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Abstract. We construct efficient, unconditional non-malleable codes
that are secure against tampering functions computed by decision trees
of depth d = n1/4−o(1). In particular, each bit of the tampered codeword
is set arbitrarily after adaptively reading up to d arbitrary locations
within the original codeword. Prior to this work, no efficient uncondi-
tional non-malleable codes were known for decision trees beyond depth
O(log2 n).

Our result also yields efficient, unconditional non-malleable codes that
are exp(−nΩ(1))-secure against constant-depth circuits of exp(nΩ(1))-
size. Prior work of Chattopadhyay and Li (STOC 2017) and Ball et al.
(FOCS 2018) only provide protection against exp(O(log2 n))-size circuits
with exp(−O(log2 n))-security.

We achieve our result through simple non-malleable reductions of de-
cision tree tampering to split-state tampering. As an intermediary, we
give a simple and generic reduction of leakage-resilient split-state tam-
pering to split-state tampering with improved parameters. Prior work
of Aggarwal et al. (TCC 2015) only provides a reduction to split-state
non-malleable codes with decoders that exhibit particular properties.

1 Introduction

Motivated by applications in tamper-resilience, non-malleable codes were first
introduced by Dziembowski, Pietrzak, and Wichs [DPW10] as an extension of
error-correcting codes that give meaningful guarantees even when every bit of a
codeword may be altered. To define the non-malleability of an encoding scheme
(Enc,Dec) for a class of tampering functions F , consider the following experi-
ment for any f ∈ F : (1) encode a message x via Enc, (2) tamper the resulting
codeword with f , and (3) decode the tampered codeword with Dec. Roughly,
(Enc,Dec) is non-malleable if x̃ = Dec(f(Enc(x))) is either completely unre-
lated to the original message x or identical to x, for any x. In particular, the
outcome of the experiment should be simulatable without any knowledge of x,
up to allowing the simulator to output a special symbol “same” to indicate that
the message is unchanged.



The initial work of Dziembowski et al. [DPW10] observed that achieving
non-malleability against arbitrary tampering is strictly impossible. The goal, as
in many coding tasks, is to construct a code against as large a class of tampering
functions (channels) as possible with best information rate and strongest secu-
rity guarantees. And, since 2010 a flurry of work has done just that, studying
this object in a variety of models. Of particular interest, both at large and in
this work, is explicit constructions of statistically secure non-malleable codes for
specific families of tampering functions and the efficiency of these constructions
(in both information rate and computational complexity).

Much of the work on explicit constructions has focused on split-state tam-
pering, where the codeword is broken into blocks according to some (fixed a
priori) partition and each block may be tampered with independently of all other
blocks [DKO13,CG14,CZ14,ADL14,Agg15,CGL16,AB16,KOS17,Li17,Li18]. How-
ever, a recent strand of work has focused on tampering functions that aren’t re-
stricted to fixed partitions. Since initial work on tampering via permutations and
bit-flipping [AGM+15] many of these works have looked at tampering functions
that are restricted under some measure of computational complexity.

In 2016, Ball et al. [BDKM16] constructed non-malleable codes for `-local
tampering functions (functions where each output only depends on ` inputs)
for ` = o(n/ log n) with rate proportional to ` restriction and negligible error.
This class contains NC0, functions computed by circuits composed from a con-
stant depth of constant fan-in gates. In 2017, Chattopadhyay and Li [CL17]
constructed non-malleable codes for AC0 (polynomial size circuits of constant
depth, unbounded fan-in AND and OR gates, as well as NOT gates). Their
construction achieved a negligible error, but had exponentially larger codewords

of length n = 2
√
k for messages of length k.4 In 2018, Ball et al. [BDG+18]

constructed non-malleable codes for AC0 with negligible error and codewords of
almost linear length (n = k1+o(1)).5

However, none of the known constructions for small-depth circuits can sup-
port tampering via large size small-depth circuits nor can they provide security
guarantees beyond exp(−ω(log2 n)) even for AC0 itself. This leads to the follow-
ing problem which we address in this work:

Construct non-malleable codes for AC0 with error bounds exp(−ω(log2 n)).

