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Abstract. We present the first attribute-based encryption (ABE) scheme for de-
terministic finite automaton (DFA) based on static assumptions in bilinear groups;
this resolves an open problem posed by Waters (CRYPTO 2012). Our main con-
struction achieves selective security against unbounded collusions under the stan-
dard k-linear assumption in prime-order bilinear groups, whereas previous con-
structions all rely on q-type assumptions.

1 Introduction

Attribute-based encryption (ABE) [19,11] is a generalization of public-key encryption
to support fine-grained access control for encrypted data. Here, ciphertexts are associ-
ated with a description value x and keys with a policy f , and decryption is possible
when f(x) = 1. In many prior ABE schemes, the policy f is specified using a boolean
formula, but there are many applications where we want the policy f to operate over ar-
bitrary sized input data. For example, we could imagine a network logging application
where x represents an arbitrary number of events logged. Another example is where x
is a database of patient data that includes disease history paired with gene sequences
where the number of participants is not apriori bounded or known.

Following the work of Waters in 2012 [21], we consider ABE for regular languages,
where the policies f are specified using deterministic finite automata (DFA). This al-
lows us to capture applications such as tax returns and virus scanners. In spite of the
substantial progress made in the design and analysis of ABE schemes over the past
decade, all known constructions of ABE for DFA rely on q-type assumptions in bilin-
ear groups [21,2,3,1], where the complexity of the assumption grows with the length of
the string x. In this work, we address the following open problem posed in the original
work of Waters [21]:

Can we build an ABE for DFA based on static assumptions in bilin-
ear groups, notably the k-linear assumption in prime-order bilinear
groups?
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From both a practical and theoretical stand-point, we would like to base cryptography
on weaker and better understood assumptions, as is the case with the k-linear assump-
tion. This is also an intriguing problem from a conceptual stand-point because prior ap-
proaches exploit q-type assumptions in a fairly inherent manner. Waters’ ABE for DFA
was based on an “embedding paradigm” where the arbitrary-length challenge string was
programmed into the public parameters, and embedding an arbitrary length string into
fixed-size parameters seems to require a q-type assumption. The dual system encryption
methodology developed in the context of ABE for boolean formula [20,15,16,18,6] al-
lows us to overcome the latter limitation, provided the ciphertext or key size is allowed
to grow with the size of the formula; this does not work in the DFA setting, since for-
mula size roughly corresponds to ` ·Q, where ` is the length of the string x and Q is the
number of states in the DFA. Indeed, a key challenge that distinguishes ABE for DFA
from ABE for boolean formula is that both the size of public parameters and the secret
keys are independent of `, which means that we cannot afford to unroll and embed the
entire DFA computation path into the secret key.

This work. We present the first ABE for DFA based on static assumptions in bilin-
ear groups, thereby providing an affirmative answer to the above open problem. Our
main construction achieves selective security against unbounded collusions under the
standard k-linear assumption in prime-order bilinear groups. Our proof strategy departs
significantly from prior ABEs for DFA in that we design a series of hybrids that traces
through the computation. Our proof of security carefully combines a “nested, two-slot”
dual system argument [20,15,16,18,12,6] along with a novel combinatorial mechanism
for propagating entropy along the computation path of a DFA.

We note that our high-level approach of tracing the computation path across hybrids
is similar to that used in the recent ABE for boolean formula from static assumptions
in [14], but we have to deal with the afore-mentioned challenge specific to DFAs. In
a bit more detail, in our ABE for DFA, the secret keys contain random shares “in the
exponent” corresponding to each state of the DFA; this is analogous to ABE for boolean
formula where the random shares correspond to wires in a formula. Roughly speaking,
in the i’th hybrid, we modify the distribution of the share corresponding to the state
ui reached upon reading the first i bits of the input string. In a DFA, a state could be
reached many times throughout the DFA computation on a fixed input, which means
that we need to modify the share corresponding to ui (along with the challenge cipher-
text) in such a way that it does not affect the functionality of the DFA. This difficulty
does not arise in ABE for boolean formula, because each wire is only used once during
the computation.

1.1 Technical overview – warm-up

We present an overview of our ABE scheme for DFAs. Recall that a DFA is specified by
a tuple (Q,Σ, δ, F ) where the state space is [Q] := {1, 2, . . . , Q}; 1 is the unique start
state; F ⊆ [Q] is the set of accept states, and δ : [Q] × Σ → [Q] is the state transition
function.
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Warm-up construction. The starting point of our construction is Waters’ ABE scheme
for DFA [21] over asymmetric composite-order bilinear groups (GN , HN , GT , e) whose
order N is the product of three primes p1, p2, p3. (The original scheme is instantiated
over prime-order bilinear groups, but relies on q-type assumptions.) Let gi, hi denote
generators of order pi in GN and HN , for i = 1, 2, 3, and let h be a generator for HN .
The scheme is as follows:

msk =
(
h, α,wstart, wend, z, {wσ}σ∈Σ

)
(1)

mpk =
(
g1, g

wstart
1 , gwend

1 , gz1 , {g
wσ
1 }σ∈Σ , e(g1, h)α

)
ctx =

 gs01 , g
s0wstart
1 ,

{gsi1 , g
si−1z+siwxi
1 }i∈[`],

gs`1 , g
s`wend
1 , e(g1, h)s`α ·m


skf =

 hd1+wstartr1 , hr1 ,

{h−du+zru , hdv+wσru , hru}u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru , hru}u∈F


Decryption proceeds as follows:

(i) compute e(gs01 , h
d1);

(ii) for i = 1, . . . , `, compute e(gsi1 , h
dui ), where ui denotes the state reached upon

reading x1, . . . , xi.
(iii) compute e(g1, h)s`α and thus m.

To go from e(g
si−1

1 , hdui−1 ) to e(gsi1 , h
dui ) in step (ii), we rely on the identity: for all

u ∈ [Q], σ ∈ Σ,

sidδ(u,σ)− si−1du = si · (dδ(u,σ) +wσru) + si−1 · (−du + zru)− (si−1z+ siwσ) · ru

We note that our scheme differs from Waters’ scheme in that we reuse ru for all the
transitions starting from u instead of a fresh ru,σ for each (u, σ). This modification
yields a smaller secret key (roughly Q · |Σ|+ 2Q vs 3Q · |Σ| group elements), and also
simplifies the notation.

Proof strategy. At a very high level, the proof follows Waters’ dual system encryption
methodology [20,15]. This means that throughout the proof, we modify the ciphertext
and key distributions but not mpk, and only in the p2-subgroup generated by g2, h2

(which we also refer to as the p2-components). In fact, we will rely on the “nested two-
slot” variant of dual system encryption introduced in [16,18,12,6] for settings where the
ciphertext uses independent randomness s0, s1, . . ., as is the case for our DFA scheme.
Here, “nested” refers to the fact that the security proof interweaves a computational
argument over ciphertexts with another over secret keys, whereas “two-slot” refers to
the use of the p3-subgroup to carry out this delicate interweaving. In contrast, the ba-
sic dual system encryption framework [2,22] applies a single computational argument
over ciphertexts at the beginning and can be instantiated in asymmetric composite-order
groups whose order is the product of two primes.

3



Proof – first idea. For this proof overview, we will focus on the selective setting
where the adversary first picks a challenge x∗ before seeing mpk and making secret
key queries. In addition, we consider a further simplification where the adversary only
makes a single key query for some DFA f where f(x∗) = 0 (i.e. rejecting). Let u0 = 1
denote the start state, and let u1, . . . , u` denote the state in f reached upon reading
x∗1, . . . , x

∗
` . In particular, u` /∈ F .

Recall that decryption computes e(gsi1 , h
dui ) for each i = 0, . . . , `. A natural proof

strategy would be design a series of games G0, . . . ,G` such that in Gi, the quantity
e(gsi1 , h

du) is pseudorandom for each u 6= ui. In particular, since u` /∈ F , this means
that e(gs`1 , h

du) is pseudorandom for all u ∈ F , which should imply that e(gs`1 , h
α) is

pseudorandom.
Towards carrying out this strategy, we pick ∆← ZN and define:

∆i,u :=

{
∆ if u 6= ui

0 otherwise

In Gi, we switch the ciphertext-key distributions from (ctx∗ , skf ) to (ctix∗ , sk
i
f ) where

– ctix∗ is the same as ctx∗ except we replace gsi1 with (g1g2)si ;
– skif is the same as skf except we add a h∆i,v2 term to hdv+wσru for every u, σ.

Roughly speaking, this means that in Gi, the quantity e(gsi1 , h
du) would be masked by

e(gsi2 , h
∆i,u
2 ) = e(gsi2 , h

∆
2 ) whenever u 6= ui. In particular, the quantity e(gs`1 , h

α)
would be masked by e(gs`2 , h

∆
2 ).

Proof – second idea. As it turns out, we cannot hope to show that the quantity e(gsi1 , h
du)

is pseudorandom for each u 6= ui. Consider a DFA with Q = 3, Σ = {0} and
δ(1, 0) = 2, δ(3, 0) = 2. Then, given an encryption of x = 0, an adversary can compute

e(gs01 , h
d3)

by first computing e(gs11 , h
d2) using the transition 1

0→ 2, and then “back-tracking”
along the transition 3

0→ 2; these are so-called “back-tracking attacks” in [21].
Instead, we will only argue that e(gsi1 , h

du) is pseudorandom, for u ∈ Fi,x∗ for
some family of sets Fi,x∗ ⊆ [Q]. (Our first attempt corresponds to setting Fi,x∗ =
[Q]\{ui}.) In order to argue that e(gs`1 , h

α) is pseudorandom, we want F`,x∗ = F . For
i = 0, . . . , `− 1, we will define

Fi,x∗ := {u ∈ [Q] : δ(u, x∗i+1, . . . , x
∗
` ) ∈ F }.

Here, we use δ to also denote the “extended transition” function, namely

δ(u, σ1, σ2, . . . , σ`′) = δ(δ(δ(u, σ1), σ2), . . . , σ`′).

That is, Fi,x∗ is the set of states that are reachable from the accept states in F by back-
tracking along x∗` , . . . , x

∗
i+1. In particular, if f(x∗) = 0, then 1 /∈ F0,x∗ (recall that 1 de-

notes the start state) and more generally, ui /∈ Fi,x∗ (recall that ui = δ(1, x∗1, . . . , x
∗
i )).

