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Abstract. We consider the problem of constructing leakage-resilient
circuit compilers that are secure against global leakage functions with
bounded output length. By global, we mean that the leakage can depend
on all circuit wires and output a low-complexity function (represented as
a multi-output Boolean circuit) applied on these wires. In this work, we
design compilers both in the stateless (a.k.a. single-shot leakage) setting
and the stateful (a.k.a. continuous leakage) setting that are uncondition-
ally secure against AC0 leakage and similar low-complexity classes.

In the stateless case, we show that the original private circuits construc-
tion of Ishai, Sahai, and Wagner (Crypto 2003) is actually secure against
AC0 leakage. In the stateful case, we modify the construction of Roth-
blum (Crypto 2012), obtaining a simple construction with unconditional
security. Prior works that designed leakage-resilient circuit compilers
against AC0 leakage had to rely either on secure hardware components
(Faust et al., Eurocrypt 2010, Miles-Viola, STOC 2013) or on (unproven)
complexity-theoretic assumptions (Rothblum, Crypto 2012).

1 Introduction

There is a rich body of work on protecting computations that involve sensi-
tive data against partial information leakage. This line of work is motivated by
practical side-channel attacks that use physical measurements such as running
time [36] or power consumption [37] to compromise secret keys embedded in
cryptographic hardware or software. The recent high-profile Meltdown, Spec-
tre, and Foreshadow attacks [35, 38, 13] demonstrated the vulnerability of most
modern computer systems to this kind of attacks.

A clean theoretical model that captures the goal of protecting general com-
putations against leakage is that of a leakage resilient circuit compiler (LRCC).
Here the computation is modeled as a logical circuit, and the leakage as a function
applying to the internal wires of the circuit. The goal of a LRCC is to randomize
the computation of a given circuit in a way that resists broad classes of leakage
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while at the same time respecting the input-output relation of the original cir-
cuit. The problem of LRCC has many flavors, depending on the computational
model and the type of leakage.

A crude form of LRCC was already given in the 1980s by the seminal works
on secure multiparty computation [44, 27, 6, 15]. Such protocols distribute com-
putations across multiple parties in a way that resists leakage from a bounded
number of parties. The work of Ishai, Sahai, and Wagner (ISW) [32] initiated a
more explicit and refined study of LRCC at the circuit level, but still focused on
the case of localized “probing attack” leakage that applies to a bounded number
of circuit wires. In spite of its restricted nature, this leakage model turned out
to be quite relevant to practical defenses against side-channel attacks. This is
due in part to the simplicity of the constructions and the ability of the same
leakage model to accommodate more realistic noisy leakage [23, 19] that obtains
an independent noisy measurement of every wire in the circuit. LRCCs in this
model have been the subject of a large body of theoretical and applied work
(see, e.g., [42, 1, 17, 16, 21, 4, 5, 22, 3] and references therein).

Originating from the works of Micali and Reyzin [39] and Faust et al.
[23, 24], another line of work went in the direction of accommodating more gen-
eral types of leakage classes that apply restricted types of functions to all wires
in the circuit. In particular, Faust et al. [23] presented a variant of the ISW com-
piler that employs small leak-free hardware components to protect against any
class of “computationally simple” leakage functions for which strong average-
case lower bounds are known. The most prominent example is that of AC0 leak-
age, computed by constant-depth polynomial-size circuits with unbounded fan-
in AND/OR/NOT gates and a bounded number of outputs. Subsequent works
along this line studied LRCCs for different classes of global leakage under a
variety of trusted hardware or setups and computational intractability assump-
tions [28, 34, 25, 12, 8, 20, 43, 29, 11, 41, 9, 40, 18, 30, 26, 7].

Constant-depth leakage. The focus of this work is mainly on the class of AC0

leakage and related constant-depth complexity classes, such as AC0 augmented
with additional mod-p gates. This type of leakage strictly generalizes the ISW
leakage model, which as discussed above is relevant to many realistic scenarios.
Moreover, while the class AC0 does not capture some natural leakage functions,
such as ones that take weighted sums of many wire values, it does apply to a
wide variety of natural attacks. For instance, suppose that a system crashes if
a secret value represented by a wire bundle is in a certain forbidden range, and
there are many such wire bundles that may lead to the system crashing. Then,
whether the system crashes at a given moment is a single bit of depth-3 AC0

leakage that can be observed by the outside world. One can similarly cast in
this class other types of natural leakage functions that take the conjunction,
disjunction, maximum, or minimum of values that can themselves be computed
by low-depth circuits.

Stateless vs. stateful LRCC. Before describing our contributions, it is instructive
to present the current state of the art in a more precise way. The ISW paper
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introduced two variants of the LRCC problem: a simpler stateless variant and a
more complex stateful variant. The stateless variant captures standard computa-
tions that map a secret input to a secret or public output, where the computation
is subject to a single round of one-shot leakage. For instance, this scenario can
apply to zero-knowledge authentication by a hardware device, or computations
performed by payment terminals and access control readers (see [26] for further
discussion). In a more theoretical context, stateless LRCCs have also been ap-
plied towards constructing different zero-knowledge flavors of probabilistically
checkable proofs [33]. The stateful variant of LRCCs captures a system (such as
a personal computer or an IoT device) with persistent memory that may store
secrets. Users interacting with this system can feed it with a sequence of inputs
and observe the resulting outputs. For instance, think of an encryption device
that stores a secret encryption key, takes a plaintext as input and produces a
ciphertext as output. Stateful LRCCs may be subject to continuous leakage that
applies a different leakage function in each round. To help defend against this
kind of leakage, they are allowed to refresh their internal state.

More formally, in the stateless variant of LRCC, the goal is to compile a (de-

terministic, stateless) circuit C into a randomized circuit Ĉ, such that together
with leak-free randomized input encoder Enc and output decoder Dec we get
the following correctness and security guarantees: (1) For any input x, we have

Dec(Ĉ(Enc(x))) = C(x); (2) For any admissible leakage function ` ∈ L, applying

` to the internal wires of the computation Ĉ(Enc(x)) reveals essentially nothing
about x. To rule out a trivial solution in which the entire computation is carried
out by the leak-free components Enc and Dec, these components are required to
be universal in the sense that they depend only on the input and output size
of C and not on C itself. The ISW construction protects computations against
leakage that involves a bounded number of wire-probes. That is, the leakage `
can output the values of t wires in Ĉ. Here we are interested in a bigger class L
that includes constant-depth circuits with t bits of output.

The stateful variant of LRCC considers the more challenging goal of pro-
tecting computations against continual leakage. Here the ideal functionality is
specified by a deterministic, stateful circuit C, mapping the current input and
state to the current output and the next state. The input and output are consid-
ered to be public whereas the state is secret. The goal, as before, is to transform
C into a leakage-resilient randomized circuit Ĉ. The circuit Ĉ is initialized with
some randomized encoding ŝ0 of the initial secret state s0 of C. The computa-
tion can then proceed in a virtually unlimited number of rounds, where in each
round Ĉ receives an input, produces an output, and replaces the old encoding
of the secret state by a fresh encoding of a new state. The correctness goal is to
ensure that Ĉ[ŝ0] has the same input-output functionality as C[s0]. The security
goal is defined again with respect to a class L of leakage functions, where the
adversary may adaptively choose a different function ` ∈ L in each round. The
security goal is to ensure that whatever the adversary learns by interacting with
Ĉ[ŝ0] and by additionally observing the leakage, it can simulate by interacting
with C[s0] without obtaining any leakage.
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State of the art. Existing results of LRCCs for AC0 and similar constant-depth
leakage classes leave a number of basic questions open. In the stateful case, the
works of Faust et al. [23] and Miles and Viola [41] yield constructions that require
small but leak-free trusted hardware components, whose number is linear in the
size of C and whose size grows with a statistical security parameter. Alterna-
tively, Rothblum [43] showed how to eliminate the trusted hardware components,
but at the cost of further complicating the construction and relying on an un-
proven complexity theoretic conjecture (the so-called “IPPP conjecture”) that
remains open to date. In the stateless case, the trusted hardware components in
the constructions of [23, 41] can be replaced by correlated random input bits that
are fed directly into the stateless circuit in addition to the input x [41, 10, 26].

However, this requires the user of the leakage-resilient circuit Ĉ to work at least
as hard as computing C rather than simply feed Ĉ with its input.

