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Abstract. We finally close the long-standing problem of constructing a
noninteractive zero-knowledge (NIZK) proof system for any NP language
with security based on the plain Learning With Errors (LWE) problem,
and thereby on worst-case lattice problems. Our proof system instantiates
the framework recently developed by Canetti et al. [EUROCRYPT’18],
Holmgren and Lombardi [FOCS’18], and Canetti et al. [STOC’19] for
soundly applying the Fiat–Shamir transform using a hash function family
that is correlation intractable for a suitable class of relations. Previously,
such hash families were based either on “exotic” assumptions (e.g., indis-
tinguishability obfuscation or optimal hardness of certain LWE variants)
or, more recently, on the existence of circularly secure fully homomorphic
encryption (FHE). However, none of these assumptions are known to be
implied by plain LWE or worst-case hardness.
Our main technical contribution is a hash family that is correlation
intractable for arbitrary size-S circuits, for any polynomially bounded S,
based on plain LWE (with small polynomial approximation factors). The
construction combines two novel ingredients: a correlation-intractable
hash family for log-depth circuits based on LWE (or even the potentially
harder Short Integer Solution problem), and a “bootstrapping” transform
that uses (leveled) FHE to promote correlation intractability for the FHE
decryption circuit to arbitrary (bounded) circuits. Our construction can
be instantiated in two possible “modes,” yielding a NIZK that is either
computationally sound and statistically zero knowledge in the common
random string model, or vice-versa in the common reference string model.

1 Introduction

A zero-knowledge (ZK) proof system [27] is a protocol by which a prover can
convince a verifier that a particular statement is true, while revealing nothing
more than that fact. Such a system is noninteractive [8] (NIZK) if both parties
have access to some common string (e.g., a public source of randomness), and
the prover just sends a single message to the verifier. In the three decades
since the introduction of NIZK, several works have constructed such protocols
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for arbitrary NP languages based on various cryptographic structures (such as
quadratic residuosity, bilinear pairings, and code obfuscation) [9,26,20,29,43],
and used them in a variety of important cryptographic settings, like encryption
that withstands chosen-ciphertext attacks [9,36], digital signatures [6], ZAPs [19]
cryptocurrencies [7], and low-interaction protocols in general.

In recent years, cryptography based on lattices has seen enormous growth.
Among its attractions are apparent resistance to quantum attacks, advanced
functionality like fully homomorphic encryption (FHE) [23], and strong theoretical
guarantees like security under worst-case hardness assumptions, usually via the
well-known Short Integer Solution (SIS) [1] and Learning With Errors (LWE)
problems [42]. Yet while (non-)interactive zero-knowledge protocols for specific
lattice problems have been known for some time [35,39,18,2], the goal of obtaining
NIZK for general NP languages based on standard, worst-case lattice assumptions
(which was explicitly posed in [39]) has frustratingly remained out of reach. The
past year has seen impressive progress toward this goal [32,16,15], but the current
constructions either satisfy a relaxed notion of NIZK or are based on assumptions
that are not yet known to be implied by LWE or worst-case hardness.

More specifically, a fascinating recent line of research [31,16,30,15] develops
a framework for instantiating the Fiat–Shamir transform [21], which removes
interaction from a public-coin protocol by replacing each random verifier message
with a hash of the transcript so far. In particular, these works show that if the
hash function satisfies a property called correlation intractability [17], then the
Fiat–Shamir transform can be applied soundly to many interactive protocols,
including some zero-knowledge ones. Roughly speaking, a hash family H is
correlation intractable for a relation R if, given a hash key k, it is hard to find
an input-output pair (x,Hk(x)) ∈ R. In the context of Fiat–Shamir, this ensures
that a cheating prover cannot find a message that hashes to a verifier message
that admits an accepting transcript.

The works [16,30,15] construct correlation-intractable hash functions for var-
ious sparse relations, and use them to soundly instantiate the Fiat–Shamir
transform, obtaining NIZK proofs for all of NP (among other results). Of partic-
ular interest is the beautiful work of [15], which shows that for this purpose, it
suffices to have correlation intractability for arbitrary (bounded) polynomial-time
computations, i.e., for the special class of efficiently searchable relations. These
are relations where each input has at most a single output (witness) that is
computable within some desired polynomial time bound.

The hash families constructed in [16,15] are proved to be correlation in-
tractable under various lattice-related assumptions. However, these assumptions
are somehow non-standard, involving either “optimal hardness” (e.g., of LWE
with uniform error in an interval) against polynomial-time attacks [16,15], or the
existence of circularly secure FHE [15]. Although the latter assumption seems
tantalizingly close to plain LWE (and remains the only known way of obtaining
FHE that supports unbounded, as opposed to just leveled, homomorphic compu-
tations), none of these assumptions are known to be supported by the hardness
of LWE, nor the conjectured worst-case hardness of lattice problems.
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1.1 Contributions

Our main result is a noninteractive zero-knowledge proof system for any NP
language, based on the plain LWE problem with (small) polynomial approxi-
mation factors. This finally closes (following much recent progress) the central
open problem of basing NIZK for NP on worst-case lattice assumptions. Our
system instantiates the NIZK framework recently developed in [16,15], but with a
new primary ingredient: a correlation-intractable hash family for arbitrary size-S
circuits (i.e., relations searchable in size S), for any desired S = poly(λ), based
on plain LWE with small polynomial factors.

Just like the correlation-intractable hash family constructed in [15], ours also
can be instantiated in two “intractability modes,” computational and statistical,
by constructing the hash key in one of two computationally indistinguishable
ways. In the statistical mode, input-output pairs that satisfy the relation simply
do not exist (so obviously one cannot be found); in the computational mode,
the hash key is uniformly random and security can be based merely on SIS, a
potentially harder problem for which we have even stronger worst-case hardness
theorems than for LWE. In either case, this is the first known construction of
CI hash families for “rich” functions from plain LWE/SIS, or any worst-case
lattice assumption. As shown in [15], the choice of intractability mode determines
the precise properties of the NIZK system: the computational mode yields a
statistically zero knowledge, (selectively) computationally sound (i.e., argument)
system in the common random string model, while the statistical mode yields a
computationally zero knowledge, statistically sound (i.e., proof) system in the
common reference string model.

Our correlation-intractable hash family for bounded circuits is obtained by
combining two new ingredients that are interesting in their own right:

1. a correlation-intractable hash family for bounded circuits based on plain
SIS/LWE, where in particular for log-depth circuits the associated approxi-
mation factor is a (small) polynomial ; and

2. a “bootstrapping” transform that uses (leveled) fully homomorphic encryption
to promote CI for the FHE decryption circuit to CI for arbitrary bounded
circuits. (This transformation is inspired by other bootstrapping techniques
for code obfuscation [22], and is in some sense dual to Gentry’s bootstrapping
technique for FHE [23].)

In particular, a suitable FHE scheme having log-depth decryption can be instan-
tiated based on plain LWE with small polynomial factors [13,3], which yields our
ultimate LWE-based CI hash family.

1.2 Techniques

Here we summarize the main ideas and techniques underlying our constructions.
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Bootstrapping Correlation Intractability In Section 4 we give a generic
transform that uses (leveled) fully homomorphic encryption to convert a
correlation-intractable hash family for “simple” relations related to the FHE
decryption function, into one for complex relations induced by circuits of any
size S. For simplicity, here we focus on correlation intractability for functions f ,
i.e., for searchable relations Rf = {(x, f(x))}, but everything easily generalizes
to more general relations.

