHS;
o when (Ag, A1) = (0,s;-14), the output distribution is identical to the RHS;
here we rely on the fact that u € F;_; ,« <= §(u,z}) € F; .~ forallu € [Q],
see Lemma 1.
This is sufficient for the proof of the first ~,.
— The second = follows from DDH}I;(2 N assumption W.r.t. w, » mod ps with o # z7,
which implies that: for all o # 2z} and A € Zy, we have
ru 3 Wo,rTu ~ Ty 71 A+FWo Ty
Ly }ue[QJ ~e (" hy }uE[Q]
given g1, go, h1, ho, hs and h;U“‘T where W, 7y, < Zy for all u € [Q)]. This relies
on the fact that ct’~"*[2] does not leak w, » mod py with o # .

T*

Combining the two steps proves the lemma. a

3.8 Finalize: G344 — G3
We first describe the following lemma. The proof is analogous to the proof for Lemma 6

and we defer more details to the full paper due to the lack of space.

Lemma 13 (Gg ¢4 = G3). There exists B with Time(B) ~ Time(.A) such that

H
IAdVEE4(A) — Advi (A)] < 2(15] +3) - Advp 72 ().

Finally we prove the last lemma evaluating adversary’s advantage in Gs. Combining
this lemma with Lemma 2,3 and Lemma 4,5,6,10,11,12,13 proves Theorem 1.

Lemma 14 (Advantage in G3). For all A, we have Advi‘(/\) ~ 0.

Proof. The definition of {A; ,}uecr and Fy - = F imply that sk} only leak a +
A mod po. This means that secret keys perfectly hide o mod ps. Therefore, the term
e(g2, h)**® in ctf. is independently and uniformly distributed and message mg is
statistically hidden by H(e(g1, h)**®e(g2, h)***) by the leftover hash lemma. Hence,
Advi(\) ~ 0. 0
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3.9 Towards Many-key Setting

Our proof for the one-key setting can be extended to the many-key setting in a straight-
forward way. Without loss of generality, we assume that all key queries fi, ..., f; share
the same state space [Q] and alphabet X, and extend notations 4, F' and Fj gy dy, T,
A; ,, for f,. with an additional subscript x. Then we sketch the changes that are needed
to handle the many-key setting:

Game sequence. We still employ the game sequence described in Section 3.2 except
— secret keys in Ga ;.0, G2.5.1, Go2.5.3 and Gg are sk?:l, sk}zl’i, skifﬁ and sk}ﬁ, respec-

tively, for all k € [q];
— in each game, {4; .« fue|q) for all € [g] are defined using the same A « Zy.

Useful lemmas. All lemmas in Section 3.3 can be trivially extended to the many-key
setting; in fact, the (s, w)-switching lemma (Lemma 2) and (z, w)-transition lemma
(Lemma 3) hold when we replace index v € [Q] with (u, k) € [Q] X [q]-

Lemmas and Proofs. Lemma 4,5,6,10,11,12,13,14 all hold in the many-key setting:

The proof for Lemma 4 can be trivially extended to the many-key setting.
The proofs for Lemma 5,6,13 can work in the many-key setting due to the fact that
o {du,x }ue|q) are fresh for each s € [q]; this ensures that all changes of variables
still hold with multiple keys;
o {Tu,x Jue[q) are fresh for each x € [g]; this ensures that all DDH-based argu-
ments still hold with multiple keys.
The proofs for Lemma 10,11,12 can be extended using the many-key version of
(s, w)-switching lemma or (z, w)-transition lemma; here we also need the fact that
{rux buejq) are fresh for each € [q].
To prove Lemma 14 with many keys, we argue that all secret keys sk}1 Yoo 7sk}q
only leak o« + A mod po.
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