We note that unlike the case of security against noisy leakage, which is im-
plied by security against probing attacks [19], this is not the case for security
against AC0 leakage. Indeed, there are pairs of distributions over {0, 1}N that
cannot be distinguished by probing any N0.99 of their bits, and yet they can be
distinguished by AC0 circuits with one bit of output [10, 14]. In the stateful case,
an additional difficulty stems from the need to prove simulation-based security
rather than mere indistinguishability by AC0 circuits. The efficient simulation
requirement poses a major challenge in some related contexts [33].

1.1 Our Contribution

In this work, we improve the above state of the art in both the stateless and
stateful case by proving two main unconditional results.

In the stateless case (with one-shot leakage), we show that the original ISW
construction [32], which is quite simple and concretely efficient, is actually uncon-
ditionally secure against a much wider class of low-complexity leakage functions
that includes AC0. We also show similar results for leakage computed by AC0

circuits with mod-p gates, for a prime modulus p > 2, though in this case our
security only follows from standard complexity-theoretic conjectures. In contrast
to previous constructions from [41, 10, 26], here the circuit Ĉ directly computes
on the input x and does not require additional correlated random inputs or
trusted leak-free hardware. This construction is also simpler and more efficient
than the (conditional) construction from [43].

In the stateful case (with continuous leakage), we modify the previous con-
struction of Rothblum [43], obtaining the first construction that unconditionally
resists AC0 leakage without relying on trusted leak-free hardware.

At a higher level of generality, both of our constructions satisfy a composition
theorem of the following form (Theorems 4 and 5): For any given class of leakage
functions L, if parity has low correlation with L composed with NC0 (namely,
functions where each output depends on a constant number of inputs), then our
constructions are secure against leakage from L. For L = NC0 we recover the
ISW result, for L = AC0 we obtain our main result, and for L = AC0[mod p]
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we get the extension to constant-depth circuits with mod p gates, assuming this
class has low correlation with parities.

Here is a formal statement of the results in these cases of interest. For the
relevant definitions see Section 3. The corresponding constructions are described
in Sections 4 and 5.

Corollary 1. The ISW compiler when applied to circuits of size S and input
length k is a kε-leakage resilient stateless circuit compiler against the following
classes, where n is the security parameter:

1. Functions that depend on the values of at most (n− 1)/2 wires, with ε = 0,

2. Unbounded fan-in AND/OR/NOT circuits of size s−O(n2S), depth d, and

cdn/(log s)d outputs, with ε = 2−cdn/(log s)d ,

3. Unbounded fan-in AND/OR/NOT/MODp circuits of size s−O(n2S), depth
d, and m outputs, assuming n-bit random parity-0 and parity-1 strings are
2 · 3−mε-indistinguishable by such circuits of size s and depth d+ 1 (and one
output).

Here cd is a constant that depends on d only. Part 1 recovers the stateless
security result of Ishai, Sahai, and Wagner. Parts 2 and 3 are new.

Corollary 2. There exists a construction of LRCC for a class of stateful circuits
of size S that is O(εT (S + n))-leakage resilient stateful circuit compiler against
the following leakage classes, where T , S, and n are the number of rounds of the
leakage experiment, the circuit size, and the security parameter, respectively:

1. Unbounded fan-in AND/OR/NOT circuits of size 2n
O(1/d) − O(n3S), depth

d, and nO(1/d) outputs, with ε = 2−n
O(1/d)

.

2. Unbounded fan-in AND/OR/NOT/MODp circuits of size s−O(n3S), depth
d, and m outputs, assuming n-bit random parity-0 and parity-1 strings are
2 · 3−mε-indistinguishable by such circuits of size O(2ms) and depth d + 1
(and one output).

2 Our Techniques

In this section, we give a high-level overview of our techniques for constructing a
leakage resilient compiler that is unconditionally secure against AC0 leakage. We
start with a brief overview of the prior approaches and highlight the limitations
of these approaches in obtaining an unconditional result. Next, in Section 2.1,
we give an overview of the proof that the original private circuit construction of
Ishai, Sahai and Wagner [32] is secure against AC0 leakage in the stateless a.k.a.
single-shot leakage setting. Finally, in Section 2.2, we discuss our construction
of a leakage resilient circuit compiler in the stateful a.k.a. continuous leakage
setting.
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Prior Approaches. All the prior works [32, 23, 43, 41, 40] (including ours) follow
the same high-level blue print in constructing a leakage resilient circuit compiler.
Each wire in the original circuit C is transformed into a “bundle” of n-wires in the
compiled circuit Ĉ such that the bundle encodes the bit carried by the wire (using
a suitable encoding procedure). Few examples of the encoding procedures used
in the prior work are the (i) parity encoding [32, 23, 43] i.e., the parity of the wire
bundle is equal to the value carried by the wire and (ii) group encoding [41, 40]
i.e., each element in the bundle is represented as an element of an alternating
group and the product of the group elements encodes the bit carried by the
wire. For concreteness, let us assume that the wires are encoded using the parity
encoding. The next step in these constructions is to implement the addition and
the multiplication gates over the wire bundles. That is, every gate g ∈ {+, ∗}
in the original circuit C, is transformed into a gadget ĝ that takes in 2 wire
bundles, say a,b ∈ {0, 1}n and outputs a wire bundle c such that parity of c

is equal to g(⊕a,⊕b). Thus, evaluating these gate gadgets in Ĉ will eventually
lead us to the output wire bundles which are finally decoded by computing their
parity. This construction ensures correctness i.e., the compiled circuit computes
the same function as that of the original circuit. However, to prove security,
these works required an additional refreshing gadget (denoted as Refresh). The
refreshing gadget takes in a wire bundle x and outputs a random bundle y
conditioned on ⊕y = ⊕x. In other words, this gadget refreshes the randomness
used in the encoding. To get a secure construction, the implementation of each
gate gadget ĝ were augmented in such a way that the output wire bundle, say
c is sent through the Refresh gadget and the resultant wire bundle is the new
output. At an intuitive level, this leads to a secure construction as the Refresh
gadget ensures that the randomness used in encoding the output of each gate is
refreshed and hence, the leakage that has been accumulated as a result of the
ĝ computation does not propagate to the higher layers. This allowed the prior
works to argue security against specific leakage classes such as AC0 circuits.
However, the task of implementing this refreshing gadget is highly challenging
and this is the primary reason that the prior works had to rely on secure hardware
components [23, 41, 40] or computational assumptions [43]. Specifically, Faust
et al. used a secure hardware component to generate a random vector z whose
parity is 0 and implemented the Refresh gadget as y = x + z. This ensures that
y has the same parity as that of x and additionally, it is distributed randomly
conditioned on its parity being fixed. Rothblum removed the need of secure
hardware components by generating random encodings of 0 using a more involved
procedure (that will be explained later) but had to rely on a computational
assumption in the proof of security. In the next two subsections, we discuss our
approach of dealing with the problem of generating a random encoding of 0, first
in the stateless setting and then in the more complicated stateful setting.

2.1 Unconditional Result in the Stateless Setting

The key insight behind our unconditional result in the stateless setting is that
refreshing the output of every gate gadget is actually an overkill and a far weaker
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property called as “local sampleability” is sufficient. Before we go into the details,
let us first give the definition of a local sampler. A circuit Samp(x; r) (x ∈ {0, 1}n
is the regular input and r is the randomness) is said to be a 2-local sampler if
each output bit of the circuit depends at most two bits of the regular input x.
It can be easily seen that for every r, Samp(PAR(n, 0); r) is indistinguishable to
Samp(PAR(n, 1); r) by AC0 circuits where PAR(n, b) is an uniform distribution
over n-bit strings whose parity is b.

The main technical lemma which allows us to prove security in the stateless
setting is the following. Fix the encodings of all input bits except one, say x and
let Ĉ be the compiled circuit in the construction of Ishai, Sahai and Wagner [32].

Then, the distribution of the wires in Ĉ is identical to the output of a 2-local
sampler Samp(x; r) for an uniformly chosen r. This allows us to prove an uncon-
ditional result as we can go over a sequence of hybrids such that in each hybrid,
we fix the encodings of all bits except one (say, x), use Samp(x; r) to generate

the distribution of all the wires in Ĉ and then conclude that the wire distribu-
tion is indistinguishable to AC0 circuits when x encodes the bit 0 or 1. We stress
that unlike the prior unconditional results in the stateless setting [23, 41], our
construction does not require a source of correlated randomness generated in a
leak-free manner. We also remark that in the prior results, the number of bits of
this correlated randomness string is very large and in the worst case, could be
as large as the circuit itself.