In fact, the techniques of [BDG+18] immediately suggest a path to improving
non-malleable codes for small-depth circuits, by resolving another open question
which is interesting, independent of the above motivation:

4 [CL17] also gave a construction for local functions with polynomial length codewords
and sub-exponential error.

5 Actually, the construction of [BDG+18] can handle a slightly wider range of parame-
ters including polynomial size circuits of depth o(logn/ log logn) and constant depth
circuits of size nO(logn). Note that depth d decision trees are also a strict subclass of
2d-local functions. Accordingly, Ball et al.’s codes for n1−ε-local tampering handle
decision tree tampering of depth up to (1− ε) logn.



Construct non-malleable codes for decision trees of depth d = ω(log2 n),
or ideally d = nΩ(1).

Decision trees of depth d capture tampering where each output bit is set
arbitrarily after adaptively reading d locations of the input, where the choice
of which input location to read next at any point in time can depend on the
values of all the previous locations read. While tampering via decision trees
has been studied in the Common Reference String (CRS) model under crypto-
graphic assumptions [BDKM18], prior to the present work no efficient or explicit
information-theoretic codes were known for decision trees of ω(log2 n) depth.6

1.1 Our Results

Theorem 1 (Informal). There exists an explicit, efficient, information theo-
retic non-malleable code for decision trees of depth n1/4−o(1).

Given the above, the following theorem is a straightforward corollary to a lemma
of [BDG+18] that reduces small-depth circuit tampering to tampering functions
that may adaptively leak limited information from the codeword before selecting
local functions to modify the codeword with. It is easy to observe that this class
is subsumed by decision tree tampering of sufficient depth (See Lemma 8 in
Section 5 for more details).

Theorem 2 (Informal). For d ≤ c1 log n/ log log n, there exists an explicit,
efficient, information theoretic non-malleable code for d-depth circuits (of un-
bounded fan-in) of size exp(nc2/d) with error exp(−nΩ(1/d)) and encoding length
n = k1+c, where c, c1, c2 ∈ (0, 1) are constants.

In particular, for constant-depth circuits, our result yields efficient, uncondi-
tional non-malleable codes that are exp(−nΩ(1))-secure against exp(nΩ(1))-size
circuits. Prior work [BDG+18,CL17] only provides protection against circuits of
size exp(O(log2 n)) with exp(−O(log2 n)) security.7

It is easy to observe that a non-malleable code (Enc,Dec) with error ε for
most classes C implies a strong average-case lower bound on the power of that
class – in particular, Dec is ε-hard to compute on average via C with respect to
the distribution Enc(b) where b is uniformly chosen.8 For this reason, explicit
constructions of non-malleable codes (with good error) for even a slightly larger
class AC0[2] (AC0 with the addition of mod 2 gates) would necessitate a better
structural understanding of this class than is currently known.

6 Note that any decision tree of depth d can also be represented by a 2d-local function
or as a DNF with 2d clauses of width d.

7 Note that if security 2−λ is required, these codes will no longer be efficient. In
particular, the codeword lengths in both cases will be super-polynomial in λ.

8 For tampering functions such that each output bit is in the class C, the implications
follows so long as C contains the constant functions and is closed under negation.



Along the way, we also construct new leakage-resistant split-state codes. Our
construction allows up to a 1/4-fraction of the codeword to be leaked which, to
our knowledge, is the best known.9

Theorem 3 (Informal). There is an explicit split-state non-malleable code
supporting leakage of up to a 1/4-fraction of the bits with rate Ω(log log n/ log n)
and error exp(−Ω(n log log n/ log n)).

In particular, our construction allows one to reduce leakage-resilient split-
state tampering to any split-state tampering with just a constant factor increase
in codeword size. Previously, such reductions were only known with worse param-
eters and if the underlying split-state code had decoder with certain properties
[ADKO15b]. On the other hand, [CL18] show that certain split-state seedless
non-malleable extractors are, in fact, leakage-resilient, yielding codes with rate
comparable to that of the present work (but the leakage bound is left unspec-
ified). Unlike either of these previous construction, our reduction would yield
improved leakage-resilient split-state non-malleable codes from any future im-
provement in the rate of explicit split-state non-malleable codes. Finally, our
analysis is much simpler than that of [ADKO15b].