Let FHE = (Gen,Enc,Dec,Eval) denote a (symmetric-key) fully homomor-
phic encryption scheme.1 Let CIH = (Gen,Hash) denote a hash family that is
correlation intractable for the class {Decsk(·)} of FHE decryption functions,
taken over all valid “hard-wired” secret keys. We define a new hash family
CIH′ = (Gen′,Hash′) for circuits of size S as follows:

– Gen′(1λ) generates a CIH key k ← CIH.Gen(1λ), an FHE key pair (sk, ek)←
FHE.Gen(1λ), and a “dummy” ciphertext c ← Enc(sk, 0S). It outputs the
hash key k′ = (k, ek, c).

– Hash′(k′ = (k, ek, c), x) outputs Hash(k,Eval(ek, Ux, c)), where Ux(·) = U(·, x)
is a universal circuit for size-S circuits with x “hard-coded” in.

In words, Hash′ homomorphically evaluates an encrypted (dummy) circuit on
the input x, then hashes the resulting ciphertext using the underlying Hash
algorithm.

We now sketch why CIH′ is correlation intractable for any function f having
circuit size S. As a thought experiment, imagine replacing the “dummy” ciphertext
with c← Enc(sk, f). By the security of the FHE scheme, this does not noticeably
change the probability that the adversary, given the key k′ = (k, ek, c), can find
an input x that violates correlation intractability of Hash′(k′, ·) for f , i.e.,

Hash′(k′, x) = Hash(k,Eval(ek, Ux, c)︸ ︷︷ ︸
cx

) = f(x).

Suppose for the purpose of contradiction that the adversary is able to find such
an x. Then because cx is an FHE encryption of f(x) by construction, we have
Hash(k, cx) = f(x) = Decsk(cx). Therefore, we have found an input cx that
violates the correlation intractability of Hash(k, ·) for the function Decsk, which
is the desired contradiction.2

Correlation Intractability from SIS/LWE In Section 3 we construct a
public-coin, correlation-intractable hash family for arbitrary functions of bounded

1 For simplicity, here we assume that FHE supports unbounded, not just leveled,
homomorphic evaluation. Adapting the construction to leveled FHE is straightforward
because Eval is used only on circuits of bounded depth.

2 The reader might notice that the specific function Decsk is not fixed in advance, but
is instead chosen at random by the reduction. This is addressed in the non-uniform
setting by “fixing coins” for FHE.Gen that maximize the attacker’s success probability,
or in the uniform setting by adopting a security definition that lets the adversary
declare a (valid) target function before receiving the hash key.
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circuit size based on plain SIS, with a complementary statistically intractable
mode based on LWE. Our construction works for arbitrary functions, and the
circuit size, depth, and output length induce corresponding SIS/LWE parameters.
More specifically, the dimension n grows linearly in the output length, and the
approximation factor (and hence modulus q) grows exponentially with the depth
and polynomially with the size. Due to our bootstrapping transformation, the
main parameterization of interest is log-depth circuits, for which the approximation
factors can be made (small) polynomials. In addition, for the NIZK application,
log-depth circuits are sufficient even without using bootstrapping (see Remark 5).

Our construction is based upon the fully homomorphic commitment scheme
implicit in GSW homomorphic encryption [25], which was made explicit in
subsequent work on fully homomorphic signatures [28], and is inspired by the
construction based on circularly secure FHE from [15]. The construction works
as follows:

– A hash key is a commitment k = D̂ to a “dummy” circuit D of the desired
output length L and size S.

– To evaluate the hash function at an input x:

1. First, homomorphically evaluate a commitment D̂(x) of D(x).
2. Then, homomorphically apply a certain special, public linear function G

from {0, 1}L to the SIS/LWE range Znq , to get an “inert commitment”

cx = G(D(x)) that itself belongs to Znq .
The name “inert,” and the different notation for it, reflect that it is a
different kind of commitment that (i) does not appear to support full
homomorphism, and (ii) hides a value from the same domain Znq as the
commitment itself; this turns out to be central to the security argument.

3. Finally, output bin(cx), the binary representation (in {0, 1}L) of cx.

The special linear function G just needs to satisfy G(bin(u)) = u for all u ∈ Znq .
(This implies that G is surjective, so the circuit output length L must be at least
n log q.) For example, G can map each of n groups of ` = dlg qe bits to the mod-q
integers they represent in binary.3

Relation to [15]. We now summarize the main similarities and differences between
our construction and proof, and those based on circularly secure FHE from [15].

In [15], the hash key is an FHE encryption D̂ of a “dummy” circuit D, along

with an FHE encryption ŝk of the secret decryption key sk; this is what requires
the circularity assumption. Our construction elides this second component, and
since it has no need for a decryption key at all, fully homomorphic commitment
suffices.

For hash evaluation, Step 1 is the same in both constructions, but then they

diverge. In [15], one uses ŝk to homomorphically evaluate (the complement of)

the decryption circuit on D̂(x), yielding the hash output y = Decsk(D(x))⊕ 1
∧

.

3 Those familiar with the literature will recognize this as the linear transform induced
by the “gadget” matrix G.
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The security proof employs a clever diagonalization argument: using the FHE’s
security, it replaces D̂ in the hash key with f̂ for the function f of interest. This
makes it so that there does not exist any x that hashes to y = f(x). For if there
were, then by applying Decsk to both sides and by the FHE’s correctness, we
would get Decsk(y) = Decsk(f(x))⊕ 1 = Decsk(f(x)), a contradiction.

Our construction after Step 1 proceeds quite differently: it homomorphically
applies the special public function G : {0, 1}L → Znq , which has a large range (not
just a single bit, as for FHE decryption), and just as importantly, it “collapses”
the result to an inert commitment G(D(x)) ∈ Znq that lies in the same domain
as G(D(x)) ∈ Znq itself. As we will see next, in the security proof this allows us
to directly compare the inert commitment to the value it hides, rather than only
reasoning about the latter (as in [15]).

Security. Security is argued as follows, where for the moment we focus on
the proof from SIS. Suppose that an adversary is able to violate correlation
intractability for some function f of size S and output length L, i.e., given a
hash key it finds an input x that hashes to f(x). By the (statistical) security of
the commitment scheme, the adversary has essentially the same probability of
succeeding if the hash key is a commitment f̂ to f . When it does succeed we
have bin(G(f(x))) = f(x), and so by applying G to both sides we get

G(f(x)) = G(f(x)) ∈ Znq . (1)

To see why this yields an SIS solution, we need to understand the particular
form of the commitments in a little more detail. All commitments are with respect
to a random SIS matrix A over Zq. The commitment scheme has the property

that, given the randomness used to form the original commitment f̂ , it is possible
to efficiently compute randomness that is consistent with the homomorphically

evaluated commitment f̂(x), and likewise for the inert commitment cx = G(f(x)).
Concretely, this derived randomness is a short integer vector r such that

G(f(x)) = Ar +G(f(x)) (mod q).

But because G(f(x)) = G(f(x)) by Equation (1), it follows that Ar = 0 ∈ Znq .
Therefore, the short vector r is a solution to the SIS problem for the random
instance A, as desired. (We also need to ensure that r is nonzero; this is easily
done via standard techniques.)