Before we delve into the details of the proof of the main lemma, let us first
recall the construction of Ishai, Sahai and Wagner [32]. As mentioned before, in
this construction, each wire in the original circuit is transformed into a bundle
of n wires such that the parity of this wire bundle is equal to the value carried
by the wire. Given this encoding, implementing the addition gadget is simple.
It takes in two wire bundles, a,b ∈ {0, 1}n and outputs c = a + b. We give the
details of the multiplication gadget below.

Construction 1 On input two wire bundles a and b, the multiplication gadget
does the following:

1. Define the matrix M ∈ {0, 1}n×n such that Mi,j = aibj.
2. For every 1 ≤ i, j ≤ n and i < j, choose a random bit zi,j.
3. For every 1 ≤ i, j ≤ n and i < j, set zj,i = zi,j ⊕ (Mj,i ⊕Mi,j).
4. For every 1 ≤ i ≤ n, set ci = (⊕j 6=izi,j)⊕Mi,i.
5. Output c = (c1, . . . , cn).

Correctness of both the gadgets is straightforward to verify. Let us fix the
encodings of all the input bits except one, say x. To prove the main lemma, we
need to show that the wire distribution in the compiled circuit conditioned on
this fixing is identical to the output of a 2-local sampler.

Proof Overview. We prove this lemma via an inductive argument. We first prove
that the distribution of the internal wires in an addition and a multiplication
gate is identical to a locally sampleable distribution. We then use induction to
prove that the wire assignment in the entire circuit is locally sampleable.
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Local sampleability of addition gadget is trivial and the main challenge is to
show local sampleability of multiplication gadget. For simplicity, let us consider
a multiplication gate at the first layer of the circuit where one input is x (which
is the non-fixed encoding) and the other input is b (for some fixed b). The other
cases are dealt in section 4 of our paper. We need to show that for any b, there
exists a 2-local sampler Sampmult(x; z′) such that the output of the sampler (for
an uniform z′) is identical to the distribution of the internal wire assignments of
a multiplication gate on input x,b.

At first inspection, it appears that the internal wire assignments of the mul-
tiplication gadget are “non-local.” Specifically, consider the wires in the compu-
tation of cn; it depends on every bit of x. So the main question is how do we
prove that the wires are 2-locally sampleable? The key insight is that while the
internal wires of the multiplication gadget could be non-local, it is distributed
identically to a 2-locally sampleable distribution. So, we need to demonstrate a
2-locally sampleable distribution (which is the output of a Sampmult) and argue
that this distribution is identical to the distribution of the internal wires of the
multiplication gadget. We now give details of such a sampler Sampmult. On input
x and uniform randomness z′, Sampmult (that depends on b) does the following:

1. Define the matrix M ∈ {0, 1}n×n where the (i, j)-th element Mi,j = xi · bj .
2. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, choose a random bit z′i,j and

define zi,j = z′i,j ⊕Mi,j .

3. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, set zj,i = zi,j ⊕ (Mj,i ⊕Mi,j).
4. For every 1 ≤ i ≤ n, set c′i = (⊕j 6=izi,j)⊕Mi,i.
5. Output M, {zi,j}i<j , all the wires in the computation of {zi,j}i>j and the

computation of {c′i}i∈[n] along with the vector c′ = (c′1, . . . , c
′
n) (which are

the output wires).

The only difference between the wire assignments output by Sampmult and the
actual wire assignments in multiplication gate is how {zi,j}i<j is set. Note that
if z′ is chosen uniformly at random then the distribution of {zi,j}i<j is identical
to the uniform distribution. Thus, the wire assignment output by Sampmult is
identical to the actual wire assignment in the implementation of the multiplica-
tion gate for a randomly chosen z. To see the 2-local sampleability of Sampmult,
observe that for any i < j, zi,j depends only on xi. Furthermore, for any i > j,
it can be observed that zi,j = z′j,i ⊕Mi,j depends on only xi and wires used
in computing zi,j is a 2-local function in x. These two observations imply that
for every i ∈ [n], computing c′i depends only on xi and hence the wires in this
computation are locally sampleable. This shows that the output of Sampmult is
a 2-local distribution. Combining this with the inductive argument allows us to
obtain an unconditional result in the stateless setting.

2.2 Unconditional Result in the Stateful Setting

In this subsection, we give a high level overview of our construction of a leakage-
resilient circuit compiler against AC0 circuits in the stateful setting that has
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unconditional security. As mentioned before, the prior results in this setting
either relied on secure hardware components or on computational assumptions.

Main Challenges. In the stateful setting, there are two key challenges that we
need to overcome. The first challenge is dealing with absence of a trusted de-
coder. In the stateless setting, a trusted decoder was available and this allowed
the simulator to “cheat” by hardwiring the correct output in the trusted de-
coder such that even when the circuit is run on some junk inputs, the output
obtained is consistent with the actual output. However, in the stateful case, no
such trusted decoder is available and this makes the task of simulation much
harder. In this case, the simulator must somehow incorporate the correct output
(without knowing the actual input) in the wire distribution such that a leakage
function cannot distinguish this from the real word distribution. When consid-
ering leakage classes such as AC0 functions, this task is even more challenging
as these functions can check local consistency of the gates. The second chal-
lenge in the stateful setting is the necessity to refresh the randomness. Unlike
the stateless setting where we observed that local sampleability is sufficient, in
the stateful case, we need to additionally refresh the randomness used in the
encoding procedure. To see why this is the case, consider a stateful circuit that
has a PRF key k as its state and computes PRF(k, x) on a regular input x. If
the randomness of the key k is not refreshed across multiple queries, then in
O(n|k|) leakage queries, the entire key can be successfully retrieved by leakage
functions that output a single bit. Thus, we need to refresh the randomness of
the state bundles across queries and for technical reasons, we also need to refresh
the randomness of the output of every gate.

Rothblum’s Construction. The starting point of our construction is the work
of Rothblum [43] who showed that under a complexity theoretic assumption
referred to as “Inner Products with Pre-Processing” (IPPP)4, there exists a
construction of a leakage resilient circuit compiler against AC0 in the stateful
setting. Unfortunately, this assumption is unproven and even the state of highly
restricted versions of the assumption such as allowing only linear functions in the
pre-processing phase [2] is far from being resolved. In the rest of this subsection,
we first give a high level overview of the construction of Rothblum, indicate why
the IPPP assumption is needed, and then discuss our approach of removing the
need for the assumption.

Recall that in the stateful setting, the output of every gate is refreshed and
thus, the first step is to implement the Refresh gadget. This Refresh gadget in fact
helps in overcoming both the challenges that we discussed earlier. Firstly, it helps
in refreshing the randomness and thus, helps in overcoming the second challenge.
To overcome the first challenge, we additionally send the wire bundles coming

4 Let D′0, D
′
1 be uniform distributions over 2n-bit strings such that for every (x,y) ∈

D′b, < x,y >= b. IPPP states that it is hard for AC0 circuits to distinguish between
D′0 and D′1 even when given f(x) and g(y) for arbitrary polynomial-time computable
functions f, g.
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out of the output gate through the Refresh gadget and compute the parity of the
resultant output. In the ideal world distribution, the simulator will change the
internal workings of the Refresh gadget such that instead of only refreshing the
randomness, this gadget could also switch the parity when needed. This helps
the simulator to hardcode the correct output of the circuit even when it is run
with some junk input.

Now, to implement the Refresh gadget, it is sufficient to generate a random
encoding of the bit 0. The main technical contribution in Rothblum’s work is a
method to securely generate a random encoding of 0 without the use of hard-
ware components. This is done as follows. A generator matrix G ∈ {0, 1}n×2n is
chosen uniformly at random subject to the parity of each column of G being 0.
This generator matrix is part of the state of the compiled circuit Ĉ. Whenever
a random encoding of 0 is required, choose r uniformly at random from {0, 1}2n
and compute G ·r. It is straightforward to see that the resultant vector is statis-
tically close to a random vector whose parity is 0. This vector is then used in the
Refresh gadget. In Rothblum’s work, the circuit for computing the matrix-vector
product G · r is the trivial O(n2) sized circuit (denoted by CMV).

While the above idea may seem extremely simple at first sight, the proof
that this is indeed secure in the presence of AC0 leakage is highly involved and
requires the use of the (unproven) IPPP assumption. Intuitively, the IPPP as-
sumption is used in the proof to generate the assignment to every wire in CMV

by an AC0 circuit. To see this, consider the following two hybrids in the proof
of security from Rothblum’s work. In the first hybrid, G, r are sampled as in
the construction i.e., G is chosen randomly subject to its column parity being 0
and r is chosen uniformly at random. In the second hybrid, G, r are both chosen
uniformly at random from their respective domains. Just given (G, r), these two
distributions are clearly indistinguishable to an AC0 function. However, to make
sure that these hybrids are indistinguishable to an AC0 leakage function, one
needs to additionally generate, in constant depth, all the intermediate wire val-
ues in CMV when given G and r as inputs. Rothblum showed that this is indeed
possible with polynomial time, independent pre-processing on G and r and that
is why IPPP assumption is needed.

