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Abstract. In this paper we provide a formal treatment of proof of repli-
cated storage, a novel cryptographic primitive recently proposed in the
context of a novel cryptocurrency, namely Filecoin.
In a nutshell, proofs of replicated storage is a solution to the following
problem: A user stores a file m on n different servers to ensure that
the file will be available even if some of the servers fail. Using proof of
retrievability, the user could check that every server is indeed storing
the file. However, what if the servers collude and, in order to save on
resources, decide to only store one copy of the file? A proof of replicated
storage guarantees that, unless the (potentially colluding) servers are
indeed reserving the space necessary to store n copies of the file, the user
will not accept the proofs. While some candidate proofs of replicated
storage have already been proposed, their soundness relies on timing
assumptions i.e., the user must reject the proof if the prover does not
reply within a certain time-bound.
In this paper we provide the first construction of a proof of replication
which does not rely on any timing assumptions.

1 Introduction

Consider a scenario where a user A wants to use the cloud or some other decen-
tralized network of servers to store and distribute some file m to other users. To
make sure she and other users will be able to access the file later on, A stores
several replicas of m in different locations. However, A suspects that the servers
she is using are adversarial and may collude, for instance to save on costs by
using less space than they are supposed to. So she will be interested in checking
that indeed unique space has been dedicated to each replica, and it is natural to
require that this can be verified, even if all servers are controlled by an adversary.
We will call this proof of replication.

A first issue to note is that the well-known notions of proof of retrievability or
proof of space (which we discuss in more detail below) do not solve the problem if
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each replica is simply a copy of m. Such proofs allow a user to check that a given
file is retrievable from a server, much more efficiently than by simply retrieving
the file. However, even if A asks for a proof of retrievability of m from each of
the servers and all these proofs are successful, this may simply be because the
user is actually talking to the adversary who stores only a single copy of m.

Another idea that comes to mind is that A could let each replica be an
encryption of m under some key K, but with fresh randomness for each replica.
If the encryption is IND-CPA secure, the adversary cannot distinguish this from
encryptions of random independent messages, and hence it seems they are forced
to store all replicas in order for them to be retrievable later. While this intuition
can in fact be proved, this would not be a satisfactory solution: recall that we
want that anyone, not just A, can retrieve the original file, so A would have
to share K with other users. However, if any of these users collude with the
adversary, the security breaks down. Besides, a solution that does not require A
to store secret information for later is clearly more practical.

The idea of proof of replication was introduced in Filecoin [Lab17a, Lab17b],
a decentralized storage network1. They articulate a list of properties that they
desire from such a notion. They define a Sybil attack which is exactly what
we discussed above: if an honest client wishes to store the same file m on n
different servers, an adversary can store these using sybil identities (all servers
are controlled by one adversary) and successfully pass the storage audit, while
essentially storing only one copy of the file.

While the Filecoin paper does not give a formal treatment of proof of repli-
cation, they propose a construction for what they call a time-bounded proof of
replication. In such a notion, the file to be stored is encoded so that the en-
coding process is slow: slow enough for a client to distinguish between honest
proving time, and potentially adversarial proving time which includes the time
to re-encode. Thus, the encoding process is, by design, distinguishably more ex-
pensive than honest proving time. This notion is realized by using a block-cipher
and slowing it down by block chaining, and a time-bounded proof of replication
is a proof of storage of a replica that is encoded in this way.

The basic problem with all time-bounded schemes is the handling of recom-
puting attack: the encoding has to be made so slow that even a powerful server
cannot encode faster than the time a proof takes. This is harder than it may
seem at first: even if we know for sure how many operations are needed to encode
for a given value of security parameter, the actual time it takes depends on the
hardware held by the adversarial parties, and so is beyond the control of hon-
est users. This makes a concrete choice of parameters very difficult: should we
compensate for the adversary being more powerful than we expect and choose
a very slow encoding thus making life harder also for honest clients when they
encode? Or should we choose parameters more aggressively and run a bigger risk

1 Other related notions in the context of data replication have been studied earlier in
the cryptographic literature; we discuss the connection and differences in the related
work section.

2



of being cheated? It would clearly be better if we did not have to make such a
choice.

We ask if we can do better in all the above aspects: can we have a proof
of replication scheme that provably resists sybil attacks, and is not

time-bounded?

Our Results. We give a formal treatment of proofs of replication, by giving a
definition that captures the desired properties as well as a construction which we
prove secure according to the definition. The construction works in the random
oracle model and can be instantiated from any one-way permutation. We con-
centrate on the case where the client doing the encoding is honest, as this seems
to be the most important case in practice, and is in line with the definitions of
proof of retrievability and storage.

Each replica of the file m to be stored in our construction has size O(|m|+κ),
where |m| is the length ofm and κ is the security parameter. To verify replication,
the user conducts a proof of retrievability with each server. Any such proof can
be used, so we inherit whatever communication complexity that proof has.

Very roughly speaking, the idea in our solution is that the adversary first
receives each of the replicas to store, where each replica is a special encoding of
m. The adversary may now store a state for later use, which in the honest case
would contain all replicas. What we show is that, no matter how the adversary
computes the state, if it is significantly smaller than the combined size of all
replicas, then some of the proofs of retrievability will fail, unless the adversary
breaks a computational assumption.

Let us consider what this exactly guarantees us. Since the proofs of retriev-
ability are extractable, the above guarantees that the replicas cannot be com-
pressed i.e., the adversary must reserve enough space to store all replicas, and
this space must contain some data which is equivalent (up to polynomial time
computation) to the replicas of the file. But is this the best we can do? Why
don’t we ask that the adversary in fact stores a concatenation of all the replicas?
Unfortunately, this is impossible to achieve: even honest servers will most likely
store the same information in different formats (think of little- vs. big-endian
representation). So we certainly cannot expect that the adversary will store ex-
actly the same data that was received from the client. However, this should
not matter from a security point of view, as long as the original data can be
efficiently recovered.

In conclusion: it is impossible to force the corrupted servers to store exactly
the n replicas or n copies of the file. Therefore, the best we can hope for is
what we do in this paper: no matter how the corrupted servers behave, it is
possible to recover n distinct, incompressible encodings of the same file, thus the
servers cannot pass the verification unless they reserve the necessary space for
all replicas. Note, however, that in such a scenario, the corrupted servers have
no incentive to do anything else than simply store the replicas.

The main difference between our work and previously proposed solutions to
the problem, is that our solution does not require the use of time: while the
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original, informal definition of proof of replication states that it should be hard
for the server to recompute the encodings of the file in the time it takes to verify
the proof, our definition is much stronger as it rules out that any polynomially
bounded attacker who uses less storage than claimed can pass the verification.
As discussed above, this makes implementing proof of replications much easier,
since one does not need to worry about finding an appropriate value for the
verifier timeout.

