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Abstract. We describe a novel approach for two-party private set in-
tersection (PSI) with semi-honest security. Compared to existing PSI
protocols, ours has a more favorable balance between communication
and computation. Specifically, our protocol has the lowest monetary cost
of any known PSI protocol, when run over the Internet using cloud-based
computing services (taking into account current rates for CPU + data).
On slow networks (e.g., 10Mbps) our protocol is actually the fastest.

Our novel underlying technique is a variant of oblivious transfer (OT)
extension that we call sparse OT extension. Conceptually it can be
thought of as a communication-efficient multipoint oblivious PRF evalua-
tion. Our sparse OT technique relies heavily on manipulating high-degree
polynomials over large finite fields (i.e. elements whose representation
requires hundreds of bits). We introduce extensive algorithmic and en-
gineering improvements for interpolation and multi-point evaluation of
such polynomials, which we believe will be of independent interest.

Finally, we present an extensive empirical comparison of state-of-the-
art PSI protocols in several application scenarios and along several di-
mensions of measurement: running time, communication, peak memory
consumption, and — arguably the most relevant metric for practice —
monetary cost.

1 Introduction

Private set intersection (PSI) allows two parties, who each hold a set of items,
to learn the intersection of their sets without revealing anything else about the
items. PSI has many privacy-preserving applications: e.g., private contact discov-
ery [8, 47, 15]3, DNA testing and pattern matching [51], remote diagnostics [5],
record linkage [25], and measuring the effectiveness of online advertising [30].
Over the last several years PSI has become truly practical with extremely fast
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implementations [12, 11, 16, 45, 35, 36, 48, 8, 24, 47, 20, 7] that can process
millions of items in seconds.

In this paper we focus on two-party PSI with semi-honest security (with
one variant of our protocol achieving malicious security for one party). While we
describe our protocols in terms of any number of items, our evaluation focuses
on the case where the two parties have sets of the same size. We discuss the
setting of unequal set sizes in the full version.

1.1 What Should We Value in a PSI Protocol?

The standard ways to measure the cost of a protocol are running time and
communication. Depending on which of these metrics is prioritized, a different
protocol will be preferred.

Minimizing time. The fastest known PSI protocols are all based on efficient
oblivious transfers (OT). The idea is to reduce the PSI computation to many
instances of oblivious transfer. This approach is the fastest because modern OT
extension protocols [3, 31, 34, 1] use only a small (fixed) number of public-
key operations (e.g., elliptic curve multiplications) but otherwise use only cheap
symmetric-key operations. The approach to PSI was introduced by Pinkas et
al. [45] and refined in a sequence of works [44, 35]. The state-of-the-art protocol
[35] computes an intersection of million-item sets in about 4 seconds.

Minimizing communication. To the best of our knowledge, the PSI proto-
col with lowest communication in this setting is due to Ateniese et al. [2]. This
protocol requires communication that is only marginally more than a näıve and
insecure protocol (in which one party sends just a short hash of each item), and
also has the nice property of hiding the size of the input set. However, the pro-
tocol requires at least n log n RSA exponentiations (for PSI of n items). These
requirements make the protocol prohibitively expensive in practice.4

A more popular (as well as the earliest) approach to low-communication PSI
is based on the commutative property of Diffie-Hellman key agreement (DH-
PSI), and appears in several works [50, 39, 28]. The idea is for the parties to
compute the intersection of {(H(x)α)β) | x ∈ X} and {(H(y)β)α) | y ∈ Y } in
the clear, where α and β are secrets known by Alice and Bob, respectively. The
DH-PSI protocol strikes a more favorable balance between communication and
computation than the RSA-based protocol. It requires n exponentiations in a
Diffie-Hellman group, which are considerably cheaper than RSA exponentiations
but considerably more expensive than the symmetric-key operations used in OT
extension. In terms of communication, it requires less than 3 group elements per
item. When instantiated with compact elliptic curve groups (ECDH-PSI), the
communication complexity is very small. For example, Curve25519 [4] provides

4 We are not aware of any prior implementation of this protocol, but estimated the
running time through benchmark RSA exponentiations. For the set sizes we consider
in this work, the protocol would require many hours or even a day.
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128-bit security with only 256-bit group elements (around 600 bits of communi-
cation per item).

An ideal balance. Communication cost and overall running time are clearly
both important, but which metric best reflects the balance between the two
costs, and the true suitability of a protocol for practice? We argue that the
most appropriate metric which balances the two costs is the monetary cost
to run the protocol on a cloud computing service. First, a typical real-
world application of PSI is likely to use such a service rather than in-house
computing. Second, the pricing model of such services already takes into account
the difference in cost to send a bit vs. perform a CPU clock cycle.

1.2 Our Contributions

We present a new PSI protocol paradigm that is secure against semi-honest ad-
versaries under standard-model assumptions. We offer two variants of our proto-
col: one is optimized for low communication and the other for fast computation.
The variant that is optimized for low communication is also secure against a
malicious sender in the (non-programmable) random oracle model.

Better Balance of Computation and Communication. Compared to
DH-PSI and RSA-based PSI [2], both of our protocol variants have much faster
running time, since ours are based on OT extension (i.e., dominated by cheap
symmetric-key operations). The low-communication variant has smaller com-
munication overhead than DH-PSI (even on a 256-bit elliptic curve) while the
fast-computation variant has about the same communication cost as DH-PSI.

Compared to [35], both of our protocol variants require much less commu-
nication. Our protocols perform more computation in the form of finite field
operations, making our protocols slower over high-bandwidth networks. How-
ever, the variant optimized for fast computation has a competitive running time
and is the fastest over low-bandwidth networks (e.g., 30Mbps and less).

Extensive Cost Comparison. In Section 6 we perform an extensive bench-
mark of state-of-the-art PSI protocols for various set sizes and bandwidth con-
figurations. To the best of our knowledge, our analysis is the first to assess PSI
protocols in terms of their monetary costs. Our experiments show that in all
settings we considered, the fast variant of our protocol has the least monetary
cost of all protocols — up to 40% less in some cases. A summary of the state
of the art (including this work) is depicted in Figure 1.

Sparse OT extension technique. Our main technique, which we call sparse
OT extension, is a novel twist on oblivious transfer (OT) extension. Roughly
speaking, the idea allows the receiver to obliviously pick up a chosen subset of
k out of N random secrets (where N may be exponential), with communication
cost proportional only to k.
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Fig. 1: Communication
and running time for
different PSI protocols,
with n = 220 items, on
3 network configura-
tions. Curved lines are
lines of equal monetary
cost on a representative
AWS configuration (see
Section 6).

The concept is similar to an oblivious PRF [19] on which the receiver can
evaluate k chosen points. Other PSI protocols like [44, 35] can also be expressed
as a construction of OPRF from OT extension. However, these involve an OPRF
that the receiver can evaluate on only a single value, resulting in significantly
more effort to build PSI. This qualitative difference in OPRF flavor is the main
source of our performance improvements.

New hashing techniques. It is common in PSI literature to assign items
randomly to bins, and then perform a PSI within each bin. For security reasons, it
is necessary to add dummy items to each bin. With existing techniques, dummy
items account for 20-80% of the protocol cost! Our speed-optimized protocol
variant is the first to use a kind of 2-choice hashing [49] that requires almost
no dummy items (e.g., 2.5%). This 2-choice hashing technique requires placing
many items per bin, while previous PSI techniques are only efficient with 1 item
per bin (due to their qualitatively different OPRF flavor). Hence, this hashing
technique does not immediately benefit existing PSI protocols.

New polynomial interpolation techniques. Our communication-
optimized protocol variant requires interpolation and multi-point evaluation of a
polynomial, which turns out to be the main bottleneck for the following reasons:
(1) The polynomial is over a large field of� 2400 elements, since the polynomial
encodes values related to an underlying OT-extension protocol. (2) The num-
ber of interpolation points depend on the parties’ set size, which could be in
the millions. (3) The best algorithms, which incur O(n log n) field operations,
require a special set of interpolation points, namely, the x-values should be the
roots of unity of the field or have a special algebraic structure. In contrast, in
the context of our protocol the interpolation points (the x-values) are the parties
PSI input items, which are arbitrary. The best algorithms with an arbitrary set
of interpolation points incur O(n log2 n) field operations [40].

We develop and demonstrate new techniques, called Slice & Stream and
Subproduct-Tree Reuse, to speed up the concrete efficiency of these tasks by
up to 2× for the special case in which the x and y-coordinates of the points are
drawn from the domains Dx and Dy where |Dx| � |Dy|. We believe those tech-
niques could have a general interest (even outside of the field of cryptography).