To get statistical correlation intractability based on LWE, we need to slightly
tweak the construction, defining the hash function to evaluate an inert com-
mitment cx = G(D(x)) + bq/2cun, where un is the nth standard basis vector.4

For a particular f of interest, we again replace the commitment to D with one
to f . Then, to get a hash key for which an x that hashes to f(x) simply does
not exist, we switch A to be an LWE matrix whose bottom row bt is a noisy
linear combination of the others, i.e., bt = stA′+ et where A′ consists of the top

4 With this change, the SIS-based proof still goes through, thanks to the technique for
ensuring that r 6= 0.
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n− 1 rows of A and e is a “short” error vector; by the LWE assumption, this
change is unnoticeable by the attacker.5 Much like above, a hypothetical input x
which hashes to f(x) now yields Ar = −bq/2cun, which implies that A′r = 0
and hence

−bq/2c = bt · r = (stA′ + et)r = st(A′r) + et · r = 〈e, r〉 (mod q).

But because both e and r are relatively short, by taking q to be large enough
this equation simply cannot hold, hence no such x exists.

1.3 Discussion and Open Problems

We conclude this introduction with a few additional remarks about our construc-
tions and their implications, and list some open problems for further research.

Other applications. Our NIZK implies the first entirely LWE-based, standard-
model construction of an encryption scheme that is secure for key-dependent
messages and under chosen-ciphertext attacks (called KDM-CCA), by applying
the generic transform from [14] to the LWE-based KDM-CPA-secure construction
from [4] and any of the known LWE-based IND-CCA-secure constructions of,
e.g., [41,37,33]. Just as in [15], our CI hash family also suffices for proving that the
parallelized quadratic residuosity protocol of [27] is not zero knowledge (assuming
that QR is not in BPP), but now under plain SIS/LWE assumptions instead of
circularly secure FHE.

Compact hashing. We emphasize that our CI hash family is non-compact : the size
of the hash key, and hence the evaluation time as well, grow with the description
size S of the circuits for which it is correlation intractable. This property is shared
by all other prior constructions except those based on highly “exotic” assumptions
like indistinguishability obfuscation or optimal key-dependent message security,
e.g., [31,16,15]. A compact construction based on more standard assumptions
would be very interesting, and presumably quite powerful.

SIS versus LWE. Our SIS-based CI hash family works for circuits of any depth,
but is only supported by polynomial SIS factors for log-depth circuits. Dealing
with deeper circuits while retaining polynomial approximation factors requires
us to use our bootstrapping theorem with (leveled) FHE, which brings in the
LWE assumption. (In addition, the NIZK construction also uses LWE for lossy
encryption.) It is an interesting open problem to get a CI hash family for super-
logarithmic depth based on just SIS with polynomial factors.

5 This change also turns the fully homomorphic commitment scheme into the GSW
FHE scheme [25,28], but we do not need its decryption capability.
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Multi-theorem (statistical) zero knowledge. The zero-knowledge property of our
NIZK constructions holds for a single statement and proof. We can use the generic
“OR” trick from [20] to convert our single-theorem NIZK systems to multi-theorem
ones. However, the resulting NIZK systems are computational zero knowledge,
even if the original ones are statistical zero knowledge. Therefore, an interesting
open problem is to construct a noninteractive, multi-theorem, statistical zero-
knowledge system based on LWE. We note that such NIZK systems, having an
even stricter perfect zero-knowledge property, can be constructed from bilinear
pairings [29].

Compact proofs. A final interesting open problem is to construct a noninteractive
statistical zero-knowledge argument system with compact proofs, i.e., with proof
size that is both asymptotically smaller than the size of the underlying verifier
circuit for the NP relation and only linear in the length of the witness. Assuming
leveled or unbounded FHE, such compact proofs having computational zero
knowledge exist [24]. In the construction based on leveled FHE (and hence based
only on LWE), the proof size exceeds the witness length by poly(λ, d), where d is
the depth of verifier circuit. Unbounded FHE yields proofs that are longer than
the witness by only an additive poly(λ) term.

Acknowledgments. We thank Alex Lombardi and Daniel Wichs for useful com-
ments.

2 Preliminaries

We denote column vectors by lower-case bold letters, e.g., a. We denote matrices
by upper-case bold letters, e.g., A. For integral vectors and matrices (i.e., those
over Z), we use the notation |r|, |R| to denote the maximum absolute value over
all the entries.

The Kronecker product A ⊗ B of two matrices (or vectors) A and B is
obtained by replacing each entry ai,j of A with the block ai,jB. This obeys
the mixed-product property: (A⊗B)(C⊗D) = (AC)⊗ (BD) for any matrices
A,B,C,D with compatible dimensions.

2.1 Noninteractive Zero Knowledge

Definition 1. Let R be a relation. A noninteractive proof system for R is a tuple
of PPT algorithms (Setup,Prove,Verify) having the following interfaces (where
1n, 1λ are implicit inputs to Prove, Verify):

– Setup(1n, 1λ), given a statement length n and a security parameter λ, outputs
a string σ.

– Prove(σ, x, w), given a string σ and a statement-witness pair (x,w) ∈ R,
outputs a proof π.

– Verify(σ, x, π), given a string σ, a statement x, and a proof π, either accepts
or rejects.
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Definition 2. Let Π = (Setup,Prove,Verify) be a noninteractive proof system
for a relation R, and let L be the language defined by R. In this work we focus
on systems that satisfy some subset of the following properties:

1. Completeness: for every (x,w) ∈ R and every λ ∈ N, Verify(σ, x, π) ac-
cepts with probability 1, over the choice of σ ← Setup(1|x|, 1λ) and π ←
Prover(σ, x, w).

2. Common random string: Setup(1n, 1λ) simply outputs a uniformly random
string.

3. Statistical soundness: there exists a negligible function ν(λ) such that for any
n ∈ N,

Pr
σ←Setup(1n,1λ)

[∃(x, π∗) s.t. Verify(σ, x, π∗) accepts ∧ x /∈ L] ≤ ν(λ). (2)

4. Computational soundness: for every non-uniform polynomial-size “cheating”
prover P ∗ = {P ∗λ} there exists a negligible function ν(λ) such that for any
n ∈ N and any x /∈ L,

Pr
σ←Setup(1n,1λ)
π∗=P∗λ (σ,x)

[Verify(σ, x, π∗)] ≤ ν(λ). (3)

5. Statistical zero knowledge: there exists a PPT simulator S such that for
every (x,w) ∈ R the following two distribution ensembles are statistically
indistinguishable:

{S(1λ, x)}λ
s
≈ {(σ,Prover(σ, x, w)) : σ ← Setup(1|x|, 1λ)}λ . (4)

6. Adaptive (computational) zero knowledge: there exists a PPT simulator
S = (S1,S2) such that for every non-uniform polynomial-size “cheating”
verifier V ∗ = (V ∗1 , V

∗
2 ), for every n ∈ N the probabilities

Pr[V ∗2 (σ, x, π, ζ) = 1 ∧ (x ∈ L)]

in the following two experiments differ only by negl(λ):
– in the “real” experiment, σ ← Setup(1n, 1λ), (x,w, ζ) ← V ∗1 (σ), π ←

Prove(σ, x, w);
– in the “simulation” experiment, (σ, τ)← S1(1λ), (x,w, ζ)← V ∗1 (σ), π ←
S2(σ, x, τ).

2.2 Correlation Intractability

As in [15] we define efficiently searchable relations and recall the definitions of
correlation intractability, in their computational and statistical versions.