1.2 Our Techniques

We construct our codes for decision trees by constructing a non-malleable re-
duction from decision tree tampering to split-state tampering. A non-malleable
reduction, first defined in [ADKO15a], from F to G is simply an encoding scheme,
(Enc,Dec) such that for any f ∈ F and any message x, the value Dec(f(Enc(x)))
is statistically close to g(x) for g chose from some distribution over functions in
G. In particular a non-malleable code for F is a non-malleable reduction from F
to the family G consisting of the identity function and constant functions.

Both the reduction and its analysis are surprisingly simple. We also note
that our reduction can be seen as distillation of the core ideas behind the con-
struction for local tampering from [BDKM16,BDG+18]. One can view the re-
ductions in these papers as, in fact, performing two reductions: local tamper-
ing to leaky split-state tampering, and leaky split-state tampering to split-state
tampering. Viewed this way, these works implicitly construct a very weak form
a leakage-resilient split-state code. It is weak in that it can only handle the
leakage of a few bits chosen in advance, in particular it is not robust enough
to handle even adaptive choices of the bits. While leakage-resilient split-state
codes are already known [ADKO15b,CL18], this alone is not enough. In partic-
ular, the implicit reduction from local tampering to leaky split-state tampering
in [BDKM16,BDG+18] does not seem to hold for decision trees. However, this
modular perspective simplifies the analysis tremendously, even for this original
case of local tampering.

9 [CL18] does not give an explicit bound on leakage and [ADKO15b] allows 1/12-
fraction leakage (or 1/6 in a more restricted model where the leakage amount from
each side has to be the same).



We will outline our new reduction for decision tree tampering. The key idea
here, as in [BDKM16,BDG+18], is to exploit size differences. Our encoder and
decoder will work independently on the left and right pieces of the message, so
we will in turn think of having left and right encoders, decoders, codewords, and
tampering functions (corresponding to the respective outputs).

First, let us suppose that the right piece of the message (corresponding to the
right split-state codeword) is much longer than that of the left. Then, suppose
both the right and left encoders and decoders are simply the identity function.
Then, all the left tampering functions together will make a number of queries to
the right codeword that is below our leakage threshold.

However, because the right is much longer than the left, the above analysis
won’t help in simulating tampering on the right with low leakage from the left.
Instead, we modify the left encoder/decoder to make it much longer than the
right, but while retaining the property that the left can be decoded from just a
few decision trees. To do so, we sample a random small set, whose size is that
of the message, in a much larger array. We plant the message in these locations
and zero everything else out. Then, we bit-wise secret share a description of the
small set (i.e., its seed) such that the secrecy threshold is relatively large. To
decode, we can simply extract the seed and output what is in the corresponding
locations of the array.

Now, note that decoding the left still only requires at most relatively few
queries to the right: decision tree depth times both encoded seed length plus
message length. But we can’t make the encoded seed too long or we will be dead
again. Instead, we critically use the fact that tampering is by a forest of decision
trees. In particular, for any small set of tampering functions on the right, the
seed remains uniformly chosen regardless of what queries the set makes, so we
expect only a small fraction of any queries made to the array to actually hit the
message locations. Strong concentrations bounds guarantee that this is more or
less what actually happens. Finally we simply union bound over all such subsets
to guarantee that collectively the right tampering function makes few queries to
the left with overwhelming probability.

Finally, we apply the same style of encoding used on the left to the right side
to fix the syntactic mismatch and reduce to the case where the right and left
messages are the same size.

As mentioned above, non-malleable codes for leakage-resilient split-state are
known from prior work [ADKO15b,CL18]. However, we give a new reduction
from leakage-resilient split-state tampering to split-state tampering that, when
combined with the state-of-the-art split-state non-malleable codes [Li18], im-
proves on the (explicit) parameters of what was known before.

