
Attribute Based Encryption (and more) for
Nondeterministic Finite Automata from LWE

Shweta Agrawal1, Monosij Maitra1, and Shota Yamada2

1 IIT Madras, Chennai, India
{shweta.a, monosij}@@cse.iitm.ac.in

2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
{yamada-shota}@aist.go.jp

Abstract. Constructing Attribute Based Encryption (ABE) [56] for uniform
models of computation from standard assumptions, is an important problem,
about which very little is known. The only known ABE schemes in this setting
that i) avoid reliance on multilinear maps or indistinguishability obfuscation, ii)
support unbounded length inputs and iii) permit unbounded key requests to the
adversary in the security game, are by Waters from Crypto, 2012 [57] and its
variants. Waters provided the first ABE for Deterministic Finite Automata (DFA)
satisfying the above properties, from a parametrized or “q-type” assumption over
bilinear maps. Generalizing this construction to Nondeterministic Finite Automata
(NFA) was left as an explicit open problem in the same work, and has seen no
progress to date. Constructions from other assumptions such as more standard
pairing based assumptions, or lattice based assumptions has also proved elusive.
In this work, we construct the first symmetric key attribute based encryption
scheme for nondeterministic finite automata (NFA) from the learning with errors
(LWE) assumption. Our scheme supports unbounded length inputs as well as
unbounded length machines. In more detail, secret keys in our construction are
associated with an NFA M of unbounded length, ciphertexts are associated with a
tuple (x,m) where x is a public attribute of unbounded length and m is a secret
message bit, and decryption recovers m if and only if M(x) = 1.
Further, we leverage our ABE to achieve (restricted notions of) attribute hiding
analogous to the circuit setting, obtaining the first predicate encryption and
bounded key functional encryption schemes for NFA from LWE. We achieve
machine hiding in the single/bounded key setting to obtain the first reusable
garbled NFA from standard assumptions. In terms of lower bounds, we show that
secret key functional encryption even for DFAs, with security against unbounded
key requests implies indistinguishability obfuscation (iO) for circuits; this suggests
a barrier in achieving full fledged functional encryption for NFA.

1 Introduction

Attribute based encryption (ABE) [56] is an emerging paradigm of encryption that
enables fine grained access control on encrypted data. In attribute based encryption,
a ciphertext of a message m is labelled with a public attribute x and secret keys are
labelled with a Boolean function f . Decryption succeeds to yield the hidden message
m if and only if the attribute satisfies the function, namely f(x) = 1. Starting with the

2 Shweta Agrawal, Monosij Maitra, and Shota Yamada

seminal work of Sahai and Waters [56], ABE schemes have received a lot of attention in
recent years [43, 23, 20, 45, 49, 4, 57, 39, 22, 40, 41, 26, 10], yielding constructions for
various classes of functions under diverse assumptions.

In most constructions, the function f embedded in the key is represented as a circuit.
While powerful, circuits are a non-uniform model of computation which necessitates
different representations for different input lengths, forcing the scheme to provide
multiple function keys for the same functionality as the input length varies. This drawback
poses a significant deployment barrier in many practical application scenarios, since
data sizes in the real world are rarely of fixed length3. Attribute based encryption for
uniform models of computation has also been studied, but so far, we have very few
constructions from standard assumptions. Waters [57] provided a construction of ABE
for Deterministic Finite Automata (DFA) from parametrized or “q-type” assumptions
over bilinear maps. Generalizing this construction to Nondeterministic Finite Automata
(NFA) was left as an explicit open problem4 in [57], and has remained open to date.
Constructions from other assumptions such as more standard pairing based assumptions,
or lattice based assumptions has also proved elusive. Boyen and Li [24] provided a
construction of ABE for DFA from the Learning With Errors (LWE) assumption but
this was restricted to DFAs with bounded length inputs, rendering moot the primary
advantage of a DFA over circuits. Agrawal and Singh [8] constructed a primitive closely
related to ABE for DFA, namely reusable garbled DFA from LWE, but their construction
is limited to a security game where the adversary may only request a single function key.

From strong assumptions such as the the existence of multilinear maps [33],
witness encryption [36] or indistinguishability obfuscation [18, 34], attribute based
encryption (indeed, even its more powerful generalization – functional encryption)
has been constructed even for Turing machines [14, 6, 48], but these are not
considered standard assumptions; indeed many candidate constructions have been broken
[27, 31, 44, 29, 28, 55, 32, 15]. Very recently, Ananth and Fan [10] constructed ABE
for RAM programs from LWE achieving decryption complexity that is sublinear in the
database length. However, the key sizes in their construction are massive and grow with
the size of the entire database as well as with worst case running time of the program on
any input. In particular, restricting the construction to any model of computation that
reads the entire input string (e.g. DFA, TM) yields a bounded input solution, since the key
size depends on the input length. Similarly, [26, 42] construct attribute based encryption
for “bundling functionalities” where the size of the public parameters does not depend
on the size of the input chosen by the encryptor, say `. However, the key generator
must generate a key for a circuit with a fixed input length, say `′, and decryption only
succeeds if ` = `′. Thus, bundling functionalities do not capture the essential challenge
of supporting dynamic data sizes; this was noted explicitly in [42].

Our Results. In this work, we construct the first symmetric key attribute based encryption
scheme for nondeterministic finite automata (NFA) from the learning with errors (LWE)

3 A trivial workaround would be to fix the input length to some fixed upper bound and pad all
data to this bound; but this solution incurs substantial overhead (besides being inelegant).

4 Note that an NFA can be converted to an equivalent DFA but this transformation incurs
exponential blowup in machine size.

Title Suppressed Due to Excessive Length 3

assumption. Our scheme supports unbounded length inputs as well as unbounded length
machines. In more detail, secret keys in our construction are associated with an NFA M
of unbounded length, ciphertexts are associated with a tuple (x,m) where x is a public
attribute of unbounded length and m is a secret message bit, and decryption recovers
m if and only if M(x) = 1. Moreover our construction achieves succinct parameters,
namely, the length of the function key and ciphertext grow only with the machine size
and input length respectively (and do not depend on the input length and machine size
respectively).

Further, we leverage our ABE to achieve (restricted notions of) attribute hiding
analogous to the circuit setting, obtaining the first predicate encryption and bounded
key functional encryption schemes for NFA. We achieve machine hiding in the single
key5 setting to obtain the first reusable garbled NFA from standard assumptions. This
improves upon the result of [8], which can only support a single key request (as against
bounded), and only DFAs (as against NFAs).

The above results raise the question of whether full fledged functional encryption,
which achieves full attribute hiding for NFAs is possible under standard assumptions.
However, we show that secret key functional encryption even for DFA with security
against unbounded key requests implies indistinguishability obfuscation (iO) for circuits.
Since constructing iO for circuits from standard assumptions is a central challenge in
cryptography, this suggests that there is a barrier in further generalizing our result to
achieve full attribute hiding.

We summarize our results in Table 1.

Construction Model Input Length Number of
Keys

Attribute and
Function
Hiding

Assumption

Waters [57] DFA unbounded unbounded (no, no) q-type
assumption on
bilinear maps

Boyen-Li [24] DFA bounded unbounded (no, no) LWE
Agrawal-Singh

[8]
DFA unbounded single (yes, yes) LWE

Ananth-Fan
[10]

RAM bounded unbounded (no, no) LWE

Section 4 NFA unbounded unbounded (no, no) LWE
Full version NFA unbounded unbounded (yes∗, no) LWE
Full version NFA unbounded bounded (yes, yes) LWE

Table 1. Prior work and our results. Above, we say that input length supported by a construction
is bounded if the parameters and key lengths depend on the input size. For attribute hiding, yes∗

indicates hiding in the restricted security games of predicate or bounded key functional encryption.

5 This may be generalized to bounded key, for any a-priori fixed (polynomial) bound.

4 Shweta Agrawal, Monosij Maitra, and Shota Yamada

1.1 Our Techniques

In this section, we provide an overview of our techniques. Before we proceed, we discuss
the technical barriers that arise in following the approaches taken by prior work. Since
the construction by Waters [57] is the only one that supports unbounded attribute lengths
and unbounded key requests by the adversary, 6 it is the most promising candidate for
generalization to NFA. However, the challenges in generalizing this construction to
support NFAs were explicitly discussed in the same work, and this has seen no progress
in the last seven years to the best of our knowledge, despite the significant research
attention ABE schemes have received. Moreover, even the solution for DFAs is not fully
satisfactory since it relies on a non-standard parametrized or “q-type” assumption.

Boyen and Li [24] attempt to construct ABE for DFAs from the LWE assumption, but
their construction crucially requires the key generator to know the length of the attribute
chosen by the encryptor, since it must provide a fresh “trapdoor” for each row of the DFA
transition table and each input position. Indeed, reusing the same trapdoor for multiple
positions in the input leads to trivial “mix and match” attacks against their scheme. Thus,
it is not even clear how to obtain ABE for DFA with support for unbounded lengths
by following this route. The work of Agrawal and Singh [8] gives a construction of
functional encryption for DFA from LWE that does handle unbounded length inputs,
but only in the limited single key setting. Their construction crucially relies on reusable
garbled circuits [37] which is a single key primitive, and natural attempts to generalize
their construction to support even two keys fails7. Similarly, the very recent construction
of Ananth and Fan [10] is also inherently bounded length, for reasons similar as those
discussed above for [24].

Thus, the handful of existing results in this domain all appear to pose fundamental
barriers to generalization. To overcome this hurdle, we design completely new techniques
to handle the challenge of unbounded length; these may be applicable elsewhere. We
focus on the symmetric key setting, and proceed in two steps: i) we provide a secret
key ABE scheme for NFA that supports unbounded length inputs but only supports
bounded size NFA machines, and ii) we “bootstrap” the construction of step (i) to handle
unbounded length machines. We additionally achieve various notions of attribute hiding
as discussed above, but will focus on the ABE construction for the remainder of this
overview. We proceed to describe each of these steps in detail.