Our Approach. In this work, we remove the need for the IPPP assumption by
designing a new gadget called “RandZero” that generates a random encoding
of 0. Crucially, unlike the circuit CMV, it has a special property that its wire
assignments are locally sampleable. This allows us to get rid of the pre-processing
phase in Rothblum’s paper and obtain an unconditionally secure construction.
We now give more details of our approach.

Like in Rothblum’s construction, we choose a generator matrix G← {0, 1}n×n
uniformly at random subject to its column parity being 0 and make it part of the
state. When we have to generate a random encoding of 0, we choose r uniformly
at random and compute RandZero(G, r). Below, we give the description of this
gadget.
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Construction 2 Given a matrix G ∈ {0, 1}n×n and a vector r ∈ {0, 1}n,
RandZero does the following:

1. Define the matrix M ∈ {0, 1}n×n where the (i, j)-th element Mi,j = Gi,jrj.
2. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, choose a random bit zi,j.
3. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, set zj,i = (zi,j ⊕Mj,i)⊕Mi,j.
4. For every 1 ≤ i ≤ n, compute ci = (⊕j 6=izi,j)⊕Mi,i.
5. Output c = (c1, . . . , cn).

We first make a couple of simple observations. The first observation is that the
parity of the output c is same as that of the vector G ·r. The second observation
is that the distribution of c is uniformly random subject to its parity being equal
to parity of the vector G · r. Thus, when the column parity of G is 0, we can
use the output of this gadget to refresh the randomness.

Notice that the above gadget has a lot of similarities with the multiplication
gadget in the work of Ishai, Sahai and Wagner [32] (described in Construction 1).
In fact, the only difference is how the matrix M is defined. We thus, extend the
local sampleability property that we proved for Construction 1 to this construc-
tion. In the actual proof of security, we go over a sequence of hybrids (similar
to the hybrid sequence used in Rothblum’s work) and show that each neigh-
boring hybrids in the sequence are indistinguishable to AC0 leakage using the
local sampleability property of our RandZero gadget. This allows us to prove an
unconditional result. See Section 5 for the details.

3 Preliminaries

Notation We will denote vectors by bold lowercase letters (e.g., x) and matrices
with bold uppercase letters (e.g., M). We will denote the i-th entry of a vector
x by xi and the (i, j)-th entry of the matrix M by Mi,j . We use ek ∈ {0, 1}n for
the unit vector whose k-th coordinate is 1 and the rest of the coordinates to be
0.

We use the notation W[C] for the vector of wire values of a circuit C (under
a canonical ordering consistent with the direction of evaluation), and PAR(n, b)
for the distribution on n-bit strings that is chosen uniformly at random subject
to having parity b.

3.1 Indistinguishability

Definition 1 (Statistical distance). Let D1 and D2 be two distributions on
a set S. The statistical distance between D1 and D2 is defined to be:

∆(D1, D2) = max
T⊆S
|D1(T )−D2(T )| = 1

2

∑
s∈S
|Pr[D1 = s]− Pr[D2 = s]|

We say that D1 is ε-close to D2 if ∆(D1, D2) ≤ ε, and ε-far otherwise.

Definition 2 (ε-indistinguishability). Let X and Y be two distribution over
the same domain. We say that (X,Y ) is ε-indistinguishable by a class of func-
tions C if for every C ∈ C, ∆(C(X), C(Y )) ≤ ε.
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3.2 Circuit complexity

A class of functions C is closed under restriction (resp., negation) if for every f
in C, the function obtained by fixing the value of any input (resp., negating it)
is also in C.

The composition C ◦ C′ consists of all functions (f ◦ f ′)(x) = f(f ′(x)), where
f ∈ C and f ′ ∈ C′.

We use NC0[c] for the class of all multi-input, multi-output Boolean functions
in which every output depends on at most c inputs, AC0(d, s,m) for the class of
circuits that use unbounded fan-in AND-OR-NOT gates, have depth d, size at
most s and m output bits, and AC0[B](d, s,m) for circuits that may have other
types of basis gates B that are closed under negation. If the input or output
length is unrestricted or clear from context it is left out of the notation. The
following claim follows directly from the definition.

Claim 1. NC0[c]◦NC0[c′] ⊆ NC0[cc′], AC0(d, s,m)◦NC0[c] ⊆ AC0(d+1, s+n·2c),
and AC0[B](d, s,m) ◦ NC0[c] ⊆ AC0[B](d + 2, s + n · 2c) where n is the output
length of the NC0[c] circuit.

A 2-adaptive circuit over C is a collection of functions (A,By), where y ranges
over all possible output values of C. The value of the circuit on input x is
(A(x), BA(x)(x)).

Claim 2. If (D1, D2) is ε-indistinguishable by AC0(2d+1, (2m+1)(s+O(1)), 2m)
(resp., AC0[B](2d+ 1, (2m + 1)(s+O(1)), 2m)), then it is ε-indistinguishable by
all 2-adaptive circuits over AC0(d, s,m) (resp., AC0[B](d, s)).

Claim 3. If (D0, D1) is ε-indistinguishable by AC0(d, s, 1) (resp., AC0[B](d, s, 1))
then it is 3mε/2-indistinguishable by AC0(d, 2s,m) (resp., AC0[B](d+ 1, s,m)).

We give the proof of the above two claims in the full version.
We conclude with H̊astad’s unconditional result on indistinguishability of

parity by constant-depth circuits.

Theorem 3 ([31]). For any d, s ∈ N there exists a constant cd that depends

only on d such that (PAR(n, 0),PAR(n, 1)) is 2−cdn/(log s)d−1

-indistinguishable by
AC0(d, s, 1)

Corollary 3. There exists a constant cd such that (PAR(n, 0),PAR(n, 1)) are

2−cdn/(log s)d−1

-indistinguishable by AC0(d, s/2, cdn/(log s)d−1) and 2−n
O(1/d)

-

indistinguishable by 2-adaptive circuits over AC0(d/2− 1, 2n
O(1/d)

, nO(1/d)).

3.3 Leakage Resilient Circuit Compilers

In this subsection, we give the definitions of leakage resilient circuit compiler
(abbreviated as LRCC) for stateful and stateless circuits.
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LRCC for Stateful Circuits. We first recall the notion of stateful circuits. This
description is taken verbatim from [32]. A stateful circuit is a circuit augmented
with memory cells. A memory cell is a stateful gate with fan-in 1: on any invo-
cation of the circuit, it outputs the previous input to the gate, and stores the
current input for the next invocation. Thus, memory cells act as delay elements.
We extend the usual definition of a circuit by allowing stateful circuits to pos-
sibly contain cycles, so long as every cycle traverses at least one memory cell.
When specifying a stateful circuit, we must also specify an initial state for the
memory cells. When C denotes a circuit with memory cells and s0 an initial state
for the memory cells, we write C[s0] for the circuit C with memory cells initially
filled with s0. Stateful circuits can also have external input and output wires.
For instance, in an AES circuit the internal memory cells contain the secret key,
the input wires a plaintext, and the output wires produce the corresponding
ciphertext. The computation of C[s] on an input x results in a wire assignment
W (a wire assignment is a string that is obtained by concatenating the values
carried by all the wires in C), the output y and an updated state s1.

Definition 3 ((L, τ, ε)-leakage resilient implementation). Let C be a de-
terministic stateful circuit, L be a leakage class, τ be a round parameter and
ε be an error parameter. We say that (Ĉ,Setup) is an (L, τ, ε)-leakage resilient
implementation of C if:

– Ĉ is a randomized, stateful circuit.
– Setup is a randomized mapping from the initial state s0 of C to an initial

state ŝ0 of Ĉ.
– Correctness. For every k ∈ N and every sequence of inputs x1, . . . , xk, we

require that probability (over the random coins of Setup and Ĉ) that the same

outputs are obtained by (stateful) invocations of C[s0] and Ĉ[ŝ0] on this input
sequence is 1.