4



Finally, we modify ∆i,u to be

∆i,u :=

{
∆ if u ∈ Fi,x∗
0 otherwise

Intuitively, the proof starts by introducing a unit of entropy captured by ∆ to each state
in F0,x∗ in G0, and then propagates that entropy to the states in F1,x∗ in G1, then F2,x∗

in G2, and finally to F`,x∗ = F in G`. We can then use ∆ to mask α, upon which we
can argue that the plaintext is perfectly hidden via an information-theoretic argument.
Looking ahead, (5) captures precisely how we computationally propagate entropy from
Fi−1,x∗ in Gi−1 to Fi,x∗ in Gi. The key insight here is that these sets Fi,x∗ are the states
that are reachable by back-tracking from the accept states, and not the ones that are
reachable from the start state.

Proof – interlude. Now, we are ready to describe how to carry out the hybrid argument
from G0 to G`. As mentioned earlier, we focus on the setting with a single key query f .
This means that we need to show that for each i = 1, . . . , `, we have:

Gi−1 = (mpk, cti−1
x∗ , sk

i−1
f ) ≈c (mpk, ctix∗ , sk

i
f ) = Gi

To prove this, we will introduce an additional ciphertext distribution cti−1,i
x∗ , where:

– cti−1,i
x∗ is the same as ctx∗ except we replace gsi−1

1 , gsi1 with (g1g2)si−1 , (g1g2)si

and move from Gi−1 to Gi via the following hybrid arguments:

Gi−1 = (mpk, cti−1
x∗ , ski−1

f )

≈c (mpk, cti−1,i
x∗ , ski−1

f )

≈c (mpk, cti−1,i
x∗ , skif )

≈c (mpk, ctix∗ , skif ) = Gi

(2)

Note that the proof interweaves a computational argument over ciphertexts with another
over secret keys. In the proof, we will rely on the following computational assumptions
in composite-order bilinear groups:

– SDGNp1 7→p1p2
subgroup assumption in GN , which says that gs1 ≈c (g1g2)s;

– DDHHNp2
in HN (w.r.t. w), which implies that (hr2, h

wr
2 ) ≈c (hr2, h

∆+wr
2 ) given

(h2, h
w
2 ) for all ∆.

Later on, we will describe how to instantiate the scheme and these assumptions using
the k-linear assumption in prime-order bilinear groups.

Proof – third idea. We begin with the first computational transition in (2), namely:

(mpk, cti−1
x∗ , sk

i−1
f ) ≈c (mpk, cti−1,i

x∗ , ski−1
f )
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The only difference between cti−1
x∗ and cti−1,i

x∗ is that we have gsi1 in the former, and
(g1g2)si in the latter. Unfortunately, we cannot directly invoke the SDGNp1 7→p1p2

assump-
tion to carry out this transition, because we need h2 to simulate the extra h∆i−1,v

2 terms
in ski−1

f , and the SDGNp1 7→p1p2
assumption is trivially broken in the presence of h2. In-

stead, we crucially rely on the fact that the h∆i−1,v

2 terms appear in ski−1
f as:

h
∆i−1,v

2 · hwσru , hru

where ∆i−1,v ∈ {0, ∆}. In particular, we will prove a statement of the form:

gs1 ≈c (g1g2)s given g1, g
w
1 , g2, g

w
2 , h, h

w, h∆2 · hwr, hr (3)

where s, w, r,∆← ZN . We refer to this as the (s, w)-switching lemma. Note the pres-
ence of the term gw2 , which we need in the reduction to simulate the g

si−1wx∗
i−1

2 term in
cti−1,i
x∗ , and which means that (h∆2 ·h

wx∗
i−1

ru
, hru) is not pseudorandom. We will prove

the (s, w)-switching lemma by exploiting the third p3-subgroup, using a “two slot” dual
system argument:

LHS = gs1, hwr · h∆2 , hr
p1 7→p1p3≈c gs1 · gs3 , hwr · h∆2 , hr

DDH
≈c gs1 · gs3, hwr · h∆2 · h∆3 , hr

p3 7→p2≈c gs1 · gs2 , hwr · h∆2 · h∆3 , hr

DDH
≈c gs1 · gs2, hwr · h∆2 , hr = RHS

(4)

We now clarify that there is in fact a catch here, namely that the (s, w)-switching lemma
breaks down if the adversary is also given gsw1 , which could indeed be the case due to
the g

siwx∗
i

2 term in cti−1,i
x∗ . We will circumvent this issue by modifying scheme (1) in

the next section.
Looking ahead, we note that the same argument (once we fix the catch) would allow

us to handle the third computational transition in (2), namely

(mpk, cti−1,i
x∗ , skif ) ≈c (mpk, ctix∗ , sk

i
f ).

Proof – fourth idea. Next, we handle the remaining computational transition in (2),
namely

(mpk, cti−1,i
x∗ , ski−1

f ) ≈c (mpk, cti−1,i
x∗ , skif )

By a standard argument based on the Chinese Remainder Theorem, it suffices to prove
the statement for the p2-components of the above expression, and since mpk has no
p2-components, this leaves us with:

(cti−1,i
x∗ [2], ski−1

f [2]) ≈c (cti−1,i
x∗ [2], skif [2] )
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where xx[2] denotes the p2-components of xx. That is, we will need to prove a statement
of the form: {

h−du+zru
2 , h

dv+ ∆i−1,v +wσru

2 , hru2

}
u,σ,v=δ(u,σ)

≈c
{
h−du+zru

2 , h
dv+ ∆i,v +wσru

2 , hru2

}
u,σ,v=δ(u,σ)

given cti−1,i
x∗ [2]. Instead, we will sketch a proof that{

h
−du+ ∆i−1,u +zru

2 , hdv+wσru
2 , hru2

}
u,σ,v=δ(u,σ)

≈c
{
h−du+zru

2 , h
dv+ ∆i,v +wσru

2 , hru2

}
u,σ,v=δ(u,σ)

(5)

given (si−1, si, si−1z + siwx∗i ). The latter will be useful for simulating the terms in
cti−1,i
x∗ [2], which is given by:

cti−1,i
x∗ [2] = (g

si−1wx∗
i−1

2 , g
si−1

2 , g
si−1z+siwx∗

i
2 , gsi2 , g

siz
2 )

We can interpret (5) as the key computational step that “propagates” the entropy from
the states in Fi−1,x∗ to those in Fi,x∗ . We will explain the connection between (5) and
the statement ski−1

f ≈c skif we need later on in the overview.
The proof of (5) relies on the following three observations:

1. by the DDHHNp2
assumption w.r.t. wx∗i mod p2, we have

(hzr2 , h
wx∗

i
r

2 , hr2) ≈c (hzr−siγ2 , h
wx∗

i
r+si−1γ

2 , hr2) (6)

given (si−1, si, si−1z+siwx∗i ); this extends readily to the setting with many triplets
corresponding to the ru’s. Note that the above triplets (X,Y, Z) satisfies a consis-
tency check Xsi−1 · Y si = Z

si−1z+siwx∗
i .

2. whenever σ 6= x∗i , we can again invoke the DDHHNp2
assumption, now w.r.t.wσ mod

p2, to replace hwσru2 with h∆i,v+wσru
2 for all u ∈ [Q], σ 6= x∗i , v = δ(u, σ).

3. for all x∗ and i ∈ [`], u ∈ [Q], we have

u ∈ Fi−1,x∗ ⇐⇒ δ(u, x∗i ) ∈ Fi,x∗

This is one of two steps where we crucially relies on the definition of Fi,x∗ .

We note that the analogue of (6) given also gsiz2 in cti−1,i
x [2] is false due to the consis-

tency check e(gsi2 , h
zr
2 ) = e(gsiz2 , hr2). Again, we will circumvent this issue by modify-

ing scheme (1) in the next section.

Proof – fifth idea. To make use of (5) in the proof, we introduce an additional key
distribution ski−1,i

f :

– ski−1,i
f is the same as skf except we add a h∆i−1,u

2 term to h−du+zru for every u.
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Instead of

(mpk, cti−1,i
x∗ , ski−1

f ) ≈c (mpk, cti−1,i
x∗ , ski−1,i

f ) ≈c (mpk, cti−1,i
x∗ , skif )

we will show:

(mpk, cti−1
x∗ , sk

i−1
f ) ≈c (mpk, cti−1

x∗ , sk
i−1,i
f )

(mpk, cti−1,i
x∗ , ski−1,i

f ) ≈c (mpk, cti−1,i
x∗ , skif )

That is, we will switch from ski−1
f to ski−1,i

f in the presence of cti−1
x∗ instead of cti−1,i

x∗

and employ the following strategy:

Gi−1 = (mpk, cti−1
x∗ , ski−1

f )

≈c (mpk, cti−1
x∗ , ski−1,i

f )

≈c (mpk, cti−1,i
x∗ , ski−1,i

f ) similar to 1st transition in (2)

≈c (mpk, cti−1,i
x∗ , skif ) using (5)

≈c (mpk, ctix∗ , skif ) = Gi identical to 3rd transition in (2)

(7)

Here, the last three computational transitions can be handled as before. This leaves
us with the first transition, namely to show that

(mpk, cti−1
x∗ , sk

i−1
f ) ≈c (mpk, cti−1

x∗ , sk
i−1,i
f ).

Roughly, we focus on the p2-components and prove it via the following hybrid argu-
ments:

ski−1
f [2] =

 hd1+wstartr1
2 , hr12 ,

{h−du+zru
2 , h

dv+ ∆i−1,v +wσru

2 , hru2 }u,σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F



≈s


h
d1− ∆i−1,1 +wstartr1

2 , hr12 ,

{h
−du+ ∆i−1,u +zru

2 , hdv+wσru
2 , hru2 }u,σ,v=δ(u,σ),

{h
α−du+ ∆i−1,u +wendru

2 , hru2 }u∈F



≈c

 h
d1−���∆i−1,1+wstartr1
2 , hr12 ,

{h−du+∆i−1,u+zru
2 , hdv+wσru

2 , hru2 }u,σ,v=δ(u,σ),

{hα−du+���∆i−1,u+wendru
2 , hru2 }u∈F

 = ski−1,i
f [2]

in the presence of cti−1
x∗ [2], which is given by:

cti−1
x∗ [2] =

{
gs0wstart

2 , gs02 , g
s0z
2 if i = 1

g
si−1wx∗

i−1

2 , g
si−1

2 , g
si−1z
2 if 2 ≤ i ≤ `
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The first statistical step simply relies on the change of variable

du 7→ du −∆i−1,u ∀u ∈ [Q].