To avoid misunderstandings, we emphasize that even if our definitions and
proof work with a single adversary that handles all replicas, the actual use case
includes several servers that each store one replica (if they are honest). Since it
is clearly impossible to check if a server stores something without talking to that
server, the communication complexity of our protocol must be proportional to
the number of servers2.

Finally, our main construction achieves public verifiability in the sense that
if the encoder is honest, then anyone can interact with the servers and verify the
proofs. At the end of the paper we discuss extensions which allow to cope with
malicious encoders.

1.1 Related Work

Proofs of retrievability. A lot of user data today is outsourced for storage on
the cloud both because of large volumes of data, and for reliability in case of
failure of local storage. The problem with cloud storage is that of maintaining
integrity of data and enforcing accountability of the storage provider. Proofs of
retrievability, first formalized by Juels and Kaliski in [JK07] address this problem
by allowing for audits. In a proof of retrievability, a client can store a file on the
server, while storing (a short) verification string locally. In an audit protocol,
the client acts as the verifier and the server proves that it possesses the client’s
file. The property that the server “possesses” a file is formalized by the existence
of an extractor that retrieves the client’s file from a server that makes a client
accept in the audit protocol. Since their introduction, there have been several
works [SW08, DVW09] constructing proof of retrievability schemes with a proof
of security and efficient audit procedures. One property we prioritize in this
work is public verifiability where any party can take the role of the verifier in the
audit protocol, not just the client who originally stored the file. This means the
client’s state storing any verification information for the file should not contain
any secrets. The construction of [SW08] gives a proof of retrievability scheme
secure in the random oracle model that allows public verifiability.

Proofs of space. A proof of space is a protocol where a prover convinces a verifier
that it has dedicated a significant amount of disk-space. Proofs of space were
introduced in [DFKP15] as an alternative to proof of work (PoW), and further

2 Of course, if a single server would store all replicas, we can optimize the communi-
cation needed, this is also easy to see for our protocol, but this hardly seems like an
interesting use case.
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studied in [RD16, AAC+17]. There have been proposals based on proof of space
like chia network [chi17] and Spacemint [PPK+15]. Very roughly, a proof of
space gives the guarantee that it is more “expensive” for a malicious server that
dedicates less space than an honest server to successfully pass an audit.

Data replication. Curtmola et al. [CKBA08] and Barsoum et al. [BH11] propose
protocols that enable proofs of data replication in the private verifier model,
where the client stores a secret key that is used for verification. The work of Hao
and Yu [HY10] allows public verifiability but nevertheless requires the client
to store a secret. The work of Etemad and Küpçü [EK13] studies replicated
provable data possession, but does not formalize replicated storage, and the
client need not be aware of any replication. Finally, the protocol of Armknecht
et al. [ABBK16] is also in the private verification model, and in addition, uses
RSA time-lock puzzles which results in a protocol with a time-bounded property
that we elaborate on below.

Filecoin. Filecoin is a decentralized storage network [Lab17a]. Essentially this
can be seen as a network of independent storage providers that offer verifiable
file storage and retrieval services. In the Filecoin protocol, miners earn protocol
tokens by providing data storage services.

To be used in the Filecoin context, a proof of replicated storage should sat-
isfy several properties. First, the scheme should protect against Sybil attacks as
described above e.g., a corrupt server should not be able to impersonate n dif-
ferent servers while storing a single copy of the file. Then, the scheme should be
publicly verifiable, meaning that any user (not only the original encoder) should
be able to verify the proof. It is also crucial that the security definition allows
the adversary to choose the file m. This is because an adversary could request
for m to be stored, and then prove that m was stored to collect network rewards.
Finally, the scheme should be resilient against generation attacks, meaning that
the adversary should not be able to reconstruct an encoding “on the fly” when
a proof of storage is requested.

Our main construction cannot be directly used in the Filecoin context since
the soundness of the proof relies on the encoder being honest. Thus, a malicious
encoder colluding with malicious servers could perform a generation attack i.e.,
persuade other users that some servers are storing several copies of a file without
reserving any space. At the end of the paper, we discuss how to extend our
solution to handle malicious clients too.

Time-bounded Proofs of Replication. In a recent work by Pietrzak [Pie18], a
construction for proof of replication based on proof of space is given. A proof
of replication is not formally defined, and therefore it is not clear what is the
replication property that the construction satisfies. In addition, since a proof of
space is the starting point of the construction, it has the same “time-bounded”
property as the Filecoin construction, since a malicious server can pass the au-
dit by recomputing data. More recently, [FBBG18, BBBF18, CFMJ18, Fis18]
construct proofs of replication based on slow encodings. They have the same
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time-bounded flavour of other recent works and is thus significantly different
from ours.

Comparison with Hourglass scheme [VDJO+12]. We note that our construction
and the construction of [VDJO+12] are reminiscent of each other; at a high level
both involve repeated applications of inversion of a trapdoor permutation and
a random permutation. However, there are differences in both the goals and the
details of the constructions.

The difference between the goal of the present work and the Hourglass
schemes can be summarized as follows: Hourglass only tries to guarantee incom-
pressibility of a single encoding (such that the original file can be receoverd),
whereas the goal of our proof of replicated storage is to get different incompress-
ible encodings to be stored on independent servers, such that the original file
can be recovered interacting with a single server. Regarding the constructions,
our work applies the random permutation over all blocks of the file and produces
randomized and independent encodings to be stored on each server, which makes
a notable difference in the our analysis3.

1.2 Technical Overview

The existing time-bounded proofs use a public deterministic encoding function.
The problem is that this always allow a malicious server to recompute encoded
data and this may lead to a successful recomputation attack if the server has
sufficient computational resources. Our observation is that one can instead make
the encoding be probabilistic. Now the adversary will only see the encoded data
but not the randomness that the client used to encode. One may therefore hope
that recomputing an encoding is not only slow, but completely unfeasible. On
the other hand, decoding must still be easy for anyone.

To illustrate the idea of our solution, we start with a toy example: we assume
that we are given oracle access to a random permutation T , and its inverse4, act-
ing on strings {0, 1}n. As is well known (and discussed in detail later) we can
instantiate such an oracle in the standard random oracle model. In order to
create replicas of a file, A will generate an instance of a one-way trapdoor per-
mutation f : {0, 1}n 7→ {0, 1}n, with trapdoor tf . For simplicity, we assume that
the file m to store is an (n− log n)-bit string. Then the i’th replica is defined to
be (f, f−1(T (m||i))), where || denotes concatenation and f is a specification of
the 1-way permutation. Clearly, anyone can easily compute m from a replica by
computing f in the forward direction and calling T−1. It turns out that this con-
struction is secure if the adversary computes the state to store for later in a very
restricted way, namely he forgets all information about at least one replica, say
the i’th one. Namely, the adversary forgets both the encoding (f, f−1(T (m||i)))
and the intermediate value T (m||i).
3 It is hard to compare our analysis with that of Hourglass since in [VDJO+12] only

an informal security argument of incompressibility is given.
4 One can think of the random permutation T as a random oracle which can be invoked

in both directions.
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We can now argue that if the adversary is nevertheless able to produce the i’th
replica, he will have to invert the one-way permutation: from the output of the
adversary (f, f−1(T (m||i))) we can (as the encoding can be decoded efficiently),
extract T (m||i). But, we assumed that the state did not contain any information
about this value (except for a negligible amount following from the fact that it
must be different from other outputs). Hence he must call the oracle to get
T (m||i). Therefore, in a security reduction, we can take a challenge value y and
reprogram T such that T (m||i) = y. Now, the i’th replica (that we assumed the
adversary could produce) is exactly the preimage of y under f .