4



1.3 Related Work and Comparison

We compare our results to relevant related work here, focusing on qualitative
differences between the protocols. A quantitative comparison is given later in
Section 6.

DH-PSI Our protocol uses less communication than DH-PSI, even when the
latter is instantiated with the most compact elliptic curve known. In terms of
computation, our protocol uses only symmetric-key operations (apart from a
fixed number of base OTs). Its main computational bottleneck is computing
polynomial interpolation, requiring either O(n log2 λ) or O(n log2 n) finite field
operations (i.e., multiplications), depending on the variant, where n is the set
size and λ is the statistical security parameter. The DH-PSI protocol computes
O(n) exponentiations (or elliptic curve multiplications, which are each computed
using log |G| multiplication operations in the underlying cyclic group G). If we
consider the basic unit of computation to be a multiplication in the underlying
field/group, then our protocol uses at most O(n log2 n) multiplications whereas
DH-PSI uses O(n log |G|) multiplications. The experiments that we describe in
Section 6 demonstrate that our protocol is substantially faster than DH-PSI for
all realistic set sizes and on all network configurations.

Our communication-optimized protocol variant has security against one ma-
licious party. In contrast, DH-PSI is not easily adapted to malicious security,
even against just one party.5 In order to harden DH-PSI against malicious par-
ties, the leading protocol of De Cristofaro et al. [12] requires both parties to run
zero-knowledge proofs involving all of their input items. Thus, even one-sided
malicious security requires significant overhead to the semi-honest protocol.

While we do not formally consider security against quantum adversaries, we
do point out that our protocol exclusively uses primitives that can be instantiated
with post-quantum security (OT, PRFs, and hash functions). DH-PSI on the
other hand is trivially broken against quantum adversaries.

Protocols based on an RSA accumulator. The protocol of [2] has a very
low communication overhead of roughly λ + log2 n bits per item, which may
even be optimal (even for an insecure protocol). On the other hand, it computes
O(n log n) RSA exponentiations, and as such is slower than DH-PSI by at least
an order of magnitude (due to the log n factor, and to RSA exponentiations
being slower than elliptic curve multiplications). Our protocols are substantially
faster than both of these protocols (see Section 6). This protocol also requires a
random oracle, whereas for semi-honest security ours is in the standard model.

OT-based protocols Our protocol requires 40-50% less communication com-
pared to [35] and is the fastest over low-bandwidth networks (30 Mbps and
lower). Over high-bandwidth networks, even though our protocol is slower than
[35], ours still requires less monetary cost (see Section 6).

5 The main challenge is that a simulator would have to extract effective inputs
{x1, . . . , xn} from a corrupt party, seeing only {H(x1)α, . . . , H(xn)α}.
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Independently, Lambæk [37] and Patra et al. [43] showed how to enhance
the protocols of [45, 35] with a security against a malicious receiver with almost
no additional overhead. Interestingly, our protocol naturally provides security
against a malicious sender. In both of these protocols, if the parties have sets
of very different sizes then the party with more items should play the role of
sender. Providing a different flavor of one-sided malicious security is therefore
potentially valuable.

Ghosh and Nilges [22] proposed a PSI protocol based on oblivious linear
function evaluation (OLE). This protocol requires 2n passive OLE invocations,
polynomial interpolations at 3 times (one of degree n, and two of degree 2n), and
polynomial evaluation on 2n+ 1 points at 4 times. In terms of communication,
the required passive OLE instances [32, 21] require 8(n+ 1) elements sent from
the receiver to the sender to create a noisy encoding, and the cost of doing
4n-out-of-8(n + 1) OT which incurs an overhead of at least 8(n + 1) on the
number of Correlated OT. Hence, this OLE-based PSI protocol requires at least
8(n+ 1)(κ+ 2`) bits communication, where ` is bit-length of item. For example,
when ` = 128, our protocols show a factor of 4.8 − 6.3× improvement in terms
of communication.

Recently, Falk, Noble and Ostrovsky [18] presented a protocol for PSI that
achieves linear communication complexity relying on standard assumption (i.e.
in the OT-hybrid model, assuming the existence of correlation robust hash and
one-way functions) and in the standard model (i.e. without a random oracle).
This is in contrast to previous protocols that achieve linear communication but
rely on stronger assumptions (like [12, 13] that are based on the one-more RSA
assumption and a random oracle); and to previous OT-based protocols that
achive only super-linear communication complexity due to the stash handling.
In the protocol of [18], just like previous OT-based protocols, Bob maps his n
items to O(n) bins using a Cuckoo hashing, hence, it has at most one item in
each bin. Bob also maintains a special bin for items that could not be mapped
to the ‘regular’ bins, this special bin is called the stash and it contains ω(1)
items. Alice maps her items to O(n) bins using simple hashing, hence, she has at
most O(log n/ log log n) items in each bin with high probability. Then, Bob can
obtain the intersection between items in its ‘regular’ bins and Alice’s set using the
BaRK-OPRF technique of [35] with communication complexity O(n · κ) (where
κ is the computational security parameter). It remains to compare the items in
Bob’s stash to all Alice’s items; since the stash is of size ω(1) this comparison
would naively require ω(n · κ) communication overall. However, the observation
in [18] is that this comparison can be performed using a separate PSI protocol
that is specialized for unbalanced set sizes in which Alice has much more items
than Bob; such a protocol can achieve communication complexity that depends
only on the larger set size, therefore, the overall communication complexity of
[18] is O(n · κ) rather than ω(n · κ). We note that in concurrent to their work,
in this paper we achieve the same (linear) communication complexity, under the
same standard assumptions and without a random oracle, using a new primitive,
namely the Sparse OT Extension.
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Other paradigms. Other approaches for PSI have been proposed, including
ones based on Bloom filters [16] and generic MPC [27]. Pinkas et al. [45, 44] per-
formed a comprehensive comparison of semi-honest PSI techniques and found
the OT-extension paradigm to strictly dominate others in terms of performance.
They found that the best Bloom-filter approach is 2x worse in runtime, 4x worse
in communication; best generic-MPC-based approach is 100x worse in runtime
and 10x worse in communication. For this reason, we do not include these pro-
tocol paradigms in further comparisons.

Asymmetric set sizes. Several recent PSI protocols are optimized specifi-
cally for the case of highly asymmetric set sizes. [8, 44, 33, 47]. We discuss these
protocols in the full version.

Other related work. One way of viewing our new technique is that we
covertly embed some protocol messages into a polynomial. Similar ideas appear
in [38, 9]. In particular, [9] explicitly propose to embed private equality-test
protocol messages into a polynomial, to yield a PSI protocol. Their protocol is
based on the DH paradigm, and therefore requires a linear number of exponen-
tiations. They also achieve a stronger covertness property (participants cannot
distinguish other participants from random noise, until the protocol terminates).
In our case, we look inside IKNP OT extension and identify the minimal part
of the protocol that needs to be covertly embedded into a polynomial, in order
to achieve standard (semi-honest or malicious) security.

2 Technical Preliminaries

2.1 Notation

Throughout the paper we use the following notation: We let κ, λ denote the
computational and statistical security parameters, respectively. We write [m] to
denote a set {1, . . . ,m}. The notation dH(x,y,) denotes the Hamming distance
between bit vectors (strings) x and y of the same length and wH(x) = dH(x,0)
denotes the Hamming weight of x. For a bit vector v we let vi denote the bit
in the ith coordinate. If a = a1‖ · · · ‖ap and b = b1‖ · · · ‖bp are two vectors, the
notation a⊕b denotes the vector (a1⊕b1)‖ · · · ‖(ap⊕bp). Similarly, the notation
a · b represents the bitwise-AND of vectors: (a1 · b1)‖ · · · ‖(ap · bp).

2.2 Oblivious Transfer

Oblivious Transfer (OT) is a central cryptographic primitive in the area of se-
cure computation, which was introduced by Rabin [46]. 1-out-of-2 OT [17] refers
to the setting where a sender with two input strings (m0,m1) interacts with
a receiver who has a input choice bit b. As the result, the receiver learns mb

without learning anything about m1−b, while the sender learns nothing about b.
Rabin OT protocol requires expensive public-key operations. In 2003, Ishai et al.
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Parameters: Sender S, receiver R, length κ
Functionality:

– Wait for an input b← {0, 1} from the receiver R.
– Choose m0,m1 ← {0, 1}κ, and give both to sender S.
– Give mb to receiver R.

Fig. 2: The FκROT ideal functionality for Random Oblivious Transfer.