Then we handle the second computational step by arguing

h
−∆i−1,1+wstartr1
2 ≈c hwstartr1

2 and h
∆i−1,u+wendru
2 ≈c hwendru

2 ∀ u ∈ F

This is implied by DDHHNp2
assumption w.r.t. wstart, wend mod p2 with an exception:

– when i = 1, the ciphertext ct0x∗ leaks wstart mod p2 via gs0wstart
2 and DDHHNp2

assumption w.r.t. wstart mod p2 does not hold. In this case, we use the fact that
∆0,1 = 0 which is implied by 1 /∈ F0,x∗ .

This is the second step where we crucially rely on the definition of Fi,x∗ .

1.2 Our construction

Here is our final “alternating” construction, where we introduce two copies of (z, {wσ}),
and we alternate between the two copies in the ciphertext depending on the parity of i:

msk =
(
h, α,wstart, wend, z0, z1, {wσ,0, wσ,1}σ∈Σ

)
(8)

mpk =
(
g1, g

wstart
1 , gwend

1 , gz01 , g
z1
1 , {g

wσ,0
1 , g

wσ,1
1 }σ∈Σ , e(g1, h)α

)
ctx =

 gs01 , g
s0wstart
1 ,

{gsi1 , g
si−1zi mod 2+siwxi,i mod 2

1 }i∈[`],

gs`1 , g
s`wend
1 , e(g1, h)s`α ·m


skf =

 hd1+wstartr1 , hr1 ,

{h−du+zbru , hdv+wσ,bru , hru}b∈{0,1},u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru , hru}u∈F


Note the additional i mod 2 subscript in ctx and the additional quantifier b ∈ {0, 1}
in skf . Decryption proceeds essentially as before by computing e(gsi1 , h

dui ) for i =
0, . . . , ` and finally e(g1, h)s`α and thus m.

Updating auxiliary distributions. The proof for the “alternating” construction still
follows the strategy in (7). The distributions ctix∗ and cti−1,i

x∗ are defined analogously;
we update skif [2] and ski−1,i

f [2] for the “alternating” construction as follows:

skif [2] =


hd1+wstartr1

2 , hr12 ,

{h−du+zi mod 2ru
2 , h

dv+ ∆i,v +wσ,i mod 2ru

2 , hru2 }u,σ,v=δ(u,σ),

{h−du+zi−1 mod 2ru
2 , h

dv+wσ,i−1 mod 2ru
2 , hru2 }u,σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F
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Game skf [2] ctx[2]

0 Jdu 7→ dvKz0,wσ,0 Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 —
1 Jdu 7→ dvKz0,wσ,0 Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 s0wstart , s0 , s0z1

2.1.0 Jdu 7→ dv + ∆0,v K
z0,wσ,0

Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0

y
2.1.1 Jdu 7→ dvKz0,wσ,0 Jdu − ∆0,u 7→ dvK

z1,wσ,1
Jdu − α 7→ 0Kwend,0

y
2.1.2 Jdu 7→ dvKz0,wσ,0 Jdu −∆0,u 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 s0wstart, s0, s0z1 + s1wx∗1 ,1 , s1 , s1z0

2.1.3 Jdu 7→ dvKz0,wσ,0 Jdu 7→ dv + ∆1,v K
z1,wσ,1

Jdu − α 7→ 0Kwend,0

y
2.1.4 (=2.2.0)Jdu 7→ dvKz0,wσ,0 Jdu 7→ dv +∆1,vKz1,wσ,1 Jdu − α 7→ 0Kwend,0 ���s0wstart,��s0,��s0z1 + s1wx∗1 ,1, s1, s1z0

2.2.1 Jdu − ∆1,u 7→ dvK
z0,wσ,0

Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0

y
2.2.2 Jdu −∆1,u 7→ dvKz0,wσ,0 Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 s1wx∗1 ,1, s1, s1z0 + s2wx∗2 ,0 , s2 , s2z1

2.2.3 Jdu 7→ dv + ∆2,v K
z0,wσ,0

Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0

y
2.2.4 (=2.3.0)Jdu 7→ dv +∆2,vKz0,wσ,0 Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 ����s1wx∗1 ,1,��s1,��s1z0 + s2wx∗2 ,0, s2, s2z1

2.3.1 Jdu 7→ dvKz0,wσ,0 Jdu − ∆2,u 7→ dvK
z1,wσ,1

Jdu − α 7→ 0Kwend,0

y
2.3.2 Jdu 7→ dvKz0,wσ,0 Jdu −∆2,u 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 s2wx∗2 ,0, s2, s2z1 + s3wx∗3 ,1 , s3 , s3wend

2.3.3 Jdu 7→ dvKz0,wσ,0 Jdu 7→ dv + ∆3,v K
z1,wσ,1

Jdu − α 7→ 0Kwend,0

y
2.3.4 Jdu 7→ dvKz0,wσ,0 Jdu 7→ dv +∆3,vKz1,wσ,1 Jdu − α 7→ 0Kwend,0 ����s2wx∗2 ,0,��s2,��s2z1 + s3wx∗3 ,1, s3, s3wend

3 Jdu 7→ dvKz0,wσ,0 Jdu 7→ dvKz1,wσ,1 Jdu − ∆3,u − α 7→ 0Kwend,0↓

Fig. 1. Summary of game sequence for ` = 3. We only describe the p2-components here. Recall the notational short-hand Jdu 7→ dvKz,w :=
(h−du+zru2 , hdv+wru2 , hru2 ). Here, secret key elements in the second and third columns are quantified over u ∈ [Q], σ ∈ Σ, v = σ(u, σ) while
those in the fourth column are over u ∈ F ; we omit J0 7→ d1K0,wstart . For the ciphertext elements, we omitted the terms e(gs32 , h

α) in games 2.3.? and 3.
Throughout, a ↓ means “same as preceding row”.
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ski−1,i
f [2] =


hd1+wstartr1

2 , hr12 ,

{h
−du+ ∆i−1,u +zi mod 2ru

2 , h
dv+wσ,i mod 2ru
2 , hru2 }u,σ,v=δ(u,σ),

{h−du+zi−1 mod 2ru
2 , h

dv+wσ,i−1 mod 2ru
2 , hru2 }u,σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F


As an example, we illustrate a complete game sequence for 3-bit input in Fig. 1.

How alternation helps. We briefly describe how the alternating structure circumvents
two of the issues in the earlier proof overview:

– To switch from cti−1
x∗ to cti−1,i

x∗ given ski−1,i
f , we will rely on (si, zi mod 2)-switching

lemma. The earlier issue with the terms (gsi1 , g
sizi+1 mod 2

1 ) in cti−1,i
x∗ simply goes

away because zi mod 2 6= zi+1 mod 2, thanks to the alternation. A similar trick works
for switching from cti−1,i

x∗ to ctix∗ .
– To switch from ski−1,i

f to skif given cti−1,i
x∗ , we will rely on the analogue of (6)

with (zi mod 2, wx∗i ,i mod 2) in place of (z, wx∗i ). The extra term in cti−1,i
x∗ that en-

ables the earlier attack now corresponds to gsizi+1 mod 2

2 , and the attack is no longer
applicable simply because zi mod 2 6= zi+1 mod 2, thanks again to the alternation.

Handling many secret keys. The proof extends to selective security for many keys,
with fresh {du, ru}u∈[Q] per key and the same ∆ used across all the keys. Roughly
speaking, the fresh ru allows us to carry out the computational steps involving the
DDHHNp2

assumption, and in the final step, we rely on the fact that all the secret keys
only leak α+∆ and not α itself.

1.3 Prime-order groups

To complete the overview, we sketch our final ABE scheme which is secure under the
k-Linear assumption in prime-order bilinear groups.4 Here, we rely on the previous
framework of Chen et al. [5,10,4,6] for simulating composite-order groups in prime-
order ones. Let (G1, G2, GT , e) be a bilinear group of prime order p. We start with our
ABE scheme in composite-order groups (8) and carry out the following substitutions:

du, α 7→ du,k zb, wσ,b 7→ Zb,Wσ,b

gsi1 7→ [s>iA
>
1]1 hru 7→ [ru]2

gsizb1 , g
siwσ,b
1 7→ [s>iA

>
1Zb]1, [s

>
iA
>
1Wσ,b]1 hzbru , hwσ,bru 7→ [Zbru]2, [Wσ,bru]2

where

A1 ← Z(2k+1)×k
p and Zb,Wσ,b ← Z(2k+1)×k

p , du,k← Z2k+1
p , si, ru ← Zkp

4 e.g: k = 1 corresponds to the Symmetric External Diffie-Hellman Assumption (SXDH), and
k = 2 corresponds to the Decisional Linear Assumption (DLIN).

11



and [·]1, [·]2 correspond respectively to exponentiations in the prime-order groupsG1, G2.
Note that A1 has height 2k+ 1: we will use k-dimensional random subspaces to simu-
late each of the p1 and p3 subgroups, and a 1-dimensional subspace to simulate the p2

subgroup; these are sufficient to simulate the SDGNp1 7→p1p2
, SDGNp1 7→p1p3

and SDGNp3 7→p3p2

assumptions (we would need to modify the proof of the (s, w)-switching lemma in (4)
to avoid SDGNp3 7→p2

assumption). It is sufficient to use Zb,Wσ,b of width k since we
only rely on the DDHHNp2

,DDHHNp3
assumptions.

This yields the following prime-order ABE scheme for DFA:

msk = (k,Wstart,Wend,Z0,Z1, {Wσ,0,Wσ,1}σ∈Σ
)

mpk = ( [A>1,A
>
1Wstart,A

>
1Wend,A

>
1Z0,A

>
1Z1, {A>1Wσ,0,A

>
1Wσ,1}σ∈Σ ]1, [A

>
1k]T

)
ctx =

 [s>0A
>
1]1, [s>0A

>
1Wstart]1

{[s>iA>1]1, [s
>
i−1A

>
1Zi mod 2 + s>iA

>
1Wxi,i mod 2]1}i∈[`]

[s>`A
>
1]1, [s

>
`A
>
1Wend]1, [s>`A

>
1k]T ·m


skf =

 [d1 + Wstartr1]2, [r1]2,

{[−du + Zbru]2, [dv + Wσ,bru]2, [ru]2}b∈{0,1},u∈[Q],σ∈Σ,v=δ(u,σ)

{[k− du + Wendru]2, [ru]2}u∈F

 .