Constructing NfaABE for Bounded Size NFA. Our first goal is to construct a secret key
ABE scheme for NFA that supports unbounded length inputs but only supports bounded
size NFA machines from the LWE assumption. Since ABE for circuits has received
much success from the LWE assumption [39, 22], our first idea is to see if we can run
many circuit ABE schemes “in parallel”, one for each input length. We refer to our
resulting ABE scheme for NFAs as NfaABE and the ABE for circuits scheme simply as
ABE, in order to differentiate them.

6 The construction is later extended to be adaptively secure rather than selectively secure (e.g.,
[16]), but the basic structure of the construction is unchanged.

7 For the knowledgeable reader, bounded key variants of reusable garbled circuits exist, for
instance by applying the compiler of [38], but using this in the aforementioned construction
does not work due to the structure of their construction.

Title Suppressed Due to Excessive Length 5

Naı̈ve Approach: We start with the following naı̈ve construction that uses a (public
key) ABE for circuits as an ingredient. The master secret key of the NfaABE scheme is
a PRF key K. This PRF key defines a set of key pairs {(ABE.mpkj ,ABE.mskj)}j∈[2λ]
of the ABE scheme, where each (ABE.mpkj ,ABE.mskj) is sampled using randomness
derived from the PRF key K and supports circuits with inputs of length j. When one
encrypts a message for a ciphertext attribute x, one chooses the master public key
ABE.mpk|x| and encrypts the message using the key, where |x| is the length of x.
We can encrypt for x with length at most 2λ and therefore can deal with essentially
unbounded length strings as ciphertext attributes. In order to generate a secret key for
a machine M , one has to convert it into a circuit since our underlying ingredient is an
ABE for circuits. The difference between an NFA machine M and a circuit is that while
the former takes a string with arbitrary length as an input, the input length for the latter
is fixed. To fill the gap, we prepare a circuit version of NFA M for all possible input
lengths. Namely, we convert the machine M into an equivalent circuit M̂j with input
length j for all j ∈ [2λ]. Then, we generate ABE secret key associated with M̂j by
running the key generation algorithm of the ABE for all j to obtain the NfaABE secret
key {ABE.skj}j∈[2λ]. When decrypting a ciphertext associated with x, the decryptor
chooses ABE.sk|x| and runs the decryption algorithm of the underlying ABE to retrieve
the message.

Reducing the Number of Keys: Obviously, there are multiple problems with this
approach. The first problem is that there are 2λ instances of ABE and thus the secret key
of NfaABE is exponentially large. To handle this, we thin out most of the instances and
change the secret key to be {ABE.sk2j}j∈[0,λ]. In order to make sure that the decryption
is still possible even with this change, we modify the encryption algorithm. To encrypt a
message for an attribute x, one chooses i ∈ [0, λ] such that 2i−1 < |x| ≤ 2i and uses
the i-th instance to encrypt the message, where if the length of x is not exactly 2i, it
is padded with blank symbols to adjust the length. This change reduces the number of
instances down to be polynomial.

Reducing the Size of Keys: However, a bigger problem is that even though we
reduced the number of secret keys, we did not reduce their size, which is still not
polynomial. In particular, there is no guarantee on the size of ABE.sk2λ since the
associated circuit M̂2λ is of exponential size. Here, we leverage a crucial efficiency
property that is enjoyed by the ABE for circuits constructed by Boneh et al. [22], namely,
that the secret keys in this scheme are very short. The size of secret keys in their scheme
is dependent only on the depth of the circuits being supported and independent of the
input length and size. Thus, if we can ensure that the depth of M̂2λ is polynomially
bounded (even though the input is exponentially long), we are back in business.

However, converting the NFA to a circuit requires care. We note that implementing
the trivial approach of converting an NFA to a circuit by keeping track of all possible
states while reading input symbols results in circuit whose depth is linear in input length,
which is exponential. To avoid this, we make use of a divide and conquer approach to
evaluate the NFA, which makes the circuit depth poly-logarithmic in the input length.
As a result, the size of the secret keys can be bounded by a polynomial as desired.

6 Shweta Agrawal, Monosij Maitra, and Shota Yamada

Efficiency of Key Generation: The final and the most difficult problem to be
addressed is that even though we managed to make the size of {ABE.sk2j}j∈[0,λ]
polynomially bounded, computational time for generating it is still exponentially large,
since so is the size of the associated circuits {M̂2j}j∈[0,λ]. To resolve the problem,
we note that the only algorithm which has the “space” to handle the unbounded input
length is the encryption algorithm. Hence, we carefully divide the computation of
generating {ABE.sk2j}j∈[0,λ] into pieces so that the key generator only needs to do
work proportional to the size of the machine, the encryptor does work proportional to
the size of the input and the decryptor computes the requisite key on the fly.

To implement this idea, we use succinct single-key functional encryption (FE), which
can be realized from the LWE assumption [37, 2]. To support unbounded input length,
we generate λ+1 instances of the FE scheme to obtain {FE.mpkj ,FE.mskj}j∈[0,λ]. The
secret key of NfaABE is {FE.ctj}j∈[0,λ], where FE.ctj = FE.Enc(FE.mpkj , (M,K))
is an encryption of a description of the associated NFA M and the PRF key K under
the j-th instance of the FE scheme. To provide the matching secret key, the encryptor
appends FE.ski = FE.KeyGen(FE.mski, Ci) to the ciphertext. Here, x is the attribute
vector of unbounded length, i is an integer s.t. 2i−1 < |x| ≤ 2i and Ci is a circuit that
takes as inputs the machine M and PRF key K and outputs an ABE secret key ABE.sk2i
associated with M .

We are almost done – the decryptor chooses FE.cti with appropriate i from the
received set {FE.ctj}j∈[0,λ] and decrypts it using FE.ski that is appended to the
ciphertext to obtain an ABE secret key ABE.sk2i . Then, it decrypts the ABE ciphertext
also provided in the ciphertext to retrieve the message. Note that our construction is
carefully designed so that we only require a single key of the succinct FE scheme.

Arguing the efficiency of the scheme requires care. In order to make the key
generation algorithm run in polynomial time, we rely on the succinctness of the
underlying FE. Recall that the succinctness property says that the running time of the
encryption algorithm is independent of the size of the circuits being supported and only
dependent on the depth and input and output length. In our construction, the computation
of {FE.ctj = FE.Enc(FE.mpkj , (M,K))}j∈[0,λ] can be performed in polynomial time,
since the input length |M |+ |K| is bounded by a fixed polynomial8 and so is the output
length |ABE.sk2j |. Note that we crucially use the succinctness of the FE here, since the
size of the circuit C2j , which is supported by the j-th instance of FE, is polynomial in
2j and thus exponential for j = λ.

Security: Our construction of NfaABE satisfies standard (selective) indistinguishabil-
ity based security. The high level idea of the proof is outlined next. Intuitively, security
follows from the security of the single key FE scheme and the underlying circuit ABE
scheme. In the first step, we show that even though an adversary can obtain multiple FE
ciphertexts and secret keys, it cannot obtain anything beyond their decryption results
{FE.Dec(FE.ski,FE.cti) = ABE.ski} by the security of the FE. Then, we leverage the
security of the ABE to conclude that the message is indeed hidden. We note that in order
to invoke the FE security, we need to ensure that only single secret key is revealed to
the adversary for each instance of FE. This property is guaranteed, since the circuit for

8 Recall that we are only dealing with bounded size NFAs.

Title Suppressed Due to Excessive Length 7

which a secret key of the j-th instance of FE is generated is fixed (i.e., C2j). Please see
Section 3 for details.

Removing the Size Constraint on NFAs. So far, we have constructed NfaABE for NFA
that can deal with unbounded input length and bounded size NFAs. Let us call such a
scheme (u, b)-NfaABE, where “u” and “b” stand for “unbounded” and “bounded”. We
define (b, u)-NfaABE and (u, u)-NfaABE analogously, where the first parameter refers
to input length and the second to machine size. Our goal is to obtain (u, u)-NfaABE. At
a high level, we compile (u, u)-NfaABE using two pieces, namely (u, b)-NfaABE which
we have already constructed, and (b, u)-NfaABE, which we will instantiate next.

To construct (b, u)-NfaABE, our basic idea is to simply convert an NFA into an
equivalent circuit and then use existing ABE for circuits schemes [39, 22]. This approach
almost works, but we need to exercise care to ensure that the depth of these circuits can
be bounded since we hope to support NFAs of unbounded size. To fill this gap, we show
that an NFA can be converted into an equivalent circuit whose depth is poly-logarithmic
in the size of the NFA by again using the divide and conquer approach we discussed
previously. This enables us to bound the depth of the circuits by a fixed polynomial,
even if the size of corresponding NFA is unbounded and allows us to use existing ABE
schemes for circuits to construct (b, u)-NfaABE.

We are ready to construct (u, u)-NfaABE by combining (u, b)-NfaABE and
(b, u)-NfaABE. The master secret key of the (u, u)-NfaABE is a PRF key K. This
PRF key defines a set of keys {(u, b)-NfaABE.mskj}j∈[2λ] of the (u, b)-NfaABE
scheme, where each (u, b)-NfaABE.mskj supports NFAs with size j. Similarly, the
PRF key also defines keys {(b, u)-NfaABE.mskj}j∈[2λ] of the (b, u)-NfaABE scheme,
where each (b, u)-NfaABE.mskj supports input strings with length j. To encrypt a
message with respect to a ciphertext attribute x, it encrypts the message for x using
(u, b)-NfaABE.mskj to obtain (u, b)-NfaABE.ctj for all j ∈ [x]. Furthermore, it also
encrypts the message for x using (b, u)-NfaABE.msk|x| to obtain (b, u)-NfaABE.ct|x|.
The final ciphertext is(

{(u, b)-NfaABE.ctj}j∈[|x|], (b, u)-NfaABE.ct|x|
)
.