Definition 3. We say that a relation R ⊆ X ×Y is searchable in size S if there
exists a function f : X → Y that is implementable as a boolean circuit of size S,
such that if (x, y) ∈ R then y = f(x). (In other words, f(x) is the unique witness
for x, if such a witness exists.)
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Definition 4. Let R = {Rλ} be a relation class, i.e., a set of relations for
each λ. A hash function family (Gen,Hash) is correlation intractable (CI) for R
if for every non-uniform polynomial-size adversary A = {Aλ} there exists a
negligible function ν(λ) such that for every R ∈ Rλ

Pr
k←Gen(1λ)
x=Aλ(k)

[(x,Hash(k, x)) ∈ R] ≤ ν(λ) . (5)

Definition 5. Let R = {Rλ} be a relation class. A hash function family (Gen,Hash)
with a fake-key generation algorithm StatGen is somewhere statistically correla-
tion intractable for R if

1. StatGen(1λ, z), where z is an auxiliary input, outputs a key k,
2. there exists a negligible function ν(λ) and a class of auxiliary inputs Z = {Zλ}

such that
– the distribution ensembles {StatGen(1λ, zλ)} and {Gen(1λ)} are compu-

tationally indistinguishable for every sequence of zλ ∈ Zλ, and
– for every R ∈ Rλ there exists zR ∈ Zλ such that

Pr
k←StatGen(1λ,zR)

[∃x s.t. (x,Hash(k, x)) ∈ R] ≤ ν(λ) . (6)

We call zR the intractability guarantee for R.

2.3 (Leveled) Fully Homomorphic Encryption

We recall the notion of leveled FHE from [23].

Definition 6. A leveled fully homomorphic encryption scheme is a tuple of
algorithms (Gen,Enc,Dec,Eval) with the following interfaces (we use only a
symmetric-key version, which is sufficient for our purposes):

– Gen(1λ, 1d) outputs a secret key sk and an evaluation key ek.
– Enc(sk,m ∈ {0, 1}∗), where m is a message, outputs a ciphertext c.
– Eval(C, c), where C is a boolean circuit of depth (at most) d, deterministically

outputs a ciphertext c′.
– Dec(sk, c) outputs a message (deterministically).

It should satisfy the following properties:

1. Completeness: For any circuit C of depth at most d and message m, Dec(sk,Eval(C, c)) =
C(m) with probability 1, over the random choice of sk ← Gen(1λ, 1d) and
c← Enc(sk,m).

2. CPA security: for any sequence of message pairs {(m0,λ,m1,λ)}λ where
|m0,λ| = |m1,λ|, and any sequence {dλ}, the distribution ensembles

{Enc(sk,mb,λ) : sk ← Gen(1λ, 1dλ)}λ (7)

are computationally indistinguishable for b = 0, 1.
3. Compactness: the complexity of Dec is a fixed polynomial in λ alone. (This

implies that the output of Eval has a fixed polynomial size in λ alone, and
does not depend on the evaluated circuit or d.)
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2.4 Branching Programs

A width-w boolean permutation branching program BP of length L with input
space {0, 1}` consists of 2L permutations {πi,b : [w]→ [w]}i∈[L],b∈{0,1} along with
an index-to-input map v : [L]→ [`]. To compute the output of BP on an input
x ∈ {0, 1}` we first initialize a state variable st0 = 1. Then, for each i ∈ [L] we
set sti = πi,xv(i)(sti−1). Finally, if stL = 1 we output 1; otherwise, we output 0.
More generally, a branching program can have multi-bit output by just having
a separate branching program for each output bit; its length is the maximum
length of all the component programs.

Barrington’s theorem [5] states that every depth-d boolean circuit can be
efficiently converted into a width-5 permutation branching program of length
4d. In particular, any NC1 circuit can be converted into a polynomial-length,
constant-width permutation branching program.

2.5 Short Integer Solution and Learning With Errors

We recall the Short Integer Solution (SIS) and Learning With Errors (LWE)
problems, and their hardness based on worst-case lattice problems.

Definition 7. The SISn,m,q,β problem is: given a uniformly random matrix
A ∈ Zn×mq , find a non-zero integral vector z ∈ Zm such that A · z = 0 mod q and
‖z‖ ≤ β.

We sometimes drop the subscript m when it is an unspecified polynomial
in n and log q. When q ≥ β · Õ(

√
n), solving SISn,q,β is at least as hard as

approximating certain worst-case lattice problems on n-dimensional lattices to
within a β · Õ(

√
n) factor [34].

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Zn, the LWE distribution As,χ is sampled by choosing a uniformly random
a ← Znq and an error term e ← χ, and outputting (a, b = 〈s,a〉 + e) ∈ Zn+1

q .
If we have m such samples (ai, bi), we can gather them as a uniformly random
matrix A ∈ Zn×mq and vector bt = stA + et ∈ Zmq .

Definition 8. The LWEn,m,q,χ problem is to distinguish, with non-negligible
advantage, between m independent samples drawn from As,χ for a single s← Znq ,
and m uniformly random and independent samples over Zn+1

q .

(As with SIS, we sometimes drop the subscript m.) A standard instantiation
of LWE is to let χ be a discrete Gaussian distribution over Z with parameter
r = 2

√
n. A sample drawn from this distribution has magnitude bounded by, say,

r
√
n = Θ(n) except with probability at most 2−n, and hence this tail of the distri-

bution can be entirely removed. For this parameterization, it is known that LWE
is at least as hard as quantumly approximating certain “short vector” problems
on n-dimensional lattices, in the worst case, to within Õ(q

√
n) factors [42,38].

Classical reductions are also known for different parameterizations [37,12]. It
is also well-known folklore that for such parameters, LWEn,m,q,χ reduces to
SISn,m,q,β for every β ≤ q/r.
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2.6 Lattice Gadgets

Here we recall lattice “gadgets” [33] over Zq. For a positive integer modulus q,
let ` = dlg qe. The “gadget” vector over Zq is defined as

gt = (1, 2, 4, . . . , 2`−1) ∈ Z`q. (8)

For every u ∈ Zq, there is an efficiently computable binary vector g−1[u] ∈ {0, 1}`
such that 〈g,g−1[u]〉 = u (mod q). Specifically, g−1[u] corresponds to the binary
representation of the distinguished representative of u in {0, 1, . . . , q − 1}. We
stress that g−1 : Zq → {0, 1}` is a function; its name reflects the essential property
〈g,g−1[u]〉 = u.

For a dimension n, the gadget matrix is defined as

Gn = In ⊗ gt ∈ Zn×mq ,

where m = n`. We often drop the subscript n when it is clear from context.
Similarly to above, we define the function G−1 = (I⊗g−1) : Znq → {0, 1}m, which
applies g−1 to each coordinate and appends the results. This has the essential
property, which is also reflective of the mixed-product property, that for every
u ∈ Znq ,

G ·G−1[u] = (I⊗ gt) · (I⊗ g−1)[u] = u.

2.7 Fully Homomorphic Commitments

Here we recall the relevant homomorphic properties of gadgets, some of which were
implicit in [25], and which were developed and exploited further in [10,13,3,28].
We particularly focus on their application to fully homomorphic commitments,
as laid out in [28], and refer to that work for full details.