Decryption proceeds as before by first computing

[s>iA
>
1dui ]T ∀i = 0, . . . , `

via the associativity relations A>1Z · ru = A>1 ·Zru (ditto Wstart,Wσ,b,Wend) [7]; and
finally recovers [s>`A

>
1k]T and thus m.

1.4 Discussion

The main open problem arising in this work is to obtain an adaptively secure ABE
scheme for DFA under the k-Lin assumption. One natural approach is to combine our
techniques with the piecewise guessing framework in [14,13] to obtain an adaptively
secure ABE scheme for DFA under the k-Lin assumption. The main obstacle here is
that in the intermediate hybrids, we need to know the sets Fi,x∗ , for which there can be
up to 2Q possibilities, where Q is the maximal number of states in a DFA provided by
the adversary in the secret key queries. As such, naively applying the piecewise guess-
ing framework would incur a 2Q security loss. Another potential approach is to appeal
to the doubly selective framework in [2,17], which reduces the problem to building a
selectively secure ciphertext-policy ABE for DFA (alternatively, a co-selectively secure
key-policy ABE for DFA) under the k-Lin assumption, in the single-key setting; again,
naively applying the techniques in this work would incur a 2Q security loss. To con-
clude, achieving adaptive security under the k-Lin assumption with only a polynomial
loss appears to require new ideas that go beyond the state of the art.

Organization. The next section gives some background knowledge. We prove selective
security of the composite-order scheme in the one-key setting in Section 3. We defer
the prime-order scheme with proof in the many-key setting to the full paper.
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2 Preliminaries

Notation. We denote by s ← S the fact that s is picked uniformly at random from a
finite set S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout
this paper, we use 1λ as the security parameter. We use lower case boldface to denote
(column) vectors and upper case boldcase to denote matrices. We use ≈s to denote two
distributions being statistically indistinguishable, and ≈c to denote two distributions
being computationally indistinguishable.

Deterministic Finite Automaton (DFA). A deterministic finite automaton (DFA) f is
defined by (Q,Σ, δ, F ) where

– Q is the number of states and we take [Q] as the state space;
– Σ is the alphabet;
– δ : [Q]×Σ → [Q] is a transition function;
– F ⊆ [Q] is the set of accept states.

Here the (unique) start state is always state 1. We use f(x) = 1 to denote that an input
x = (x1, . . . , x`) ∈ Σ` is accepted by DFA f , which means that there exists a sequence
of states u0, u1, . . . , u` ∈ [Q] satisfying: (1) u0 = 1; (2) for all i = 1, . . . , `, we have
δ(ui−1, xi) = ui; (3) u` ∈ F . If input x is not accepted by DFA f , we write f(x) = 0.

2.1 Attribute-based encryption for Deterministic Finite Automaton

Syntax. An attribute-based encryption (ABE) scheme for DFA consists of four algo-
rithms (Setup,Enc,KeyGen,Dec):

Setup(1λ, Σ)→ (mpk,msk). The setup algorithm gets as input the security parameter
1λ and the alphabetΣ. It outputs the public parameter mpk and the master key msk.
We assume mpk defines the message spaceM.

Enc(mpk, x,m)→ ctx. The encryption algorithm gets as input mpk, an input x ∈ Σ∗
and a message m ∈M. It outputs a ciphertext ctx. Note that x is public given ctx.

KeyGen(mpk,msk, f) → skf . The key generation algorithm gets as input mpk, msk
and a description of DFA f . It outputs a secret key skf . Note that f is public given
skf .

Dec(mpk, skf , ctx) → m. The decryption algorithm gets as input skf and ctx such
that f(x) = 1 along with mpk. It outputs a message m.

Correctness. For all input x and DFA f with f(x) = 1 and all m ∈M, we require

Pr

Dec(mpk, skf , ctx) = m :

(mpk,msk)← Setup(1λ, Σ);

skf ← KeyGen(mpk,msk, f);

ctx ← Enc(mpk, x,m)

 = 1.
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Security definition. For a stateful adversary A, we define the advantage function

AdvABE
A (λ) := Pr

β = β′ :

(mpk,msk)← Setup(1λ, Σ);

(x∗,m0,m1)← AKeyGen(mpk,msk,·)(mpk);

β ← {0, 1}; ctx∗ ← Enc(mpk, x∗,mβ);

β′ ← AKeyGen(mpk,msk,·)(ctx∗)

− 1

2

with the restriction that all queries f that A makes to KeyGen(mpk,msk, ·) satisfy
f(x∗) = 0. An ABE scheme is adaptively secure if for all PPT adversaries A, the
advantage AdvABE

A (λ) is a negligible function in λ. The selective security is defined
analogously except that the adversary A selects x∗ before seeing mpk.

2.2 Composite-order Groups

A generator G takes as input a security parameter 1λ and outputs group description
G := (N,GN , HN , GT , e), where N is product of three primes p1, p2, p3 of Θ(λ)
bits, GN , HN and GT are cyclic groups of order N and e : GN × HN → GT is
a non-degenerate bilinear map. We require that the group operations in GN , HN and
GT as well the bilinear map e are computable in deterministic polynomial time with
respect to λ. We assume that a random generator g (resp. h) ofGN (resp.HN ) is always
contained in the description of bilinear groups. For every divisor n of N , we denote by
Gn the subgroup of GN of order n. We use g1, g2, g3 to denote random generators
of subgroups Gp1

, Gp2
, Gp3

respectively and define h1, h2, h3 random generators of
subgroups Hp1

, Hp2
, Hp3

analogously.

Computational assumptions. We review two static computational assumptions in the
composite-order group, used e.g. in [15,8]. By symmetry, one may permute the indices
for subgroups.

Assumption 1 (SDGNp1 7→p1p2
) We say that (p1 7→ p1p2)-subgroup decision assumption,

denoted by SDGNp1 7→p1p2
, holds if for all PPT adversaries A, the following advantage

function is negligible in λ.

Adv
SDGNp1 7→p1p2

A (λ) :=
∣∣Pr[A(G, D, T0) = 1]− Pr[A(G, D, T1) = 1]

∣∣
where D := (g1, g2, g3, h1, h3, h12) with h12 ← Hp1p2 and

T0 ←R Gp1
, T1 ← Gp1p2

.

Assumption 2 (DDHHN
p1

) We say that p1-subgroup Diffie-Hellman assumption, denoted
by DDHHNp1

, holds if for all PPT adversaries A, the following advantage function is
negligible in λ.

Adv
DDHHNp1

A (λ) :=
∣∣Pr[A(G, D, T0) = 1]− Pr[A(G, D, T1) = 1]

∣∣
where D := (g1, g2, g3, h1, h2, h3) and

T0 := (hx1 , h
y
1, h

xy
1 ), T1 := (hx1 , h

y
1, h

xy+z
1 ), x, y, z ← ZN .
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3 ABE for DFA in Composite-Order Groups

In this section, we present our ABE for DFA in composite-order groups. Here, we focus
on selective security in the one-key setting under static assumptions.

3.1 Scheme

Our ABE for DFA in composite-order groups is described as follows:

– Setup(1λ, Σ) : Run G = (N = p1p2p3, GN , HN , GT , e) ← G(1λ) and pick
generators g1 ← Gp1

, h ← HN . Sample α,wstart, wend, z0, z1, wσ,0, wσ,1 ← ZN
for all σ ∈ Σ. Choose a pairwise-independent hash function H. Output

mpk =
(
g1, g

wstart
1 , gwend

1 , gz01 , g
z1
1 , { g

wσ,0
1 , g

wσ,1
1 }σ∈Σ , e(g1, h)α,H

)
and

msk =
(
h, α,wstart, wend, z0, z1, {wσ,0, wσ,1}σ∈Σ

)
The message spaceM is the image space of H.

– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈ Σ`. Pick s0, s1, . . . , s` ← ZN and
output

ctx =

 gs01 , g
s0wstart
1 ,

{ gsi1 , g
si−1zi mod 2+siwxi,i mod 2

1 }i∈[`],

gs`1 , g
s`wend
1 , H(e(g1, h)s`α) ·m

 .

– KeyGen(mpk,msk, f) : Pick du, ru ← ZN for all u ∈ [Q] and output

skf =

 hd1+wstartr1 , hr1 ,

{h−du+zbru , hdv+wσ,bru , hru}b∈{0,1},u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru , hru}u∈F

 .

– Dec(mpk, skf , ctx) : Parse ciphertext for input x = (x1, . . . , x`) as

ctx = (C0,1, C0,2, {Ci,1, Ci,2}i∈[`], Cend,1, Cend,2, C )

and key for f = (Q,Σ, δ, F ) as

skf = (K0,1,K0,2, {Kb,u,Kb,u,σ,Ku}b,u,σ, {Kend,u,Ku}u∈F ).

If f(x) = 1, compute (u0 = 1, u1, . . . , u`) ∈ [Q]`+1 such that δ(ui−1, xi) = ui
for i ∈ [`] and u` ∈ F , and proceed as follows:
1. Compute B0 = e(C0,1,K0,1) · e(C0,2,K0,2)−1;
2. For all i = 1, . . . , `, compute

Bi = e(Ci−1,1,Ki mod 2,ui−1
) · e(Ci,1,Ki mod 2,ui−1,xi) · e(Ci,2,Kui−1

)−1

3. Compute Bend = e(Cend,1,Kend,u`) · e(Cend,2,Ku`)
−1 and

B = B0 ·
∏̀
i=1

Bi ·Bend

4. Output the message m′ ← C · H(B)−1.

Due to the lack of space, we defer the proof of correctness to the full paper.
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Security. We will prove the following theorem for the one-key setting where the adver-
sary asks for at most one secret key. We explain how to handle many keys in Section 3.9.

Theorem 1 (composite-order ABE for DFA). The ABE scheme for DFA in composite-
order bilinear groups described above is selectively secure (cf. Section 2.1) in the one-
key setting under the following static assumptions: SDGNp1 7→p1p2

, SDGNp1 7→p1p3
, SDGNp3 7→p3p2

,
DDHHNp2

and DDHHNp3
.

3.2 Game sequence

Let x∗ ∈ Σ` denote the selective challenge and let ¯̀ = ` mod 2. WLOG, we assume
` > 1. Recall that g2, h2 denote random generators for Gp2 , Hp2 respectively.