To generate a secret key for a machineM , we essentially swap the roles of (u, b)-NfaABE
and (b, u)-NfaABE. Namely, we generate a secret key (b, u)-NfaABE.skj for M using
(b, u)-NfaABE.mskj for all j ∈ [|M |], where |M | is the size of the machine M . We also
generate (u, b)-NfaABE.sk|M | for M using (u, b)-NfaABE.msk|M |. The final secret key
is (

(u, b)-NfaABE.sk|M |, {(b, u)-NfaABE.skj}j∈[|M |]
)
.

To decrypt a ciphertext for attribute x using a secret key for an NFA machine M ,
we first compare |x| and |M |. If |x| > |M |, it decrypts (u, b)-NfaABE.ct|M | using
(u, b)-NfaABE.sk|M |. Otherwise, it decrypts (b, u)-NfaABE.ct|x| using
(u, b)-NfaABE.sk|x|. It is not hard to see that the correctness of the resulting scheme
follows from those of the ingredients. Furthermore, the security of the scheme is easily
reduced to those of the ingredients, as the construction simply runs them in parallel
with different parameters. The proof is by a hybrid argument, where we change the
encrypted messages in a instance-wise manner. In Sec. 4, we streamline the construction

8 Shweta Agrawal, Monosij Maitra, and Shota Yamada

and directly construct (u, u)-NfaABE from (u, b)-NfaABE and ABE for circuits instead
of going through (b, u)-NfaABE.

Generalizations and Lower Bounds. We further generalize our ABE construction to
obtain predicate encryption and bounded key functional encryption for NFAs along
with the first construction of resuable garbled NFA. These constructions are obtained by
carefully replacing the underlying ABE for circuits with predicate encryption, bounded
key functional encryption for circuits or reusable garbled circuits. This compiler requires
some care as we need to argue that the delicate balance of efficiency properties that
enable our NfaABE construction are not violated, as well as ensure that the constructions
and security proofs translate. In the full version, we show that we can indeed ensure
this, sometimes by employing additional tricks as required. In Section 5 we show that
secret key functional encryption (SKFE) for DFA with security against unbounded
collusion implies indistinguishability obfuscation for circuits. There, we essentially show
that we can convert an SKFE for DFA into an SKFE for NC1 circuit, which implies
indistinguishability obfuscation for circuits by previous results [9, 47]. The conversion is
by encoding and purely combinatorial – we first convert an NC1 circuit into an equivalent
branching program and then leverage the similarity between the branching program and
DFA to obtain the result.

Organization of the paper. In Section 2, we provide the definitions and preliminaries
we require. In Section 3, we provide our ABE for NFA supporting unbounded
input but bounded machine length. In Section 4, we enhance the construction to
support both unbounded input and unbounded machine length. The extensions of our
construction to the setting of bounded key functional encryption and reusable garbled
circuits for NFA will appear in the full version. In Section 5 we show that secret
key functional encryption for DFA with security against unbounded collusion implies
indistinguishability obfuscation for circuits. We conclude in Section 6.

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We begin by defining the notation that we will use throughout the paper. We
use bold letters to denote vectors and the notation [a, b] to denote the set of integers
{k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n]. Concatenation is denoted by
the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n)
to denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some
constant c > 0, and we use poly(n) to denote a polynomial function of n. We use
the abbreviation PPT for probabilistic polynomial-time. We say an event occurs with
overwhelming probability if its probability is 1− negl(n). The function log x is the base
2 logarithm of x. For any finite set S we denote P(S) to be the power set of S. For a
circuit C : {0, 1}`1+`2 → {0, 1} and a string x ∈ {0, 1}`1 , C[x] : {0, 1}`2 → {0, 1}

Title Suppressed Due to Excessive Length 9

denotes a circuit that takes y and outputs C(x,y). We construct C[x] in the following
specified way. Namely, C[x] is the circuit that takes as input y and sets

zi =

{
y1 ∧ ¬y1 if xi = 0

y1 ∨ ¬y1 if xi = 1

and then computes C(z,y), where xi, yi, and zi are the i-th bit of x, y, and z,
respectively. In the above, it is clear that zi = xi and we have C(z,y) = C(x,y).
Furthermore, it is also easy to see that depth(C[x]) ≤ depth(C) +O(1) holds.

2.1 Definitions: Non Deterministic Finite Automata

A Non-Deterministic Finite Automaton (NFA) M is represented by the tuple (Q,Σ, T,
qst, F) where Q is a finite set of states, Σ is a finite alphabet, T : Σ × Q → P(Q)
is the transition function (stored as a table), qst is the start state, F ⊆ Q is the set of
accepting states. For states q, q′ ∈ Q and a string x = (x1, . . . , xk) ∈ Σk, we say that
q′ is reachable from q by reading x if there exists a sequence of states q1, . . . , qk+1 such
that q1 = q, qi+1 ∈ T (xi, qi) for i ∈ [k] and qk+1 = q′. We say M(x) = 1 iff there is a
state in F that is reachable from qst by reading x.

Remark 1. As it is known, we can transform an NFA with ε-transitions into a one
without them by a simple and efficient conversion. The conversion preserves the size of
the NFA. For simplicity and without loss of generality, we do not deal with an NFA with
ε-transitions in this paper.

2.2 Definitions: Secret-key Attribute Based Encryption for NFA

A secret-key attribute-based encryption (SKABE) scheme NfaABE for a message space
M = {Mλ}λ∈N consists of four algorithms. In the following, we fix some alphabet
Σ = Σλ of size 2 ≤ |Σ| ≤ poly(λ).

– NfaABE.Setup(1λ) is a PPT algorithm takes as input the unary representation of
the security parameter and outputs the master secret key NfaABE.msk.

– NfaABE.Enc(NfaABE.msk,x,m) is a PPT algorithm that takes as input the master
secret key NfaABE.msk, a string x ∈ Σ∗ of arbitrary length and a message m ∈M.
It outputs a ciphertext NfaABE.ct.

– NfaABE.KeyGen(NfaABE.msk,M) is a PPT algorithm that takes as input the
master secret key NfaABE.msk and a description of an NFA machine M . It outputs
a corresponding secret key NfaABE.skM .

– NfaABE.Dec(NfaABE.skM ,M,NfaABE.ct,x) is a deterministic polynomial time
algorithm that takes as input the secret key NfaABE.skM , its associated NFA M , a
ciphertext NfaABE.ct, and its associated string x and outputs either a message m′

or ⊥.

Remark 2. In our construction in Sec. 3.2, we will pass an additional parameter
s = s(λ) to the NfaABE.Setup,NfaABE.Enc,NfaABE.KeyGen algorithms denoting
the description size of NFAs that the scheme can deal with. Later we give a construction
in Sec. 4 which can support NFAs with arbitrary size.

10 Shweta Agrawal, Monosij Maitra, and Shota Yamada

Definition 1 (Correctness).
An SKABE scheme NfaABE is correct if for all NFAs M , all x ∈ Σ∗ such that

M(x) = 1 and for all messages m ∈M,

Pr

NfaABE.msk← NfaABE.Setup(1λ) ,
NfaABE.skM ← NfaABE.KeyGen(NfaABE.msk,M) ,
NfaABE.ct← NfaABE.Enc(NfaABE.msk,x,m) :
NfaABE.Dec

(
NfaABE.skM ,M,NfaABE.ct,x

)
6= m

 = negl(λ)

where the probability is taken over the coins of NfaABE.Setup, NfaABE.KeyGen, and
NfaABE.Enc.

Definition 2 (Security for NfaABE). The SKABE scheme NfaABE for a message space
M is said to satisfy selective security if for any stateful PPT adversary A, there exists a
negligible function negl(·) such that AdvNfaABE,A(1λ, Σ) :=∣∣∣Pr[Exp(0)NfaABE,A(1

λ)→ 1]− Pr[Exp
(1)
NfaABE,A(1

λ) = 1]
∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment Exp(b)NfaABE,A, modeled as a game
between the adversary A and a challenger, is defined as follows:

1. Setup phase: At the beginning of the game, A takes as input 1λ and declares its
target X ⊂ Σ∗, which is a set of strings of arbitrary size. Then the challenger
samples NfaABE.msk← NfaABE.Setup(1λ).

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order and unbounded many times.
(a) Encryption queries: A submits to the challenger an attribute x ∈ X and a

pair of messages (m(0),m(1)) ∈ (Mλ)
2. Then, the challenger replies with

NfaABE.ct← NfaABE.Enc(NfaABE.msk,x,m(b)) in order.
(b) Key queries: A submits to the challenger an NFA M such that M(x) =

0 for all x ∈ X . Then, the challenger replies with NfaABE.skM ←
NfaABE.KeyGen(NfaABE.msk,M) in order.

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 3. As noted in Remark 2, our construction in Sec. 3.2 is indexed with an
additional parameter s that specifies the size of NFAs being dealt with. In that case, the
above security definitions are modified so that A chooses 1s in addition to X (or X and
S, in the case of very selective security) at the beginning of the game and key generation
queries are made only for machines with size s.

2.3 Definitions: Attribute Based Encryption and Functional Encryption for
circuits

Attribute based Encryption for Circuits For λ ∈ N, let Cinp,d denote a family
of circuits with inp bit inputs, an a-priori bounded depth d, and binary output and
C = {Cinp(λ),d(λ)}λ∈N. An attribute-based encryption (ABE) scheme ABE for C over a
message spaceM = {Mλ}λ∈N consists of four algorithms:

Title Suppressed Due to Excessive Length 11

– ABE.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary representation
of the security parameter, the length inp = inp(λ) of the input and the depth
d = d(λ) of the circuit family Cinp(λ),d(λ) to be supported. It outputs the master
public key and the master secret key (ABE.mpk,ABE.msk).

– ABE.Enc(ABE.mpk,x,m) is a PPT algorithm that takes as input the master public
key ABE.mpk, a string x ∈ {0, 1}inp and a message m ∈M. It outputs a ciphertext
ABE.ct.

– ABE.KeyGen(ABE.mpk,ABE.msk, C) is a PPT algorithm that takes as input
the master secret key ABE.msk and a circuit C ∈ Cinp(λ),d(λ) and outputs a
corresponding secret key ABE.skC .