– Security. For every (possibly unbounded) stateful adversary A, there exists
a (stateful) simulator S such that for every initial state s0 :∣∣Pr[RealA,Ĉ,Setup,L(s0, τ) = 1]− Pr[IdealA,Ĉ,Setup,S,L(s0, τ) = 1]

∣∣ ≤ ε
where Real and Ideal experiments are defined in Figure 1.

Definition 4 (LRCC for Stateful Circuits). Let n be the security parameter.
A leakage resilient stateful circuit compiler for the (stateful) circuit class C is a
pair of polynomial-time algorithms (Tr,St) such that:

– Tr is a deterministic algorithm that maps a deterministic stateful circuit in
C ∈ C and the security parameter 1n to another stateful, randomized circuit
Ĉ.

– St is a randomized algorithm that maps an initial state s0 of C and the
security parameter 1n to an initial state ŝ0 of Ĉ.

For a leakage class L(n), round parameter τ(n) and error parameter ε(n), we say
that (Tr,St) is a (L(n), τ(n), ε(n))-leakage resilient circuit compiler for C, if for
every stateful circuit C ∈ C, (Tr(C, 1n),St(?, 1n)) is a (L(n), τ(n), ε(n))-leakage
resilient implementation of C.
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RealA,Ĉ,Setup,L(s0, τ)

1. ŝ0 ← Setup(s0).
2. Set y0, z0 = ⊥.
3. for every round t from 1 to τ :

– xt, `t ← A(Ĉ, yt−1, zt−1) where
`t ∈ L.

– (Ŵt, yt, ŝt) W Ĉ[ŝt−1](xt).

– zt = `t(Ŵt).
4. Output whatever A outputs.

IdealA,Ĉ,Setup,S,L(s0, τ)

1. Set y0, z0 = ⊥.
2. for every round t from 1 to τ :

– xt, `t ← A(Ĉ, yt−1, zt−1) where
`t ∈ L.

– (Wt, yt, st) W C[st−1](xt)
– zt = `t(S(C, xt, yt)).

3. Output whatever A outputs.

Fig. 1: Real and Ideal Experiments

LRCC for Stateless Circuits. We now define a leakage-resilient circuit compiler
for stateless circuits.

Definition 5 ((L, ε)-leakage resilient implementation). Let C : {0, 1}k →
{0, 1}m be a deterministic stateless circuit, L be a leakage class, and ε be an error

parameter. We say that (I, Ĉ, O) is a (L, ε)-leakage resilient implementation of
C if:

– I : {0, 1}k → {0, 1}k̂ is a randomized input encoder which maps an input x
to an encoded input x̂.

– Ĉ is a randomized circuit that maps an encoded input x̂ to an encoded output
ŷ ∈ {0, 1}m̂.

– O : {0, 1}m̂ → {0, 1}m is the deterministic output decoder that maps an
encoded output ŷ to y.

– Correctness: For every input x ∈ {0, 1}k, Pr[O(Ĉ(I(x))) = f(x)] = 1

where the probability is over the random coins of I and Ĉ.
– Security: For any two inputs x0, x1 ∈ {0, 1}k, let (W0, ŷ0) W Ĉ[I(x0)] and

(W1, ŷ1) W Ĉ[I(x1)] where W0 (resp. W1) represents the assignment to every

wire of Ĉ on input I(x0) (resp. I(x1)). For any leakage function ` ∈ L, the
statistical distance between `(W0) and `(W1) is at most ε.

Definition 6 (LRCC for Stateless Circuits). Let n be the security param-
eter and let C be a class of stateless circuits taking k input bits and having m
output bits. A leakage resilient stateless circuit compiler for the class C is a tuple
of polynomial-time algorithms (Enc,Tr,Dec) where

– Enc is a randomized input encoder which maps an input x ∈ {0, 1}k and the
security parameter 1n to an encoded input x̂.

– Tr is a deterministic algorithm that maps a deterministic stateless circuit in
C ∈ C and the security parameter 1n to another stateful, randomized circuit
Ĉ. Ĉ maps an encoded input x̂ to an encoded output ŷ.
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– Dec is the deterministic output decoder that maps an encoded output ŷ to
y ∈ {0, 1}m.

For a leakage class L(n) and the error parameter ε(n), we say that (Enc,Tr,Dec)
is a (L(n), ε(n))-leakage resilient circuit compiler for C if for every C ∈ C,
(Enc(?, 1n),Tr(C, 1n),Dec) is a (L(n), ε(n))-leakage resilient implementation of
C.

4 Improved Analysis of the ISW Construction

The leakage-resilient circuit transformer of Ishai, Sahai, and Wagner [32] is shown
in Figure 2. Ishai et al. proved it is correct and perfectly secure against leakage
functions that depend on at most n/2− 1 wires.

The input encoder Enc(1n, x): Every input bit xi ∈ {0, 1} is encoded indepen-
dently by xi ∈ {0, 1}n which is random conditioned on its parity being equal
to xi.

The transformer Tr(1n, C):
Every wire w ∈ {0, 1} of C is replaced by a wire bundle w ∈ {0, 1}n.
Every addition gate a + b in C is implemented by a + b, where a,b are the
wire bundles representing a, b, respectively.
Every multiplication gate a×b is implemented as follows. Compute the matrix
Z ∈ {0, 1}n×n given by

Zij =


a random bit, if i < j

aibj , if i = j

Zji + aibj + ajbi, if i > j

and output the matrix-vector product Z · 1 computed from left to right.
The output decoder Dec(1n,y1 · · ·ym): Replace every encoded output wire bun-

dle yj by its parity yj1 + · · ·+ yjn.

Fig. 2: The Ishai-Sahai-Wagner circuit compiler [32].

The transformer maintains the invariant that every wire w of C is represented
by a wire bundle w that XORs to the bit value w, ensuring correctness; for details
of the correctness proof see [32].

Theorem 4. Let C be any class of functions that is closed under restriction
and negation of inputs. Assume (PAR(n, 0),PAR(n, 1)) is ε-indistinguishable by
C ◦ NC0[2]. Then the ISW circuit compiler is (C, kε)-leakage resilient stateless
compiler where k is the input size of the circuit.
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Let Ĉ(x1, . . . ,xk) represent the transformed circuit when it is given wire
bundles x1, . . . ,xk as its inputs. The following lemma is key to the proof of
Theorem 4.

Lemma 1. For every circuit C of size S on k inputs, every k strings w1, . . . ,wk ∈
{0, 1}n, and every k bits c1, . . . , ck, the wire distributions of Ĉ(w1+c1·x, . . . ,wk+
ck · x) in the cases x ∼ PAR(n, 0) and x ∼ PAR(n, 1) are ε-indistinguishable by
C under the assumption in Theorem 4.

Proof of Theorem 4: Fix a leakage function ` ∈ C. We need to show that `(W)

is statistically close to `(W′) where W and W′ are the wires of Ĉ(Enc(x)) and

Ĉ(Enc(x′)) for any x, x′ ∈ {0, 1}k. First consider the case when x and x′ differ in a

single bit, say the i-th bit. Hardwiring all encoded inputs except for xi into Ĉ and
applying Lemma 1 with wj = xj , cj = 0 for j 6= i, and wi = 0, ci = 1,x = xi, it

follows that Ĉ(Enc(x)) and Ĉ(Enc(x′)) are ε-indistinguishable by C.
For the general case, consider the hybrid wire distributions Ĉ(Enc(xi)), where

x0 = x, xk = x′, and xi−1, xi differ in at most one bit. By what was just proved
Ĉ(Enc(xi−1)) and Ĉ(Enc(xi)) are ε-indistnguishable, so by the triangle inequality

Ĉ(Enc(x)) and Ĉ(Enc(x′)) must be kε-indistinguishable. ut

The main idea in the proof of Lemma 1 is the following claim, which states
that the wire distribution of any single gate in the transformed circuit can be
described locally, and moreover the output of the gate obeys the same type of
distribution as its inputs.

Claim 4. For all g ∈ {+,×} and w,w′, c, c′ there exists a simulator Sim such
that

1. The wires of Sim(w+c ·x,w′+c′ ·x) and ĝ(w+c ·x,w′+c′ ·x) are identically
distributed even conditioned on x.

2. The value y assigned to the output bundle by Sim(w+c ·x,w′+c′ ·x) equals
w′′ + c′′ · x for some w′′ and c′′ that depend on the internal randomness of
Sim only.