Our leakage-resilient reduction is quite intuitive. We show that given a statist-
ically-secure leakage-resilient encryption scheme (where an adversary can receive
bounded leakage from both ciphertext and the key used to encrypt it) it suffices
to simply encrypt the left and right split-state codewords independently (with
their own keys) and place the keys in the opposite state. By the strong security
property of the encryption scheme, the ciphertext hides each underlying split-



state codeword piece, whatever (bounded amount) is leaked from the key in the
opposite state.

To complete the reduction, we construct such a statistically-secure leakage-
resilient encryption scheme from extractors. Our notion of leakage-resilience es-
sentially combines the notions of “forward-secure storage” [Dzi06] and “leakage-
resilient storage” [DDV10] to get the best of both worlds, and our construction
essentially combines the ideas behind the constructions of the above two objects.

Related Work in Other Models. The aforementioned work of [BDKM18] con-
structs a generic framework for converting correlation bounds into non-malleable
codes. They instantiate their framework to construct non-malleable codes both
for decision trees and large small-depth circuits. However, this work (a) requires
a Common Reference String, and (b) is secure in a game-based model against
efficient adversaries, assuming unproven cryptographic assumptions. In fact, one
of the assumptions, public key encryption with decryption in AC0, necessarily
limits their error term to be at most exp(− logO(1)(n)).

A very recent follow-up work, [BDSK+18], improves upon [BDKM18] show-
ing how to remove the Common Reference String, but still does not achieve
unconditional or statistical guarantees.

2 Preliminaries

For a positive integer n, we use [n] to denote {1, . . . , n}. For x = (x1, . . . , xn) ∈
{0, 1}n and i ≤ j ∈ [n], we define xi:j := (xi, . . . , xj). For a set S ⊆ [n] or a
string S ∈ {0, 1}n, xS denotes the projection of x to S. For x, y ∈ {0, 1}n, if
they disagree on at least ε · n indices, we say they are ε-far, otherwise, they are
ε-close to each other.

For a set Σ, we use ΣΣ to denote the set of all functions from Σ to Σ.
Given a distribution D, z ← D denotes sample z according to D. For two dis-
tributions D1,D2 over Σ, their statistical distance is defined as ∆(D1,D2) :=
1
2

∑
z∈Σ |D1(z)−D2(z)|.

2.1 Non-malleable Reductions and Codes

Non-malleable codes were first defined in [DPW10]. Here we use a simpler, but
equivalent, definition based on the following notion of non-malleable reduction
by Aggarwal et al. [ADKO15a].

Definition 1 (Non-Malleable Reduction [ADKO15a]). Let F ⊂ AA and
G ⊂ BB be some classes of functions. We say F reduces to G, (F ⇒ G, ε), if
there exists an efficient (randomized) encoding function Enc : B → A, and an
efficient decoding function Dec : A→ B, such that

(a) ∀x ∈ B,Pr[Dec(Enc(x)) = x] = 1 (over the randomness of E).
(b) ∀f ∈ F ,∃G s.t. ∀x ∈ B, ∆(Dec(f(Enc(x)));G(x)) ≤ ε, where G is a distri-

bution over G and G(x) denotes the distribution g(x), where g ← G.



If the above holds, then (Enc,Dec) is an (F ,G, ε)-non-malleable reduction.

Definition 2 (Non-Malleable Code [ADKO15a]). Let NMk denote the set
of trivial manipulation functions on k-bit strings, consisting of the identity func-
tion id(x) = x and all constant functions fc(x) = c, where c ∈ {0, 1}k. (Enc,Dec)
defines an (Fn(k), k, ε)-non-malleable code, if it defines an (Fn(k),NMk, ε)-non-
malleable reduction. Moreover, the rate of such a code is taken to be k/n(k).

The following useful theorem allows us to compose non-malleable reductions.

Theorem 4 (Composition [ADKO15a]). If (F ⇒ G, ε1) and (G ⇒ H, ε2),
then (F ⇒ H, ε1 + ε2).

2.2 Tampering Function Classes

Definition 3 (Split-State Model [DPW10]). The split-state model, SSk,
denotes the set of all functions:

{f = (f1, f2) : f(x) = (f1(x1:k) ∈ {0, 1}k, f2(xk+1:2k) ∈ {0, 1}k), x ∈ {0, 1}2k}.