Auxiliary distributions. We describe the auxiliary ciphertext and secret key distribu-
tions that we use in the proof of security. Throughout, the distributions are the same as
the original distributions except for the p2-components. For notational simplicity, we
will only write down the p2-components and use xx[2] to denote p2-components of xx.

Ciphertext distributions.

– for i = 0, 1, . . . , `: ctix∗ is the same as ctx∗ except we replace gsi1 with (g1g2)si ;
– for i = 1, 2, . . . , `: cti−1,i

x∗ is the same as ctx∗ except we replace gsi−1

1 , gsi1 with
(g1g2)si−1 , (g1g2)si .

That is, we have: writing τ = i mod 2,

ctix∗ [2] =


gs0wstart

2 , gs02 , g
s0z1
2 if i = 0

g
siwx∗

i
,τ

2 , gsi2 , g
siz1−τ
2 if 0 < i < `

g
s`wx∗

`
,¯̀

2 , gs`2 , g
s`wend
2 , e(gs`2 , h

α
2 ) if i = `

cti−1,i
x∗ [2] =


gs0wstart

2 , gs02 , g
s0z1+s1wx∗1 ,1
2 , gs12 , g

s1z0
2 if i = 1

g
si−1wx∗

i−1
,1−τ

2 , g
si−1

2 , g
si−1zτ+siwx∗

i
,τ

2 , gsi2 , g
siz1−τ
2 if 1 < i < `

g
s`−1wx∗

`−1
,1−¯̀

2 , g
s`−1

2 , g
s`−1z¯̀+s`wx∗

`
,¯̀

2 , gs`2 , g
s`wend
2 , e(gs`2 , h

α
2 ) if i = `

The ∆-distributions. Fix a DFA f . Let F`,x∗ = F ; for i = 0, . . . , `− 1, we will define

Fi,x∗ := {u ∈ [Q] : δ(u, x∗i+1, . . . , x
∗
` ) ∈ F }.

Here, we use δ to also denote the “extended transition” function, namely

δ(u, σ1, σ2, . . . , σ`′) = δ(δ(δ(u, σ1), σ2), . . . , σ`′).

That is, Fi,x∗ is the set of states that are reachable from the accept states by back-
tracking along x∗` , . . . , x

∗
i+1. In particular, if f(x∗) = 0, then 1 /∈ F0,x∗ (recall that 1 de-

notes the start state) and more generally, ui /∈ Fi,x∗ (recall that ui = δ(1, x∗1, . . . , x
∗
i )).

Finally, we pick ∆← ZN and define ∆i,u to be

∆i,u :=

{
∆ if u ∈ Fi,x∗
0 otherwise
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Secret key distributions.

– for i = 0, 1, . . . , `: skif is the same as skf except we add h∆i,v2 to hdv+wσ,i mod 2ru

for every u ∈ [Q], σ ∈ Σ and v = δ(u, σ).
– for i = 1, 2, . . . , `: ski−1,i

f is the same as skf except we add h∆i−1,u

2 to h−du+zi mod 2ru

for every u ∈ [Q].
– sk∗f is the same as skf except we add h∆`,u2 to hα−du+wendru for every u ∈ F .

That is, we have: writing τ = i mod 2,

skif [2] =


hd1+wstartr1

2 , hr12 ,

{h−du+zτru
2 , h

dv+ ∆i,v +wσ,τru

2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1−τru
2 , h

dv+wσ,1−τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F



ski−1,i
f [2] =


hd1+wstartr1

2 , hr12 ,

{h
−du+ ∆i−1,u +zτru

2 , h
dv+wσ,τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1−τru
2 , h

dv+wσ,1−τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F



sk∗f [2] =


hd1+wstartr1

2 , hr12 ,

{h−du+zbru
2 , h

dv+wσ,bru
2 , hru2 }b∈{0,1},u∈[Q],σ∈Σ,v=δ(u,σ),

{h
α−du+ ∆`,u +wendru

2 , hru2 }u∈F


Game sequence. We prove Theorem 1 via a series of games described below and
summarized in Fig 2.

– G0: Identical to the real game.
– G1: Identical to G0 except that the challenge ciphertext is ct0x∗ .
– G2.i.0, i = 1, . . . , `: In this game, the challenge ciphertext is cti−1

x∗ and the secret
key is ski−1

f . Note that G2.1.0 is identical to G1 except that the secret key is sk0
f and

we have G2.i.0 = G2.i−1.4 for all 2 ≤ i ≤ `.
– G2.i.1, i = 1, . . . , `: Identical to G2.i.0 except that the secret key is ski−1,i

f .

– G2.i.2, i = 1, . . . , `: Identical to G2.i.1 except that the challenge ciphertext is cti−1,i
x∗ .

– G2.i.3, i = 1, . . . , `: Identical to G2.i.2 except that the secret key is skif .
– G2.i.4, i = 1, . . . , `: Identical to G2.i.3 except that the challenge ciphertext is ctix∗ .
– G3: Identical to G2.`.4 except that secret key is sk∗f .

We use AdvxxxA (λ) to denote the advantage of adversary A in Gxxx with parameter 1λ.

3.3 Useful lemmas

We begin with a few useful lemmas which will be used throughout the proof of security.
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Game ctx∗ p2-components of skf Remark

0 ctx∗ skf Jdu 7→ dvKz0,wσ,0 Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 Real game

1 ct0x∗ skf Jdu 7→ dvKz0,wσ,0 Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 SD

2.1.0 ct0x∗ sk0f Jdu 7→ dv + ∆0,v K
z0,wσ,0

Jdu 7→ dvKz1,wσ,1 Jdu − α 7→ 0Kwend,0 DDH

2.i.0 cti−1
x∗ ski−1

f Jdu 7→ dvKzτ ,wσ,τ Jdu 7→ dv + ∆i−1,v K
z1−τ ,wσ,1−τ

Jdu − α 7→ 0Kwend,0 G2.i.0 = G2.i−1.4 ∀ 2 ≤ i ≤ `

2.i.1 cti−1
x∗ ski−1,i

f Jdu − ∆i−1,u 7→ dvK
zτ ,wσ,τ

Jdu 7→ dvKz1−τ ,wσ,1−τ Jdu − α 7→ 0Kwend,0 “du 7→ du −∆i−1,u” + DDH ( + Lem 1-1 )

2.i.2 cti−1,i
x∗ ski−1,i

f Jdu −∆i−1,u 7→ dvKzτ ,wσ,τ Jdu 7→ dvKz1−τ ,wσ,1−τ Jdu − α 7→ 0Kwend,0 Lem 2

2.i.3 cti−1,i
x∗ skif Jdu 7→ dv + ∆i,v K

zτ ,wσ,τ
Jdu 7→ dvKz1−τ ,wσ,1−τ Jdu − α 7→ 0Kwend,0 Lem 3 + DDH + Lem 1-2

2.i.4 ctix∗ skif Jdu 7→ dv +∆i,vKzτ ,wσ,τ Jdu 7→ dvKz1−τ ,wσ,1−τ Jdu − α 7→ 0Kwend,0 Lem 2 + DDH

3 ct`x∗ sk∗f Jdu 7→ dvKz0,wσ,0 Jdu 7→ dvKz1,wσ,1 Jdu − ∆`,u − α 7→ 0Kwend,0“du 7→ du −∆`,u” + DDH

Fig. 2. Game sequence for composite-order ABE for DFA with i = 1, . . . , `. Recall that τ = i mod 2. We only describe the p2-components for keys
with the notational short-hand Jdu 7→ dvKz,w := (h−du+zru2 , hdv+wru2 , hru2 ). All secret key elements in the fourth and fifth columns are quantified over
u ∈ [Q], σ ∈ Σ, v = σ(u, σ) while those in the sixth column are over u ∈ F ; we omit J0 7→ d1K0,wstart . In the “Remark” column, “SD” and “DDH” mean
SDGNp1 7→p1p2 assumption and DDHHNp2 assumption, respectively, cf. Section 2.2; all lemmas will be described in Section 3.3; “Lem 1-1” and “Lem 1-2”
indicate the two statements in Lemma 1, respectively. Note that we use Lemma 1 for “G2.i.0 7→ G2.i.1” only when i = 1 which is indicating by brackets.
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Basic facts. We first state several facts which we will use in the proof.

Lemma 1. For any x∗ ∈ Σ` and f such that f(x∗) = 0, we have:

1. ∆0,1 = 0;
2. for all i ∈ [`], u ∈ [Q], we have

u ∈ Fi−1,x∗ ⇐⇒ δ(u, x∗i ) ∈ Fi,x∗ .

Proof. The first statement follows from the fact 1 /∈ F0,x∗ . The second one can be
proved as follows: For direction =⇒, we know δ(u, x∗i , x

∗
i+1, . . . , x

∗
` ) ∈ F for all u ∈

Fi−1,x∗ . This means δ(δ(u, x∗i ), x
∗
i+1, . . . , x

∗
` ) ∈ F and thus δ(u, x∗i ) ∈ Fi,x∗ by the

definition. The direction⇐= can be proved analogously. ut

Ciphertext switching. We use (s, w)-switching lemma (Lemma 2) when switching
ciphertext distributions in Section 3.6. This extends the statement described in (3) by
considering many tuples of form (hwr · h∆2 , hr) each with fresh r. To prove Lemma 2,
we follow hybrid arguments described in (4) except that (i) we use SDGNp3 7→p3p2

instead
of SDGNp3 7→p2

assumption and (ii) we apply SDGNp1 7→p1p3
assumption once more. Looking

ahead, this allows us to derive a prime-order scheme with better parameters.

Lemma 2 ((s, w)-switching lemma). For all Q ∈ N, we have

aux, gs1, { hwr̄u · h∆̄2 , hr̄u }u∈[Q]

≈c aux, gs1 · gs2 , { hwr̄u · h∆̄2 , hr̄u }u∈[Q]

where aux = (g1, g2, h, h
w, gw1 , g

w
2 ) and w, s, ∆̄, r̄u ← ZN for all u ∈ [Q]. Concretely,

the advantage function AdvSWITCH
B (λ) is bounded by

2 · AdvSDGNp1 7→p1p3

B1
(λ) + 4 · AdvDDHHNp3

B2
(λ) + Adv

SDGNp3 7→p3p2

B3
(λ)

with Time(B1),Time(B2),Time(B3) ≈ Time(B).