– ABE.Dec(ABE.mpk,ABE.skC , C,ABE.ct,x) is a deterministic algorithm that
takes as input the secret key ABE.skC , its associated circuit C, a ciphertext ABE.ct,
and its associated string x and outputs either a message m′ or ⊥.

Definition 3 (Correctness).
An ABE scheme for circuits ABE is correct if for all λ ∈ N, polynomially bounded

inp and d, all circuits C ∈ Cinp(λ),d(λ), all x ∈ {0, 1}inp such that C(x) = 1 and for all
messages m ∈M,

Pr

(ABE.mpk,ABE.msk)← ABE.Setup(1λ, 1inp, 1d),
ABE.skC ← ABE.KeyGen(ABE.mpk,ABE.msk, C),
ABE.ct← ABE.Enc(ABE.mpk,x,m) :

ABE.Dec
(
ABE.mpk,ABE.skC , C,ABE.ct,x

)
6= m

 = negl(λ)

where the probability is taken over the coins of ABE.Setup, ABE.KeyGen, and ABE.Enc.

Definition 4 (Selective Security for ABE). The ABE scheme ABE for a circuit family
C = {Cinp(λ),d(λ)}λ∈N and a message space {Mλ}λ∈N is said to satisfy selective
security if for any stateful PPT adversary A, there exists a negligible function negl(·)
such that

AdvABE,A(1
λ) =

∣∣∣Pr[Exp(0)ABE,A(1
λ) = 1]− Pr[Exp

(1)
ABE,A(1

λ) = 1]
∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the experiment
Exp

(b)
ABE,A, modeled as a game between adversary A and a challenger, is defined as

follows:

1. Setup phase: On input 1λ,A submits (1inp, 1d) and the target X ⊂ {0, 1}inp, which
is a set of binary strings of length inp, to the challenger. The challenger samples
(ABE.mpk,ABE.msk)← ABE.Setup(1λ, 1inp, 1d) and replies to A with ABE.mpk.

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order and unbounded many times.
(a) Key Queries: A chooses a circuit C ∈ Cinp,d that satisfies C(x) = 0 for

all x ∈ X . For each such query, the challenger replies with ABE.skC ←
ABE.KeyGen(ABE.mpk,ABE.msk, C).

12 Shweta Agrawal, Monosij Maitra, and Shota Yamada

(b) Encryption Queries: A submits a string x ∈ X and a pair of equal length
messages (m0,m1) ∈ (M)2 to the challenger. The challenger replies to A with
ABE.ct← ABE.Enc(ABE.mpk,x,mb).

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 4. The above definition allows an adversary to make encryption queries multiple
times. More standard notion of the security for an ABE restricts the adversary to make
only a single encryption query. It is well-known that they are actually equivalent, which is
shown by a simple hybrid argument. We adopt the above definition since it is convenient
for our purpose.

In our construction of SKABE for NFA in Sec. 3.2, we will use the ABE scheme by
Boneh et al. [22] as a building block. The following theorem summarizes the efficiency
properties of their construction.

Theorem 1 (Adapted from [22]). There exists a selectively secure ABE scheme ABE =
(ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) with the following properties under
the LWE assumption.

1. The circuit ABE.Setup(·, ·, ·; ·), which takes as input 1λ, 1inp, 1d, and a randomness
r and outputs ABE.msk = ABE.Setup(1λ, 1inp, 1d; r), can be implemented with
depth poly(λ, d). In particular, the depth of the circuit is independent of inp and the
length of the randomness r.

2. We have |ABE.skC | ≤ poly(λ, d) for any C ∈ Cinp,d, where (ABE.mpk,
ABE.msk)← ABE.Setup(1λ, 1inp, 1d) and ABE.skC ← ABE.KeyGen(ABE.mpk,
ABE.msk, C). In particular, the length of the secret key is independent of the input
length inp and the size of the circuit C.

3. LetC : {0, 1}inp+` → {0, 1} be a circuit such that we haveC[v] ∈ Cinp,d for any v ∈
{0, 1}`. Then, the circuit ABE.KeyGen(·, ·, C[·]; ·), that takes as input ABE.mpk,
ABE.msk, v, and randomness R̂ and outputs ABE.KeyGen(ABE.mpk,ABE.msk,

C[v]; R̂), can be implemented with depth depth(C) · poly(λ, d).

Functional Encryption for Circuits For λ ∈ N, let Cinp,d,out denote a family of circuits
with inp bit inputs, depth d, and output length out and C = {Cinp(λ),d(λ),out(λ)}λ∈N. A
functional encryption (FE) scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for
C consists of four algorithms:

– FE.Setup(1λ, 1inp, 1d, 1out) is a PPT algorithm takes as input the unary representa-
tion of the security parameter, the length inp = inp(λ) of the input, depth d = d(λ),
and the length of the output out = out(λ) of the circuit family Cinp(λ),d(λ),out(λ) to
be supported. It outputs the master public key FE.mpk and the master secret key
FE.msk.

– FE.KeyGen(FE.mpk,FE.msk, C) is a PPT algorithm that takes as input the master
public key FE.mpk, master secret key FE.msk, and a circuit C ∈ Cinp(λ),d(λ),out(λ)
and outputs a corresponding secret key FE.skC .

– FE.Enc(FE.mpk,x) is a PPT algorithm that takes as input the master public key
FE.mpk and an input message x ∈ {0, 1}inp(λ) and outputs a ciphertext FE.ct.

Title Suppressed Due to Excessive Length 13

– FE.Dec(FE.mpk,FE.skC ,FE.ct) is a deterministic algorithm that takes as input the
master public key FE.mpk, a secret key FE.skC and a ciphertext FE.ct and outputs
C(x).

Definition 5 (Correctness). A functional encryption scheme FE is correct if for all
C ∈ Cinp(λ),d(λ),out(λ) and all x ∈ {0, 1}inp(λ),

Pr

 (FE.mpk,FE.msk)← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ));
FE.skC ← FE.KeyGen(FE.mpk,FE.msk, C);

FE.Dec
(
FE.mpk,FE.skC ,FE.Enc(FE.mpk,x)

)
6= C(x)

 = negl(λ)

where the probability is taken over the coins of FE.Setup, FE.KeyGen, FE.Enc and,
FE.Dec).

We then define full simulation based security for single key FE as in [37, Defn 2.13].

Definition 6 (FULL-SIM Security). Let FE be a functional encryption scheme for a
circuits. For a stateful PPT adversary A and a stateless PPT simulator Sim, consider
the following two experiments:

ExprealFE,A(1
λ): ExpidealFE,Sim(1

λ):

1: (1inp, 1d, 1out)← A(1λ)
2: (FE.mpk,FE.msk)
← FE.Setup(1λ, 1inp, 1d, 1out)

3: C ← A(FE.mpk)
4: FE.skC
← FE.KeyGen(FE.mpk,FE.msk, C)

5: α← AFE.Enc(FE.mpk,·)(FE.mpk,FE.skC)

1: (1inp, 1d, 1out)← A(1λ)
2: (FE.mpk,FE.msk)
← FE.Setup(1λ, 1inp, 1d, 1out)

3: C ← A(FE.mpk)
4: FE.skC
← FE.KeyGen(FE.mpk,FE.msk, C)

5: α← AO(·)(FE.mpk,FE.skC)

Here, O(·) is an oracle that on input x from A, runs Sim with inputs (FE.mpk, skC , C,
C(x), 1inp) to obtain a ciphertext FE.ct and returns it to the adversary A.

The functional encryption scheme FE is then said to be single query FULL-SIM
secure if there exists a PPT simulator Sim such that for every PPT adversary A, the
following two distributions are computationally indistinguishable:{

ExprealFE,A(1
λ)

}
λ∈N

c
≈
{
ExpidealFE,Sim(1

λ)

}
λ∈N

Remark 5. The above definition allows an adversary to make encryption queries multiple
times. In the security notion defined in [37], the adversary is allowed to make only a
single encryption query. Similarly to the case of ABE, it is easy to see that these
definitions are actually equivalent (See Remark 4). We adopt the above definition since
it is convenient for our purpose.

14 Shweta Agrawal, Monosij Maitra, and Shota Yamada

In our construction of SKABE for NFA in Sec. 3.2, we will use the FE scheme
by Goldwasser et al. [37] as a building block. The following theorem summarizes the
efficiency properties of their construction.

Theorem 2 ([37]). There exists an FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,
FE.Dec) with the following properties.

1. For any polynomially bounded inp(λ), d(λ), out(λ), all the algorithms in FE run in
polynomial time. Namely, the running time of FE.Setup and FE.Enc do not depend
on the size of circuit description to be supported by the scheme.

2. Assuming the subexponential hardness of the LWE problem, the scheme satisfies
full-simulation-based security.

We note that the first property above is called succinctness or semi-compactness of FE.
A stronger version of the efficiency property called compactness requires the running
time of the encryption algorithm to be dependent only on the length of input message x.
An FE with compactness is known to imply indistinguishability obfuscation [12, 21].

3 Attribute-based Encryption for NFA

3.1 NFA as NC circuit

Here, we introduce a theorem that provides an efficient algorithm that converts an NFA
into an equivalent circuit with shallow depth. The shallowness of the circuit will play
a crucial role in our construction of SKABE for NFA. In the following, for ease of
notation, we often input a string in Σ∗ to a circuit with the understanding that the input
is actually a binary string encoding a string in Σ∗. To do so, we set η := dlog(|Σ|+ 1)e
and regard a symbol in Σ as a binary string in {0, 1}η by a natural injection map from
Σ to {0, 1}η. Furthermore, we also introduce a special symbol ⊥ that is not in Σ and
assign an unused symbol in {0, 1}η to it. Intuitively, ⊥ represents a blank symbol that
will be used to adjust the length of a string. We will use alphabets {0, 1}η and Σ ∪ {⊥}
interchangeably.