[31] proposed a construction of OT extension (refer as IKNP) that allows a large
number of OTs executions at the cost of computing a small number of expen-
sive OTs [41]. Later, Kolesnikov and Kumaresan [34] improved IKNP for short
secrets. It gives O(log(κ)) factor performance improvement in communication
and computation. In the same year, [1] presented several IKNP optimizations
and several weaker variants of OT. In Random OT (ROT), the sender’s OT
inputs (m0,m1) are chosen at random, therefore, it allows the protocol itself
to give him the values (m0,m1) randomly. With ROT, the bandwidth require-
ment is significantly reduced since the sender sends nothing to receiver. In our
construction, we require this weaker variant, random OT, whose functionality is
described in Figure 2.

2.3 (Hamming) Correlation Robustness

Our PSI construction is proven secure under a correlation robust assumption
which was introduced for IKNP OT extension [31] and later generalized in [35]
to the version we use in this work.

Definition 1. [35] Let H be a function with input length n. Then
H is d-Hamming correlation robust function (CRF) if, for any
a1, . . . ,am, b1, . . . , bm with ai, bi ∈ {0, 1}n and wH(bi) ≥ d for all i ∈ [m],
the following distribution, induced by random sampling of s← {0, 1}n, is pseu-
dorandom:

H(a1 ⊕ [b1 · s]), . . . ,H(am ⊕ [bm · s])

The IKNP protocol uses this assumption with n = d = κ. In that case,
the only valid choice for bi is 1κ, and the distribution simplifies to H(a1 ⊕
s), . . . ,H(am ⊕ s). In our case, we use n > d = κ, so other choices for the bi
values are possible.

2.4 Private Set Intersection

PSI is a special case of secure two-party computation, and we use the standard
security definitions for two-party computation in this work. The guarantees of
PSI are captured in the ideal functionality FPSI defined in Figure 3. For secu-
rity against malicious parties, we use the framework of universal composability
(UC) [6].
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Parameters: Sender S, receiver R, set sizes n1, n2.
Functionality:

– Wait for input X = {x1, . . . , xn1} ⊆ {0, 1}∗ from sender S.
– Wait for input Y = {y1, . . . , yn2} ⊆ {0, 1}∗ from receiver R.
– Give output X ∩ Y to receiver R.

Fig. 3: PSI ideal functionality FPSI.

Parameters:

– A PRG G : {0, 1}κ → {0, 1}N
– A κ-Hamming CRF H : {0, 1}κ → {0, 1}κ.

Input of Sender Alice: none.
Input of Receiver Bob: an N -bit string r.

Protocol:

1. Alice chooses s← {0, 1}κ uniformly at random.
2. Alice and Bob invoke κ instances of Random OT FκROT. In the i-th instance:

– Alice acts as receiver with input si.
– Bob acts as sender, and receives outputs ti,ui ∈ {0, 1}κ.
– Alice receives output qi.

3. Bob computes the following N × κ matrices:
– T whose ith column is G(ti)
– U whose ith column is G(ui)
– C whose ith row is 0κ if ri = 0 and 1κ if ri = 1

Bob sends the matrix P = T ⊕U ⊕C to Alice. For each i ∈ [N ], Bob outputs
m∗

i = H(T (i)), where T (i) denotes the ith row of T .
4. Alice computes an N × κ matrix Q whose ith column is G(qi). Now let Q(i)

denote the ith row of this matrix, and let P (i) denote the ith row of P . For
each i ∈ [N ], Alice outputs:

mi,0 = H(Q(i)⊕ s · P (i))

mi,1 = H(Q(i)⊕ s · P (i)⊕ s)

Fig. 4: The IKNP protocol for OT extension.

2.5 The IKNP OT Extension: A Reminder

It is well-known that oblivious transfer cannot be obtained from scratch using
only symmetric-key primitives [29]. OT extension [3] refers to the idea that
parties can perform only a small number κ of OTs (using public-key primitives),
and then, using only symmetric-key operations thereafter, obtain N � κ effective
instances of OT. Modern OT extension protocols follow the overall structure of
the IKNP protocol [31]. In Figure 4 we review the variant of the IKNP protocol
where the sender’s OT payloads are chosen uniformly.

From the correctness of the base OTs, we have that:

qi = ti ⊕ si · (ti ⊕ ui) =

{
ti if si = 0

ui if si = 1
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This relationship can be extended across the rows of the N × κ matrices to
obtain: Q(i) = T (i) ⊕ s · (T (i) ⊕ U(i)), where T (i) and U(i) correspond to the
rows of T and U . Then:

Q(i)⊕ s · P (i) =
(
T (i)⊕ s · (T (i)⊕ U(i))

)
⊕ s · (T (i)⊕ U(i)⊕ C(i))

= T (i)⊕ s · C(i) =

{
T (i) if ri = 0

T (i)⊕ s if ri = 1

From this we can deduce that Bob’s output is m∗
i = mi,ri , whereas mi,1−ri =

H(T (i) ⊕ s). From the correlation-robust property of H, this value is pseudo-
random from Bob’s perspective.

3 Our Main Protocol

3.1 A Conceptual Overview: PSI From a Multi-Point OPRF

A conceptually simple way to realize PSI is with an oblivious PRF (OPRF)
[19, 23], which allows a sender Alice to learn a [pseudo]random function F , and
allows the receiver Bob to learn F (yi) for each chosen item in his set {y1, . . . , yn}.
If Alice has items {x1, . . . , xn}, she can send F (x1), . . . , F (xn) to Bob. If the
output of F is sufficiently long, then except with negligible probability we have
F (xi) = F (yj) if and only if xi = yj . Hence, Bob can deduce the intersection
of the two sets. The fact that F is pseudorandom ensures that for any item
xi 6∈ {y1, . . . , yn}, the corresponding F (xi) looks random to Bob. Hence, no
information about such items is leaked to Bob.

Sparse OT Extension: Key Idea. We can interpret IKNP OT extension
(Figure 4) as an OPRF as follows: Define the function F (i) = mi,0. Clearly the
sender who knows the key of F can compute F (i) for any i. The receiver can set
his i’th choice bit in the OT to be ri = 0 if he chooses to learn F (i) (in this case
he learns mi,0), and use ri = 1 if he chooses not to learn F (i) (now he learns
mi,1). To learn k OPRF outputs, the receiver includes k 0s among his choice
bits. The security of OT extension implies that the receiver learns nothing about
F (i) whenever ri = 1, and the sender learns nothing about the ri bits.

This yields an OPRF of the form F : [N ]→ {0, 1}κ, where N is the number of
rows in the OT extension matrix. To be useful for PSI, N should be exponentially
large, making this simple approach extremly inefficient. The following two key
observations allow us to make the above approach efficient:

1. The parties require only random access to the large OT extension matrices.
In the PSI application, they only read the n � N rows indexed by their
PSI inputs. While IKNP defines the matrices T,U,Q by expanding base OT
values via a PRG, we instead expand with a PRF6.

6 In [26, Sec 3.2] they also use a PRF rather than PRG, but for a completely different
purpose: random access to the OT extension matrix was used to parallelize OT
extension and reduce memory footprint.
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2. Besides the base OTs, the only communication in IKNP is when Bob sends
the N × κ matrix P . In PSI, Bob only has knowledge of the n� N rows of
P indexed by his PSI input. Yet he must not let Alice identify the indices
of these rows. Our idea is to have Bob interpolate a degree-n polynomial P
where P (y) is the correct “target row” of the IKNP OT extension matrix,
for each y in his PSI input set. He then sends this polynomial P instead
of a huge matrix. This change reduces Bob’s communication from O(Nκ)
to O(nκ), allowing N to be exponential.

The polynomial P is distributed as a random polynomial (hiding Bob’s in-
puts) since all rows of the IKNP matrix are pseudorandom from Alice’s point of
view. The more important concern is whether Bob learns too much. For example,
suppose Bob interpolates P on points {y1, . . . , yn}, but P happens to match the
correct “IKNP target value” on some other y∗ 6∈ {y1, . . . , yn} as well. This would
allow Bob to learn whether Alice holds y∗, violating privacy. We argue that: (1)
When the OT extension matrix is sufficiently wide, all relevant values P (y∗) are
sufficiently far in Hamming distance from their “target value”. (2) When this is
true, then Bob gets no information about Alice’s items not in the intersection.

Comparison to other PSI paradigms. Other state-of-the-art PSI proto-
cols (e.g., [35, 45]) can also be interpreted as constructing an OPRF from OT
extension ([35] is explicitly described this way). These works construct an OPRF
that the receiver can evaluate on only one point, and use various hashing tricks
to reduce PSI to many independent instances of such an OPRF. In contrast, we
construct a single instance of an OPRF where the receiver can evaluate many
points. With such a multi-point OPRF it is trivial to achieve PSI, as illustrated
above.