Let A ∈ Zn×wq be an arbitrary matrix for some dimension w. Let Ci =
ARi + xiG for some integral matrix Ri ∈ Zw×m and scalar xi ∈ Zq for i = 1, 2.
We view Ci as a commitment (relative to A) to xi under randomness Ri. Observe
that these commitments satisfy the following homomorphic properties:

G−C1 = A(−R1) + (1− x1)G

C+ := C1 + C2 = A(R1 + R2︸ ︷︷ ︸
R+

) + (x1 + x2)G

C× := C1 ·G−1[C2] = A(R1 ·G−1[C2]) + x1G ·G−1[AR2 + x2G]

= A(R1 ·G−1[C2] + x1R2︸ ︷︷ ︸
R×

) + x1x2G .

In words, G − C1,C+,C× are commitments to 1 − x1, x1 + x2, x1x2 under
randomness −R1,R+,R×, respectively. Moreover, if the original committed
values xi and randomness Ri are “small” in norm, then so are the new values
and randomness (though they are somewhat larger), because G−1[C2] is small.
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In particular, if the original committed values xi ∈ {0, 1} are restricted to
bits, then the above homomorphic operations yield a complete set of logical gates
with which we can homomorphically evaluate any boolean circuit. For example,
we can implement NAND(x, y) = 1− xy using the third equation, then the first
one. Of course, the size of the randomness in the final committed result depends
on the depth and size of the circuit. Similarly, as shown in [13,3], the asymmetric
factors applied to the commitment randomness R1 versus R2 in R× can be
exploited to implement other models of computation, like branching programs,
with tighter control over the magnitude of the derived randomness. In particular,
the magnitude can be limited to just polynomial in the length of the branching
program.

For our purposes, we need one more simple homomorphic property. Suppose
we have a commitment

C = AR + xt ⊗G = AR + xt ⊗ In ⊗ gt

to a vector x ∈ ZLq . (Observe that the ith m-column chunk of C is Ci = ARi +

xiG ∈ Zn×mq , where Ri is the analogous chunk of R.) Any matrix M ∈ Zn×Lq

can be “vectorized” as an m ∈ ZnLq , so that (xt ⊗ In) ·m = Mx. Then

cM := C ·G−1Ln[m] = A(R ·G−1Ln[m]︸ ︷︷ ︸
rM

) + (xt ⊗ In ⊗ gt) · (IL ⊗ In ⊗ g−t)[m]

= ArM + (xt ⊗ In) ·m
= ArM + Mx ∈ Znq .

We view cM as an “inert commitment” to Mx ∈ Znq , under randomness rM,
which is small if R is small. (We call it an inert commitment because it does not
appear to support any nonlinear homomorphic operations.)

We summarize all of the above in the following fully homomorphic commitment
scheme.

Construction 1. The commitment scheme FHC is parameterized by n and q,
and is defined as follows. Each input in square brackets is optional, and when
provided, the algorithm also produces the additional described output. The
algorithm’s main output is the same whether or not the optional input is provided.

– Gen chooses a uniformly random A← Zn×wq , where w = 2m = 2n`.

– Com(A ∈ Zn×wq ,x ∈ ZSq ; R ← Zw×Sm) outputs a commitment C = AR +

xt ⊗G ∈ Zn×Smq . If the randomness R is not provided explicitly, it is chosen

uniformly from {0, 1}w×Sm (but note that it is not required to be binary in
general).

– CircuitEval(C,C ∈ Zn×Smq [,R ∈ Zw×Sm]), for a boolean circuit C : {0, 1}t →
{0, 1}L, deterministically outputs a commitment matrix CC ∈ Zn×Lm [and
additionally an integral matrix RC ∈ Zw×Lm].

– BranchEval(B,C ∈ Zn×Smq [,R ∈ Zw×Sm]), for a branching program

B : {0, 1}S → {0, 1}L, deterministically outputs a commitment matrix CB ∈
Zn×Lm [and additionally an integral matrix RB ∈ Zw×Lm].
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– InertEval(M ∈ Zn×Lq ,C ∈ Zn×Lmq [,R ∈ Zw×Lm]) deterministically outputs
an “inert commitment” vector cM ∈ Znq [and additionally an integral vector
rM ∈ Zw].

Proposition 1. The above commitment scheme FHC satisfies the following prop-
erties:

1. By the leftover hash lemma, for any x ∈ Zpoly(m)
q the distribution of (A,C)

has negl(m) statistical distance from uniformly random, where A← Gen(1n)
and C← Com(A,x).

2. For any boolean circuit C : {0, 1}S → {0, 1}L of depth d, any x ∈ {0, 1}S,
any A ∈ Zn×wq and any R ∈ Zw×Sm, for commitment C = Com(A,x; R) we
have

CircuitEval(C,C) = Com(A, C(x); RC) , (9)

where RC ∈ Zw×Lm is the additional output of CircuitEval(C,C,R), and
|RC | = |R| ·mO(d).

3. For any branching program B : {0, 1}S → {0, 1}L of length D, any x ∈ X ,
any A ∈ Zn×wq and any R ∈ Zw×Sm, for commitment C = Com(A,x; R) we
have

BranchEval(B,C) = Com(A, B(x); RB) , (10)

where RB ∈ Zw×Lm is the additional output of BranchEval(B,C,R), and
|RB | = |R| ·mO(1)D.

4. For any matrix M ∈ Zn×Lq , any x ∈ {0, 1}L, any A ∈ Zn×wq and any

R ∈ Zw×Lm, for commitment C = AR + xt ⊗G we have

InertEval(M,C) = ArM + Mx , (11)

where rM ∈ Zw is the additional output of InertEval(M,C,R), and |rM| ≤
|R| · Lm.

3 Correlation-Intractable Hashing from SIS/LWE

In this section we construct correlation-intractable hash families for (searchable
relations defined by) arbitrary functions of bounded complexity, based on SIS.
Particular cases of interest are functions computable by log-depth (i.e., NC1)
circuits, and polynomial-length branching programs, either of which are sufficient
to invoke our bootstrapping transform in Section 4.

3.1 Construction for Circuits

Let FHC be the fully homomorphic commitment scheme from Section 2.7. Recall
that FHC is parameterized by an SIS dimension n and a modulus q, which
we instantiate below as functions of the security parameter λ based on the
targeted class of functions. Our hash families work for functions of arbitrary input
length, and output length exactly m = n` = ndlog qe. Correlation intractability
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immediately extends to functions of output length greater than m, simply by
appending zeros to the length-m hash output.

We start with a construction that is correlation intractable for boolean circuits.

Construction 2 (CIH for circuits). The hash family CIH = (Gen,Hash) with
fake-key generation algorithm StatGen is parameterized by an arbitrary circuit
size S = S(λ) = poly(λ) and depth d = d(λ) ≤ S(λ). Let U(C, x) = C(x) denote
a depth-universal circuit for size-S circuits.

– Gen(1λ): generate A← FHC.Gen and C← Com(A, 0S(λ)), choose a uniformly
random a← Znq , and output the hash key k = (a,C).

– StatGen(1λ, C): given a circuit C of size S, choose a uniformly random

Ā ← Z(n−1)×m
q and ā ← Zn−1q . Choose s ← Zn−1q , e ← χm and e ← χ,

where χ is an LWE error distribution. Let

A :=

[
Ā

stĀ + et

]
∈ Zn×mq , a :=

[
ā

st · ā + e− bq/2c

]
∈ Znq . (12)

Compute C← Com(A, C) and output the hash key k = (a,C).

– Hash(k = (a,C), x): let circuit Ux(·) = U(·, x), and output

G−1n [a + InertEval(Gn,CircuitEval(Ux,C))] ∈ {0, 1}m.