Proof. We prove the lemma via the following hybrid arguments:

LHS = aux, gs1,
{
hwr̄u · h∆̄2 , hr̄u

}
u

≈c aux, gs1 · gs3 ,
{
hwr̄u · h∆̄2 , hr̄u

}
u

using SDGNp1 7→p1p3

≈c aux, gs1 · gs3,
{
hwr̄u · h∆̄2 · h∆̄3 , hr̄u

}
u

using DDHHNp3

≈c aux, gs1 · gs2 · gs3,
{
hwr̄u · h∆̄2 · h∆̄3 , hr̄u

}
u

using SDGNp3 7→p3p2

≈c aux, gs1 · gs2 · gs3,
{
hwr̄u · h∆̄2 ·��h

∆̄
3 , hr̄u

}
u

using DDHHNp3

≈c aux, gs1 · gs2 ·��g
s
3,
{
hwr̄u · h∆̄2 , hr̄u

}
u

= RHS using SDGNp1 7→p1p3

We proceed as follows:

– The first and the last ≈c rely on the SDGNp1 7→p1p3
assumption stating that:

gs1 ≈c gs1 · gs3 given g1, g2, h, h2

where s← ZN . All reductions are straight-forward.
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– The second and the fourth ≈c rely on the following statement implied by DDHHNp3

assumption w.r.t. w mod p3: for all ∆̄ ∈ ZN , we have

{hwr̄u3 , hr̄u3 }u∈[Q] ≈c {hwr̄u+∆̄
3 , hr̄u3 }u∈[Q]

given g1, g2, g3, h1, h2, h3, h
w
3 where w, r̄u ← ZN for all u ∈ [Q]. All reductions

are straight-forward.
– The third ≈c relies on the SDGNp3 7→p3p2

assumption stating that:

gs3 ≈c gs2 · gs3 given g1, g2, h, h23 (9)

where s ← ZN and h23 is a random generator for Hp2p3
. The reduction works as

follows: On input (S, g1, g2, h, h23) where either S = gs3 or S = gs2 ·gs3, we sample
w, ∆̄, r̄u, s̃← ZN for all u ∈ [Q]. First, we can trivially compute aux and challenge
term gs̃1 · S. Second, we simulate h∆̄2 · h∆̄3 with h∆̄23 by the fact: h∆̄2 · h∆̄3 ≈s h∆̄23 for
all h2, h3, h23 when ∆̄← ZN ; this is sufficient for simulating all remaining terms.

Combining all five steps proves the lemma. ut

Remark 1. Observe that the distributions in the lemma are easily distinguishable if the
view also contains gsw1 or (g1g2)sw (on the LHS and RHS respectively).

Key switching. We use (z, w)-transition lemma (Lemma 3) for switching key distri-
butions (see Section 3.7), which captures the core argument in the statement (5) in the
Introduction. Due to the lack of space, we defer the detailed proof to the full paper.

Lemma 3 ((z, w)-transition lemma). For all Q ∈ N, si−1, si 6= 0 and ∆̄ ∈ ZN , we
have

aux, si−1z + siw, { h
si∆̄ +zr̄u

2 , hwr̄u2 , hr̄u2 }u∈[Q]

≈c aux, si−1z + siw, { hzr̄u2 , h
si−1∆̄ +wr̄u

2 , hr̄u2 }u∈[Q]

where aux = (g1, g2, h1, h2, h3, h
z
2, h

w
2 ) and z, w, r̄u ← ZN for all u ∈ [Q]. Con-

cretely, the advantage function AdvTRANS
B (λ) is bounded by 2 · AdvDDHHNp2

B1
(λ) with

Time(B1) ≈ Time(B).

3.4 Initialization: G0 7→ G1,G1 7→ G2.1.0

The first two transitions are straight-forward; we describe the following two lemmas
with the first proof omitted.

Lemma 4 (G0 ≈c G1). There exists B with Time(B) ≈ Time(A) such that

|Adv0
A(λ)− Adv1

A(λ)| ≤ Adv
SDGNp1 7→p1p2

B (λ).

Lemma 5 (G1 ≈c G2.1.0). There exists B with Time(B) ≈ Time(A) such that

|Adv1
A(λ)− Adv2.1.0

A (λ)| ≤ 2|Σ| · AdvDDHHNp2

B (λ).
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Proof. This roughly means that

(mpk, ct0x∗ , skf ) ≈c (mpk, ct0x∗ , sk0
f ).

By the Chinese Reminder Theorem, it suffices to focus on the p2-components; con-
cretely, we prove that

skf [2] =


hd1+wstartr1

2 , hr12 ,

{h−du+z0ru
2 , h

dv+wσ,0ru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1ru
2 , h

dv+wσ,1ru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F



≈c


hd1+wstartr1

2 , hr12 ,

{h−du+z0ru
2 , h

dv+ ∆0,v +wσ,0ru

2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1ru
2 , h

dv+wσ,1ru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F

 = sk0
f [2]

given g1, h1, h3 and
ct0x∗ [2] :=

(
gs0wstart

2 , gs02 , g
s0z1
2

)
.

Here terms g1, h1, h3 allow us to simulate the p1- and p3-components of ct0x∗ and skf
(or sk0

f ) as well as mpk, which is sufficient for proving the lemma. Furthermore, this
statement immediately follows from the statement below which are implied by DDHHNp2

assumption w.r.t. wσ,0 mod p2 with σ ∈ Σ: for all σ ∈ Σ and ∆ ∈ ZN , we have

{hru2 , h
wσ,0ru
2 }u∈[Q] ≈c {hru2 , h

∆+wσ,0ru
2 }u∈[Q]

given g1, g2, h1, h2, h3 and hwσ,02 where wσ,0, ru ← ZN for u ∈ [Q]. Here we crucially
rely on the fact the ciphertext ct0x∗ [2] does not leak wσ,0 mod p2 with σ ∈ Σ. ut

3.5 Switching secret keys I: G2.i.0 7→ G2.i.1

In this section, we prove the following lemma.

Lemma 6 (G2.i.0 ≈c G2.i.1). For all i = 1, . . . , `, there exists B with Time(B) ≈
Time(A) such that

|Adv2.i.0
A (λ)− Adv2.i.1

A (λ)| ≤ 2(|Σ|+ 3) · AdvDDHHNp2

B (λ).

Proof organization. We need two auxiliary games G2.i.1.a and G2.i.1.b and prove that:

G2.i.0
Lemma 7
≈s G2.i.1.a

Lemma 8
≈c G2.i.1.b

Lemma 9
≈c G2.i.1

where the p2-components of the secret key in these games are recalled/defined as below

G2.i.0 :


hd1+wstartr1

2 , hr12 ,

{h−du+zτru
2 , h

dv+wσ,τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1−τru
2 , h

dv+ ∆i−1,v +wσ,1−τru

2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F

 = ski−1
f [2]
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G2.i.1.a :


h
d1− ∆i−1,1 +wstartr1

2 , hr12 ,

{h
−du+ ∆i−1,u +zτru

2 , h
dv− ∆i−1,v +wσ,τru

2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
−du+ ∆i−1,u +z1−τru

2 , h
dv+wσ,1−τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
α−du+ ∆i−1,u +wendru

2 , hru2 }u∈F



G2.i.1.b :


h
d1−���∆i−1,1+wstartr1
2 , hr12 ,

{h−du+∆i−1,u+zτru
2 , h

dv−∆i−1,v+wσ,τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+∆i−1,u+z1−τru
2 , h

dv+wσ,1−τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+∆i−1,u+wendru
2 , hru2 }u∈F



G2.i.1 :


hd1+wstartr1

2 , hr12 ,

{h−du+∆i−1,u+zτru
2 , h

dv−���∆i−1,v+wσ,τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+���∆i−1,u+z1−τru
2 , h

dv+wσ,1−τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+���∆i−1,u+wendru
2 , hru2 }u∈F

 = ski−1,i
f [2]

and the p2-components of ciphertext are recalled as follows

cti−1
x∗ [2] =

{
gs0wstart

2 , gs02 , g
s0z1
2 if i = 1

g
si−1wx∗

i−1
,1−τ

2 , g
si−1

2 , g
si−1zτ
2 if 2 ≤ i ≤ `

The p1- and p3-components of secret key and ciphertext as well as mpk remain un-
changed among all the four games.

Lemmas and Proofs. We describe and prove the following lemmas. Combining them
together proves Lemma 6.

Lemma 7 (G2.i.0 ≈s G2.i.1.a). For all i = 1, . . . , `, we have

Adv2.i.0
A (λ) = Adv2.i.1.a

A (λ).

Proof. This immediately follows from the change of variables: du 7→ du−∆i−1,u mod
p2 for all u ∈ [Q]. ut
Lemma 8 (G2.i.1.a ≈c G2.i.1.b). For all i = 1, . . . , `, there exists B with Time(B) ≈
Time(A) such that

|Adv2.i.1.a
A (λ)− Adv2.i.1.b

A (λ)| ≤ 2 · AdvDDHHNp2

B (λ).

Proof. We prove the lemma via a case analysis for i:

– Case i = 1: The two games are exactly identical due to the fact that ∆0,1 = 0, see
Lemma 1.

– Case i > 1: The lemma follows from the statement below implied by DDHHNp2

assumption w.r.t. wstart mod p2: for all ∆ ∈ ZN , we have

{hr12 , h
wstartr1
2 } ≈c {hr12 , h

−∆+wstartr1
2 }

given g1, g2, h1, h2, h3 and hwstart
2 where wstart, r1 ← ZN . Here we crucially rely on

the fact the ciphertext cti−1
x∗ [2] with i > 1 does not leak wstart mod p2. ut
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Lemma 9 (G2.i.1.b ≈c G2.i.1). For all i = 1, . . . , `, there exists B with Time(B) ≈
Time(A) such that

|Adv2.i.1.b
A (λ)− Adv2.i.1

A (λ)| ≤ 2(|Σ|+ 2) · AdvDDHHNp2

B (λ).

Proof. This follows from statements below implied by DDHHNp2
assumption w.r.t wσ,τ ,

z1−τ , wend mod p2 with σ ∈ Σ:

– For all ∆ ∈ ZN , we have

{hru2 , h
z1−τru
2 , hwendru

2 }u∈[Q] ≈c {hru2 , h
∆+z1−τru
2 , h∆+wendru

2 }u∈[Q]

given g1, g2, h1, h2, h3 and hz1−τ2 , hwend
2 where z1−τ , wend, ru ← ZN for all u ∈ [Q].