Of course, we cannot reasonably assume that the adversary behaves in this
simple-minded way. As mentioned, we only want to assume that the state stored
is smaller than the combined size of the replicas, say by a constant factor. To
overcome this problem, we iterate the above construction several times, so that
T is called several times while preparing a replica. Now there are many more
outputs from T than the adversary can remember, and we show that by the
setting the parameters right, at least one of these is almost uniform in the view
of the adversary. Now we can place a challenge value for the one-way permutation
in this position by an argument similar to the above.

2 Preliminaries

Notation. We denote the concatenation of two bit strings x and y by x||y.
Throughout, we use κ to denote the security parameter. We denote a probabilis-
tic polynomial time algorithm by PPT. A function is negligible if for all large
enough values of the input, it is smaller than the inverse of any polynomial. We
use negl to denote a negligible function. We use [1, n] to represent the set of
numbers {1, 2, . . . , n}. For a randomized algorithm Alg, we use y ← Alg(x) to

denote that y is the output of Alg on x. We write y
R← Y to mean sampling a

value y uniformly from the set Y.

2.1 Trapdoor permutations

A collection of trapdoor permutations is a family F = {fpk : Dpk → Dpk} such
that:

– There exists a PPT algorithm KeyGen such that (pk, sk)← KeyGen(1κ), fpk
is a permutation.

– There exists a PPT algorithm that given pk samples uniformly from Dpk.
– There exists a PPT algorithm that on input pk and x ∈ Dpk, computes
fpk(x).

– There exists a PPT algorithm that on input sk and fpk(x), computes x, that
is, f−1sk (fpk(x)) = x.

Definition 1. A trapdoor permutation family F = {fpk : Dpk → Dpk} is said
to be hard to invert if the following holds: for all PPT algorithms A, there exists
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a negligible function negl such that

Pr[fpk(z) = y : (pk, sk)← KeyGen(1κ), x← Dpk, y ← fpk(x),

z ← A(pk, y)] ≤ negl(κ)

When the domain and range is clear from context, we omit the subscript pk
and only write D.

Definition 2. We call a trapdoor permutation family a B-leakage trapdoor per-
mutation if the following holds: For all PPT algorithms (A1, A2), there exists a
negligible function negl such that

Pr[fpk(z) = y : (pk, sk)← KeyGen(1κ), x← Dpk,
L← A1(x, pk), y ← fpk(x), z ← A2(y, L(x))] ≤ negl(κ)

where the output length of L is bounded by B bits.

Note that every trapdoor function family is also a B-leakage trapdoor per-
mutation family for B = log κ.

RSA trapdoor permutation. The RSA trapdoor permutation is given by:

– KeyGen(1κ): Choose κ-bit primes p, q, let N = pq. Choose e such that
gcd(e, (p − 1)(q − 1)) = 1, let d be such that ed = 1 mod (p − 1)(q − 1).
Return (pk = (e,N), sk = d)

– For x ∈ Z∗N , given pk = (e,N), compute fpk(x) = y = xe mod N .
– For y ∈ Z∗N , and sk = d, compute f−1sk (y) = yd mod N

The RSA inversion problem is assumed to be hard for any A running in time
polynomial in κ.

Invertible Random Oracle. We assume the algorithms of the construction and
the adversary have access to an invertible random oracle (IRO): that is oracle
access to Π : D → D and Π−1 : D → D.

We discuss here how to plausibly implement such an oracle: The indifferen-
tiablity framework, first proposed by Maurer et al. [MRH04], informally says
that given ideal primitives G and F , a construction CG is indifferentiable from
F , if there exists a simulator S with oracle access to F such that (CG, G) is indis-
tinguishable from (F, SF ). Coron et al. [CHK+16] showed that a 14-round Feistel
network where the round functions are independent random oracles is indifferen-
tiable from a random permutation. A series of subsequent works [DKT16, DS16]
show that 8 rounds is sufficient. Thus, using a Feistel network appears like a
plausible way of instantiating the oracle we need.

Unfortunately, the indifferentiability composition theorem is not known to
apply to security notions that are captured by games that have multiple stages [RSS11].
Our security notion of proof of replication is captured using a multi-stage game,
and therefore the result of [RSS11] applies.

Therefore, the construction described below should only be seen as a plausible
instantiation of an invertible random oracle.
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A plausible oracle instantiation. In our constructions, we make use of an invert-
ible random oracle H that acts on strings of arbitrary length, and an invertible
random oracle T that has the same domain as a trapdoor permutation. H is in-
stantiated using a regular Feistel network. In the following we discuss an heuristic
instantiation of T on pairs of outputs of RSA and obtain trapdoor permutation
f and IRO T with the same domain.

We define a trapdoor permutation f : (ZN )2 → (ZN )2 as follows: f(x1, x2) =
(f ′(x1), f ′(x2)) where f ′ is the RSA permutation f ′ : ZN → ZN . Note that N is
part of the public key of the RSA permutation. The input and output of T are
elements in (ZN )2. We note that we can instantiate the Feistel construction in
this domain as well by replacing XOR with multiplication modulo N i.e., given
a random oracle G that maps inputs in Z∗N to strings that are twice the length,
we can define F : (ZN )2 → (ZN )2 on pairs of values modulo N as follows:

FH(L||R) = s||t, where s = L ·G(R) mod N, t = R ·G(s) mod N

where · is product modulo N . Note that G(x) mod N is close to uniform in
Z∗N , therefore, F is invertible except with negligible probability i.e., if F is not
invertible then a non-trivial factor of N is found.

2.2 Proof of retrievability

Proofs of retrievability, introduced by Juels and Kaliski [JK07] allow a client to
store data on a server that is untrusted, and admit an audit protocol in which
the server proves to the client that it is still storing all of the data. A scheme
without random oracle was given in [DVW09], whereas [SW08] allows public
verifiability. A proof of retrievability (PoR) scheme consists of three algorithms,
Gen,P,V. We recall the definition from [SW08, DVW09] below.

– The generation algorithm takes as input a file F ∈ {0, 1}∗ and outputs a file
to be stored on the server and a tag (verification information) for the client.

(F ∗, τ)← Gen(F )

– The P,V algorithms define an audit protocol to prove retrievability of the
file. The P algorithm takes as input the processed file F ∗ and the V algorithm
takes the tag τ . At the end of the audit protocol, the verifier outputs a bit
indicating whether the proof succeeds or not.