Theorem 3. Let Σ be an alphabet for NFAs. Then we have the following:

1. There exists a family of circuits {To-Circuits,`}s,`∈N where the circuit To-Circuits,`
takes as input an NFAM with size s and outputs a circuit M̂` : (Σ∪{⊥})` → {0, 1}.
Furthermore, for all `, s ∈ N, all string x ∈ Σ≤`, and all NFA M with size s, we
have

M̂`(x̂) =M(x),

where M̂` = To-Circuits,`(M) and x̂ = x‖⊥`−|x|.
2. The depths of the circuits To-Circuits,` and M̂` = To-Circuits,`(M) for an NFA M

of size s are bounded by poly(log s, log `). Furthermore, the sizes of these circuits
are bounded by poly(s, `).

The proof is by divide and conquer and will appear in the full version.

Title Suppressed Due to Excessive Length 15

3.2 Construction: SKABE for Bounded Size NFA

We construct an SKABE scheme for NFA denoted by NfaABE = (NfaABE.Setup,
NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec) from the following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key K←
PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We denote
the length of K by |K|.

2. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme
for circuit with the efficiency property described in Item 1 of Theorem 2. We can
instantiate FE with the scheme proposed by Goldwasser et al. [37].

3. ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec): An ABE scheme that
satisfies the efficiency properties described in Theorem 1. We can instantiate ABE
with the scheme proposed by Boneh et al. [22].

4. U(·, ·): a universal circuit that takes as input a circuit C of fixed depth and size and
an input x to the circuit and outputs C(x). We often denote by U [C](·) = U(C, ·)
a universal circuit U with the first input C being hardwired. We need to have
depth(U) ≤ O(depth(C)). For construction of such a universal circuit, we refer to
[30].

Below we provide our construction for SKABE for NFA. In the description below,
we abuse notation and denote as if the randomness used in a PPT algorithm was a key K
of the pseudorandom function PRF. Namely, for a PPT algorithm (or circuit) A that takes
as input x and a randomness r ∈ {0, 1}` and outputs y, A(x;K) denotes an algorithm
that computes r := PRF(K, 1)‖PRF(K, 2)‖ · · · ‖PRF(K, `) and runs A(x; r). Note that
if A is a circuit, this transformation makes the size of the circuit polynomially larger and
adds a fixed polynomial overhead to its depth. In particular, even if we add this change to
ABE.Setup and ABE.KeyGen, the efficiency properties of ABE described in Theorem 1
is preserved.

NfaABE.Setup(1λ, 1s): On input the security parameter 1λ and a description size s of
an NFA, do the following:

1. For j ∈ [0, λ], sample PRF keys K̂j ,Rj ← PRF.Setup(1λ).
2. For j ∈ [0, λ], sample (FE.mpkj ,FE.mskj)← Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)).

Here, we generate λ+1 instances of FE. Note that all instances support a circuit
class with input length inp(λ) = s+2|K|, output length out(λ), and depth d(λ),
where out(λ) and d(λ) are polynomials in the security parameter that will be
specified later.

3. Output NfaABE.msk = ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).

NfaABE.Enc(NfaABE.msk,x, m, 1s): On input the master secret key NfaABE.msk,
an attribute x ∈ Σ∗ of length at most 2λ, a message m and the description size s of
NFA, do the following:

1. Parse the master secret key as NfaABE.msk → ({K̂j ,Rj ,FE.mpkj ,
FE.mskj}j∈[0,λ]).

16 Shweta Agrawal, Monosij Maitra, and Shota Yamada

2. Set x̂ = x‖⊥2i−`, where ` = |x| and i = dlog `e.
3. Compute an ABE key pair (ABE.mpki,ABE.mski) = ABE.Setup(1λ, 12

iη,

1d̂; K̂i) with K̂i as the randomness.

Here, we generate an instance of ABE that supports a circuit class with input
domain {0, 1}2iη ⊇ (Σ ∪ {⊥})2i and depth d̂.

4. Compute ABE.ct← ABE.Enc(ABE.mpki, x̂,m) as an ABE ciphertext for the
message m under attribute x̂.

5. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Cs,2i ;Ri), where Cs,2i is a
circuit described in Figure 1.

6. Output NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct).

Function Cs,2i

1. Parse the input w = (M, K̂, R̂), where M is an NFA and K̂ and R̂ are PRF keys.
2. Compute (ABE.mpk,ABE.msk) = ABE.Setup(1λ, 12

iη, 1d̂; K̂).
3. Compute M̂2i = To-Circuits,2i(M). (See Theorem 3 for the definition of To-Circuit.)
4. Compute and output ABE.skU [M̂

2i
] = ABE.KeyGen(ABE.mpk,ABE.msk, U [M̂2i]; R̂).

Fig. 1.

NfaABE.KeyGen(NfaABE.msk,M , 1s): On input the master secret key NfaABE.msk,
the description of an NFA M and a size s of the NFA, if |M | 6= s, output ⊥ and
abort. Else, proceed as follows.

1. Parse the master secret key as NfaABE.msk → ({K̂j ,Rj ,
FE.mpkj ,FE.mskj}j∈[0,λ]).

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].
3. Compute FE.ctj = FE.Enc(FE.mpkj , (M, K̂j , R̂j)) for all j ∈ [0, λ].
4. Output NfaABE.skM = {FE.ctj}j∈[0,λ].

NfaABE.Dec(NfaABE.skM ,M,NfaABE.ct,x): On input a secret key for NFA M and
a ciphertext encoded under attribute x, proceed as follows:

1. Parse the secret key as NfaABE.skM → {FE.ctj}j∈[0,λ] and the ciphertext as
NfaABE.ct→ (FE.ski,ABE.mpki,ABE.ct).

2. Set ` = |x| and choose FE.cti from NfaABE.skM = {FE.ctj}j∈[0,λ] such that
i = dlog `e < λ.

3. Compute y = FE.Dec(FE.mpki,FE.ski,FE.cti).
4. Compute and output z = ABE.Dec(ABE.mpki, y, U [M̂2i],ABE.cti, x̂), where

we interpret y as an ABE secret key and x̂ = x‖⊥2i−`.

Title Suppressed Due to Excessive Length 17

3.3 Correctness of NfaABE

The following theorem asserts that our scheme is efficient. This directly follows from
Theorem 3 and the efficiency of the underlying scheme NfaABE. We refer to full version
for the formal proof.

Theorem 4. Let |Σ|, d(λ), d̂(λ), and out(λ), be polynomials in λ. Then, NfaABE =
(NfaABE.Setup,NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec) defined above runs in
polynomial time.

The following theorem addresses the correctness of the scheme.

Theorem 5. For appropriately chosen d̂(λ), out(λ), and d(λ), our scheme NfaABE is
correct for any polynomially bounded s(λ).

Proof. We have to show that if we set d̂(λ), out(λ), and d(λ) appropriately, we have
z = m when M(x) = 1, where z is the value retrieved in Step 4 of the decryption
algorithm. To show this, let us set d̂(λ) = Ω(λ) and assume that

y = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i) (3.1)

holds for the moment, where y is the value retrieved in Step 3 of the decryption algorithm.
Then, we have z = m by the correctness of ABE if U [M̂2i] is supported by the scheme,
since we have

U [M̂2i](x̂) = M̂2i(x̂) =M(x) = 1

by Item 1 of Theorem 3. We claim that the depth of U [M̂2i] is at most d̂ and therefore
U [M̂2i] is indeed supported by the scheme. To see this, we observe that

depth(U [M̂2i]) ≤ depth(U(·, ·)) +O(1)

≤ O(1) · depth(M̂2i) +O(1)

≤ poly(log s, log 2i)

≤ poly(log λ)

≤ d̂ (3.2)

holds, where the second inequality follows from the property of the depth preserving
universal circuit U and the third from Item 2 of Theorem 3.

It remains to prove that Eq. (3.1) holds if we set d(λ) and out(λ) appropriately. To
do so, we show that the depth and the output length of Cs,2i are bounded by some fixed
polynomials. By taking d(λ) and out(λ) larger than these polynomials, we can ensure
that the circuit Cs,2i is supported by the FE scheme and thus Eq. (3.1) follows from the
correctness of the FE, since we have

Cs,2i(M, K̂i, R̂i) = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i),

where (ABE.mpki,ABE.mski) = ABE.Setup(1λ, 12
iη, 1d̂; K̂i) by the definition of

Cs,2i . We first bound the depth of Cs,2i . To do so, we first observe that Step 2

18 Shweta Agrawal, Monosij Maitra, and Shota Yamada

of Cs,2i can be implemented by a circuit of depth poly(λ, d̂) = poly(λ) by
Item 1 of Theorem 1. We then observe that Step 3 of Cs,2i can be implemented
by a circuit of depth poly(log s, log 2i) = poly(log λ) by Item 2 of Theorem 3.
We then bound the depth of the circuit that implements Step 4 of Cs,2i . This
step is implemented by the circuit ABE.KeyGen(·, ·, U [·]; ·) that takes as input
ABE.mpki, ABE.mski, U [M̂2i] constructed in the previous step, and R̂ and returns
ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂). We have

depth(ABE.KeyGen(·, ·, U [·]; ·)) ≤ poly(λ, d̂) · depth(U(·, ·))
≤ poly(λ, d̂) · d̂
≤ poly(λ),

where the first inequality follows from Item 3 of Theorem 1 and the second from
Eq. (3.2). To sum up, we have that the depth of the circuit Cs,2i is bounded by some
fixed polynomial.

We next bound the output length of Cs,2i . Since the output of the circuit is
ABE.sk

U [M̂2i]
= ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂), we bound the

length of the ABE secret key. We have

|ABE.sk
U [M̂2i]

| ≤ poly(λ, d̂) ≤ poly(λ,poly(λ)) ≤ poly(λ)

as desired, where the first inequality follows from the Item 2 of Theorem 1. This
completes the proof of the theorem.

3.4 Proof of Security for NfaABE

Here, we prove that NfaABE defined above is secure, if so are FE and ABE. Formally,
we have the following theorem.