– For all σ ∈ Σ and ∆ ∈ ZN , we have

{hru2 , h
wσ,τru
2 }u∈[Q] ≈c {hru2 , h

−∆+wσ,τru
2 }u∈[Q]

given g1, g2, h1, h2, h3 and hwσ,τ2 where wσ,τ , ru ← ZN for u ∈ [Q].

Here we use the fact that cti−1
x∗ [2] with 1 ≤ i ≤ ` does not leakwσ,τ , z1−τ , wend mod p2

with σ ∈ Σ. ut

3.6 Switching ciphertexts: G2.i.1 7→ G2.i.2,G2.i.3 7→ G2.i.4

In this section, we prove the following two lemmas for G2.i.1 7→ G2.i.2 and G2.i.3 7→
G2.i.4, respectively. The proofs are similar, we give the details for the first proof and
only sketch the differences in the second proof.

Lemma 10 (G2.i.1 ≈c G2.i.2). For i = 1, . . . , `, there exists B with Time(B) ≈
Time(A) such that

|Adv2.i.1
A (λ)− Adv2.i.2

A (λ)| ≤ AdvSWITCH
B (λ).

Proof. This roughly means that

(mpk, cti−1
x∗ , ski−1,i

f ) ≈c (mpk, cti−1,i
x∗ , ski−1,i

f ).

Recall that τ = i mod 2. We prove the lemma using (si, zτ )-switching lemma (see
Lemma 2). On input

aux, Si, {hzτ r̄u · h∆̄2 , hr̄u}u∈[Q]

with aux = (g1, g2, h, h
zτ , gzτ1 , gzτ2 ) and

Si = gsi1 or Si = gsi1 · g
si
2

where zτ , si, ∆̄, r̄u ← ZN for all u ∈ [Q], the reduction proceeds as follows:

(Simulating mpk) We sample α,wstart, wend, z1−τ , wσ,τ , wσ,1−τ ← ZN for all σ ∈ Σ;
then we can trivially simulate mpk with terms g1, h, g

zτ
1 given out in aux.
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(Simulating key for f ) We want to simulate ski−1,i
f in the form

ski−1,i
f =


hd1+wstartr1 , hr1 ,

{ h−du+zτru · h∆i−1,u

2 , hdv+wσ,τru , hru }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1−τru , hdv+wσ,1−τru , hru}u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru , hru}u∈F


On input f , we build Fi−1,x∗ ⊆ [Q] from f , then sample du ← ZN for all u ∈ [Q] and
ru ← ZN for all u /∈ Fi−1,x∗ . We implicitly set

∆ = ∆̄ and ru = r̄u for all u ∈ Fi−1,x∗

and simulate ski−1,i
f as follows:

– By the definition of {∆i−1,u}u and our implicit setting, we can rewrite all terms in
the dashed boxes as:{

hru , h−du+zτru if u /∈ Fi−1,x∗

hr̄u , h−du+zτ r̄u · h∆̄2 if u ∈ Fi−1,x∗

Terms for u /∈ Fi−1,x∗ can be computed honestly from {ru, du}u/∈Fi−1,x∗ we
sampled and h, hzτ given in aux; terms for u ∈ Fi−1,x∗ can be computed from
{du}u∈Fi−1,x∗ we sampled and {hzτ r̄u · h∆̄2 , hr̄u}u∈Fi−1,x∗ given out in the input.

– All remaining terms can be trivially simulated using {ru}u/∈Fi−1,x∗ and {hru =
hr̄u}u∈Fi−1,x∗ as well as α, {du}u∈[Q], wstart, z1−τ , {wσ,τ , wσ,1−τ}σ∈Σ , wend we
sampled.

(Simulating ciphertext for x∗) We want to generate a ciphertext for x∗ which is dis-

tributed as either cti−1
x∗ or cti−1, i

x∗ :
gs0wstart

2 , gs02 , g
s0z1+ s1wx∗

1
,1

2 , gs12 , gs1z02 if i = 1

g
si−1wx∗

i−1
,1−τ

2 , g
si−1

2 , g
si−1zτ+ siwx∗

i
,τ

2 , gsi2 , g
siz1−τ
2 if 1 < i < `

g
s`−1wx∗

`−1
,1−¯̀

2 , g
s`−1

2 , g
s`−1z¯̀+ s`wx∗

`
,¯̀

2 , gs`2 , gs`wend
2 , e(gs`2 , h

α) if i = `

On input (m0,m1) ∈M×M, we sample β ← {0, 1} and sj ← ZN for all j 6= i, and
output the challenge ciphertext

(
. . . , (g1g2)s0z1 · S

wx∗1 ,1
1 , S1, S

z0
1 · g

s2wx∗2 ,0
1 , . . .

)
if i = 1(

. . . , (g1g2)si−1zτ · S
wx∗

i
,τ

i , Si, S
z1−τ
i · g

si+1wx∗
i+1

,1−τ

1 , . . .
)

if 1 < i < `(
. . . , (g1g2)s`−1z¯̀ · S

wx∗
`
,¯̀

` , S`, S
wend
` ,H(e(S`, h

α)) ·mβ

)
if i = `

Here we use the fact that the ciphertext contains no term with sizτ in the exponent
(cf. Remark 1). All omitted terms can be honestly computed from aux and exponents
{sj}j 6=i sampled by ourselves. Clearly, when Si = gsi1 , the output is identical to cti−1

x∗ ;
when Si = gsi1 · g

si
2 , the output is identical to cti−1,i

x∗ . This completes the proof. ut
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Lemma 11 (G2.i.3 ≈c G2.i.4). For i = 1, . . . , `, there exists B1,B2 with Time(B1),
Time(B2) ≈ Time(A) such that

|Adv2.i.3
A (λ)− Adv2.i.4

A (λ)| ≤ AdvSWITCH
B1

(λ) + 4(|Σ| − 1) · AdvDDHHNp2

B2
(λ).

Proof. This roughly means that

(mpk, cti−1,i
x∗ , skif ) ≈c (mpk, ctix∗ , sk

i
f )

We prove the lemma using (si−1, wx∗i ,τ )-transition lemma (see Lemma 2). Recall that
τ = i mod 2. The reduction is analogous to that for Lemma 10: On input

aux, Si−1, {hwx
∗
i
,τ r̄u · h∆̄2 , hr̄u}u∈[Q]

with aux = (g1, g2, h, h
wx∗

i
,τ , g

wx∗
i
,τ

1 , g
wx∗

i
,τ

2 ) and

Si−1 = g
si−1

1 or Si−1 = g
si−1

1 · gsi−1

2

where wx∗i ,τ , si−1, ∆̄, r̄u ← ZN for all u ∈ [Q], we sample α, wstart, wend, z0, z1,
wσ,1−τ ← ZN for all σ ∈ Σ, wσ,τ ← ZN for all σ 6= x∗i and sj ← ZN for all
j 6= i − 1; then we can simulate mpk and the challenge ciphertext analogously. The
main difference locates at the simulation of secret key.

(Simulating key for f ) We want to simulate skif in the form:

skif =



hd1+wstartr1 , hr1 ,

{h−du+zτru , h
dδ(u,x∗

i
)+wx∗

i
,τru · h

∆i,δ(u,x∗
i

)

2 , hru }u∈[Q],

{hdv+wσ,τru · h∆i,v2 }u∈[Q],σ 6=x∗i ,v=δ(u,σ)

{h−du+z1−τru , hdv+wσ,1−τru , hru}u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru , hru}u∈F


.

On input f , we sample du ← ZN for all u ∈ [Q] and implicitly set ∆ = ∆̄ as before
but we set {ru}u∈[Q] as follows:

– We build Fi,x∗ ⊆ [Q], sample ru ← ZN for all u such that δ(u, x∗i ) /∈ Fi,x∗ and
implicitly set ru = r̄u for all u such that δ(u, x∗i ) ∈ Fi,x∗ .

Then we simulate skif as follows:

– By the definition of {∆i,u}u and our implicit setting, we can rewrite all terms in
the dashed box as below{

hru , h
dδ(u,x∗

i
)+wx∗

i
,τru if δ(u, x∗i ) /∈ Fi,x∗

hr̄u , h
dδ(u,x∗

i
)+wx∗

i
,τ r̄u · h∆̄2 if δ(u, x∗i ) ∈ Fi,x∗

and simulate them from either {ru}δ(u,x∗i )/∈Fi,x∗ or {hwx∗i ,τ r̄u ·h∆̄2 , hr̄u}δ(u,x∗i )∈Fi,x∗
with the help of {du}u∈[Q] and aux. This is similar to the simulation of terms in the
dashed boxes in the proof for Lemma 10.
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– The terms in the gray box are computationally simulated in the following form

{hdv+wσ,τru ·���h
∆i,v
2 }u∈[Q],σ 6=x∗i ,v=δ(u,σ)

using {du}u∈[Q], {wσ,τ}σ 6=x∗i we sampled and {hru}u∈[Q] we have simulated. This
follows from DDHHNp2

assumption w.r.t wσ,τ mod p2 with σ 6= x∗i which implies
that: for all σ 6= x∗i and ∆ ∈ ZN , we have

{hru2 , h
wσ,τru
2 }u∈[Q] ≈c {hru2 , h

∆+wσ,τru
2 }u∈[Q]

given g1, g2, h1, h2, h3 and hwσ,τ2 where wσ,τ , ru ← ZN for all u ∈ [Q]. Here we
use the fact that both cti−1,i

x∗ and ctix∗ does not leak wσ,τ mod p2 with σ 6= x∗i .
– All remaining terms can be easily handled as in the proof of Lemma 10.

This completes the proof. ut

3.7 Switching key II: G2.i.2 7→ G2.i.3

In this section we prove the following lemma.

Lemma 12 (G2.i.2 ≈c G2.i.3). For all i = 1, . . . , `, there exists B1,B2 with Time(B1),
Time(B2) ≈ Time(A) such that

|Adv2.i.2
A (λ)− Adv2.i.3

A (λ)| ≤ AdvTRANS
B1

(λ) + 2(|Σ| − 1) · AdvDDHHNp2

B2
(λ).