3. Every wire of Sim(w + c · x,w′ + c′ · x) depends on at most two bits of x.

Proof of Lemma 1: We consider the following slightly stronger formulation of
the lemma as it enables a proof by induction: Under the same assumptions, the
joint distribution (

x,W[Ĉ(w1 + c1 · x, . . . ,wk + ck · x)]
)

in the cases x ∼ PAR(n, 0) and x ∼ PAR(n, 1) are ε-indistinguishable by circuits
that are C ◦ NC0[2] functions in the first input x and C functions in the second
input W[· · · ].

The proof is by induction on S. When S = 0, there are no internal gates so the
leakage function ` observes x together with the input wires (w1 +c1 ·x, . . . ,wk +
ck · x) and attempts to distinguish x ∼ PAR(n, 0) from x ∼ PAR(n, 1). As each
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input wire bundle is either a constant or a shift of x, the second input can
be emulated from the first one by the closure properties of C. Therefore the
distributions PAR(n, 0) and PAR(n, 1) can be distinguished by C, and therefore
by C ◦ NC0[2], with the same advantage ε.

Now suppose the lemma holds for all circuits of size S−1. Given a circuit C of
size S, let g be a bottom gate of C and xi, xj its (possibly identical) inputs. The
leakage function ` of interest observes x, the wires of ĝ(wi+ci ·x,wj +cj ·x), and

the wires of Ĉ−(w1 + c1 ·x, . . . ,wk + ck ·x,y), where C− is the circuit obtained
by removing gate g from C and replacing its output by y.

By part 1 of Claim 4, the wires of ĝ(wi +ci ·x,wj +cj ·x) can be replaced by
those of Sim(wi+ci ·x,wj+cj ·x) without affecting the distinguisher’s advantage.
By part 3 they are 2-local functions of x. Therefore they are a C◦NC0[2] function
of x, so can be omitted from the input to `. The Lemma now follows from part
2 of Claim 4 and the inductive hypothesis applied to the circuit C−. ut

Proof of Claim 4: If g is an addition gate, set Sim = +̂: The output is the
sum of its two inputs confirming part 2, and there are no wires other than the
output wires, from where part 3 follows.

Let a = w + cx and b = w′+ c′x. If g is a multiplication gate, the simulator
Sim(a,b) works like ×̂, but uses the following alternative implementation of the
matrix Z:

Zij =


a random bit + aiw

′
j + biwj , if i < j

aibj , if i = j

Zji + aibj + ajbi, if i > j

This alternative implementation of Z does not affect the distribution of the
entries of Z and therefore of the wires of the transformed circuit. We now argue
properties 2 and 3 of Claim 4.

When i = j and i < j, Zij only depends on the i-th bit of a and b, which
are independent of all but possibly the i-th bit of x. When i > j, Zij = Zji +
aibj + ajbi and this equals randomness plus the bit

(ajw
′
i + bjwi) + (aibj + ajbi).

The first bracketed term equals cxjw
′
i + c′xjwi plus a term that only depends

on w. The second one equals

(wi + cxi)(w
′
j + c′xj) + (w′i + c′xi)(wj + cxj)

= (cxiw
′
j + c′xiwj) + (cxjw

′
i + c′xjwi) + (wiw

′
j + wjwi).

Therefore the sum of the two equals cxiw
′
j+c′xiwj plus a term that only depends

on w. It follows that for any i, j, Zij can only depend on the i-th bit of x and
the wires in the computation of Zi,j for i > j is a 2-local function of x. We thus
conclude that the wires in the computation of Z ·1 is a 1-local function in x and
the output is of the form w′′ + c′′ · x. ut

Corollary 1 follows directly from Theorem 4, Claim 1 and Corollary 3.
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5 LRCC for Stateful Circuits

In this section, we give a construction of leakage resilient circuit compiler and
prove its security against leakage classes that have low correlation with parity.

The class C ◦NC0[c] consists of all composed functions f ◦ g where f ∈ C and
every output of g depends on at most c inputs.

Theorem 5. Let c be a universal constant and C be any class of functions
that is closed under restriction. If (PAR(n, 0),PAR(n, 1)) is ε-indistinguishable
by 2-adaptive functions in C ◦ NC0[c], then the construction in Figure 3 is a
(C, T,O(εT (S + n)))-leakage resilient stateful circuit compiler for the class of
stateful circuits of size S and T is the number of rounds.

Organization. In Section 5.1, we will describe a building block that generates
a random encoding of 0 and prove some useful properties. In Section 5.2, we
give the description of the transformer (Tr,St). In Sections 5.3-5.5, we prove the
security of the construction.

5.1 The Zero-Encoder

In this subsection, we describe and analyze a circuit RandZero that produces
random encodings of the bit zero.

Construction 6 RandZero: On input matrix G ∈ {0, 1}n×n and vector r ∈
{0, 1}n, calculate

Zij =


a random bit, if i < j,

Giiri, if i = j,

Zji +Gijrj +Gjiri, if i > j,

and output the matrix-vector product Z · 1 computed from left to right.

We denote by W[RandZero(G, r; z)] the wire assignment of the circuit on
input G, r and internal randomness z. The dependence on internal randomness
is hidden when irrelevant.

For an n-by-m matrix R with columns r1, . . . , rm, we write RandZero(G,R)
for the multi-output circuit (RandZero(G, r1; z1), . . . ,RandZero(G, rm; zm)), where
zi is chosen uniformly and independently.

Basic properties The following facts can be inferred directly from the construc-
tion.

Fact 7 (Output distribution) For every G and r, c = RandZero(G, r) is
uniformly random conditioned on 1T · c = 1T ·G · r.
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In particular, when the columns of G have parity zero then RandZero(G, r)
is a random string of parity zero. On the other hand, when the columns of G
have parity one and r is random, then the RandZero(G, r) is a uniformly random
string.

Proof. The equation is satisfied as both the left and right-hand sides are equal
to the sum of the entries of Z. On the other hand c is (n− 1)-wise independent
as any n− 1 of its outputs depend on distinct random bits.

Fact 8 (Linearity) W[RandZero(G, r1 + r2)] is identically distributed to
W[RandZero(G, r1; z1)] + W[RandZero(G, r2; z2)] provided at least one of z1, z2
is uniformly random.

Proof. W[RandZero(G, r; z)] is a linear function of r and z, so even when say z1
is fixed, z = z1 + z2 is uniform.

Simulation The following claims provide simulations of the RandZero that are
in a suitable sense “indepenent” of its respective inputs G and r.

Claim 5. There exists a simulator circuit Simr such that

1. For every G and r, W[Simr(G, r)] and W[RandZero(G, r)] are identically
distributed.5

2. The output of Simr(G, r; z) equals Diagonal(r1, . . . , rn)GT1 plus some func-
tion that depends only on z.

3. For fixed G and z, W[Simr(G, r; z)] is an NC0 function of r.

Claim 6. There exists a simulator Simv such that

1. For every G, r, and v ∈ {0, 1}n, W[Simv(G,v, r)] and W[RandZero(G + v ·
1T , r)] are identically distributed.

2. Simv(G,v, r) equals vrT1 plus some function that does not depend on v.

3. For fixed G, r, z, W[Simr(G,v, r; z)] is an NC0 function of v.

We defer the proofs of these claims to the full version.

5.2 Construction

We give the description of our leakage resilient circuit compiler (Tr,St) in Fig-
ure 3.

5 The simulator circuit Simr is the composition of RandZero and a preprocessing circuit.
The irrelevant wires from preprocessing are discounted when comparing the two
distributions.
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The construction. Given a security parameter 1n, a circuit C, and an initial
state s ∈ {0, 1}k:

Initialization:

The encoded state consists of k wire bundles s, where the i-th one is a random
n-bit string of parity si. In addition the state contains an n×n matrix G that
is random conditioned on 1TG = 0T .

Every wire w of C is represented by an n-wire bundle w in the transformed
circuit Ĉ = Tr[C].

Computation:

Every input gate x in C is implemented by the wire bundle x · e1, where e1 =
(1, 0, . . . , 0).

Every addition gate a+ b in C is implemented as a+b+RandZero(G, r), where
a,b are the bundles representing a, b and r is a random string.

Every multiplication gate a×b in C is implemented as (a·bT +RandZero(G,R))·1,
where where a,b are the bundles representing a, b, R is a random n×n matrix,
and matrix-vector multiplication is implemented left-to-right.

For every output gate in C represented by wire bundle out, compute out′ =
(out + RandZero(G, r)) for a random r and decode the output as 1T · out′.

State update:

Replace every bundle si of the state by si + RandZero(G, ri) for a random ri.
Replace G by RandZero(G,R) for a random n by n matrix R.

Fig. 3: LRCC (Tr,St) for stateful circuits.