3.2 Protocol Details, Correctness, Performance

The formal details of our protocol are given in Figure 5. We use n1 for the size of
Alice’s set and n2 for the size of Bob’s. We write InterpF({(x1, y1), . . . , (xd, yd)})
to denote the unique polynomial P over field F of degree less than d where
P (xi) = yi. In IKNP, the width of the matrices (and number of base OTs) is κ
whereas the width in our instantiation is ` > κ, where ` is determined by the
security analysis.

Costs. The main computational cost is evaluating the degree-n2 polynomial
for Alice and interpolating the polynomial for Bob. In the case of n1 = n2 = n
this can be done with O(n log2 n) field operations (details in 5.1).

In the communication costs of the protocol, we exclude the cost of the base
OTs. These are fixed and don’t depend on the parties’ set sizes. Bob sends n2`
bits, while Alice sends n1(λ + log(n1n2)) bits. Generally speaking, ` is much
larger than λ+log(n1n2), which suggests that the party with more items should
play the role of Alice. Concrete values are discussed later in Section 6.
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Input of Sender Alice: X = {x1, . . . , xn1} ⊆ [N ]
Input of Receiver Bob: Y = {y1, . . . , yn2} ⊆ [N ]
Parameters:

– The size ` := log2 |F| as defined in Table 6.
– A κ-Hamming CRF H : {0, 1}` → {0, 1}λ+log(n1n2)

– A PRF F : {0, 1}κ × [N ]→ {0, 1}

Protocol:

1. Alice chooses s← {0, 1}` uniformly at random.
2. Alice and Bob invoke ` instances of Random OT FκROT. In the i-th instance:

– Alice acts as receiver with input si.
– Bob acts as sender, and receives outputs ti,ui ∈ {0, 1}κ.
– Alice receives output qi.

3. For y ∈ Y , Bob computes R(y) = T (y)⊕ U(y), where:

T (y) := F (t1, y)‖F (t2, y)‖ · · · ‖F (t`, y)

U(y) := F (u1, y)‖F (u2, y)‖ · · · ‖F (u`, y)

4. Bob computes a polynomial P := InterpF({y,R(y)}y∈Y ), and sends its coefficients
to Alice

5. Alice defines Q as follows:

Q(x) := F (q1, x)‖F (q2, x)‖ · · · ‖F (q`, x)

and sends O =
{
H
(
Q(x)⊕ s · P (x)

)
| x ∈ X

}
randomly permuted to Bob

6. Bob outputs {y ∈ Y | H(T (y)) ∈ O}

Fig. 5: Our PSI protocol

Correctness. The idea behind the protocol is that for every row which Bob
uses to interpolate the polynomial P (namely, a row corresponding to an input
of Bob), Alice sends a value which is equal to the corresponding hash value that
Bob computes in the last step of the protocol.

Namely, following the discussion of IKNP, we can see that

Q(x) = T (x)⊕ s ·
(
T (x)⊕ U(x)

)
= T (x)⊕ s ·R(x)

and therefore in Step 5 Alice computes:

Q(x)⊕ s · P (x) = T (x)⊕ s ·
(
P (x)⊕R(x)

)
(1)

Now, consider the case that both parties have a common item x∗. Bob constructs
P so that P (x∗) = R(x∗). Alice computes H(Q(x∗) ⊕ s · P (x∗)) which from
Equation 1 gives Alice H(T (x∗)). Hence, Bob will include x∗ in his output.

In case that x 6∈ Y , P (x) and R(x) will be different in at least κ bits with
overwhelming probability (see the analysis below). Therefore, H

(
Q(x)⊕s·P (x)

)
is pseudorandom from Bob’s view, under the Hamming correlation robust as-
sumption. If σ is the output length of H, then the probability that this random
value equals H(T (y)) for some y ∈ Y is n22−σ. By a union bound over the items
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of X \Y , the overall probability of Bob including an incorrect value in the output
is at most n1n22−σ. Hence, choosing σ = λ+ log2(n1n2) ensures that this error
probability is negligible (2−λ).

3.3 Properties of Polynomials

We first prove some simple lemmas about polynomials that are used in the
security proof of our PSI protocol.

Hiding Bob’s input. For security against a corrupt sender Alice, we simply
need Bob’s polynomial to hide his input:

Proposition 1. If z1, . . . , zd are uniformly distributed over F, then for all dis-
tinct x1, . . . , xd, the output of InterpF({(x1, z1), . . . , (xd, zd)}) is uniformly dis-
tributed. In particular, the distribution does not depend on the xi’s.

Proof. Viewing polynomial interpolation as a linear operation, we have the fol-
lowing, where p0, . . . , pd−1 are the coefficients of the polynomial.

p0

p1

...
pd−1

 =


1 x1 x

2
1 · · · xd−1

1

1 x2 x
2
2 · · · xd−1

2
...

...
...

. . .
...

1 xd x
2
d · · · x

d−1
d


−1

×


z1

z2

...
zd


Since the polynomial is computed as a nonsingular matrix times a uniform vector,
the polynomial’s distribution is also uniform. �

Security for Alice. In our protocol, Bob generates a polynomial P such that
P (y) = R(y) for his input points y ∈ Y . The security of the protocol relies on
the property that for all other points x 6∈ Y , P (x) is far from R(x) in Hamming
distance (with very high probability).

Definition 2 (Bad polynomial). Let BadPolyRF (X,Y ) be the procedure defined
as follows:

1. P := InterpF({(y,R(y)) | y ∈ Y })
2. Output 1 iff ∃x ∈ X \ Y s.t. dH(P (x), R(x)) < κ

Proposition 2. The probability that a polynomial interpolated over points in Y
also passes “too close” to another point in X is bounded by n1

|F|
∑
i<κ

(
log2 |F|

i

)
.

Formally, for all X,Y with |X| = n1,

Pr[BadPolyRF (X,Y ) = 1] ≤ n1

|F|
∑
i<κ

(
log2 |F|

i

)
,

where the probability is over choice of random function R : F→ F.
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n1:
Pr[BadPoly] 210 212 214 216 218 220 222 224

2−40 416 420 424 428 432 436 440 444
2−80 491 495 498 502 505 509 512 515

Fig. 6: Field size log2 |F| for our protocol, with κ = 128.

Proof. For a fixed element v ∈ F, the probability of a uniformly chosen element
u ← F being closer than Hamming distance κ to v is

∑
i<κ

(
log2 |F|

i

)
/|F|. This

is the case when entering to the second step of the procedure in Definition 2,
where each P (x) is already fixed and R(x) is uniform in F. The claim follows by
a union bound over the (at most n1) items in X \ Y . �

On the communication complexity of the protocol. Let ` = log2 |F|. In our proto-
col a small ` leads to a bad event where two terms are close in Hamming distance.
Since this bad event is a one-time event, it suffices to bound its probability by
the statistical security parameter λ. Since the bad event involves a union bound
over n, the concrete analysis involves both λ and n.

However, we could also just compute ` assuming the worst case n = 2κ

(where κ is the computational security parameter), and we would get ` = poly(κ)
and a bad-event probability of poly(n)/2κ. For our specific protocol/analysis,
` = 4.3 · κ appears sufficient to achieve bad event probability n/2κ (robust to a
wide range of κ). As an analogy: in any OPRF-based PSI protocol, receiver learns
F (y1), F (y2), . . . and sender sends F (x1), F (x2), . . .. For correctness it suffices to
truncate F to λ + 2log(n) bits, but of course it is quite enough to let F have
O(κ) bits.

In summary, asymptotically O(n · κ) bits do suffice for correctness/security,
but so do O(n · `) bits, where ` is some function of λ, κ, n. The more fine-grained
analysis of ` leads to less concrete communication, and that is why our concrete
analysis displays a dependency of ` on n.

Hence, given a desired κ, n1, and Pr[BadPoly] one can solve for the smallest
compatible field size. A table of such field sizes is provided in Figure 6.

3.4 Semi-Honest Security

Theorem 1. The protocol in Figure 5 securely realizes the PSI functionality of
Figure 3 in a semi-honest setting, when F is a pseudo-random function, H is
a κ-Hamming correlation robust (Definition 1), and the parameter ` is chosen
according to the table in Figure 6.

Proof. Due to space limitation we only sketch here the simulators for the two
cases of corrupt Alice and corrupt Bob. The full security proof including (via
hybrid arguments) is defered to the full version.

Corrupt Alice. The simulator observes Alice’s inputs to the FROT primitive
and gives random qi as OT outputs in Step 2. The only other message Alice
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receives is the polynomial P in Step 4. Instead of P := InterpF({y,R(y)}y∈Y ),
the simulator sends a uniformly random polynomial to Alice.

Briefly, this simulation is indistinguishable for the following reasons: R(y)
is pseudorandom from Alice’s view (by the security of the PRF which defines
the conceptual OT-extension matrices). Hence, the polynomial P is distributed
uniformly (from Proposition 1).