Remark 1. By Item 1 of Proposition 1, the hash key k = (a,C) produced by Gen
is statistically close to uniformly random, so CIH is public coin.

Remark 2. In Construction 2, the circuit “size” means the length of a bit string
required to describe a member of the particular circuit family C = {Cλ} for
which we seek correlation intractability. In more detail, we assume that every
circuit C ∈ Cλ can be efficiently described by a S(λ)-bit string sC , and that
there is a (uniformly generated) depth-universal circuit family U = {Uλ} for C
for which Uλ(sC , x) = C(x) for every C ∈ Cλ and input x. For certain circuit
families there may be more compact ways of specifying a member of the family
than the general circuit representation; this can yield more compact hash keys.

3.2 Correlation Intractability

We now prove that Construction 2 is computationally correlation intractable
under an appropriate SIS assumption (Theorem 1), and statistically correlation
intractable under an appropriate LWE assumption (Theorem 2).

Theorem 1. Assuming the hardness of SISn,m+1,q,β for a sufficiently large
β = mO(d), Construction 2 is correlation intractable for the class of functions
with output length m that can be implemented by size-S, depth-d boolean circuits.
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Proof. Let A = {Aλ} be any non-uniform polynomial-size adversary, and fix
any sequence of functions {fλ}, where fλ has output length m = m(λ) and can
be implemented by a circuit of size S = S(λ) and depth d = d(λ). To show
that Construction 2 is correlation intractable with respect to f , we first define
a hybrid experiment and show that it is statistically indistinguishable from the
real experiment. Then we show that in this hybrid, it is hard for an adversary to
break correlation intractability against {fλ}.

In the hybrid experiment we merely modify how C is generated, letting it be
C← Com(A, f) for f = fλ. By Item 1 of Proposition 1, this experiment is within
statistical distance negl(m) = negl(λ) from the real one, so A’s success probability
can differ by at most this much between the real and hybrid experiments.

We now show that under the hardness hypothesis, ν(λ) := Prk[x = Aλ(k) :
Hash(k, x) = f(x)] is a negligible function that depends only on A (not {fλ}). To
do this we use A to construct a non-uniform polynomial-size attacker S = {Sλ}
against SIS that also has success probability ν(λ), as follows.

The attacker Sλ, given an SIS instance A′ = [a | A] ∈ Zn×(m+1)
q , generates

C ← Com(A, f) and retains the commitment randomness R ∈ {0, 1}w×Sm. It
defines a hash key k = (a,C) and lets x = Aλ(k). If Hash(k, x) = f(x), then S
lets (Cx,Rx) = CircuitEval(Ux,C,R) and then lets rx be the additional output
of InertEval(Gn,Cx,Rx). It outputs zx = (1, rx) ∈ Zm+1 as the nonzero SIS
solution.

We now analyze S. First observe that the distribution of the hash key k it
provides to Aλ is exactly as in the hybrid experiment, by the uniform distribution
of the SIS instance A′ = [a | A]. We claim that zx = (1, rx) is a valid SIS solution
whenever Hash(k, x) = f(x). To see this, observe that this condition implies that

Gn · f(x) = Gn · Hash(k, x)

= a + InertEval(Gn,CircuitEval(Ux,C))

= a + (Arx + Gn · f(x))

= A′zx + Gn · f(x)

and that ‖zx‖ = mO(d) ≤ β, both by Equation (2) and Equation (4) of Proposi-
tion 1. Therefore, A′zx = 0 and zx satisfies the norm bound, as desired.

Theorem 2. Assuming the hardness of LWEn−1,m+1,q,χ for a poly(n)-bounded χ
and a sufficiently large q = mO(d), Construction 2 is somewhere statistically
correlation intractable for the class of functions with output length m that can
be implemented by size-S, depth-d boolean circuits; each circuit serves as the
intractability guarantee for itself.

Proof. First, it follows immediately from the LWE assumption that the outputs of
Gen(1λ) and Gen(1λ, Cλ) are computationally indistinguishable for any sequence
of circuits Cλ of size S.

Now fix any sequence of functions {fλ}, where fλ has output length m = m(λ)
and can be implemented by a circuit of size S = S(λ) and depth d = d(λ). We
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will show that

Pr
k←StatGen(1λ,fλ)

[∃x s.t. Hash(k, x) = f(x)] = 0 . (13)

Using the notation from StatGen, let A′ = [a | A] ∈ Zn×(m+1)
q and let Ā′ =

[ā | Ā] ∈ Z(n−1)×(m+1)
q be its top (n− 1) rows. Similarly, let e′ = [e | e] ∈ Zm+1.

For any hash input x, define rx and zx = (1, rx) ∈ Zm+1 exactly as in the proof
of Theorem 1 above. Now, notice that if Hash(k, x) = f(x) then as above we have

Gn · f(x) = A′zx + Gn · f(x).

This implies that [
Ā′ · zx

st · Ā′ · zx + e′t · zx

]
=

[
0
bq/2c

]
(14)

and hence 〈e′, zx〉 = bq/2c. But this is impossible because |〈e′, zx〉| ≤ ‖e′‖·‖zx‖ =
nO(1) ·mO(d) = mO(d), which is smaller than q/2 for a sufficiently large choice of
q = mO(d).

3.3 Construction for Branching Programs

We now describe a correlation-intractable hash family for branching programs of
arbitrary length D(λ) = poly(λ). By Barrington’s Theorem [5] this is sufficient
for evaluating log-depth (i.e., NC1) circuits, and in particular the decryption
functions of known FHE schemes. (It is also possible to express the decryption
functions more efficiently, directly using branching programs [3].)

The construction is almost identical to Construction 2, except that it uses a
universal branching program (in place of the universal circuit U) and BranchEval
(in place of CircuitEval). The proof of security is also essentially identical to those
above, but due to Equation (3) of Proposition 1, the derived randomness for the
ultimate inert commitment grows only polynomially, as mO(1) ·D. This yields
the following two security theorems.

Theorem 3. Assuming the hardness of SISn,m+1,q,β for a sufficiently large
β = mO(1) · D, the above-described construction is correlation intractable for
the class of functions with output length m that can be implemented by length-D
branching programs.

Theorem 4. Assuming the hardness of LWEn−1,m,q,χ for a poly(n)-bounded χ
and a sufficiently large q = mO(1) ·D, the above-described construction is some-
where statistically correlation intractable for the class of functions with output
length m that can be implemented by length-D branching programs; each branching
program serves as the intractability guarantee of itself.
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3.4 Parameter Instantiations

Here we show how the parameters n, q (with ` := dlog qe and m := n`) can be
chosen, with a focus on the SIS problem and the branching program instantiation;
a very similar process can be followed for LWE and/or circuits. For a branching
program of length D = λd and desired output size of (at most) L = λc for some
constants c, d > 0, let β = mc1 ·D for the (small) constant c1 > 0 be the norm
bound given by Theorem 3. To invoke worst-case hardness theorems, we can take
some q = β · Õ(

√
n) and n = bL/`c, so that the true output size m = n` ≤ L.

With these choices, we have q = poly(λ), n = L/Θ(log λ) = λc−o(1), and
D = nd/c+o(1). This corresponds to a worst-case approximation factor

γ(n) = β · Õ(
√
n) = nc1+d/c+1/2+o(1) = poly(n) (15)

for the underlying n-dimensional lattice problem.
Two noteworthy extremes are as follows. We can obtain a very short hash

output length of λc for arbitrarily small c > 0, where security is supported by
(large) poly(n)-approximate lattice problems in n = λc−o(1) dimensions, which are
plausibly subexponentially hard. On the other extreme, in our NIZK application
using the bootstrapping transform, the value of d is fixed by the FHE scheme and
we may choose L = λc freely. So, by taking a large enough constant c, security is
supported by (small) nc1+1/2+ε approximation factors for any desired constant
ε > 0.