{0, 1} ← 〈P(F ∗),V(τ)〉

A PoR scheme needs to satisfy correctness and soundness. Correctness requires
that for all file F ∈ {0, 1}∗, and for all (F ∗, τ) output by Gen(F ), an honest
prover will make the verifier accept in the audit protocol.

〈P(F ∗),V(τ)〉 = 1
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Informally, a PoR scheme is sound if for any prover that convinces the verifier
that it is storing the file, there exists an algorithm called the extractor that
interacts with the prover and extracts the file. We give the formal definition
below.

Experiment ExptPoR-sound
A (κ)

– The adversary A picks a file F ∈ {0, 1}n.
– The challenger creates (F ∗, τ)← Gen(F ) and returns F ∗ to A.
– A can interact with V(τ) by running many proofs and seeing whether V out-

puts 0 or 1.
– A outputs a prover algorithm (ITM) P∗ and returns this to the challenger.
– The challenger runs b← 〈P∗,V(τ)〉, and runs the extractor, F̃ = extP

∗
(τ, n, κ)

– Output 1 if b = 1 ∧ F̃ 6= F , or 0 otherwise.

Fig. 1: Soundness for Proofs of Retrievability.

Definition 3 (Soundness for Proof of Retrievability). A proof of retriev-
ability (PoR) Gen,P,V satisfies soundness if for any PPT adversary A, there
exists an extractor ext such that the advantage of A

AdvPoR-Sound
A (κ) = Pr[ExptPoR-Sound

A (κ) = 1]

in the experiment described in Figure 1 is negligible in κ.

The definition in [DVW09] discusses the notion of knowledge soundness versus
information soundness. If the definition holds for the class of efficient extractors,
the scheme satisfies knowledge soundness. A somewhat weaker notion is that of
information soundness where the running time of the extractor is not restricted.

2.3 Min entropy

Recall that the predictability of a random variable X is maxx Pr[X = x] and its
min-entropy H∞(X) is − log (maxx Pr[X = x]). The average case min-entropy is
defined as follows. Let X and Y be random variables.

H̃∞(X|Y ) = − log
(
Ey←Y

(
2−H∞(X|Y=y)

))
We make use of the following lemma which states that the average min-

entropy of a variable (from the point of view of an adversary) does not go down
by more than the number of bits (correlated with the variable) observed by the
adversary. We recall the entropy weak chain rule for average case min entropy
below in Lemma 1.
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Lemma 1. ([DORS08]) Let X and Y be random variables. If Y has at most 2λ

values, then

H̃∞(X|Y ) ≥ H∞(X)− H0(Y ) = H∞(X)− λ

where H0(Y ) = log |support(Y )|

3 Defining Proof of Replication

While several candidates of proof of replication have already been proposed, they
all use timing assumptions, and we are not aware of any formal definition of the
security properties that such a proof should satisfy without timing assumption.
It is indeed non-trivial to come up with the “right” definition, due to the fact
that we ask the adversary to store many copies of the same file. Thus simply
requiring the existence of an extractor algorithm (as in proof of knowledge or
proof of storage) is not sufficient: it is not enough that the adversary knows the
file, the adversary should know multiple replicas of the same file. But what does
it mean for an extractor to extract replicas of the same file? Before providing our
definition, we introduce some notions of encodings which will be used to build
up our solution.

3.1 Replica Encodings

We now define ReplicaEncoding as a tuple of algorithms (rEnc, rDec) where rEnc
takes a message m ∈ {0, 1}∗ and outputs a replica encoding of m ∈ {0, 1}∗,

y ← rEnc(κ,m)

The rDec algorithm takes a replica encoding and returns a message i.e., m ←
rDec(y).

Definition 4 (Replica encoding). A pair (rEnc, rDec) is a secure replica en-
coding if the following holds:

– Completeness: The probability of incorrect decoding is negligible i.e.,

Pr[rDec(rEnc(κ,m)) 6= m] < negl(κ)

– Soundness: Consider the game soundA1,A2 between an adversary and a chal-
lenger defined in Figure 2. A replica encoding scheme is c-sound (for a con-
stant c, 0 < c < 1) if for any (A1,A2), there exists a negligible function negl
such that the following holds.

Pr [|state| < cvβ|v ← soundA1,A2
] ≤ negl(κ)

where β is the bit-length of an encoding y.
– Efficiency: |y| = |m|+O(κ).
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Experiment soundA1,A2

– The adversary A1 chooses a file m ∈ {0, 1}k
– The challenger outputs n encodings of m

y(i) ← rEnc(κ,m)

for i ∈ [1, n] and returns (y(1), . . . , y(n)) to A1.
– A1 outputs a state state← A1(y(1), . . . , y(n))
– The challenger runs A2 on state.

(ỹ(1), . . . , ỹ(n))← A2(κ, state)

– Let vi = 1 if ỹ(i) = y(i), and 0 otherwise. Output v =
∑n
i=1 vi.

Fig. 2: Soundness of a Replica Encoding scheme

Discussion. The main measure of efficiency for a replica encoding is its expansion
factor, in other words the ratio |y|/|m|. Clearly, the smaller the expansion factor
the more interesting the scheme is. Looking ahead, all our constructions will
have |y| = |m|+O(κ).

We motivate here some of the choices in our definition. First note that the
completeness requirement allows the file to be reconstructed from a single replica
encoding. This captures the functional requirement in the honest usage of proofs
of replication, where a client would store different encodings of the file on differ-
ent servers and should be able to recover the file as long as one server is storing
their encoding.

When defining soundness, we consider a monolithic adversary A which con-
trols all colluding servers. To be able to meaningfully talk about the space that
the adversary uses for storing the file, we split the adversary A into two parts A1

and A2, where A1 receives the replica encoding from the challenger (represent-
ing the honest client) and A2 is the part of the adversary returning (some of)
the encodings to the client at a later stage, using the state that A1 transferred
to A2. We do not require that A2 outputs all of the received encoding, instead,
we use the variable v to count how many of the replica encodings A2 is able to
return. The definition of soundness then intuitively states that the adversary can
at most return the number of replicas that “fit” into the state (where we allow
for a constant “slack” c, to avoid trivial attacks where the adversary forgets few
bits and then “guesses” them right before returning the encodings – in practice
one should think of c as any constant close to 1).

As a sanity check of our definition, let’s consider a construction of replica
encoding that is “too trivial”: define y(i) = (m, ri) i.e., every replica is simply
the message concatenated with some random string ri. Due to incompressibility
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of random data the adversary needs to store all the ri’s, but clearly only needs
to store one copy of m and can still recompute all encodings. This is of course
not desirable, so our definition had better not accept this construction. Indeed it
does not: the adversary can break the soundness property because he can choose
to return v ≥ 2 encodings using storage only |m|+v|r| < cv|y| - which is trivially
true for any interesting case (remember in efficient encodings |y| ≈ |m| and c is
close to 1).