One natural extension of split-state model is leaky/bounded-communication
split-state functions considered by Aggarwal et al. [ADKO15b] and Chattopad-
hyay et al. [CL18].

Definition 4 (Leaky/Bounded-Communication Split-State Model). Let
α ∈ [0, 1] be a parameter. We say f ∈ {0, 1}2k → {0, 1}2k is in α-leaky split-
state model, α−SSk if there exists a communication protocol between Alice and
Bob such that for x = (x1:k, xk+1:2k) ∈ {0, 1}2k, f(x) can be computed by a
communication protocol with parameter α between Alice and Bob where Alice
has access to x1:k, Bob has access to xk+1:2k. Alice and Bob send information
back and forth depending on their own inputs and the current transcript of the
communication so far. Overall the total communication is at most αk bits and
finally Alice outputs f(x)1:k and Bob outputs f(x)k+1:2k.

Definition 5 (Decision Trees). A decision tree with n input bits is a binary
tree whose internal nodes have labels from x1, . . . , xn and whose leaves have
labels from {0, 1}. If a node has label xi then the test performed at that node is
to examine the i-th bit of the input. If the result is 0, one descends into the left
subtree , whereas if the result is 1, one descends into the right subtree. The label
of the leaf so reached is the output value on that particular input. The depth of
a decision tree is the number of edges in a longest path from the root to a leaf.
Let DT(t) denote decision trees with depth at most t.

Definition 6 (Small Depth Circuits). A Boolean circuit with n input bits is
a directed acyclic graph in which every node (also called gate) is either an input
node of in-degree 0 labeled by one of the n input bits, an AND gate, an OR gate,
or a NOT gate. One of these gates is designated as the output gate. The size
of a circuit is its number of gates and the depth of a circuit is the length of its
longest path from an input gate to the output gate. Let ACd(S) denote depth d
circuits of size at most S with unbounded fan-in.



For a set of boolean circuits C (respectively decision trees), we say that a
boolean function f is in C, if there exists a C ∈ C which agrees with f on every
input. We say that a multiple output function f = (f1, . . . , fm) is in C if
fi ∈ C for any i ∈ [m].

2.3 Pseudorandom Objects

Extractors

Definition 7 (Weak Random Sources). The min-entropy of a distribution
X over {0, 1}n is H∞(X) := − log(maxx∈{0,1}n Pr[X = x]). A distribution X
over {0, 1}n is called an (n, k) source if H∞(X) ≥ k.

Definition 8 (Strong Extractors [NZ96]). A function Ext : {0, 1}n+d →
{0, 1}m is a (k, ε) extractor if for every (n, k) source X, Y,Ext(X,Y) is ε-close
to Y,Um where Y is uniformly distributed over {0, 1}d and Um is uniformly
distributed over {0, 1}m. An extractor is explicit if it is computable in polynomial
time.

Theorem 5 (Explicit Strong Extractors [GUV09]). For every constant
α > 0, and all positive integers n, k and all ε > 0, there is an explicit construction
of a (k, ε) extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n+log(1/ε))
and m ≥ (1− α)k.

Definition 9 (Two Source Extractors [CG88]). A function 2Ext : {0, 1}n×
{0, 1}n → {0, 1}m is a (k, ε) two source extractor if for independent source X and
sources Y such that H∞(X)+H∞(Y ) ≥ k, (Y, 2Ext(X,Y)) is ε-close to (Y,Um)
and (X, 2Ext(X,Y)) is ε-close to (X,Um) where Um is uniformly distributed over
{0, 1}m. An extractor is explicit if it is computable in polynomial time.

Theorem 6 (Explicit Two Source Extractors [CG88]). For all positive
integers m,n such that n is a multiple of m and for all ε ≥ 0, there exists an
efficient (n + m + 2 log 1/ε, ε) 2-source extractor with n-bit sources and m-bit
output.10

Binary Ramp Secret Sharing Encoding Schemes

Definition 10 (Binary Ramp Secret Sharing Encoding Schemes). We
say (Enc,Dec) is a binary ramp secret sharing encoding scheme with parameters
(k, n, csec), where k, n ∈ N, 0 ≤ csec < 1, if it satisfies the following properties:

1. Reconstruction. Enc: {0, 1}k → {0, 1}n is an efficient probabilistic proce-
dure, which maps a message x ∈ {0, 1}k to a distribution over {0, 1}n, and
Dec: {0, 1}n → {0, 1}k is an efficient procedure. For any x ∈ {0, 1}k, it holds
that Pr[Dec(Enc(x)) = x] = 1.