Corrupt Bob. The simulator for a corrupt Bob first obtains X ∩ Y from
the ideal PSI functionality. It simulates random outputs ti, qi from FROT. The
only other message received by Bob is the set O in Step 5. To simulate this
message, the simulator computes n′ = n1 − |X ∩ Y | and uniformly samples
values z1, . . . , zn′ . It then simulates O = {H(T (x)) | x ∈ X ∩ Y } ∪ {z1, . . . , zn′}.

This simulation is indistinguishable because P (x) and R(x) will differ in at
least κ bits for every x ∈ X \ Y (Proposition 2), and as long as that is true, the
corresponding outputs of H will be pseudorandom (Definition 1).

3.5 Optimizations: Reducing Alice’s Communication

Recall that Alice’s communication consists of n1 OPRF outputs, each of length
λ + log(n1n2). In the full version, we discuss techniques to reduce this cost to
roughly λ+ log n1 bits per item.

3.6 Security against Malicious Sender

Our protocol is secure against a malicious sender if F is modeled as a non-
programmable random oracle. (In the full version we show that our protocol is
insecure against a malicious receiver.)

Theorem 2. The protocol in Figure 5 securely realizes the PSI functionality
of Figure 3 against a malicious sender Alice, when F is modeled as a (non-
programmable) random oracle.

Proof (Proof Sketch). The simulator plays the role of honest receiver Bob and the
ideal FROT functionalities in steps 1 and 2, observing Alice’s FROT-input s and
generating random outputs {qi}i∈[`]. Throughout the protocol, the simulator
also observes all of Alice’s queries to the random oracle F . Without loss of
generality, we can assume that whenever Alice makes a query of the form F (qi, x)
to the random oracle, where qi is one of the FROT-outputs, it also queries F (qj , x)
for all j ∈ [`]. The simulator observes Alice’s oracle queries and maintains a list

C = {x | Alice queried F on some F (qi, x)}.

In step 4, the simulator sends a random polynomial P . In step 5, the simulator
receives a set O from the corrupt Alice and computes

X̃ = {x ∈ C | H(Q(x) + s · P (x)) ∈ O},

and finally sends X̃ to the PSI ideal functionality.
In the full version we use a hybrid argument to formally prove the indistin-

guishability of this simulator.
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4 The Fast Protocol Variant

The biggest performance bottleneck in our protocol is interpolating and evaluat-
ing extremely high-degree (e.g., d = 220) polynomials over large (e.g., |F| > 264)
finite fields. To reduce this computational cost, we employ a technique of hash-
ing the items into bins, and performing PSI (involving lower-degree polynomials)
within each bin. This general technique is quite common in the PSI literature,
and two different types of hashing have been suggested in previous work. How-
ever, we introduce a new hashing technique that (to the best of our knowledge)
has not been suggested previously for PSI. As we illustrate, previous protocols
are not able to immediately benefit from this new hashing technique — only our
approach enjoys the advantages of this new approach.

4.1 Previous Hashing Techniques

In simple hashing, parties choose a random hash function h : {0, 1}∗ → [m]
and assign each item x to bin with index h(x). Since if Alice and Bob have the
same item they both map it to the same bin, then they can perform a separate
PSI within each bin. The load of each bin leaks information (i.e., it cannot be
simulated just given the intersection), and therefore the parties must pad each
bin up to a maximum size with dummy items. For example, with n items and
m = O(n/ log n) bins, the expected load of each bin is n/m = O(log n) and
the maximum load B is O(log n) with high probability. In practice, B may be
4 to 5 times higher than n/m, meaning that about 80% of the items are
dummies.

In Cuckoo hashing (used in [45, 35]), the parties choose two hash function
h1, h2 : {0, 1}∗ → [m]. The receiver Bob places his items into m bins so that
x is placed in either h1(x) or h2(x), and each bin contains at most one item.
Alice places each of her items x in both locations h1(x) and h2(x). As above,
Bob must pad each bin with dummy items to contain exactly one item (we can
avoid dummy items for Alice). The parties perform a PSI in each bin. Cuckoo
hashing leads to roughly 20% dummy items (this is for Cuckoo hashing with
three hash functions; Cuckoo hashing with two hash functions has even more
dummy items), not to mention extra protocol costs associated with the stash (a
special bin for items that cannot find a home in the Cuckoo hashing).

4.2 Our High-Level Approach

An important feature of Cuckoo hashing is that it results in at most one item
per bin for Bob. This situation is the ideal fit for the underlying OPRF primitive
of [45, 35], which allows the receiver (Bob in this case) to evaluate the OPRF
on a single value. With Cuckoo hashing, the PSI performed in each bin can be
achieved with such an OPRF.

But our sparse OT extension technique results in a multi-point OPRF prim-
itive that allows the receiver to evaluate on many values. Hence we have no
need to constrain the receiver Bob to have only one item per bin. We propose
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to use a generalization of Cuckoo hashing called 2-choice hashing. Similar to
Cuckoo hashing, there are two hash functions h1 and h2, and item x can be
placed in either h1(x) or h2(x). Unlike Cuckoo hashing, there is no restriction
on the number of items per bin.

Cuckoo hashing is also often synonymous with an online hashing procedure,
where all the items are processed in a single pass. For the application to PSI,
though, all items are known upfront. We are free to make the best assignment
of items to bins, taking into account global information about all items. 7

These facts about 2-choice hashing indeed lead to much better performance
(in terms of dummy items). The following theorem of Czumaj, Riley, and Schei-
deler [14] shows that when the bins are allowed to contain significantly many
items, no dummy items are needed at all!

Theorem 3 ([14]). Let h1, h2 : {0, 1}∗ → [m] be two random functions. Sup-
pose there are n items and m bins, where each item x can be placed in either
h1(x) or h2(x). Let L = dn/me. If n = Ω(m logm) then with high probability
there exists an optimal assignment, where each bin contains no more than L
items.

The proof uses an explicit randomized algorithm to generate an optimal
assignment. However, we found that the algorithm takes prohibitively long to
converge. Also, its analysis of error probability is not concrete. However, if we
are willing to settle for merely an “almost optimal” assignment of items to bins,
the following theorem of Sanders, Egner, and Korst [49] suggests that one can
be found quite efficiently:

Theorem 4 ([49]). Let n,m, h1, h2 be as above, with L = dn/me. There is a
deterministic algorithm running in time O(n log n) that assigns at most L + 1
items to each bin, with probability 1−O(1/m)L over the choice of h1, h2.

Algorithm 1
FindAssignment(X,m, h1, h2)

1: for x ∈ X do
2: Assign item x to bin h1(x)

3: for x ∈ X do
4: Assign item x to whichever of
h1(x), h2(x) currently has fewest items

We propose the two-pass heuristic
in Algorithm 1 for assigning items to
bins. This very simple, linear time
algorithm seems to perform well. In
our experience, it never fails to find
a near-optimal assignment with max-
imum load L+ 1 = dn/me+ 1, for the
parameters we use. In the rare event
that it does fail, more iterations of the
final loop are likely to succeed.

With such a near-optimal assignment, we can see that for each of the n/m
bins there is only one dummy item. In practice, we set n/m to be the statistical
security parameter λ so that an assignment exists with overwhelming probability.

7 This observation was concurrently and independently noted in [18]; however, their
focus is exclusively on Cuckoo hashing, with at most one item per bin. They do not
consider our generalized 2-choice hashing.
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Input of Sender Alice: X = {x1, . . . , xn1} ⊆ [N ]
Input of Receiver Bob: Y = {y1, . . . , yn2} ⊆ [N ]
Parameters: (same as Figure 5, except ` is chosen to be compatible with 2n1

rather than n1 — see text for discussion)
Protocol: (steps 1–3 are the same as Figure 5)

4. Bob sets m = n2/λ, chooses random functions h1, h2 : [N ] → [m], and sends
them to Alice. Then Bob assigns its items using FindAssignment(Y,m, h1, h2)
(from Alg. 1) and adds dummy items so that each bin has exactly dn2/me+ 1
items. Write y‖b ∈ Bi to mean that y was assigned to bin i by hash hb. For
each bin i, Alice computes a polynomial Pi := InterpF({y‖b,R(y‖b)}y‖b∈Bi),
and sends its coefficients to Alice.

5. Alice defines Q as in Figure 5 and defines the sets:

O1 =
{
H
(
Q(x‖1)⊕ s · Ph1(x)(x‖1)

) ∣∣∣ x ∈ X}
O2 =

{
H
(
Q(x‖2)⊕ s · Ph2(x)(x‖2)

) ∣∣∣ x ∈ X}
She permutes each one randomly and sends them to Bob.