4 Bootstrapping Correlation Intractability

In this section we present our bootstrapping theorem for correlation-intractable
hash functions.

Construction 3. Let C = {Cλ} be a circuit class and Uλ(C, x) = C(x) denote
a universal circuit for Cλ. Let FHE = (Gen,Enc,Dec,Eval) be a (symmetric-
key) encryption scheme supporting homomorphic computation of the class
{Ux(·) = Uλ(·, x)}λ. Let CIH = (Gen,Hash) be a hash function family with fake-
key generation algorithm StatGen. Define a new hash family CIH′ = (Gen′,Hash′)
with fake-key generation algorithm StatGen′ as follows:

– Gen′(1λ): generate k ← CIH.Gen(1λ) and (sk, ek)← FHE.Gen(1λ). Generate
c ← Enc(pk,D) for some arbitrary “dummy” circuit D ∈ Cλ, and output
hash key k′ = (k, ek, c).

– StatGen′(1λ, C ∈ Cλ): generate (sk, ek)← FHE.Gen(1λ) and
k ← StatGen(1λ,FHE.Dec(sk, ·)). Generate c← Enc(pk, C) and output hash
key k′ = (k, ek, c).

– Hash′(k′ = (k, ek, c), x): output Hash(k,Eval(ek, Ux, c)).

Remark 3. Observe that if the original CIH family has (pseudo)random hash
keys, and FHE has jointly pseudorandom evaluation keys and ciphertexts, then
CIH′ has pseudorandom hash keys as well.
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Let R = {Rλ = {Rλ}} be a class of relations. For each Rλ ∈ Rλ, each secret
key sk that may be output by FHE.Gen(1λ), and each circuit C ∈ Cλ, define the
associated relations

Rλ,sk = {(c, y) : (FHE.Dec(sk, c), y) ∈ Rλ}
Rλ,C = {(x, y) : (C(x), y) ∈ Rλ} .

Essentially, these relations first apply some computation (either decryption with
a certain fixed secret key, or some circuit C) to the input, then check whether the
provided witness is valid (under the original relation) for the result. They naturally
yield the associated relation classes RDec := {RDec

λ = {Rλ,sk : Rλ ∈ Rλ}} and
RC := {RCλ = {Rλ,C : Rλ ∈ Rλ, C ∈ Cλ}}.

Remark 4. Similar to Remark 2, the size of the CIH′ hash key is affected by the
choice of FHE and the description size of members of the circuit family {Cλ}.
To analyze the size of the hash key k′ = (k, ek, c), first notice that as shown
below in Theorem 5, the underlying hash function CIH need only be CI for a
circuit class whose members can be described by FHE secret keys. With a (leveled
or unbounded) FHE, secret keys have a fixed poly(λ) length, regardless of the
supported family C. But depending on the FHE scheme, the size of the evaluation
key ek and the ciphertext c can have various dependencies on the circuit family C.
Specifically, with an unbounded FHE, the size of ek is a fixed polynomial in λ
independent of the circuit family, and the size of c is a fixed polynomial in λ and
the description size of members of C. In a leveled FHE, the sizes of ek and c may
additionally depend (polynomially) on the depth of the supported circuit class.

Theorem 5. If FHE is CPA-secure (for the sequence of message spaces {Cλ})
and CIH is correlation intractable for the relation class RDec, then CIH′ is corre-
lation intractable for the relation class RC.

Proof. Let A′ = {A′λ} be a non-uniform polynomial-size adversary against the
correlation intractability of CIH′ for RC , and fix any sequence of relations {Rλ,Cλ}
for some choice of Cλ ∈ Cλ for each λ.

We first define a hybrid experiment and show that it is computationally
indistinguishable from the real experiment. In the hybrid experiment we modify
only how the c component of the hash key is generated, letting c← Enc(pk,Cλ).
By the CPA-security of FHE, the success probability of A′ can differ by only a
negligible amount between the real and the hybrid experiments. (The reduction
showing this is straightforward, because sk is not used in the experiment.)

Our goal is prove that in the hybrid experiment,

ν(λ) := Pr
k′

[x← A′(k′) : (x,Hash′(k′, x)) ∈ Rλ,Cλ ]
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is a negligible function that depends only on A′ (and not Rλ,Cλ). First, observe
that by construction of CIH′,

Pr


k ← CIH.Gen(1λ)

(sk, ek)← FHE.Gen(1λ)
c← Enc(ek, Cλ)

x = A′λ(k′ = (k, ek, c))
cx = Eval(ek, Ux, c)

∣∣∣∣∣∣∣∣∣∣
(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ

 = ν(λ) . (16)

By an averaging argument, there exists (skλ, ekλ) in the support of FHE.Gen(1λ)
such that

Pr


k ← CIH.Gen(1λ)
c← Enc(ekλ, Cλ)

x = A′λ(k′ = (k, ekλ, c))
cx = Eval(ekλ, Ux, c)

∣∣∣∣∣∣∣∣ (Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ

 ≥ ν(λ) . (17)

We use A′ to construct a non-uniform polynomial-size attacker A = {Aλ} against
the correlation intractability of CIH for RDec, and specifically the sequence of
relations {Rλ,skλ}. Given a CIH key k, Aλ generates c ← Enc(ekλ, Cλ), lets
x = A′λ(k′ = (k, ekλ, c)), and outputs cx = Eval(ekλ, Ux, c).

We now prove that Aλ succeeds with probability at least ν(λ), hence ν(λ) is a
negligible function (that does not depend on the choice of relations). First, notice
that the distribution of k′ that Aλ passes to A′λ is exactly as in Equation (17).
Next, observe that by the correctness of FHE, we have Dec(skλ, cx) = Cλ(x).
Therefore, whenever (Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ we have (x,Hash(k, cx)) ∈ Rλ
and hence (cx,Hash(k, cx)) ∈ Rλ,skλ , as needed.

Theorem 6. If FHE is CPA-secure (for the sequence of message spaces {Cλ})
and CIH is somewhere statistical correlation intractable for the relation class
RDec, where for each Rλ,sk the intractability guarantee is the description of the
circuit FHE.Dec(sk, ·), then CIH′ is somewhere statistical correlation intractable
for the relation class RC, and for each Rλ,C the intractability guarantee is the
circuit C.

Proof. First we have to argue that the outputs of Gen′(1λ) and StatGen′(1λ, Cλ)
are computationally indistinguishable for any Cλ ∈ Cλ. This follows immediately
from the CPA-security of FHE and the fact that CIH is somewhere statistically
correlation intractable with fake-key generation StatGen.

Now fix any sequence of relations {Rλ,Cλ} for some choice of Cλ ∈ Cλ for
each λ. We need to show that

ν(λ) := Pr
k′←StatGen′(1λ,Cλ)

[∃x s.t. (x,Hash′(k′, x)) ∈ Rλ,Cλ ]
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is a negligible function (that does not depend on Rλ,Cλ). First, observe that by
construction of CIH′,

Pr

 (sk, ek)← FHE.Gen(1λ)
k ← StatGen(1λ,FHE.Dec(sk, ·))

c← Enc(ek, Cλ)

∣∣∣∣∣∣
∃x s.t.