Theorem 6. Assume that FE satisfies full simulation based security, ABE is selectively
secure, and that PRF is a secure pseudorandom function. Then, NfaABE satisfies
selective security.

Proof. To prove the theorem, let us fix a PPT adversary A and introduce the following
game Gamei between the challenger and A for i ∈ [0, λ].

Gamei: The game proceeds as follows.
Setup phase. At the beginning of the game, A takes 1λ as input and submits 1s and

the set of its target X ⊂ Σ∗ to the challenger. Then, the challenger chooses
NfaABE.msk← NfaABE.Setup(1λ, 1s)

The challenger answers the encryption and key queries made by A as follows.
Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the

challenger sets ` := |x| and computes

NfaABE.ct =

{
NfaABE.Enc(NfaABE.msk, x̂,m(0)) If dlog `e ≥ i
NfaABE.Enc(NfaABE.msk, x̂,m(1)) If dlog `e ≤ i− 1.

Then, it returns NfaABE.ct to A.

Title Suppressed Due to Excessive Length 19

Key queries. Given an NFA M from A, the challenger runs NfaABE.skM ←
NfaABE.KeyGen(NfaABE.msk,M) and returns NfaABE.skM to A.

Finally, A outputs its guess b′.

In the following, let Exxx denote the probability that A outputs 1 in Gamexxx. It suffices
to prove |Pr[E0]−Pr[Eλ+1]| = negl(λ), since Game0 (resp., Gameλ+1) corresponds
to the selective security game with b = 0 (resp., b = 1). Since we have

|Pr[E0]− Pr[Eλ+1]| ≤
∑
i∈[0,λ]

|Pr[Ei]− Pr[Ei+1]|

by the triangle inequality, it suffices to show |Pr[Ei]−Pr[Ei+1]| = negl(λ) for i ∈ [0, λ].
Let us define `max and imax as

`max := max{|x| : x ∈ X} and imax := dlog `maxe.

Note that `max is bounded by the running time of A and thus is polynomial in λ. We then
observe that for i > imax, we have Gamei = Gameλ+1 and thus Pr[Ei]−Pr[Ei+1] =
0. Therefore, in the following, we will show that |Pr[Ei]− Pr[Ei+1]| = negl(λ) holds
for i ≤ imax. To do so, we further introduce the following sequence of games for
i ∈ [0, imax]:

Gamei,0: The game is the same as Gamei.
Gamei,1: In this game, we change the setup phase and the way encryption queries are

answered as follows.
Setup phase. Given X ⊂ Σ∗ from A, the challenger chooses NfaABE.msk ←

NfaABE.Setup(1λ, 1s) as in the previous game. In addition, it computes

(ABE.mpki,ABE.mski)← ABE.Setup(1λ, 12
iη, 1d̂; K̂i)

and
FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i ;Ri).

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the
challenger sets ` := |x| and computes NfaABE.ct as in the previous game if
dlog `e 6= i. Otherwise, it computes

ABE.ct← ABE.Enc(ABE.mpki, x̂,m
(0))

and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to A, where FE.ski and
ABE.mpki are the values that are computed in the setup phase.

Gamei,2: In this game, the challenger samples FE.ski as

FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i)

in the setup phase. Namely, it is sampled using true randomness instead of the
pseudorandom bits derived from the PRF key Ri.

Gamei,3: We change the way key queries are answered as follows:

20 Shweta Agrawal, Monosij Maitra, and Shota Yamada

Key queries. Given an NFA M of size s from A, the challenger answers the query
as follows. It first chooses R̂j ← PRF.Setup(1λ) for j ∈ [0, λ] and computes

ABE.sk
U [M̂2i]

= ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i),

where ABE.mpki and ABE.mski are the values that are computed in the setup
phase. It then computes FE.ctj ←{

FE.Enc(FE.mpkj , (M, K̂j , R̂j)) If j ∈ [0, λ]\{i}
Sim(FE.mpki,FE.ski, Cs,2i ,ABE.skU [M̂2i]

, 1inp(λ)) If j = i.

(3.3)
Then, it returns NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Gamei,4: In this game, the challenger samples (ABE.mpki,ABE.mski) in the setup
phase as

(ABE.mpki,ABE.mski)← ABE.Setup(1λ, 12
iη, 1d̂).

It also generates ABE.sk
U [M̂2i]

as

ABE.sk
U [M̂2i]

← ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]).

when answering a key query. Namely, they are sampled using true randomness
instead of the pseudorandom bits derived from the PRF keys K̂i and R̂i.

Gamei,5: In this game, we change the way the encryption queries are answered as
follows.
Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the

challenger sets ` := |x| and computes NfaABE.ct as in the previous game if
dlog `e 6= i. Otherwise, it computes

ABE.ct = ABE.Enc(ABE.mpki, x̂,m
(1))

and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to A, where FE.ski and
ABE.mpki are the values that are computed in the setup phase.

Gamei,6: The game is the same as Gamei+1.

Since we have

|Pr[Ei]− Pr[Ei+1]| ≤
∑
j∈[6]

|Pr[Ei,j−1]− Pr[Ei,j]|

by the triangle inequality, it suffices to show |Pr[Ei,j−1] − Pr[Ei,j]| = negl(λ) for
j ∈ [6]. To complete the proof of the theorem, it remains to prove the following lemmas.

Lemma 1. We have Pr[Ei,0] = Pr[Ei,1].

Proof. The change introduced here is only conceptual, where ABE.mpki and FE.ski
are computed beforehand. The lemma trivially follows.

Lemma 2. We have |Pr[Ei,1]− Pr[Ei,2]| = negl(λ).

Title Suppressed Due to Excessive Length 21

Proof. We observe that Ri is used only when generating FE.ski in Gamei,1. Therefore,
the lemma follows by a straightforward reduction to the security of PRF.

Lemma 3. We have |Pr[Ei,2]− Pr[Ei,3]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,2]− Pr[Ei,3]| is non-negligible
and construct an adversary B that breaks the full simulation security of FE using A. B
proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains 1s and X ⊂
Σ∗ from A. Then B submits its target (1λ, 1inp(λ), 1out(λ)). Then, the experiment
samples

(FE.mpk,FE.msk)← FE.Setup(1λ, 1inp(λ), 1out(λ))

and returns FE.mpk to B. B then sets FE.mpki := FE.mpk. In the rest of the
simulation, it implicitly sets FE.mski := FE.msk without knowing the value.
B then chooses (FE.mpkj ,FE.mskj) ← FE.Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)) for
j ∈ [0, λ]\{i}. It also chooses K̂j ,Rj ← PRF.Setup(1λ) for j ∈ [0, λ] and
(ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 12

iη, 1d̂; K̂i). Finally, it declares Cs,2i

as a circuit for which it request a secret key. Then, the experiment runs

FE.sk← FE.KeyGen(FE.mpk,FE.msk, Cs,2i)

and returns FE.sk to B. B sets FE.ski := FE.sk.

B then handles the encryption and key queries as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, B
sets ` := |x| and i′ = dlog `e. If i′ 6= i, B answers the query using
(K̂i′ ,Ri′ ,FE.mpki′ ,FE.mski′). Otherwise, it computes ABE.ct ← ABE.Enc(
ABE.mpki, x̂,m

(0)) and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to
A, where ABE.mpki (resp., FE.ski) is the value sampled by itself (resp., by the
experiment) in the setup phase.

Key queries. Given an NFA M of size s from A, B first chooses R̂j ← PRF.Setup(1λ)

for j ∈ [0, λ] and computes FE.ctj = FE.Enc(FE.mpkj , (M, K̂j , R̂j)) for j ∈
[0, λ]\{i}. B then submits (M, K̂i, R̂i) to its encryption oracle. Then, the experiment
computes FE.ct←{
FE.Enc(FE.mpk, (M, K̂i, R̂i)) If B is in ExprealFE,B(1

λ)

Sim(FE.mpk,FE.sk, Cs,2i , Cs,2i(M, K̂i, R̂i), 1
inp(λ)) If B is in ExpidealFE,Sim(1

λ)

(3.4)
and returns FE.ct to B. B then sets FE.cti := FE.ct and returns NfaABE.skM :=
{FE.ctj}j∈[0,λ] to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Gamei,2 if B is in the real game. We then claim that B
simulates Gamei,3 if B is in the simulated game. The only difference between these

22 Shweta Agrawal, Monosij Maitra, and Shota Yamada

games is the way FE.cti is computed. In Gamei,3, it is generated as Eq. (3.3) while in
the simulation above, it is generated as Eq. (3.4) (with B being in ExpidealFE,Sim). However,
they are equivalent because B has set (FE.mpki,FE.mski) := (FE.mpk,FE.msk) and
FE.ski := FE.sk and we have

Cs,2i(M, K̂i, R̂i) = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i) = ABE.sk
U [M̂2i]

.

From the above observation, we can see that B breaks the security of FE if A distinguishes
the two games. This completes the proof of the lemma.

Lemma 4. We have |Pr[Ei,3]− Pr[Ei,4]| = negl(λ).

Proof. Due to the change we introduced, K̂i is not used to answer the encryption queries
any more and used only when generating (ABE.mpki,ABE.mski) in Gamei,3. We
also observe that R̂i is used only when generating ABE.sk

U [M̂2i]
. Therefore, the lemma

follows by straightforward reductions to the security of PRF.

Lemma 5. We have |Pr[Ei,4]− Pr[Ei,5]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,4]−Pr[Ei,5]| is non-negligible and
construct an adversary B that breaks the selective security of ABE using A. B proceeds
as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains 1s and
X ⊂ Σ∗ from A. Then, B sets Xi := {x̂ = x‖⊥2i−|x| : x ∈ X, 2i−1 < |x| ≤ 2i}
and submits its target Xi and (1λ, 12

iη, 1d̂) to its challenger. Then, the challenger
samples

(ABE.mpk,ABE.msk)← ABE.Setup(1λ, 12
iη, 1d̂)

and returns ABE.mpk to B. B then sets ABE.mpki := ABE.mpk. In the rest
of the simulation, it implicitly sets ABE.mski := ABE.msk without knowing
the value. It then chooses K̂j ,Rj ← PRF.Setup(1λ) for j ∈ [0, λ]\{i} and
(FE.mpkj ,FE.mskj) ← Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)) for j ∈ [0, λ]. It also
computes FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i).