6. Bob outputs {y | y‖b ∈
⋃
i Bi and H(T (y‖b)) ∈ Ob}

Fig. 7: PSI protocol using 2-choice hashing optimization.

Setting n/m = λ = 40 leads to the most dummy items one would ever consider
for our protocol, but still there are only 2.5% (= 1/40) dummy items.

In the overall PSI protocol, Bob will send a polynomial of degree dn/me+ 1
for each bin. For each item of Alice x ∈ X, she considers both locations h1(x)
and h2(x) and derives an OT-extension / OPRF output for both possibilities.
She then sends these 2 outputs for each item.

4.3 Protocol Details

The details of the protocol are given in Figure 7. It mostly follows the outline
given above, with one important exception. Most of the time, Alice computes
two distinct mask values for each x ∈ X: one for h1(x) and one for h2(x). But
h1(x) = h2(x) is possible with probability 1/m. In that case, depending on how
one specifies this edge case, Alice will either send a repeated mask or send less
masks overall. Either way, this event leaks to Bob that Alice holds such an item
satisfying h1(x) = h2(x). This issue is common to all PSI protocols that use
Cuckoo hashing as well.

To address this issue, we let Bob append to each item y a bit b ∈ {1, 2}
indicating which hash function hb was used to assign it to this bin. If h1(y) =
h2(y) we just choose b arbitrarily. Then the OT extension & polynomials are
done with respect to these “extended” values. Now in the case of h1(y) = h2(y),
Bob will only learn the OT-extension output for one variant y‖b, but Alice (if
she has such an item) will still be able to compute two distinct OT-extension
outputs for the two variants.
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Theorem 5. The protocol in Figure 7 securely realizes the PSI functionality of
Figure 3 in a semi-honest setting, with F,H as in Theorem 1 and ` according to
the column indexed by 2n1 in Table Figure 6.

The semi-honest security of the modified protocol follows with a very similar
proof as the original protocol, therefore we omit it for the sake of space. Unlike
the original protocol, this new one is not secure against malicious adversaries
(details are given in the full version).

Efficiency. Theorem 4 suggests that a near-optimal assignment of items to bins
exists with probability at least 1−2−n2/m. Hence, we must have n2/m ≥ λ, the
statistical security parameter, to ensure that Bob’s hashing step succeeds with
overwhelming probability. Setting m = n2/λ, the cost of all interpolations is now
m·O(λ log2 λ) = O(n2 log2 λ) field operations if using the asymptotically efficient
algorithm, or m · O(λ2) = O(n2λ) using the simpler quadratic interpolation
algorithm (which is indeed faster in practice for such small polynomials). In
either case, this is a significant improvement over O(n2 log2 n2) of the basic
protocol (not to mention that distinct bins allow for easy parallelization). The
cost of Alice’s polynomial evaluation is similarly improved.

No matter what m we choose (assuming n2/m is an integer), there will always
be exactly m dummy items for Bob. The percentage of dummy items is m/n2,
so Alice’s communication will increase by a multiplicative factor of (1 +m/n2).
We suggest m = n2/λ, so Alice’s communication increases by a (1 + 1/λ) factor.
As mentioned above, for λ = 40, this increase is only 2.5%.

Recall from Section 3.3 that the parameter ` (width of OT extension matrix)
depends on the number of rows of the OT extension matrix that Alice accesses.
With this new optimization, she accesses twice as many rows (rows x‖1 and x‖2
for every x ∈ X). This leads to a slight increase in `. For the concrete parameters
we consider (see Figure 6), ` must increase by only 2 bits.

5 Optimizations for High-Degree Polynomials

Despite using fast polynomial algorithms, having one party (the interpolating
party) interpolating the huge-degree polynomial leads to a long idle time by
the other party (evaluating party), which implies a serious computational bot-
tleneck. In this section we show that in case that the x and y coordinates of
the interpolation points are drawn from the domains Dx and Dy, respectively,
such that Dx � Dy ,the idle time can be significantly shrinked. To this end,
we developed new techniques, namely, slice & stream and sub-product tree reuse
that allow a significant reduction of the overall time of the protocol. The former
technique means that we “slice” the interpolation points into several parts, then
we can interpolated each part over a smaller field and hence faster; when a slice
is ready it is sent immediately to the other party for evaluation (i.e. streaming
of polynomials). The latter technique is based on our observation that one sub-
algorithm that constructs a sub-product tree (which is used both in interpolation
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and evaluation) depends only on the x-values of the interpolation points. Since
all polynomial slices use the same x-values and differ only on their y-values we
can reuse the same sub-product tree for all slices! We believe our techniques are
valuable for other applications that require an implementation of high-degree
polynomial algorithms over large fields. As demonstrated in Section 5.2, our
techniques reduce the overall interpolation and evaluation time by up to 60%.

In Section 5.1 we give an overview on known polynomial algorithms and in
Section 5.2 we introduce our techniques in detail.

5.1 Background: Interpolation and Multi-Point Evaluation

Trivial implementations of polynomial interpolation and multi-point evaluation
of arbitrary points adopt the O(n2) algorithms as they are sufficient for the typi-
cal use cases of low-degree polynomials. However, in our case the degree is in the
millions, so the O(n2) algorithms are completely impractical. Faster algorithms,
by Moenck and Borodin from 1972 [40], achieve computational complexity of
O(n log2 n). In the following we present a high level overview on the algorithms,
while a detailed description is given in the full version.

Let X = {x1, . . . , xn} ⊂ {0, 1}α and Y = {y1, . . . , yn} ⊂ {0, 1}β .

– Given X and Y , the problem of polynomial interpolation is to find the unique
(n− 1)-degree polynomial P that passes through the points {(xi, yi)}i∈[n].

– Given X and an (n− 1)-degree polynomial Q, the problem of multi-point eval-
uation is to compute Q(X) = {Q(xi)}i∈[n].

Algorithms for both problems follow the divide-and-conquer approach such
that in every iteration the problem is reduced to two half-size problems. Combin-
ing the solutions of the half-size problems to a solution of the full-size problem
has a computational complexity of O(n log n). Formally, let T (n) be the time to
solve the interpolation and multi-point evaluation problems for |X| = |Y | = n,
then the recurrence relation is: T (n) = 2 ·T

(
n
2

)
+O(n log n) = O(n log2 n) where

the second equality follows from the Master theorem [10, Ch. 4].
The evaluation and interpolation algorithms are separated to two and four

sub-procedures, respectively, as follows.

Evaluation. Algorithm MultipointEvaluate(Q,X) invokes M ←
BuildTree(X) and outputs Y ← Evaluate(Q,M).

– BuildTree(X) constructs and outputs a binary tree of polynomials, denoted
M . Its leaves are the 1-degree polynomials {(x− a)}a∈X and each node is the
multiplication of its two children. Thus, if the degrees of the childs are d1 and
d2 then the node’s degree is d1 · d2. If n is a power of 2 then the degree of M ’s
root is n.

– Evaluate(Q,M) evaluates the polynomial Q on X, note that X is implicitly
“encoded” within M . The idea is that for every node m ∈M (recall that m is
a polynomial), if (x − a) divides m then Q(a) = R(a) where R = Q mod m
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(i.e. it is the remainder of the division of Q by m). To obtain Q(a) we replace
each node m with (Parent(m) mod m) and finally output the result on that
leaf. The remainder is computed in O(n log n) arithmetic operations in the
underlying field.

Interpolation. Algorithm Interpolate(X,Y ) invokes M ← BuildTree(X)
as described above. Let M0 be M ’s root, it computes M0’s deriva-
tive by M ′0 ← Derivative(M0) and then evaluates M ′0 over X
by A ← MultipointEvaluate(M ′0, X). Finally it invokes P ←
InternalInterpolate(M,A) and outputs P . The purpose of the sub-
algorithms is to enable the division of a n-size problem to two n

2 -size prob-
lems. Note that within MultipointEvaluate there is a construction of
the same sub-product tree as in BuildTree, therefore we can skip this
and construct M only once. The time of the algorithm is the sum of
the times of these four sub-algorithms, TInterpolate(n) = TBuildTree(n) +
TDerivative(n) + TMultipointEvaluate(n) + TInternalInterpolate(n) = O(n log2 n) +
O(n) +O(n log2 n) +O(n log2 n) = O(n log2 n).

5.2 Polynomial Slicing and Streaming

Let x1, . . . , xn ∈ {0, 1}α and y1, . . . , yn ∈ {0, 1}β (where β > α) then we interpo-
late the polynomial P using points {(xi, yi)}i∈[n] over a field F where |F| = 2β .