(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ where
cx = Eval(ek, Ux, c)

 = ν(λ) .

(18)
By an averaging argument, there exists (skλ, ekλ) in the support of FHE.Gen(1λ)
such that

Pr

 k ← StatGen(1λ,FHE.Dec(skλ, ·))
c← Enc(ekλ, Cλ)

∣∣∣∣ ∃x s.t.
(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ where

cx = Eval(ekλ, Ux, c)

 ≥ ν(λ) .

(19)
Next, observe that by the correctness of FHE, we have Dec(skλ, cx) = Cλ(x).
Therefore, whenever (Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ we have (x,Hash(k, cx)) ∈ Rλ
and hence (cx,Hash(k, cx)) ∈ Rλ,skλ . So, Equation (19) implies that

Pr
k←StatGen(1λ,Dec(skλ,·))

[∃cx s.t. (cx,Hash(k, cx)) ∈ Rλ,Cλ ] ≥ ν(λ). (20)

The theorem follows by the somewhere statistical correlation intractability of
CIH.

5 Putting it All Together

In this section we assemble the components from the previous sections and prior
works to obtain correlation-intractable hash families for all bounded circuits, and
our main result of noninteractive zero knowledge for all of NP. (Throughout this
section, for simplicity we assume the standard LWE error distribution χ, i.e., a
discrete Gaussian of parameter r = 2

√
n for LWE dimension n.)

5.1 Correlation-Intractable Hashing for all Circuits

In this subsection let L = L(λ), S = S(λ), and d = d(λ) be arbitrary poly(λ)-
bounded functions, and define the relation class RL,S,d = {Rλ,L,S,d}, where
Rλ,L,S,d = {Rf = {(x, f(x))}} is the set of all efficiently searchable relations
whose search functions f can be computed by a circuit with output length L(λ),
size S(λ), and depth d(λ).

Let FHE be a leveled fully homomorphic encryption scheme instantiated to
support circuits of depth at most d = d(λ), with decryption circuit having size
SDec(λ) and logarithmic depth dDec(λ) = O(log λ). Let CIH denote Construction 2
for circuit size S = L · SDec(λ) (allowing for the decryption of L ciphertexts) and
depth d = dDec(λ), and with FHC parameters n, q satisfying L ≥ ndlg qe.

Theorem 7. Assuming the hardness of SISn,q,β for a suitable β = poly(S)
(respectively LWEn−1,q,χ for a poly(n)-bounded χ and a suitable q = poly(S))

21



and the CPA-security of FHE, Construction 3 instantiated with FHE and CIH is
correlation intractable with respect to RL,S,d (respectively, somewhere statistically
correlation intractable with respect to RL,S,d, where for each Rf ∈ RL,S,d the
intractability guarantee is f).

Proof. Let I = {Iλ = {(x, x) : x ∈ {0, 1}L(λ)}} be the class of equality relations.
Because FHE.Dec has circuit depth dDec = O(log λ), by Theorem 3 CIH is corre-
lation intractable (respectively, somewhere statistically correlation intractable)
for the relation class IDec (as defined in Section 4). The theorem follows by
noticing that RL,S,d = IC where C is the class of circuits used to define RL,S,d,
and applying Theorem 5.

Using any known leveled FHE scheme based on LWE with polynomial factors
that has jointly pseudorandom evaluation keys and ciphertexts (e.g., [13]), we
get the following corollary.

Corollary 1. Assuming the hardness of LWE with suitable polynomial factors,
there exists a somewhere statistically correlation-intractable hash family (with
pseudorandom hash keys) for RL,S,d, where for each Rf ∈ RL,S,d the intractability
guarantee is f .

5.2 Noninteractive Zero Knowledge for NP

We are now ready to instantiate the noninteractive zero-knowledge protocol
from [15] with our correlation-intractable hash functions. We first recall the
following theorem; see Definition 2 for a reminder of the NIZK modifiers.

Theorem 8 ([15]). Assuming the existence of

– a lossy public-key encryption scheme with uniformly random lossy public keys
(respectively, an ordinary CPA-secure public-key encryption scheme), and

– a hash family with (pseudo)random keys which is CI for all circuits of
output length L(λ) ≥ λc for some constant c > 0 and size bounded by some
sufficiently large S(λ) = poly(λ) (respectively, a hash family that is somewhere
statistically correlation intractable for all such circuits, where the intractability
guarantee for each circuit is itself),

there exists a computationally sound, statistically zero-knowledge noninteractive
argument system with common random string for any NP language (respectively, a
statistically sound, adaptively computational zero-knowledge noninteractive proof
system with common reference string).

A lossy encryption scheme satisfying the requirements of Theorem 8 can be
constructed based on LWE with polynomial factors (see, e.g., [42,40]). So, by
Corollary 1 we get our main result:

Theorem 9. Assuming the hardness of LWE with suitable polynomial factors,
for any NP language there exists
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– a computationally sound, statistically zero-knowledge noninteractive argument
system having a common random string, and

– a statistically sound, adaptively computational zero-knowledge noninteractive
proof system having a common reference string.

Remark 5. We remark that intractability bootstrapping and leveled FHE are not
actually necessary for the NIZK construction, because we just need a hash family
that is correlation intractable for the class of “bad challenge” functions of the
underlying graph-Hamiltonicity protocol of [20]. As pointed out by Alex Lombardi,
a trick from [15] allows the bad-challenge functions to be implemented in NC1

(i.e., logarithmic depth), so we can obtain the required correlation intractability
merely from SIS with small polynomial factors. (However, we still use LWE for
the lossy encryption ingredient.)

In short, the bad-challenge function decrypts the prover’s ciphertexts to
recover a graph, then checks whether the graph is a cycle. Decryption of LWE-
based lossy encryption in NC1 is standard. To implement the cycle check, we
additionally require the prover to (de)commit to a permutation between its
committed graph and a canonical cycle graph. The bad-challenge function (and
verifier) performs the appropriate checks, which can be done in logarithmic
depth by brute force. (Without the explicit permutation, the best known parallel
complexity for cycle checking is NC2, which is not good enough for the present
purpose.)

Remark 6. When using a CI hash family arising from our bootstrapping transform
of Construction 3, either NIZK system of Theorem 9 can have a compact common
random/reference string, i.e., a string whose length does not depend on the size
of the statement being proved. In fact, the CRS generation algorithm does not
need to get the size (or any other parameter) of the statement as an input.

To see this, we first observe that for any statement length, the “bad challenge”
circuits making up the family C for which Theorem 8 needs correlation intractabil-
ity can be represented by strings of a fixed poly(λ) length. Specifically, these
circuits can be fully specified by the secret key of the (lossy) public-key encryption
scheme used in Theorem 8. We next observe that the universal circuit U(·, ·) for
this representation (and a given statement length) is uniformly generated and has
a fixed logarithmic depth in its input length. Therefore, it suffices to instantiate
the FHE in Construction 3 using any leveled FHE scheme (e.g., [11,25]) for some
arbitrary ` = ω(log(λ)) levels. Then, by Remark 4 the hash key and hence the
CRS is completely independent of the statement size.

For comparison, we also point out that there is a generic transformation
from [24] which converts any NIZK to one with a compact CRS. However, this
transformation does not preserve statistical zero knowledge, i.e., the resulting
NIZK system is always computational zero knowledge. On the other hand, our
construction has a compact CRS and is also statistical zero knowledge.
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