10 [CG88] implies this theorem and the parameters have been taken from [ADKO15b].



2. Secrecy of partial views. For any x ∈ {0, 1}k and any non-empty set
S ⊂ [n] of size ≤ bcsec · nc, Enc(x)S is identically distributed to the uniform
distribution over {0, 1}|S|.

As observed by Ball et al. [BDG+18] (cf. Lemma 2), such a coding scheme can
be constructed efficiently from any linear error correcting code. We reproduce
their construction here for convenience and refer the reader to [BDG+18] for
further discussion.

Lemma 1 ([BDG+18]). Suppose there exists a binary linear error correcting
code with parameters (k, n, d), then there is a binary ramp secret sharing scheme
with parameters (k, n, (d− 1)/n).

Proof. For a linear error correcting code with (k, n, d), let A denote its encoding
matrix, H denote its parity check matrix. Let B be a matrix so that BA = I
where I is the k×k identity matrix (such B exists because A has rank k and can
be found efficiently). By property of parity check matrix, HA = 0 and Hs 6= 0
for any 0 < ||s||0 < d where 0 is the (n− k)× k all 0 matrix.

We define (Enc,Dec) as follows: for x ∈ {0, 1}k and randomness r ∈ {0, 1}n−k,
Enc(x; r) := BTx+HT r, for c ∈ {0, 1}n; Dec(c) := AT c.

(Enc,Dec) is an encoding scheme because Dec ◦Enc = ATBT = IT = I. For
secrecy property, note that for any non-empty S ⊆ [n] of size at most d − 1,
(Hr)S is distributed uniformly over {0, 1}|S|, because for any a ∈ {0, 1}|S|,

Pr
r

[(HT r)S = a] = E[Πi∈S
1 + (−1)(H

T r)i+ai

2
]

= 2−|S|
∑
S′⊆S

E[Πi∈S′(−1)(H
T r)i+ai ] = 2−|S|,

where the last equality is because the only surviving term is S′ = ∅ and for

other S′,
∑
i∈S′ H

T
i 6= 0 so E[Πi∈S′(−1)(H

T r)i ] = 0. It implies Enc(x)S is also
distributed uniformly over {0, 1}S . Hence (Enc,Dec) is a binary ramp secret
sharing encoding scheme with parameters (k, n, (d− 1)/n).

The following lemma is an immediate consequence of the former and any
construction of a good code, such as a Justesen code.

Lemma 2. For any k ∈ N, there exist constants 0 < crate, csec < 1 such that
there is a binary RSS scheme with parameters (k, cratek, csec).

To achieve longer encoding lengths n, with the same csec parameter, one can
simply pad the message to an appropriate length.

2.4 Concentration Inequalities

Theorem 7 (Generalized Chernoff Bound [PS97]). Let X1, . . . , Xn be bool-
ean random variables such that, for some 0 ≤ δ ≤ 1, we have that, for every
subset S ⊆ [n], E[Πi∈SXi] ≤ δ|S|. Then Pr[

∑n
i=1Xi ≥ 2δn] ≤ exp(−nδ/3).



3 Decision Trees to Leaky Split-State Model

In this section, we give a non-malleable reduction from decision tree tampering
to leaky split-state tampering.

Lemma 3. For any constant α ∈ (0, 1) and t = O(n1/4/ log3/2 n), there is a
(DT(t) ⇒ α − SSk, ε)-non-malleable reduction with rate Ω(1/t2 log3 n) where
ε ≤ exp(−Ω(n/t4 log5 n)).

A single decision tree from {0, 1}n to {0, 1} of depth t can be viewed as
an adversary (or computation) that first adaptively queries at most t input
coordinates, and then outputs a bit. Given a tampering function f from {0, 1}n
to {0, 1}n such that each output bit is computed by a decision tree of depth t
(i.e., each output is the result of adaptively querying at most t coordinates from
the input, here a codeword), we will non-malleably reduce f to a special subclass
of leaky split-state functions.