For the sake of exposition suppose that α divides β and let ρ = β
α . For each i we

define yji for j ∈ [ρ] such that |yji | = α and yi = y1
i || . . . ||y

ρ
i . We can “cut” P into ρ

slices P1, . . . , Pρ such that for every xi it holds that P (xi) = P1(xi)|| . . . ||Pρ(xi).
This is done by interpolating the polynomial Pj (for j ∈ [ρ]) using the points

{(xi, yji )}i∈[n]. This requires a smaller field, i.e. we need that |F| = 2α, hence Pj
is produced in a shorter time.

To demonstrate the above let us fix some parameters. Assume that the par-
ties’ only task is to interpolate P using n = 220 points and then perform a
multi-point evaluation of n points; also assume an ideal network with zero la-
tency. Consider first performing this task directly to a “single-slice” polynomial
over a field of size 2β where β = 512. Interpolation and multi-point evalua-
tion take 233 + 167 = 400 seconds (detailed measurements are given in the full
version. We ignore milliseconds here and in the following). Utilizing the slicing
technique with α = 128 we have ρ = β

α = 512
128 = 4 slices. This means that the in-

terpolating party produces the sliced polynomials one after the other and sends
them immediately (i.e. without waiting until for all polynomials to be ready)
and the evaluating party evaluates them one by one upon reception. This leads
to 67 · 4 + 49 = 317 seconds which is 81% of the trivial implementation.

Further utilizing the slicing technique. As shown above, the slicing and
streaming technique leads to an improvement over the trivial implementation.
The following observation significantly pushes forward the slicing technique:
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Building the polynomials tree M in the evaluation process depends only on
x1, . . . , xn, which means this can be performed only once for all slices. Similarly,
in the interpolation algorithm the tasks of building the polynomials tree, calcu-
lating the derivative and evaluating it depends only on x1, . . . , xn and can be
performed once and for all slices. Thus, taking β = 512, α = 128 and n = 220

the one-time tasks of building the sub-product tree, calculating the derivative
and evaluating it takes 12889 + 86 + 33144 = 46119 ms. The one-time task of
the evaluating party (building the sub-product tree) takes 13959 ms and can
surely be done simultaneously. Then the interpolating party produces 4 poly-
nomial slices, each takes 19471 ms, and the evaluating party evaluates them
upon reception. Since the evaluation task is more expensive than the interpo-
lating task (the part being performed for each slice) the total running time is
46119 + 4 · 35835 = 189459 ms. This is less than 60% of the initial slicing tech-
nique and 48% of the trivial implementation. Both of our optimizations, together
with the trivial implementation are illustrated in Figure 8.

Fig. 8: Illustrating the slicing technique. The lines between •’s represent the interpolating party
and the lines between the 5’s represent the evaluating party. Solid (blue) lines illustrate the trivial
implementation (overall 400 seconds), dashed (black) lines illustrate the initial slicing technique
(overall 317 seconds) and dotted-dashed (red) lines illustrate the final optimization (overall 189
seconds).

Communication. Observe that this technique does not increase the communi-
cation complexity of the protocol. This is due to the fact that instead of sending
2n coefficients of P , each of size β, we send 2n coefficients of Pj , each of size α,
for every j. This leads to exactly same communication size of 2n · α · ρ = 2n · β.

6 Implementation and Performance Comparison

Recall that we have presented two variants of our protocol. In this section we
will refer to them as:

spot-low: the communication-optimized variant presented in Figure 5, in which
Bob sends one large polynomial and Alice sends one OPRF output
per item.

spot-fast: the speed-optimized variant presented in Figure 7, in which Bob uses
2-choice hashing and Alice sends two OPRF outputs per item.

We also compare our protocols to the following:
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Protocol Communication
n = n1 = n2

216 220 224

KKRT (3 + s)(λ+ log(n1n2))n1 + 1.2`n2 1042n 1018n 978n
DH-PSI φn1 + (φ+ λ+ log(n1n2))n2 584n 592n 600n

spot-low 1.02(λ+ log2(n2) + 2)n1 + `n2 488n 500n 512n
spot-fast 2(λ+ log(n1n2))n1 + `(1 + 1/λ)n2 583n 609n 634n

Table 1: Theoretical communication costs of PSI protocols (in bits), calculated using
computational security κ = 128 and statistical security λ = 40. Ignores cost of base
OTs (in our protocol and KKRT) which are independent of input size. φ is the size
of elliptic curve group elements (256 is used here). ` is width of OT extension matrix
(depends on n1 and protocol).

KKRT: the leading OT-extension-based protocol from [35].

DH-PSI: Diffie-Hellman-based PSI, instantiated with either Koblitz-283
(K283) or Curve25519 (25519) elliptic curves.

Our focus in this section is on the case where n1 = n2, i.e., the parties
have sets of equal size. We report some findings also for the case of unequal set
sizes in the full version. Our complete implementation is available on GitHub:
https://github.com/osu-crypto/SpOT-PSI.

6.1 Theoretical Analysis of Communication

We first compare the theoretical communication complexity of protocols (Ta-
ble 1). This measures how much communication the protocols require on an
idealized network where we do not care about protocol metadata, realistic en-
codings, byte alignment, etc. In practice, data is split up into multiples of bytes
(or CPU words), and different data is encoded with headers, etc. — empirical
measurements of such real-world costs are given later in Table 2.

For set sizes in the range 216 to 224, our spot-low variant has the least commu-
nication of any of the protocols we consider: ∼15% less than DH-PSI and ∼50%
less than KKRT. Our spot-fast variant uses up to ∼5% more communication
than DH-PSI but 35-43% less than KKRT.

We note that KKRT uses a parameter ` similar to ours (corresponding to
the width of the OT extension matrix), but their parameter is always slightly
larger. This is because (as in our protocol) ` depends on how many rows of the
OT matrix the sender accesses, which is more than in ours ((3+s)n1 in KKRT).

The communication optimization (described in Section 3.5) can indeed be
applied to other protocols as well (DH-PSI, KKRT, and spot-fast). For example,
when n = 220 it saves 16 bits per item (only 2.6MB in total), so the effect
does not have significant impact on any comparisons. However, the optimization
would be much more expensive or cumbersome to implement since it requires all
OPRF outputs to be computed and sorted, but without this optimization they
can be sent as they are computed.
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6.2 Experimental Comparison

We now present a comparison based on implementations of all protocols.

Implementation Details. We used the implementation of KKRT provided by
the authors. We implemented DH-PSI using the Miracl library implementations
of Koblitz K-283 and Curve25519 elliptic curves.

For our own protocols, we implemented the polynomial interpolation and
evaluation algorithms using a field of prime order p, where p is the smallest
prime greater than 2` and ` is bit length of the output of our sparse-OT extension
(the ` in Figure 6). We discuss this choice in the full version. The polynomial
operations are implemented using the NTL library v10.5.0.

Note that both KKRT and our protocols require the same underlying prim-
itives: a Hamming correlation-robust function H, a pseudorandom funtion F ,
and base OTs for OT extension. We instantiated these primitives exactly as
KKRT: both H and F instantiated using AES, and base OTs instantiated us-
ing Naor-Pinkas [42]. We use the implementation of base OTs from the libOTe
library8.

All protocols use a computational security κ = 128 bits and a statistical
security λ = 40 bits.

1 2 3 4 5 6

Virginia 1 9.6 0.17 1.08 0.063 0.068 0.084

Oregon 2 0.18 0.053 0.072 0.058

Ohio 3 0.058 0.069 0.078

Mumbai 4 0.050 0.034

Sidney 5 0.031

Sao-paolo 6

Fig. 9: Gbps between AWS sites.

Experimental setup: AWS
benchmark. We performed a series
of benchmarks on the Amazon web
services (AWS) EC2 cloud computing
service. We use the M5.large machine
class, which is classified as the current
state-of-the-art “general purpose”
instance. These machines have 2
vCPU (2.5GHz Intel Xeon) and 8 GB
RAM. We considered other kinds of
instances, but ultimately rejected them. The cheaper T2 class (“burstable”) was
found to be too unstable for our workloads, while the more expensive C5 class
(“compute-optimized”) resulted in more monetary cost than M5 in all cases.

Based on the geographic region of the two parties, we can realize different
network speeds, as illustrated in Table 9. The network speeds given in the table
were measured using the iperf3 command.9 This collection of AWS sites was
chosen to give a large range of bandwidth performance.

Experimental setup: local benchmark. The AWS benchmarks use a real
network connection which is sometimes unpredictable. For a highly controlled
experimental network, we benchmarked protocols on a single machine: Intel Xeon

8 https://github.com/osu-crypto/libOTe
9 See https://iperf.fr/iperf-download.php.
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2.30 GHz, 256GB RAM, 36 physical cores (note that all implementations are
single-threaded unless otherwise indicated). We simulated a network connection
using the Linux tc command, communicating via localhost network. We simulated
a LAN setting with 10 Gbps network bandwidth and 0.2ms round-trip latency,
and various WAN settings with 100 Mpbs, 10 Mpbs, 1 Mpbs and 80ms round-trip
latency.