Correctness. The invariant maintained by the implementation is that the value
of each wire w of C equals the parity of the wire bundle w in Ĉ representing
it. By construction this is true for the input wires and the state wires. In all
applications of RandZero, the parity of the output of RandZero equals zero by
Fact 7. It follows that the output of addition has parity 1Ta+1Tb =

∑
(ai+bi),

the output of multplication has parity 1TaTb1 = (
∑
ai)(

∑
bi), and the state

wire updates, including those to G, preserve parity. Finally, the output gates
equal the parity of the corresponding wires, establishing correctness.

Security. We now prove the security part of Theorem 5. We will show that
for every (possibly unbounded) stateful adversary A, there exists a (stateful)
simulator S such that for every initial state, the adversary’s view in the real and
ideal experiment described in Figure 1 are statistically close.

In Section 5.3, we give the description of our simulator. The security proof
consists of two steps, following the structure in the works of Faust et al. [23] and
Rothblum [43] (a pictorial representation of the structure of the proof is given
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in Figure 4.). First, in Section 5.4, we describe a local internal reconstruction
procedure that represents the adversary’s view as a local (NC0) function of an
external wire distribution. This distribution contains explicit descriptions for all
the wires in all evaluation rounds of Ĉ, as well as some additional information
for the multiplication gates and state updates.

Then in Section 5.5, we gradually modify the components of the external
wire distribution until the wire values in Ĉ observed by the adversary become
independent of the wires of C and so the adversary’s view can be simulated,
unless various circuits obtained by restricting inputs in the composition of the
leakage and the internal reconstruction procedure can compute parity.

Leakage

Internal Reconstruction

External Data Sampler

Hybrid DataComputation tableau of C

Fig. 4: Components of the security proof. When the external sampler is given
the input data for Hybrid0, the adversary’s view is identical to the output of
the transformed circuit as in the real world. In Hybrid3, the adversary’s view is
identical to the output of the simulator as in the ideal world. Indistinguishability
of consecutive hybrids is argued by analyzing the view of the the leakage function
composed with Internal Reconstruction.

5.3 Description of the Simulator

We give the description of the simulator S in Figure 5.

5.4 External Data Sampler

The external data associated to a circuit wire (of C in a given round) consists
of the wires of a copy of the circuit RandZero. The external data associated to
a gate consists of the external data of all its incident wires, plus some auxiliary
data specific to the gate. We give the description of the external data sampler
in Figure 6.
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The (stateful) simulator. Given a security parameter 1n, a circuit C, inputs x,
and outputs y:

Initialization. The encoded state consists of k wire bundles s, where the
i-th one is uniformly random n-bit string. The matrix G is random

conditioned on 1TG = 1T .
The simulator runs the circuit Ĉ using the input, addition, and multiplication

gates implementation from Figure 3.
For every output gate of Ĉ with input x whose value in y is out, the output of

the gate Ĉ is simulated as 1T (x+RandZero(G, r)), where r is a random string
of parity out+ 1Tx.

State update: The state update is the same as in 3, except that the matrix R
used in G’s update is random conditioned on 1TR = 1T .

Fig. 5: The simulator S.

The External Data Sampler. The input to the Sampler consists of the round
number t, a generator matrix for this round Gt, a wire update seed rwt for each
wire bundle w, and a state update seed matrix Rt.

To sample the external wires for the round number t do the following:

1. For every input wire, sample the external data as W[RandZero(Gt,0;0)].
2. For all other wires w, sample the external data W[RandZero(Gt, rwt)].
3. For every multiplication gate, sample the auxiliary data W[RandZero(Gt,F)],

where F is a uniformly random n× (n− 1) matrix.
4. For the state update, sample W[RandZero(Gt,Rt)] and update Gt+1 to equal

the output of this circuit.

Fig. 6: External Data Sampler

The external wire distribution denotes the induced distribution on the output
of the external data sampler when it run by sampling G1 (which is the generator
matrix of the first round) and for every round, sampling {ri},R from some
distribution.

Internal Reconstruction Procedures. We now prove the following lemmas.

Lemma 2 (Addition Reconstruction Procedure). Fix a round and let G
be the generator matrix for this round. There exists an NC0 circuit IR+ that,
given inputs a, b ∈ {0, 1} and the external gate data Wa = W[RandZero(G, ra; za)],
Wb = W[RandZero(G, rb; zb)], Wc = W[RandZero(G, rc; zc)] outputs an assign-
ment to the wires of a transformed addition gate +̂ such that if rc and zc are



23

uniformly random, the output of IR+ is identically distributed to the wires of
+̂((ae1 + oa), (be1 + ob)), where oa, ob are the outputs of Wa, Wb, respectively.

Proof. The circuit IR+ outputs the values (ae1+oa) and (be1+ob) for the input
wires a and b and Wa + Wb + Wc for the wires of the RandZero(G, r) circuit
used in the implementation of +̂, and obtains the output by adding the values
assigned to the top gate of +̂.

By Fact 8, Wa +Wb +Wc is identically distributed to W[RandZero(G, r)] for
a random r, from where the identical distribution of the wires follows.

Note that updating the state can be expressed as special case of the addition
circuit (i.e., setting one of the input vectors as 0). Hence, we get the following
corollary.

Corollary 4 (State Update Reconstruction Procedure). Fix a round and
let G be the generator matrix for this round. There exists an NC0 circuit IRst

that, given inputs a ∈ {0, 1} and the external gate data Wa = W[RandZero(G, ra; za)],
Wc = W[RandZero(G, rc; zc)], outputs an assignment to all the wires in the
transformed state update gate ŝt such that if rc and zc are uniformly random,
the output of IRst is identically distributed to the wires of ŝt(ae1 + oa), where
oa is the output in Wa.

Lemma 3 (Output Reconstruction Procedure). Fix a round and let G
be the generator matrix for this round. There exists an NC0 circuit IRout that,
given inputs a ∈ {0, 1} and the external gate data Wa = W[RandZero(G, ra; za)],
Wc = W[RandZero(G, rc; zc)], outputs an assignment to all the wires except those
in the final decoding step of a transformed output gate ôut such that:

1. If 1T ·G = 0T and rc and zc are uniformly random, the output of IRout is
identically distributed to these wires in ôut(ae1 +oa), where oa is the output
in Wa.

2. If 1T ·G = 1T and rc ∼ PAR(n, 0), zc is chosen uniformly random, the output
of IRout is identically distributed to these wires in the simulated distribution.

Proof. Consider the NC0 circuit from Lemma 2 where we set b = 0 and ob, rb and
Wb to be all zeroes string. The first part of the corollary is a direct consequence
of Lemma 2. To see the second part, note that the NC0 circuit from Lemma 2
implicitly sets the randomness used in the gadget as r = ra + rc. Thus, parity
of r is equal to the parity of G · (ra + rc) (since column parity of G is 1). This
is equal to parity of oa + oc (follows from Fact 7) which is in turn equal to the
parity of (ae1 + oa) + (ae1 + oc). Since rc is chosen uniformly subject to its
parity being 0, r is distributed uniformly subject to its parity being equal to the
parity of (ae1 + oa) + (ae1 + oc). This is precisely the simulated distribution.

Lemma 4 (Multiplication Reconstruction Procedure). Fix a round and
let G be the generator matrix for this round. There exists an NC0 circuit IR×
that, given inputs a, b ∈ {0, 1} and the external gate data Wa = W[RandZero(G,
ra; za)], Wb = W[RandZero(G, rb; zb)], Wc = W[RandZero(G, rc; zc)], WF =
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W[RandZero(G,F; zF )] outputs an assignment to the wires of a transformed mul-
tiplication gate ×̂ such that if rc, zc,F, zF are uniformly random, the output of
IR× is identically distributed to the wires of ×̂((ae1 +oa), (be1 +ob)), where oa,
ob are the outputs of Wa, Wb, respectively.

We give the proof of this lemma in the full version.

Lemma 5 (Composition). There exists a circuit IR such that for every round,
given the tableau of C and the external data for that round, outputs an assign-
ment to all the wires of the transformed circuit except for those wires involved
in the final output decoding such that:

1. (Locality) IR is in NC0, and moreover every gate in the output of IR only
depends the tableau of the gate and on external data for its incident wires
and the gate.

2. (Real world distribution) If G for the first round is sampled randomly such
that 1T ·G = 0T and for every round, if the external data is generated by
giving the sampler {ri},R that are chosen uniformly at random, the con-
catenated outputs of IR in every round is identical to the real distribution of
these wires.