B then handles the the encryption and key queries as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, B sets
` := |x| and i′ = dlog `e. If i′ 6= i, B answers the encryption query using
(K̂i′ ,Ri′ ,FE.mpki′ ,FE.mski′). Otherwise, B makes an encryption query for the
attribute x̂ = x‖⊥2i−` and messages (m(0),m(1)) to its challenger. Then, the
challenger runs

ABE.ct← ABE.Enc(ABE.mpk, x̂,m(b))

and returns a ciphertext ABE.ct to B. Then, it returns NfaABE.ct = (FE.ski,
ABE.mpki,ABE.ct) to A. Here, B uses FE.ski that is sampled in the setup phase.

Title Suppressed Due to Excessive Length 23

Key queries. Given an NFA M of size s from A, B first chooses R̂j ← PRF.Setup(1λ)

for j ∈ [0, λ]\{i}. It then queries a secret key for U [M̂2i] to its challenger. Then,
the challenger runs

ABE.sk
U [M̂2i]

← ABE.KeyGen(ABE.mpk,ABE.msk, U [M̂2i])

and returns ABE.sk
U [M̂2i]

to B. It then computes FE.ctj for j ∈ [0, λ] as Eq. (3.3)
and returns NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Gamei,4 if b = 0 and Gamei,5 if b = 1. Therefore, B
breaks the security of ABE if A distinguishes the two games. It remains to prove that
B is a legitimate adversary (i.e., it does not make any prohibited key queries). For any
attribute x̂ for which B makes an encryption query and for any circuit U [M̂2i] for which
B makes a key query, we have

U [M̂2i](x̂) = M̂2i(x̂) =M(x),

where the second equality above follows from Item 1 of Theorem 3. Therefore, B is a
legitimate adversary as long as so is A. This completes the proof of the lemma.

Lemma 6. We have |Pr[Ei,5]− Pr[Ei,6]| = negl(λ).

Proof. This follows as in the indistinguishability of Gamei,0 and Gamei,4, but in
the reverse order. That is, we first change the random bits used in ABE.KeyGen to a
pseudorandom one by invoking the security of PRF. We then generate FE.cti by using
FE.Enc instead of Sim by invoking the full-simulation security of FE. Finally, we change
the random bits used in ABE.KeyGen to a pseudorandom one by invoking the security
of PRF again.

This concludes the proof of Theorem 6.

3.5 Extensions

In the full version, we adapt our ABE construction to achieve (restricted versions
of) attribute privacy. In more detail, we construct secret key predicate encryption
and bounded key functional encryption for nondeterministic finite automata. We also
additionally achieve machine privacy, improving the result of [8]. Intuitively, these
results proceed by replacing the “inner” circuit ABE scheme in our compiler by predicate
encryption or bounded key functional encryption scheme and arguing that the requisite
efficiency requirements (Theorem 1) are not violated. We again refer to the full version
for details.

4 Attribute based Encryption for NFA with Unbounded Size
Machines and Inputs

In this section we construct a secret-key attribute-based encryption scheme (SKABE)
for nondeterministic finite automata of arbitrary sizes supporting inputs of arbitrary

24 Shweta Agrawal, Monosij Maitra, and Shota Yamada

length. We denote our scheme by uNfaABE = (uNfaABE.Setup, uNfaABE.KeyGen,
uNfaABE.Enc, uNfaABE.Dec) and its construction uses the following two ingredients.

1. NfaABE = (NfaABE.Setup,NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec): An
SKABE for NFA supporting inputs of unbounded length but for bounded size
machines. We instantiate NfaABE from our construction in Section 3.2.

2. ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec): An ABE scheme for
circuits that satisfies the efficiency properties described in Theorem 1. We can
instantiate ABE with the scheme proposed by Boneh et al. [22].

3. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key
K ← PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → R, where
we assumeR to be the randomness space of both NfaABE.Setup and ABE.Setup
algorithms. Note that without loss of generality, we may assumeR = {0, 1}p(λ) for
some sufficiently large polynomial p(λ).

Below we provide our construction for SKABE for NFA.

uNfaABE.Setup(1λ): On input the security parameter 1λ, do the following:
1. Sample two PRF keys KNfaABE ← PRF.Setup(1λ),KABE ← PRF.Setup(1λ).
2. Output uNfaABE.msk = (KNfaABE,KABE).

uNfaABE.Enc(uNfaABE.msk,x, m): On input the master secret key uNfaABE.msk,
an attribute as x ∈ Σ∗ of length at most 2λ and a messagem ∈M, do the following:
1. Parse the master secret key as uNfaABE.msk = (KNfaABE,KABE). Denote
` = |x|.

2. For all i ∈ [`], do the following:
(a) Sample NfaABE.mski ← NfaABE.Setup(1λ, 1i; ri) as an NfaABE master

secret key, where ri = PRF.Eval(KNfaABE, i).

Note that i denotes the size of the NFAs that are supported by NfaABE.mski.

(b) Compute NfaABE.cti = NfaABE.Enc(NfaABE.mski,x,m, 1
i).

3. Sample (ABE.mpk`,ABE.msk`)← ABE.Setup(1λ, 1`, 1d̂; r`) as an ABE key
pair, where r` = PRF.Eval(KABE, `).

Note that ` and d̂ denotes the input length and the depth of the circuit respectively
that (ABE.mpk`,ABE.msk`) supports.

4. Compute ABE.ct` = ABE.Enc(ABE.mpk`,x,m).

5. Output uNfaABE.ct = ({NfaABE.cti}i∈[`],ABE.mpk`,ABE.ct`).

uNfaABE.KeyGen(uNfaABE.msk,M): On input the master secret key uNfaABE.msk
and the description of a NFA M = (Q,Σ, T, qst, F), proceed as follows.
1. Parse the master secret key as uNfaABE.msk = (KNfaABE,KABE). Denote

s= |M |.
2. For all i ∈ [s], do the following:

(a) Let M̂i = To-Circuits,i(M). (See Theorem 3 for the definition of
To-Circuit.)

Title Suppressed Due to Excessive Length 25

(b) Sample (ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 1i, 1d̂; ri) as an ABE
key pair, where ri = PRF.Eval(KABE, i).

(c) Compute ABE.ski = ABE.KeyGen(ABE.mpki,ABE.mski, M̂i).
Note that ∀i ∈ [s], i and d̂ denotes the input length and the depth of the circuit
respectively that (ABE.mpki,ABE.mski) supports.

3. Sample NfaABE.msks←NfaABE.Setup(1λ, 1s; rs) as an NfaABE master secret
key, where rs = PRF.Eval(KNfaABE, s).

4. Compute NfaABE.sks = NfaABE.KeyGen(NfaABE.msks,M).

5. Output uNfaABE.skM = (NfaABE.sks, {ABE.mpki,ABE.ski}i∈[s]).
uNfaABE.Dec(uNfaABE.skM ,M, uNfaABE.ct,x): On input a secret key for NFA M

and a ciphertext encoded under some attribute x, proceed as follows:
1. Parse the secret key as uNfaABE.skM = (NfaABE.sk|M |, {ABE.mpki,

ABE.ski}i∈[|M |]) and the ciphertext as uNfaABE.ct = ({NfaABE.cti}i∈[|x|],
ABE.mpk|x|,ABE.ct|x|).

2. If |x| ≥ |M |, compute and output NfaABE.Dec(NfaABE.sk|M |,M,
NfaABE.ct|M |,x).

3. Otherwise, compute and output ABE.Dec(ABE.mpk|x|,ABE.sk|x|, M̂|x|,

ABE.ct|x|,x), where M̂|x| = To-Circuit|M |,|x|(M).

The following theorems assert that our scheme is efficient, satisfies correctness, and
is secure, as long as so are the underlying NfaABE and ABE schemes. Intuitively, these
theorems follow since we simply run these underlying schemes in parallel. We refer to
the full version for the formal proofs.

Theorem 7. The scheme uNfaABE = (uNfaABE.Setup, uNfaABE.KeyGen,

uNfaABE.Enc, uNfaABE.Dec) defined above runs in polynomial time, as long as d̂
and |Σ| are polynomials in λ. .

Theorem 8. For appropriately chosen d̂ = d̂(λ), our scheme uNfaABE is correct for
any NFA.

Theorem 9. Assume that NfaABE and ABE both satisfy selective indistinguishability
based security and PRF is a secure pseudorandom function. Then, uNfaABE satisfies
selective security.

5 FE for DFA implies iO

Here, we show that secret key functional encryption (SKFE) for DFA with security
against unbounded collusion implies indistinguishability obfuscation (iO). This result
illuminates the difficulty of constructing such SKFE from a standard assumption, since
no construction of iO from standard assumption is known despite the significant research
effort in recent years [39, 35, 34, 40, 38, 7, 37, 40, 2, 1, 5, 51, 17, 12, 21, 13, 50, 54, 51,
8, 53, 11, 52, 3].

26 Shweta Agrawal, Monosij Maitra, and Shota Yamada

5.1 Preliminaries on DFA and Branching Programs

Here, we first recall that a deterministic finite automaton (DFA) is a special case of NFA
where for the transition function T , T (σ, q) consists of a single element in Q for any
σ ∈ Σ and q ∈ Q. We then define branching program similarly to [25].

Definition 7 (Branching Programs.). A width-5 permutation branching program BP of
length L with input space {0, 1}` is a sequence of L tuples of the form (var(t), σt,0, σt,1)
where

– var : [L]→ [`] is a function that associates the t-th tuple with an input bit xvar(t).
– σj,0 and σj,1 are permutations on 5 elements. We will think of σj,0 and σj,1 as

bijective functions from the set {1, 2, 3, 4, 5} to itself.