3.2 Proof of Replication

We now use the notion of encodings to meaningfully capture the replication prop-
erty. A proof of replication scheme consists of a tuple of algorithms create, retrieve
and an audit protocol defined by two algorithms, P,V for the prover and ver-
ifier respectively. create is a randomized algorithm that takes as input a file
m ∈ {0, 1}∗, that is to be replicated and stored, a replication factor n; and pro-
duces n replicas y(1), . . . , y(n) together with verification information ver. Each
replica y(i) is sent the server i to be stored, and ver with the client to be used
for verification in the audit protocol. retrieve is a deterministic algorithm run by
anyone that takes as input a replica y(i) and outputs a file m∗.

In the audit protocol, each server (prover) has a replica y(i), and the client
(verifier) has ver. At the end of the audit, the verifier outputs a bit b indicating
whether the audit was successful or not. We denote the protocol executing the
prover and verifier algorithms by 〈Pi(ỹ(i)),V(ver, i)〉.

We require the scheme to satisfy completeness and soundness properties as
defined below. Note that when considering the honest usage of the our protocol
(e.g., completeness), each server is able to prove to the client that they are
storing the file independently5. On the other hand, when considering adversarial
behaviour (e.g., soundness), we assume that all servers are under the control of
a monolithic adversary.

All our algorithms below are parametrized by a security parameter, even
when omitted as in the description below.

Definition 5 (Proof of Replication). A scheme PoRep = (create, retrieve,P,V)
where,

(y(1), . . . , y(n), ver)← create(m,n), for m ∈ {0, 1}∗, n ∈ Z

m∗i = retrieve(y(i)), i ∈ [1, n]

{0, 1} ← 〈Pi(ỹ(i)),V(ver, i)〉

is a proof of replication scheme if the following properties are satisfied.

– Completeness. For an honest client and honest server,

5 For instance, an honest server does not need to communicate with the other servers,
nor know that they exist.
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• for (y(1), . . . , y(n), ver) ← create(m,n),m∗i = retrieve(y(i)),m∗i = m ∀i ∈
[1, n]

• The audit protocol interaction between honest client and honest server
succeeds, that is, the client accepts and outputs b = 1.

〈Pi(ỹ(i)),V(ver, i)〉 = 1

– Soundness. We define the soundness game soundEA1,A2
between an adversary

and a challenger in Figure 3. The scheme PoRep is c-sound (for a constant
c, 0 < c < 1) if for any (A1,A2), there exists an extractor E and a negligible
function negl such that the following holds.

Pr
[
u < v ∨ |state| < cvβ|(u, v)← soundEA1,A2

]
≤ negl(κ)

where β is the bitlength of an encoding y.

Experiment soundEA1,A2

• The adversary A1 chooses a file m ∈ {0, 1}k
• The challenger runs (y(1), . . . , y(n), ver) ← create(m,n) and returns

(y(1), . . . , y(n)) to A1.
• A1 outputs a state state← A1(y(1), . . . , y(n))
• The challenger runs 〈A2(state),V(ver, i)〉, let vi be the output of V for all
i ∈ [1, n] and v =

∑n
i=1 vi.

• The challenger runs the extractor.

(ỹ(1), . . . , ỹ(n)) = EA2(κ, ver, k)

• For all i ∈ [1, n], define ui = 1 if ỹ(i) = y(i), and u =
∑n
i=1 ui

The output of the game soundEA1,A2
is (u, v).

Fig. 3: Soundness of a proof of replication scheme

The definition above guarantees that the malicious servers, even colluding,
cannot make the verifier accept more proofs than the storage they have used.

4 Constructing Proof of Replication

We begin by giving a high-level overview of our construction. Following the idea
behind our definition, we create many independent encodings, and use a proof of
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retrievability on the encodings. Even though each encoding can independently
be decoded to the same file without any secret information, the proof of re-
trievability on the encodings enforces that the server stores each encoding and
therefore dedicates space for each replica. Recall that in Section 1.2 we have
already described a simple solution which works in a restricted model in which
the adversary is restricted to either store or delete entire replicas. Of course this
is not a realistic threat model and a malicious server could choose to forget ar-
bitrary parts of each encoding (say, a constant fraction). Now, to pass the audit,
the server would have to compute a preimage of the underlying trapdoor permu-
tation, but given a constant fraction of bits of the preimage. Unfortunately, the
definition of security for trapdoor permutation does not allow us to say that this
is not possible; in other words, we cannot construct a reduction for this kind of
adversaries.

To address this problem, we use the following approach: we start by applying
an (invertible) random oracle (IRO) on the message concatenated with a short
seed (which is different for each replica), and then we use the trapdoor permu-
tation on the result. We then iterate the IRO and the trapdoor permutation as
a round function sufficiently many times. Intuitively the trapdoor permutation
of the round function ensures that the adversary has to do something “hard” in
every round, while the IRO of the round function is used to make sure that the
“hard tasks” are all independent.

Again, in any given round, we cannot rule out that the adversary might
have stored some (small) information that allows to easily invert the trapdoor
permutation. However, since we repeat this for many rounds and the adversary
must store some pre-image information at every round to potentially break the
trapdoor permutation, eventually the total information that the adversary would
have to store will exceed the bound necessary for replicated storage.

When dealing with large files (e.g., larger than the size of the input/output of
T ), we split the file in blocks. To make sure that all blocks depend on the entire
file (for instance, to prevent the server from “de-duplicating” individual blocks
which might appear in multiple files), we first apply a “large” IRO on the entire
file. Then, in the round function, we apply a “small” IRO on each individual
block. Thanks to this, the number of rounds in the encoding only needs to be
proportional to the block size, instead of the entire file size (as it was the case
in an earlier version of this paper).

Note that our combination of the RSA trapdoor permutation with a random
oracle is reminiscent of full domain hash-signatures and, to a greater extent, CCA
secure encryption via RSA and OAEP. Note however that, in our construction,
we apply the oracle and the trapdoor permutation for multiple rounds, and the
domain of the random oracle is a pair of blocks for the RSA permutation. The
idea of iterating a combination of RSA with a random oracle was used before
in [VDJO+12], however (apart from their work having a less in-depth treatment)
there are two major differences, namely that they did not consider replication
as an application, and that they use a strictly weaker notion of security, namely
“near-incompressibility”.
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Efficiency of decoding. We note that, when instantiating the construction with
the RSA trapdoor permutation, it is possible to use a small exponent (i.e., e = 3).
Now decoding would be much faster then encoding, which is a desirable property
in applications where a single user uploads a file which is then retrieved by a
large number of users.

4.1 Replica Encodings

We now proceed to describe our construction in detail, and first construct a
replica encoding scheme ReplicaEncoding = (rEnc, rDec) in Figures 4 and 5.

Let m ∈ {0, 1}k
′

be a message to be encoded.

– Choose a string γ uniformly at random from {0, 1}κ, and let y0 = H(m||γ),
where H : {0, 1}λ → {0, 1}λ is a invertible random oracle (IRO), and λ =
k′ + κ.