Proof. Recall τ = i mod 2. By the Chinese Reminder Theorem, it suffices to focus on
the p2-components; concretely we prove

ski−1,i
f [2] =


hd1+wstartr1

2 , hr12 ,

{h
−du+ ∆i−1,u +zτru

2 , h
dδ(u,x∗

i
)+wx∗

i
,τru

2 , hru2 }u∈[Q],

{hdv+wσ,τru
2 }u∈[Q],σ 6=x∗i ,v=δ(u,σ),

{h−du+z1−τru
2 , h

dv+wσ,1−τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hr2}u∈F



≈c



hd1+wstartr1
2 , hr12 ,

{h−du+zτru
2 , h

dδ(u,x∗
i

)+ ∆i,δ(u,x∗
i

) +wx∗
i
,τru

2 , hru2 }u∈[Q],

{hdv+wσ,τru
2 }u∈[Q],σ 6=x∗i ,v=δ(u,σ),

{h−du+z1−τru
2 , h

dv+wσ,1−τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F



≈c



hd1+wstartr1
2 , hr12 ,

{h−du+zτru
2 , h

dδ(u,x∗
i

)+∆i,δ(u,x∗
i

)+wx∗
i
,τru

2 , hru2 }u∈[Q],

{h
dv+ ∆i,v +wσ,τru

2 }u∈[Q],σ 6=x∗i ,v=δ(u,σ),

{h−du+z1−τru
2 , h

dv+wσ,1−τru
2 , hru2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru2 }u∈F

 = skif [2]
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given g1, h1, h3 and

cti−1,i
x∗ [2] =


gs0wstart

2 , gs02 , g
s0z1+s1wx∗1 ,1
2 , gs12 , g

s1z0
2 if i = 1

g
si−1wx∗

i−1
,1−τ

2 , g
si−1

2 , g
si−1zτ+siwx∗

i
,τ

2 , gsi2 , g
siz1−τ
2 if 1 < i < `

g
s`−1wx∗

`−1
,1−¯̀

2 , g
s`−1

2 , g
s`−1z¯̀+s`wx∗

`
,¯̀

2 , gs`2 , g
s`wend
2 , e(gs`2 , h

α
2 ) if i = `

Here terms g1, h1, h3 allow us to simulate the p1- and p3-components of cti−1,i
x∗ and

ski−1,i
f (or skif ) as well as mpk, which is sufficient for proving the lemma. We then

proceed as follows:

– The first ≈c relies on (zτ , wx∗i ,τ )-transition lemma (see Lemma 3). On input

aux, si−1zτ + siwx∗i ,τ , {h
∆̂0+zτ r̄u
2 , h

∆̂1+wx∗
i
,τ r̄u

2 , hr̄u2 }u∈[Q]

with aux = (g1, g2, h1, h2, h3, si−1, si, h
zτ
2 , h

wx∗
i
,τ

2 ) where zτ , wx∗i ,τ , r̄u ← ZN
for all u ∈ [Q] and

(∆̂0, ∆̂1) ∈ {(si∆̄, 0), (0, si−1∆̄)} with ∆̄← ZN ,

we simulate p2-components of the ciphertext and keys as follows:

(Simulating ciphertext) We sample α,wstart, wend, z1−τ , wσ,1−τ ← ZN for all
σ ∈ Σ, and wσ,τ ← ZN for σ 6= x∗i . It is straight-forward to simulate cti−1,i

x∗ [2]
from g2, si−1, si, si−1zτ + siwx∗i ,τ . This relies on the fact that neither zτ mod p2

nor wx∗i ,τ mod p2 appear elsewhere in cti−1,i
x∗ [2].

(Simulating key for f ) We want to generate a challenge key which is either
ski−1,i
f [2] on the LHS or the key on the RHS depending on (∆̂0, ∆̂1). On input

f , we build Fi−1,x∗ ⊆ [Q] from f and sample du ← ZN for all u ∈ [Q] and
ru ← ZN for all u /∈ Fi−1,x∗ . We implicitly set

∆ =

{
si∆̄ for the LHS
si−1∆̄ for the RHS

and ru = r̄u for all u ∈ Fi−1,x∗

and proceed as follows:
◦ We rewrite all terms in the second row of keys on the two sides in terms of
si−1, si, ∆̄, r̄u:

LHSrow 2 =

h
−du+ si∆̄ +zτ r̄u
2 , h

dδ(u,x∗
i

)+wx∗
i
,τ r̄u

2 , hr̄u2 if u ∈ Fi−1,x∗

h−du+zτru
2 , h

dδ(u,x∗
i

)+wx∗
i
,τru

2 , hru2 if u /∈ Fi−1,x∗

RHSrow 2 =

h−du+zτ r̄u
2 , h

dδ(u,x∗
i

)+ si−1∆̄ +wx∗
i
,τ r̄u

2 , hr̄u2 if δ(u, x∗i ) ∈ Fi,x∗
h−du+zτru

2 , h
dδ(u,x∗

i
)+wx∗

i
,τru

2 , hru2 if δ(u, x∗i ) /∈ Fi,x∗
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and generate the second row of the challenge key ash
−du+ ∆̂0 +zτ r̄u
2 , h

dδ(u,x∗
i

)+ ∆̂1 +wx∗
i
,τ r̄u

2 , hr̄u2 if u ∈ Fi−1,x∗

h−du+zτru
2 , h

dδ(u,x∗
i

)+wx∗
i
,τru

2 , hru2 if u /∈ Fi−1,x∗

where, with {du}u∈[Q], all terms for u ∈ Fi−1,x∗ can be built from terms

{h∆̂0+zτ r̄u
2 , h

∆̂1+wx∗
i
,τ r̄u

2 , hr̄u2 }u∈Fi−1,x∗ provided in the input; all terms for

u /∈ Fi−1,x∗ can be built from h2, h
zτ
2 , h

wx∗
i
,τ

2 in aux and {ru}u/∈Fi−1,x∗ we
sampled.

◦ We can trivially generate all remaining terms in the challenge key which are
identical to ski−1,i

f [2] (and also the key on the RHS) using {ru}u/∈Fi−1,x∗ and
{hru2 = hr̄u2 }u∈Fi−1,x∗ as well as α, wstart, z1−τ , {wσ,τ}σ 6=x∗i , {wσ,1−τ}σ∈Σ ,
wend.

Observe that,
◦ when (∆̂0, ∆̂1) = (si∆̄, 0), the output distribution is identical to the LHS;
◦ when (∆̂0, ∆̂1) = (0, si−1∆̄), the output distribution is identical to the RHS;

here we rely on the fact that u ∈ Fi−1,x∗ ⇐⇒ δ(u, x∗i ) ∈ Fi,x∗ for all u ∈ [Q],
see Lemma 1.

This is sufficient for the proof of the first ≈c.
– The second≈c follows from DDHHNp2

assumption w.r.t. wσ,τ mod p2 with σ 6= x∗i ,
which implies that: for all σ 6= x∗i and ∆ ∈ ZN , we have{

hru2 , h
wσ,τru
2

}
u∈[Q]

≈c
{
hru2 , h

∆+wσ,τru
2

}
u∈[Q]

given g1, g2, h1, h2, h3 and hwσ,τ2 where wσ,τ , ru ← ZN for all u ∈ [Q]. This relies
on the fact that cti−1,i

x∗ [2] does not leak wσ,τ mod p2 with σ 6= x∗i .

Combining the two steps proves the lemma. ut

3.8 Finalize: G2.`.4 7→ G3

We first describe the following lemma. The proof is analogous to the proof for Lemma 6
and we defer more details to the full paper due to the lack of space.

Lemma 13 (G2.`.4 ≈ G3). There exists B with Time(B) ≈ Time(A) such that

|Adv2.`.4
A (λ)− Adv3

A(λ)| ≤ 2(|Σ|+ 3) · AdvDDHHNp2

B (λ).

Finally we prove the last lemma evaluating adversary’s advantage in G3. Combining
this lemma with Lemma 2,3 and Lemma 4,5,6,10,11,12,13 proves Theorem 1.

Lemma 14 (Advantage in G3). For all A, we have Adv3
A(λ) ≈ 0.

Proof. The definition of {∆`,u}u∈F and F`,x∗ = F imply that sk∗f only leak α +
∆ mod p2. This means that secret keys perfectly hide α mod p2. Therefore, the term
e(g2, h)s`α in ct`x∗ is independently and uniformly distributed and message mβ is
statistically hidden by H(e(g1, h)s`αe(g2, h)s`α) by the leftover hash lemma. Hence,
Adv3

A(λ) ≈ 0. ut
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3.9 Towards Many-key Setting

Our proof for the one-key setting can be extended to the many-key setting in a straight-
forward way. Without loss of generality, we assume that all key queries f1, . . . , fq share
the same state space [Q] and alphabet Σ, and extend notations δ, F and Fi,x∗ , du, ru,
∆i,u for fκ with an additional subscript κ. Then we sketch the changes that are needed
to handle the many-key setting:

Game sequence. We still employ the game sequence described in Section 3.2 except

– secret keys in G2.i.0, G2.i.1, G2.i.3 and G3 are ski−1
fκ

, ski−1,i
fκ

, skifκ and sk∗fκ , respec-
tively, for all κ ∈ [q];

– in each game, {∆i,u,κ}u∈[Q] for all κ ∈ [q] are defined using the same ∆← ZN .

Useful lemmas. All lemmas in Section 3.3 can be trivially extended to the many-key
setting; in fact, the (s, w)-switching lemma (Lemma 2) and (z, w)-transition lemma
(Lemma 3) hold when we replace index u ∈ [Q] with (u, κ) ∈ [Q]× [q].

Lemmas and Proofs. Lemma 4,5,6,10,11,12,13,14 all hold in the many-key setting:

– The proof for Lemma 4 can be trivially extended to the many-key setting.
– The proofs for Lemma 5,6,13 can work in the many-key setting due to the fact that
◦ {du,κ}u∈[Q] are fresh for each κ ∈ [q]; this ensures that all changes of variables

still hold with multiple keys;
◦ {ru,κ}u∈[Q] are fresh for each κ ∈ [q]; this ensures that all DDH-based argu-

ments still hold with multiple keys.
– The proofs for Lemma 10,11,12 can be extended using the many-key version of

(s, w)-switching lemma or (z, w)-transition lemma; here we also need the fact that
{ru,κ}u∈[Q] are fresh for each κ ∈ [q].

– To prove Lemma 14 with many keys, we argue that all secret keys sk∗f1
, . . . , sk∗fq

only leak α+∆ mod p2.
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