3. (Ideal world distribution) If G for the first round is sampled randomly such
that 1T ·G = 1T and for every round, if the external data is generated by

giving the sampler ri
$← {0, 1}n for every wire i that is not an output wire

and for every output wire i, ri ∼ PAR(n, 0) and R
$← {0, 1}n×n subject to

1TR = 1T then the concatenated outputs of IR for every round is identical
to the simulated distribution of these wires.

We give the proof of this lemma in the full version.

5.5 Proof of Indistinguishability

In this subsection, we complete the proof of security. For this purpose we describe
describe four hybrid distributions Hybrid0,
Hybrid1,Hybrid2,Hybrid3 observed by the leakage. We argue that Hybrid0 and
Hybrid3 are identically distributed to the wires of the transformed circuit and the
simulator’s output, respectively, and that all pairs of consecutive distributions
are computationally indistinguishable by the leakage.

The four distributions are sampled by instantiating the external data sampler
with different inputs, and then applying the internal reconstruction in Lemma 5
to the output. The inputs used to instantiate the external data sampler are:

Hybrid0: Initial G is random conditioned on having zero column-parity (1TG =
0T ). all wire update seeds rwt and all state update seeds Rt are uniformly
random.

Hybrid1: G is sampled as in Hybrid0. All wire update seeds rwt and all state up-
date seeds Rt are random conditioned on having column-parity 0 (1T rwt =
0,1TRt = 0T ).
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Hybrid2: rwt are sampled as in Hybrid1. G and Rt are random conditioned on
having column-parity 1 (1TG = 1T ,1TRt = 1T ).

Hybrid3: G and Rt are sampled as in Hybrid2. rwt are uniformly random except
for the output wires, which remain unchanged.

We note that the assignment to the final output decoding wires is a deter-
ministic function of the external data. Thus, it follows from part 2 of Lemma 5,
the view of the leakage function in Hybrid0 is identical to the real distribution of
the transformed circuit’s wires, and by part 3, its view in Hybrid3 is identical to
the output of the simulator. To finish the proof, we establish the following three
claims.

Claim 7. Under the assumptions of Theorem 5, the adversary’s outputs on
Hybrid0 and Hybrid1 are O(εT (S + n))-statistically close.

Proof. We fix G = G1 and modify the distribution of the relevant seeds rwt

and the columns of Rt one by one, in increasing order of the round t. As the
effect of both types of seeds is the same, without loss of generality, we analyze
the effect of changing a seed of type rwt from being uniformly random to having
parity zero, assuming all the other seeds are fixed to maximize the adversary’s
distinguishing advantage.

We can simulate the first (t − 1) rounds of the leakage experiment using
the fixed seeds. In the t-th round, we can generate all the external data for this
round non-uniformly except W[RandZero(Gt, rwt)]. As all random seeds from the
previous rounds have been fixed, by Fact 7 Gt is a fixed matrix with column-
parity zero. By part 1 of Claim 5, this external data item can therefore be
replaced by W[Simr(Gt, rwt)] without affecting the adversary’s advantage. By
part 3 of Claim 5, we infer that W[Simr(Gt, rwt)] is NC0 computable from rwt

and therefore, we can generate all the external data for the t-th round by an NC0

circuit. Now, running the internal reconstruction procedure IR (which is again

an NC0 circuit) on this external data outputs an assignment to every wire of Ĉ
in the t-th round except those in the final output decoding step. Since GT

t 1 = 0,
by part 2 of Claim 5, the output of Simr(Gt, rwt) is statistically independent of
rwt. Therefore, the wires of all the gates in the computation (including the final
output decoding in case that w is an output wire) that are evaluated after w
are independent of rwt and can be fixed to maximize the adversary’s advantage.
Thus, we can generate the wire assignment to every wire of Ĉ in the t-th round
using an NC0 circuit. The subsequent rounds of the leakage experiment can be
simulated from the fixed seeds since even if w is an updated state wire, the
output of Simr(Gt, rwt) is statistically independent of rwt and hence the bundles
which feed into the subsequent rounds are independent of rwt and depend only
on the fixed seeds.

By the above argument, we deduced that (i) the first (t − 1) rounds of the
leakage experiment can be simulated independent of rwt, (ii) the wire assignment
in t-th round are NC0 computable from rwt, and (iii) the subsequent rounds of the
experiment are independent of rwt. Therefore the adversary’s advantage cannot
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exceed the ability of C ◦ NC0 in distinguishing a uniform random string from a
parity-zero string. This is at most twice the advantage in distinguishing random
parity-zero and parity-one strings, which is assumed to be ε.

By the triangle inequality, the adversary’s advantage accumulated by all
O(T (S + n)) changes is at most O(εT (S + n)).

Claim 8. Under the assumptions of Theorem 5, the adversary’s outputs on
Hybrid1 and Hybrid2 are O(εT )-statistically close.

Proof. We modify the distribution on the matrices G = G1,R1, . . . ,Rn one by
one such that they are random subject to their column parity being 1.

The change in the distribution of G can be implemented by setting G =
G′ + v · 1T , where G′ is a random column-parity zero matrix and v changes
from a random parity-0 to a random parity-1 vector.

To analyze the effect of this change, we apply part 1 Claim 6 and replace all
items of type W[RandZero(G, rw1)], W[RandZero(G,F)], and W[RandZero(G,R1)]
in the external data for the first round by W[Simv(G′,v, rw1)], W[Simv(G′,v,F)],
and W[Simv(G′,v,R1)] without affecting the adversary’s advantage. This defines
the external data for the first round and by part 3 of claim 6, we can generate
this by an NC0 circuit. Now, applying the internal reconstructing procedure, IR
(which is again an NC0 circuit) from Lemma 5 on this external data allows us

to generate all the wires in the computation of Ĉ in the first round, except the
assignment to the final output decoding wires. By part 2 of Claim 6, the output
of Simv(G′,v, r) is independent of v provided r has parity zero, which is true in
all instantiations. Therefore all the wires in the final output decoding step of the
first round are independent of v and can be non-uniformly computed. Thus, we
have generated the assignment to every wire of Ĉ in the first round by an NC0

circuit. The subsequent rounds are independent of v as a direct consequence of
part 2 of Claim 6. Thus, the assumption that random strings of parity zero and
one are indistinguishable by C ◦ NC0, we obtain that the adversary’s outputs
when G is modified are ε-close.

We now analyze the change in advantage when Rt−1 is modified from having
column-parity zero to one. We represent Rt−1 as R′ + v · 1T , where R′ s a
random column-parity zero matrix and v changes from a random parity-0 to a
random parity-1 vector. We fix all the random seeds given as input the external
data sampler except for v such that adversary’s distinguishing advantage is
maximized conditioned on this fixing. This allows us to simulate the first (t− 2)
rounds of the leakage experiment.

Recall that Gt = RandZero(Gt−1,Rt−1). By part 1 of Claim 5, we may
replace W[RandZero(Gt−1, Rt−1)] in external data of the (t− 1)-th round with
W[Simr(Gt−1,Rt−1)] without affecting the adversary’s advantage. This defines
the external data for the (t − 1)-th round as well as the assignment to the
final output decoding wires which are independent of v and hence can be non-
uniformly fixed. As a consequence of part 3 of Claim 5 and part 1 of Lemma 5,
we deduce that the assignment to all the wires of Ĉ in the (t− 1)-th round can
be generated by an NC0 circuit. Since the column parity of Gt−1 is 1, by part 2
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of Claim 5 Gt = RandZero(Gt−1,Rt−1) can be expressed as G′ + v · 1T where
G′ is independent of v. We may now use Claim 6 and Lemma 5 in an analogous
manner to the first part of the proof to deduce that the assignment to all the
wires of Ĉ in the t-th round can be generated by an NC0 circuit. Again, it follows
from the part 2 of claim 6, the subsequent rounds of the leakage experiment can
be simulated independent of v.

We thus, conclude that the advantage of the adversary cannot exceed that
of a 2-adaptive circuit in the class C ◦ NC0 in distinguishing random strings v
of parity zero and one. By assumption, this advantage is at most ε.

By the triangle inequality, the adversary’s advantage accumulated by all T
changes is at most εT .

Claim 9. Under the assumptions of Theorem 5, the adversary’s outputs on
Hybrid2 and Hybrid3 are O(εTS)-statistically close.

We give the proof of this Claim in the full version.

From the above claims, we deduce that the real distribution is O((S+n)·τ ·ε)-
close to the simulated distribution. This completes the proof of Theorem 5.
Corollary 2 follows directly from Theorem 5, Claim 1 and Corollary 3.
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