The computation of the program BP on input x = (x1, . . . , x`) proceeds as follows.
The state of the computation at any point in time t is a number ζt ∈ {1, 2, 3, 4, 5}.
Computation starts with the initial state ζ0 = 1. The state ζt is computed recursively as

ζt = σt,xvar(t)
(ζt−1) . (5.1)

Finally, after L steps, our state is ζL. The output of the computation BP(x) is 1 if ζL = 1
and 0 otherwise.

We will use the following theorem, which essentially says that an NC1 circuit can be
converted into an equivalent branching program.

Theorem 10 (Barrington’s Theorem [19]). Every Boolean NAND circuit C that acts
on ` inputs and has depth d can be computed by a width-5 permutation branching
program BP of length 4d. Given the description of the circuit BP, the description of
the branching program BP can be computed in poly(`, 4d) time. In particular, if C is a
polynomial-sized circuit with logarithmic depth (i.e., if the circuit is in NC1), BP can be
computed in polynomial time.

5.2 SKFE for DFA implies iO

We first state the following theorem, which will be useful for our purpose. We refer to
the full version for the proof.

Theorem 11. Let d = d(λ) and ` = `(λ) be integers. There exist deterministic
algorithms Encode and ToDFA with the following properties.

- Encode(x)→ y ∈ {0, 1}n, where x ∈ {0, 1}` and n is a parameter determined by
d and `.

- ToDFA(C)→M , where C : {0, 1}` → {0, 1} is a circuit with depth bounded by d
and M is a DFA over alphabet Σ = {0, 1}.

We have that M(y) = 1 if and only if C(x) = 1. We also have that the running time
of Encode and ToDFA is poly(`, 2d). In particular, if C is a polynomial-sized circuit
with logarithmic depth (i.e., if the circuit is in NC1), Encode and ToDFA(C) run in
polynomial time.

Title Suppressed Due to Excessive Length 27

We then discuss that if there exists subexponentially secure SKFE for DFA that is
very selectively secure against unbounded collusion, it can be converted into a secure
indistinguishability obfuscation.

To do so, we first convert an SKFE for DFA into an SKFE for NC1 circuits. The
latter SKFE has the same setup algorithm as the former, but when generating a secret key
for a circuit C, it first converts C into a DFA M using the algorithm in Theorem 11 and
then invoke the key generation algorithm of the SKFE for DFA on input M . Similarly,
when encrypting a message x, it computes y as in Theorem 11 and then invoke the
encryption algorithm of the SKFE for DFA on input y. The decryption algorithm is
defined naturally. It is easy to see that this conversion preserves the correctness and the
security since we have M(y) = C(x) by Theorem 11.

Then, we apply the conversion given by [12, 21] to the SKFE for NC1 to obtain
SKFE for all circuits. We then further apply the conversion by Kitagawa et al. [46, 47]
to the SKFE for all circuits to obtain iO. Note that while the former conversion incurs
only polynomial loss, the latter conversion incurs sub-exponential security loss.

In summary, we obtain the following theorem.

Theorem 12. If there exists a subexponentially secure SKFE scheme for DFA that is very
selectively secure against unbounded collusion, then there exists an indistinguishability
obfuscation.

6 Conclusions

Several interesting questions arise from our work. The first is whether we may generalize
our techniques to support more advanced models of computation. For the moment, we
are restricted to NFAs, since we must bound the depth of the equivalent circuits by a fixed
polynomial and this step fails for more general models such as Turing machines. Second,
it would be interesting to design a public key variant of our scheme. Improving the
security proof to satisfy adaptive rather than selective security is also a useful direction.
Finally, it would be nice to find other applications for our techniques.

Acknowledgement. We thank anonymous reviewers of Crypto 2019 for their helpful
comments. The third author is supported by JST CREST Grant Number JPMJCR19F6
and JSPS KAKENHI Grant Number 16K16068.

References

1. Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Simple functional encryption schemes
for inner products. Cryptology ePrint Archive, Report 2015/017 (2015), http://eprint.
iacr.org/ To appear in PKC’15.

2. Agrawal, S.: Stronger security for reusable garbled circuits, new definitions and attacks. In:
Crypto (2017)

3. Agrawal, S.: Indistinguishability obfuscation minus multilinear maps: New methods for
bootstrapping and instantiation (2018)

4. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product
predicates from learning with errors. In: Asiacrypt (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/

28 Shweta Agrawal, Monosij Maitra, and Shota Yamada

5. Agrawal, S., Libert, B., Stehle, D.: Fully secure functional encryption for linear functions
from standard assumptions, and applications. In: Crypto (2016)

6. Agrawal, S., Maitra, M.: Fe and io for turing machines from minimal assumptions. In: TCC
(2018)

7. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In: TCC
(2017)

8. Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from learning with
errors. In: ICALP. vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

9. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security
in functional encryption. In: CRYPTO (2015)

10. Ananth, P., Fan, X.: Attribute based encryption with sublinear decryption from lwe. Cryptology
ePrint Archive, Report 2018/273 (2018), https://eprint.iacr.org/2018/273

11. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear maps: io
from lwe, bilinear maps, and weak pseudorandomness. Cryptology ePrint Archive, Report
2018/615 (2018)

12. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption.
In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I. pp. 308–326 (2015)

13. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguishability
obfuscation from non-compact functional encryption. IACR Cryptology ePrint Archive,
2015:730 (2015)

14. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability
obfuscation from degree-5 multilinear maps. In: EUROCRYPT (2017)

15. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishability
obfuscations of circuits over ggh13. eprint 2016 (2016)

16. Attrapadung, N.: Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In: Eurocrypt (2014)

17. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic
functions with applications to predicate encryption. In: Crypto (2017)

18. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the
(im)possibility of obfuscating programs. In: CRYPTO (2001)

19. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly
those languages in nc1. Journal of Computer and System Sciences 38(1), 150–164 (1989)

20. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE
Symposium on Security and Privacy. pp. 321–334 (2007)

21. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption.
FOCS 2015, 163 (2015), http://eprint.iacr.org/2015/163

22. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan,
V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: EUROCRYPT. pp. 533–556 (2014)

23. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: TCC. pp.
535–554 (2007)

24. Boyen, X., Li, Q.: Attribute-based encryption for finite automata from lwe. In: ProvSec (2015)
25. Brakerski, Z., Vaikuntanathan, V.: Lattice-based fhe as secure as pke. In: Proceedings of the

5th Conference on Innovations in Theoretical Computer Science. ITCS ’14 (2014)
26. Brakerski, Z., Vaikuntanathan, V.: Circuit-abe from lwe: Unbounded attributes and semi-

adaptive security. In: Crypto (2016)
27. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over

the integers. In: Proc. of EUROCRYPT. LNCS, vol. 9056, pp. 3–12. Springer (2015)
28. Cheon, J.H., Fouque, P.A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new clt

multilinear map over the integers. Eprint 2016/135

https://eprint.iacr.org/2018/273
http://eprint.iacr.org/2015/163

Title Suppressed Due to Excessive Length 29

29. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for ntru problems and cryptanalysis of the ggh
multilinear map without a low level encoding of zero. Eprint 2016/139

30. Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Comput. 14(4), 833–839 (1985).
https://doi.org/10.1137/0214058, https://doi.org/10.1137/0214058

31. Coron, J.S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A.,
Tibouchi, M.: Zeroizing without low-level zeroes: New mmap attacks and their limitations.
In: Advances in Cryptology–CRYPTO 2015, pp. 247–266. Springer (2015)

32. Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistinguishability
obfuscation over clt13. Eprint 2016 (2016)

33. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
EUROCRYPT (2013)

34. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013),
http://eprint.iacr.org/

35. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits
from multilinear maps. In: CRYPTO (2013)

36. Goldwasser, S., Tauman Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.: How to run
turing machines on encrypted data. In: CRYPTO (2). pp. 536–553 (2013)

37. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled
circuits and succinct functional encryption. In: STOC. pp. 555–564 (2013)

38. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions
from multiparty computation. In: CRYPTO (2012)

39. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for circuits. In: STOC
(2013)

40. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from lwe. In:
Crypto (2015)

41. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: Efficient abe for branching
programs. In: Proceedings, Part I, of the 21st International Conference on Advances in
Cryptology – ASIACRYPT 2015 - Volume 9452 (2015)

42. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made
generic and easy. In: TCC (2016)

43. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: ACM Conference on Computer and Communications
Security. pp. 89–98 (2006)

44. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report 2015/301
(2015)

45. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In: EUROCRYPT. pp. 146–162 (2008)

46. Kitagawa, F., Nishimaki, R., Tanaka, K.: Indistinguishability obfuscation for all circuits from
secret-key functional encryption. IACR Cryptology ePrint Archive 2017, 361 (2017)

47. Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional encryption.
In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part II. pp. 603–648 (2018). https://doi.org/10.1007/978-3-319-78375-8 20,
https://doi.org/10.1007/978-3-319-78375-8_20

48. Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and succinct
functional encryption: Improving security and efficiency, simultaneously. Cryptology ePrint
Archive, Report 2018/974 (2018), https://eprint.iacr.org/2018/974

49. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In:
EUROCRYPT. pp. 62–91 (2010)

https://doi.org/10.1137/0214058
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-78375-8_20
https://eprint.iacr.org/2018/974

30 Shweta Agrawal, Monosij Maitra, and Shota Yamada

50. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In:
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part I. pp. 28–57 (2016)

51. Lin, H.: Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs. In:
Crypto (2017)

52. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646 (2018)

53. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local
prgs. In: Crypto (2017)

54. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from ddh-like assumptions on
constant-degree graded encodings. In: FOCS (2016)

55. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: Cryptanalysis of
indistinguishability obfuscation over ggh13. In: Crypto (2016)

56. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT. pp. 457–473 (2005)
57. Waters, B.: Functional encryption for regular languages. In: Crypto (2012)

	Attribute Based Encryption (and more) for Nondeterministic Finite Automata from LWE