– Let (KeyGen, f−1, f) be trapdoor permutation over domain D. (sk, pk) ←
KeyGen(1κ). Divide y0 into s blocks such that each block is in D. That is,
y0 = Y10|| · · · ||Ys0. Let T : D → D be an IRO over D. We then iterate the
following round function: For each round j from 1 to r, and for each block
t ∈ [1, s] define
• Apply the IRO T ,

Ztj = T (Ytj−1)

• Invert the trapdoor permutation block-wise,

Ytj = f−1
sk (Ztj)

Let yj = Y1j || · · · ||Ysj
– Let R = (yr, pk)
– Return R

Fig. 4: The Replica Encoding Algorithm rEnc(κ,m)

Soundness of the scheme. Before formally proving the soundness of the scheme,
we give an overview of the proof idea. If the state state that is passed from A1

to A2 is small, then the adversary A2 cannot “remember” all the answers to
the queries that A1 made in the first part of the game since the outputs of a
random oracle are incompressible. However, we can extract the outputs of the
random oracle used during the encoding from the adversary since the replica
encodings can be efficiently decoded. This implies that the adversary must make
some queries to the random oracle in phase 2 of the game. Now, for each of the

16



For a replica R = (yr, pk), Parse yr as Y1r|| · · · ||Ysr. For each round j from r down
to 1, and each block t ∈ [1, s], compute

– Round j:
• Apply the trapdoor permutation block-wise,

Ztj = fpk(Ytj)

• Invert the IRO,
Ytj−1 = T−1(Ztj)

– Let y0 = Y10|| · · · ||Ys0. Compute H−1(y0) and parse the output as m||γ where
m is the first k′ bits. Return m.

Fig. 5: The replica decoding algorithm rDec(R)

queries the adversary makes, there are two options: either the response to the
query has full entropy in the view of the adversary, or it doesn’t. If it has full
entropy, i.e., if the state contained no (or very little) information about what the
oracle would answer, then we are done, as we will elaborate next. But first let us
consider if not; that is, the response to the query made did not have full entropy
in A2’s view. This means that the state must have contained some information
about the answer to the query. Now, since the encoding uses the random oracle
in each round, and since the state that the adversary is allowed to remember
is small, by carefully accounting for the entropy budget for each query made,
we argue that after a certain round, the entropy in the state is exhausted and
therefore there is at least one query that the adversary had to make to the
oracle whose response has full entropy in order to win the game. Finally, once
we have found such a query for which we know that the output of the oracle
has full entropy that A2 had to make to win the game, we can reprogram the
random oracle with a challenge for the trapdoor permutation. Thus since A2 is
nevertheless able to produce the replicas, we use it to break the assumption and
reach a contradiction.

Theorem 1. Assuming T,H are invertible random oracles, the construction
ReplicaEncoding = (rEnc, rDec) using trapdoor permutation f is a secure replica
encoding scheme, replication parameter n as per Definition 4. For number of

rounds r > (cn+1)k
B , it is complete and c-sound with soundness error

ε ≤
(
ε′ + 2−k(1−c) + qs22−k

)
nrs

where k = log |D|, D is the domain of f and T , s is the number of blocks, q
the number of queries to the RO and the advantage of any adversary in B-leakage
inversion of the permutation f is at most ε′.
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Proof. We use the notation R(i) to identify the encoding stored on server i.

Completeness. For n encodings that are created honestly, R(i) ← rEnc(m,κ),
m∗ = rDec(R(i)). Then, due to the invertibility of T,H and the trapdoor per-
mutation f , m∗ = m, ∀i.

Soundness. Assume there exists an adversary (A1,A2) such that

Pr [|state| < cvβ|v ← soundA1,A2 ] > ε .

Therefore, the adversary AT2 outputs R(i1), · · · , R(iv), where each ij ∈ [1, n].
Let I ⊂ [1, n], |I| = v be the set of indices indicating the replicas that A2 outputs
correctly. We argue that if the state is too small, then the adversary does not
have enough entropy to store information about R(i), ∀i ∈ I and therefore one of
the R(i) must have been recomputed, (by making relevant queries to T ), which
we use to invert the B-leakage trapdoor permutation. The proof idea is that
since the state is small, in round r, A2 must have learned some of the Z values
of round r from responses of T . If the response of T to these queries do not have
full entropy in A2’s view given the state, then this deficit must be accounted
for in the size of the state. We continue this argument for every round going
backwards from the last round, by reasoning about the set of relevant queries
made in each round, and accounting for every query made that did not have
entropy in A2’s view with B bits in the state. We then hit a round where the
response of T for one of A2’s queries must have high enough entropy from A2’s
point of view. Such a query is guaranteed to exist since the state size is used
up after enough queries of the former kind. We use the response to this query
to embed a challenge and invert the trapdoor permutation. We now proceed to
give the reduction.

Let B be an adversary whose task is to invert the trapdoor permutation. B
receives a challenge (p̂k, x̂), and wins if it outputs ŷ such that fp̂k(ŷ) = x̂. B in-

teracts with (A1,A2) in the soundness game. B receives a file m ∈ {0, 1}k′ from
A1. B creates encoded replicas honestly, except for one of the replicas chosen at
random (call its index i∗ ∈ [1, n]), in which the challenge will be embedded. For

now we only use the public key p̂k. Since B does not know the corresponding
secret key, B cannot compute this encoding honestly. Thus, B defines the encod-
ing R(i∗) as (p̂k, yr) for a uniformly random yr. Then it “decodes” yr down to y0
(by following the decoding procedure) and finally programs the random oracle
H such that H−1(y0) = (m||γ(i∗)) for some random string γ(i

∗). More in detail:

– Choose random y
(i∗)
r ∈ {0, 1}λ.

– For each round j from r down to 1, parse y
(i∗)
j = Y1j || · · · ||Ysj and, for each

block t ∈ [1, s], compute:

• Apply the trapdoor permutation block-wise,

Ztj = fp̂k(Ytj)
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• Invert the IRO,

Ytj−1 = T−1(Ztj)

– Let y0 = Y10|| · · · ||Ys0.
– Pick a random value γ ∈ {0, 1}κ and program the IRO H to output y0 on

input (m, γ).