AWS Pricing Scheme. Part of our motivation for evaluating protocols on
AWS is to report and compare their real-world monetary costs. Hence we describe
now the pricing scheme for AWS at the time of our comparison.10 Costs are
associated with both running time and data transfer, and both depend on the
data center (geographic location) at which the instance runs.

The running-time cost per hour (in USD) for our instance type M5.large is
0.096 (USA), 0.101 (Mumbai), 0.12 (Sydney), 0.153 (Sao Paolo).

The data transfer cost differ depending on whether both endpoints are within
AWS, and the data-center of the endpoints. We consider two network settings:

– In a business-to-business (B2B) setting between two fixed organizations
that want to regularly perform PSI on their dynamic data, both endpoints
may be within the AWS network.

– In an internet setting where one organization wishes to regularly perform
PSI with a dynamically changing partner, only one party may be within the
AWS network.

These considerations have the following effect on the cost of data transfer on
AWS:

– Inbound data transfer from the Internet to EC2 is free.

– Outbound data transfer from EC2 to the Internet incurs the highest cost.
Rates in USD per 1GB are 0.09 (USA), 0.1093 (Mumbai), 0.114 (Sydney),
0.25 (Sao Paolo).

– Outbound data transfer between two instance at the same site cost 0.01
USD/GB per direction.

– Outbound data transfer to another AWS site costs (in USD/GB): 0.02
(USA), 0.086 (Mumbai), 0.14 (Sydney) and 0.16 (Sao Paolo)

– Additional cost is for using a public IP address, which is indeed required for
the scenarios we consider; this costs 0.01 USD/GB for all sites.

We compute the total monetary cost of a protocol execution as follows. Let
T be the runtime in hours of the protocol; let X1 and X2 be the outbound
communication of the first and second parties, resp.; let CT1,CT2 be the uptime
rate of the machines run by the parties; and let CX1,CX2 be the outbound data
transfer rates for the machines/regions of the parties. The cost in USD is then:

TotalCost = T · (CT1 + CT2) + X1 · CX1 + X2 · CX2 + 0.01 · (X1 + X2)
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Fig. 10: Monetary cost (in USD) per 1000 runs of PSI on 216 (left) and 220 (right)
items, in the B2B network scenario.

Fig. 11: Monetary cost (in USD) per 1000 runs of PSI on 216 (left) and 220 (right)
items, in the ‘Internet’ network scenario.

6.3 Experimental Results

AWS monetary cost. To limit the number of protocol executions performed
on AWS, we focus on set sizes of 216 and 220 as they are representative of realistic
set sizes for aformentioned applications of PSI.

The monetary cost of PSI protocols is presented in Figures 10 and 11. We see
that our spot-fast protocol variant is the cheapest protocol in all of the settings
we consider. In the B2B scenarios it is 4%-35% for PSI of 216 items and 10%-
40% cheaper for PSI of 220 items, compared to the second cheapest protocol
(KKRT). In the ‘Internet’ scenarios it is 13%-38% cheaper for PSI of 216 items
and 30%-40% cheaper for 220 items. The numerical costs can be found in the
full version.

Break-even point with KKRT. Our protocol has less communication than
the faster KKRT protocol. As the network becomes slower, the protocol becomes
more network-bound and our advantage in communication eventually leads to
faster performance than KKRT. We compared the running time of the PSI pro-
tocols on networks of different speeds, in order to identify the “break-even point”
where our protocol (spot-fast) becomes faster than KKRT.

From the running times in Figure 12, we find that the spot-fast variant over-
takes KKRT as the fastest PSI protocol when network bandwidth drops below
the 10–30 Mbps range. The concrete times are detailed in in the full version.

10 The pricing can be found in https://aws.amazon.com/ec2/pricing/on-demand/.
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1 9.6 Gb/s Virginia-Virginia
2 1.08 Gb/s Virginia-Ohio
3 0.17 Gb/s Virginia-Oregon
4 0.031 Gb/s Sidney-Sao Paolo
5 0.01 Gb/s Virginia-Virginia

(controlled b/w)

Fig. 12: Evaluated run times over AWS EC2 with descending bandwidth. Solid
and dotted lines are for PSI over 216 and 220 items respectively. The 1-5 numbers
at the x-axis of the figure represent the configurations 1-5 described in the table
to the right.

Params. Protocol Comm. Total time (seconds)

n1 n2 (MB)
10 Gbps 100 Mbps 10 Mbps 1 Mbps

T = 1 4 1 4 1 4 1 4

224 224

DH-PSI (K-283) — — — — — — — — —
DH-PSI (25519) — — — — — — — — —
KKRT 1955.2 63.3 — 261.9 — 1852.1 — — —
spot-low — — — — — — — — —
spot-fast 1254.5 440.1 146.1 474.6 173.3 1071.8 1062.8 — —

220 220

DH-PSI (K-283) 84.0 1141.8 338.5 1152.5 336.9 1158.2 334.2 1472.4 854.3
DH-PSI (25519) 76.1 2110.6 632.8 2290.5 634.5 2325.7 673.0 2497.8 1014.0
KKRT 127 4.61 — 17.47 — 120.1 — 1154.5 —
spot-low 63.1 270.3 179.2 273.4 185.3 299.6 206.67 687.2 311.16
spot-fast 76.4 25.6 7.6 27.8 10.53 66.2 66.0 646.3 645.3

216 216

DH-PSI (K-283) 5.2 69.8 20.20 70.77 21.93 71.10 22.8 80.1 44.4
DH-PSI (25519) 4.7 136.9 39.4 140.4 40.1 142.8 40.8 151.3 48.2
KKRT 8.06 0.43 — 1.99 — 8.4 — 74.5 —
spot-low 3.9 12.8 8.8 13.7 9.8 15.1 10.9 41.1 39.1
spot-fast 4.71 1.90 0.77 2.91 2.02 5.46 5.36 40.19 40.08

212 212

DH-PSI (K-283) 0.32 4.59 1.87 4.65 1.67 4.82 1.56 5.18 2.75
DH-PSI (25519) 0.29 8.72 2.58 8.90 27.5 9.10 2.80 9.59 2.98
KKRT 0.53 0.22 — 0.87 — 1.24 — 5.7 —
spot-low 0.25 0.87 0.61 1.4 1.2 1.4 13.23 3.17 3.0
spot-fast 0.3 0.4 0.21 1.14 0.99 1.16 1.01 3.58 3.51

Table 2: Total communication cost in MB and running time in seconds comparing
our protocol to [35] and HD-PSI, with T ∈ {1, 4} threads; each item has 128-bit
length. 10Gbps network assumes 0.2ms RTT, and others use 80ms RTT. Cells
with ”—” denote setting not supported or program out of memory.

Detailed, controlled local benchmarks. A more detailed benchmark for set
sizes 212−224 and controlled network configurations is given in Table 2. We also
considered the effect of multi-threading on protocol performance, with T ∈ {1, 4}
threads. The implementation of KKRT does not support multi-threading.

The communication of our protocol is approximately 2× smaller than that
of [35]. For example, computing the intersection of sets of size n = 220, spot-fast
and spot-low variants require 76.43 MB and 63.18 MB respectively, whereas [35]
requires 127 MB of communication, (a 1.7− 2.0× improvement).
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In a single-threaded LAN setting, spot-fast variant is several times slower than
KKRT, requiring 25.62 seconds with n = 220. Applying the same parameters
to [35] results in a running time of 4.1 seconds. The running time of spot-fast
variant is improved significantly by multi-threading, improving to 7.61 seconds
when utilizing 4 threads.

In the WAN setting, spot-fast becomes the fastest protocol on slow (10Mbps
and 1Mbps) network, due to its lower communication cost. For example, in the
10Mpbs network, for sets of size n = 220, spot-fast takes 66.2 seconds, while [35]
requires 120.13 seconds, a 1.8× improvement.

Both of our protocols outperformed DH-PSI. For example, spot-low requires
63 MB while DH-PSI (Curve25519) requires 76 MB, a ∼ 12% improvement.

In terms of computation, even our slower spot-low variant is based on
symmetric-key operations, and is significantly faster than DH-PSI. We also ex-
amined the effect of multi-threading. Similar to DH-PSI, spot-fast variant is
extremely amenable to parallelization. Concretely, we parallelize our algorithm
at the level of bins. Both DH-PSI and spot-fast yield a similar speedup of about
3.5× by using 4 threads.
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