– Return R(i∗) = (y(i
∗), p̂k)

B responds to any other oracle queries of A1 honestly, and finally gives
(R(1), · · · , R(n)) to A1, where R(i) for i 6= i∗ is created honestly. A1 outputs
a state state. Now, B interacts with A2. It runs A2 on state, and receives and
responds to A2’s oracle queries in the following way. B chooses a random round
j∗ ∈ [1, r], and a random block t∗ ∈ [1, s] to embed the challenge x̂ in. If A2

queries T on Y
(i∗)
t∗j∗−1, B sets the response to embed its challenge x̂ in the following

way. Set Zt∗j∗ = x̂ and,

T (Y
(i∗)
t∗j∗−1) = Zt∗j∗

The rest of the queries are answered honestly. If A2 makes a query Y
(i∗)
t∗j∗ = ŷ

such that, fp̂k(ŷ) = x̂, B outputs ŷ. If there is no such query, B outputs ⊥. We
now compute the probability that B wins in the trapdoor permutation inversion
game. Consider the case when (m||γ) fits into D, and therefore there is only
one block in the encoding. We later show how the argument extends to multiple
blocks. Let k be the block length, that is, the bit length of elements in D. We
therefore have |state| < cvk, c < 1. Consider the min-entropy of the random
variable state, which is at most the bit length, H∞(state) ≤ cvk. A2 on state
returns,

{R(i)}i∈I ← A2(state)

for R(i) = (y
(i)
r , pki). Since there is only one block in the encoding, y

(i)
r ∈ D and

can be decoded to obtain z
(i)
r = fpki(y

(i)
r ).

Let Yr = y
(i1)
r || · · · ||y(iv)r and Zr = z

(i1)
r || · · · ||z(iv)r , ij ∈ I.

Since each replica is computed by using independent randomness γi, the

queries to the oracle are different for each replica, and therefore each z
(i)
r is

unpredictable. We have,

H∞(z(i)r |z(1)r , · · · , z(i−1)r , z(i+1)
r , · · · , z(n)r ) = k

and therefore, H∞(Zr) = vk. Since Zr can be extracted fromAT2 (state) by decod-
ing, either the state contains information about each z(i) in z(1)|| · · · ||z(v), or A2

must make relevant RO queries, that is, query the RO on the inputs correspond-
ing to z(i). By the conditional rule for average case min-entropy (Lemma 1),

H̃∞(Zr|state) ≥ H∞(Zr)− H0(state)

H̃∞(Zr|state) ≥ H∞(Zr)− cvk = vk − cvk
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Zr is extracted by making no RO queries only with probability less than
2−vk(1−c) < 2−k(1−c) which is negligible for constant c (even in the worse case
where the adversary replies with a single replica). Therefore, there is at least one
RO query. Let Qr be the indices in I that indicates the queries which are y-values

of round r. That is, ∀u ∈ Qr, A2 queried T on y
(u)
r−1, and T (y

(u)
r−1) = z

(u)
r . Let

qr = |Q| denote the number of “relevant” r-round queries. For each query, either
the state contains information about the response or not; we consider the two
cases where the state stores < B bits of information or ≥ B of information of a
query response. If the state contains < B bits of information about responses in
round r, then B wins if the challenge is embedded in that response and we are

done. Otherwise, the state contains information about each z
(u)
r which means

the state stores at least B bits of information for each query.

H∞(state) ≥ qrB

Now, let us consider the set of queries made with indices in Qr. For each

y
(u)
r−1, u ∈ Qr, we can extract z

(u)
r−1 by computing the decoding. That is, z

(u)
r−1 =

fpku(y
(u)
r−1), for y

(u)
r−1 ∈ D. These qr elements are outputs of RO on different

inputs, and therefore have full entropy. Let Zr−1 = z
(u1)
r−1 || · · · ||z

(uqr )
r−1 where each

ui ∈ Qr. We have H∞(Zr−1) = qrk. If Zr−1 can be extracted from AT2 (state),

either the state contains information about z
(i)
r−1,∀i ∈ Qr, or A2 must make more

RO queries. If there are no more queries, then H∞(state) ≥ vk. Therefore, there
must be more queries on inputs corresponding to the indices in Qr.

Let qr−1 be the number of relevant round (r−1) queries. Define a set of query

indices Qr−1, from which we can extract Zr−2 = z
(u1)
r−2 || · · · ||z

(uqr−1
)

r−2 , for ui ∈
Qr−1. Again, for each query, either the state dedicates < B bits of information,
in which case B wins if the challenge is embedded in that response and we are

done. Otherwise, the state stores at least B bits of information about each y
(u)
r−1,

and therefore we have,

H∞(state) ≥ qrB + qr−1B

Making a similar argument as before, there must be more RO queries corre-
sponding to the indices in set Qr−1. Thus, we have, after r rounds, Zr, . . . ,Z1

are extracted from A2(state), and we have

H∞(state) ≥
r∑
i=1

qiB

Let A2 make RO queries in each round j for the replicas given by the indices
in Qj such that the reduction could not successfully embed a challenge in any
of the responses. Then after r rounds, setting,

r∑
i=1

qiB − cvk = k
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We get H̃∞(Z1|state) ≥ k, when r > k(cv + 1)/B.
Therefore, at some round ` ≤ r, the entropy of the response is full when

making an RO query at round `. That is, ∃` ∈ [1, r], w ∈ [1, n] such that,

H̃∞(z
(w)
` |state) = k

When there are multiple blocks, we have |state| < cvβ. Since the permutation
H is applied to the entire file concatenated with a random string γ, before r
rounds of T and f , the adversary can find files such that the output of H results
in the same blocks only with probability ((qs)2 + 1)/2k where q is the number
of queries and s the number of blocks. Then the above argument holds for each
block independently.

The probability that the challenge is programmed into the RO response of one

of the blocks of z
(w)
` is the probability that i∗ = w, j∗ = ` which is 1/vrs > 1/nrs

(in the worse case where n = v). Thus the probability that B wins is at least
ε
nrs − 2−k(1−c) − qs22−k.

ut

As any trapdoor function is also trivially B-leakage secure for B = log(k),
we obtain the following corollary.

Corollary 1. Assuming T,H are invertible random oracles, the construction
ReplicaEncoding = (rEnc, rDec) using trapdoor permutation f is a secure replica
encoding scheme for replication parameter n as per Definition 4. For number of

rounds r > (cn+1)k
log k , it is complete and c-sound with soundness error

ε ≤
(
ε′ + 2−k(1−c) + qs22−k

)
nrs

where k = log |D|, D is the domain of f and T , s is the number of blocks, q the
number of queries to the RO and the advantage of any adversary in inverting
the permutation f is at most ε′.

Of course, for specific trapdoor permutations, it might be possible to assume
B-leakage security for larger values of B thus achieving better round complexity.

4.2 From Replica Encodings to Proofs of Replication

We now construct a proof of replication scheme create, retrieve,P,V. The idea
is very simple: to construct a proof of replication we use the replica encoding
scheme from the previous section to create replicas, and then apply a proof of
retrievability on the encoded replicas. The proof of security is also simple, as an
adversary that breaks soundness for the proof of replication can be used to break
the soundness property of the proof of retrievability scheme or the soundness of
the replica encoding scheme.

The create procedure is formally described in Figure 6. The prover, and
verifier algorithms P,V are the same as the prover and verifier in the proof of
retrievability. Finally, the retrieve algorithm simply runs the replica decoding
algorithm rDec if the proof of retrievability accepts.
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Let PoR = (Gen,P,V) be a proof of retrievability scheme. Given a file m ∈ {0, 1}k
′
,

and a replication factor n:

– For each i ∈ [1, n]
• Run R(i) ← rEnc(m,κ)
• ({R̃(i)}i, τi) = PoR.Gen(R(i))

– Set ver = {τi}i
– R̃(i) is sent to the server i for storage and ver is returned to the client.

Fig. 6: create(m,n): Create replicated storage

Theorem 2. PoRep = (create, retrieve,P,V) is a proof of replication scheme for
replication parameter n secure as per Definition 5. It is complete and c-sound
with soundness error γ ≤ δ+ ε where the underlying PoR scheme has soundness
error δ, and the replica encoding scheme has soundness error ε.

Proof. We first argue completeness: Given R(i) and pk, for encodings that are
created honestly, an honest server can recover m∗ = retrieve(R(i)). By complete-

ness of the replica encoding scheme rEnc, we have rDec(R(i)) = rDec(y(i), pk(i)) =
m, ∀i.

We now argue the soundness of the construction. Let (A1,A2) be an adver-
sary, that wins the soundness game soundEA1,A2

with advantage γ. Let (u, v) ←
soundEA1,A2

.We consider the two cases:

Case 1. u < v. Let ext be the extractor of the PoR scheme, and let the file
output by ext be {R̃(i)}ni=1. By assumption that u < v there must be an
index i ∈ [1, n] such that the adversary A2 succeeds in the audit protocol
(i.e., vi = 1), but R̃(i) 6= R(i) (i.e., ui = 0). By the soundness of the proof of
retrievability scheme PoR, this happens only with probability δ.

Case 2. |state| ≤ cvβ. In this case the adversary AT2 succeeds in v audit pro-
tocols, and since u ≥ v, the extractor E outputs R̃(i) = R(i) for i ∈ I ⊂
[1, n], |I| = v. Let (B1,B2) be an adversary whose task is to break the sound-
ness of the replica encoding scheme rEnc. B1 interacts with (A1,A2) in the
soundness game. B1 receives a file m ∈ {0, 1}k′ from A1, and outputs m
to its challenger. B1 receives n replica encodings (R(1), · · · , R(n)) from the
challenger, where the bit length of each encoding is β. B1 runs the PoR on
the replicas. ({R̃(i)}i, ver) ← PoR.Gen{R(i)}i and returns {R̃(i)}i to A1. B1
outputs as state whatever A1 outputs with |state| ≤ cvβ. For every success-
ful audit proof given by A2, B2 runs the extractor E(ver, n, κ) of the scheme.
Thus B2 outputs R̃(i) = R(i) for each i ∈ I with probability at least γ.
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5 Dealing with Malicious Clients

We discuss here some limitations and possible extensions of our approach.

Our definition and construction so far has concentrated on the case where the
client is honest. This is not a problem for our base use-case where a user wants to
make sure they will be able to retrieve their files in the future, but it is a problem
in the Filecoin use case where servers are rewarded for the files they store. In
this case, we need to prevent against the so called generation attack and it is
therefore important to have some security guarantees when the client is corrupt
and might work with a set of corrupt servers to convince honest users that they
store many replicas whereas in fact the replicas are generated “on-the-fly” for
each proof.

Our solution from the previous section does not work in this case, as a corrupt
user could share the trapdoor function secret key with the servers and now they
can indeed encode a replica on the fly. If the client who owns the file is corrupt
and is the only user involved in the encoding process, then the adversary knows
everything about the encoding process, and a different solution is needed. One
way to go is to involve several users in the encoding process and work under the
assumption that at least one of them is honest.

In a Filecoin-like scenario one could implement such a solution by rewarding
users for helping others to encode. We now describe two different approaches to
such multi-user encoding.

Parallel Encoding. Given one-way trapdoor functions f1, ..., fn that act on k-
bit strings, we define a new function F on kn bit strings by F (x1, ..., xn) =
(f1(x1), ..., fn(xn)), where each xi is a k-bit string. It is clear that F is a one-
way trapdoor function even with respect to an adversary who knows all but
one of the trapdoors for f1, ..., fn. Namely, if the j’th trapdoor is unknown, we
can take a challenge yj , choose yi = fi(xi) for i 6= j and random xi and give
(y1, ..., yn) to the adversary. If he computes a preimage, then the j’th component
is the answer to challenge yj .

Note that our main result gives a construction that is secure based on any
one-way trapdoor function and so it also works for F .

Now, in the practical use-case, we will assume that n users are involved, such
that user i has fi as part of his public key and knows the corresponding trapdoor.
A public-key infrastructure is one of several ways to realize this. Then the n users
can collaborate to encode: whenever we need to compute F , we can assume the
input to the current round is known (initially it will be the file to encode), so
each user i can apply the permutation oracle and compute and broadcast f−1i
on his part of the result.

It follows immediately from the above that if at least one user is honest,
then this construction results in a secure replica encoding. Note also that the
contributions of each user can be verified by computing his function in the for-
ward direction. Moreover, the overhead in encoding size and the cost per bit of
encoding and decoding is the same as for the single honest user case. On the
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other hand, we need a number of rounds for the encoding protocol that equals
the number of rounds in the encoding process.

Sequential Encoding. An obvious alternative is to do the encoding sequentially.
Namely, the first user does an encoding of the input file using his (set of) trapdoor
functions and broadcasts the result. The second user encodes the output of the
first, etc. In the end, we have an encoding that is essentially done just like our
original construction, only with more rounds. Note that one can decode the
output of each user and check the result is correct.

The intuition behind the security of this approach is the following: under
the assumption that at least one user is honest, we have the same security as
in the original construction assuming that at least one of the users is honest.
This is simply because the adversary does not know the trapdoors for the honest
member, and his encoding process involves the same number of random oracle
responses that we considered in the original proof. This approach increases the
size of the encodings but not significantly (the complexity would grow from
O(|m| + κ) to O(|m| + n · κ) with n users). The cost of encoding and decoding
in this solution is a factor n larger than for the single honest user case. On the
other hand, the number of rounds in the encoding protocol is n, which may be
better than parallel encoding, depending on the concrete scenario.

6 Conclusions and Future Work

We gave two possible solutions to multi-user encoding above. However, there is
also a solution of a different nature that comes to mind: namely we can share
a trapdoor (say, an RSA key) between a set of users and have them collaborate
to compute the encoding using that trapdoor function securely. This has the
advantage that an encoding looks just like what an honest client would produce,
we are not forced to have larger block size when many users are involved. Also,
decoding is as fast as in the honest client case, and one can set up the proto-
col such that just one participating client needs to be honest in order for the
secret key to not leak. On the other hand, encoding requires more work. For
the encoding protocol, one can take advantage of the huge body of literature
on distributed RSA key generation and distributed signing. Finding the optimal
solution for this approach is left for future work.

We also leave as an open question the problem of finding a secure replica
encoding where the number of rounds in the encoding process does not depend
on the number of replicas.
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