Recall that an α-leaky split-state function g = (gL, gR) from {0, 1}2k to
{0, 1}2k can be computed by a communication protocol with parameter α be-
tween Alice and Bob where Alice has access to xL := x1:k and Bob has access
to xR := xk+1:2k. Alice and Bob send information back and forth depending
on their own inputs and the current transcript of the communication so far.
And finally, Alice outputs gL(xL, xR) and Bob outputs gR(xL, xR). We consider
a special subclass of α-leaky split-state function where Alice and Bob simply
make a bounded number of adaptive queries to each other’s input. In particular,
when Alice (resp. Bob) makes a query to xR (resp. xL), Alice (resp. Bob) sends
location i ∈ [k] and ask Bob (resp. Alice) to send back the ith coordinate of xR
(resp. xL).

Note that the communication cost for each query (and answer) is dlog ke+ 1
bits. (For the remainder of this section, we will assume that both k and n are
powers of 2.) So if both Alice and Bob make at most αk/(2(log k + 1)) queries
to each other’s input, the total communication is at most αk and g is an α-
leaky split-state function. We will show that our reduction reduces decision tree
tampering functions (of appropriate depth) to this subclass of leaky split-state
functions.

Our reduction relies on a ramp secret sharing scheme over binary alphabet.
For parameter m, let (EncRSS ,DecRSS) be an efficient coding scheme such that
EncRSS maps an m-bit to a (random) 4m-bit string so that for any ζ ∈ {0, 1}m
and subset S 6= ∅ of size at most m, EncRSS(ζ)S distributes uniformly and ran-
domly over {0, 1}|S|. As observed by Ball et al. [BDG+18] (see Lemma 2), such
a coding scheme can be constructed efficiently from any linear error correcting
code from m bits to 4m bits with minimal distance m+ 1. We choose constant
4 to simplify the presentation.

Based on (EncRSS ,DecRSS), we define a coding scheme that hides a message
in random locations. Let Gk,n be the function that given a short “seed,” ζ,
of k distinct indices in [n] expands it to the corresponding n-bit string with
hamming weight k (where the ones are in locations indexed by ζ). Let Dk,n be



Given f = (fL, fR) ∈ DT(t), we sample an α-split state g from the distribution Gf
as follows: sample and hardwire the randomness required for EncL,EncR. Let ζL
and ζR be the respective seeds used for G in EncL and EncR. Then, g = (gL, gR)
is defined as follows: on input x = (xL, xR)

– gL(x) simulates DecL(fL(EncL(xL),EncR(xR))) with at most αk/2(log k+ 1)
queries to xR (*)

1. Decode the tampered seed ζ̃L by computing the first 4mL outputs of
fL(EncL(xL),EncR(xR)) then applying DecRSS .
(To evaluate the necessary portion fL the simulator evaluates the corre-
sponding decision trees. When a bit is queried in EncR(xR) we have three
cases (recall that these encodings consist of two parts, EncRSS(ζR) and
cR): (a) if the index corresponds to a location in EncRSS(ζR), it is hard-
wired already in gL; (b) if the index corresponds to cR and a location
specified by ζR, query/request the relevant bit from xR; (c) if the index
corresponds to cR and a location not specified by ζR, simply use 0.)

2. Compute the output bits of fL(EncL(xL),EncR(xR)) indexed by set

G(ζ̃L).

(The decision trees corresponding to indices specified by ζ̃L are evaluated
identically to the preceeding step.)

(*) whenever gL(x) makes more than αk/(2(log k + 1)) queries to xR, abort
and output 0k.

– gR(x) simulates DecR(fR(EncL(xL),EncR(xR))) with at most αk/2(log k+ 1)
queries to xL (*)
1. Compute ỹR = fR(EncL(xL),EncR(xR)).

(The corresponding decision trees in fR are evaluated in a symmetric
manner to those needed for gL.)

2. Compute DecR(ỹR).
(*) whenever gR(x) makes more than αk/(2(log k + 1)) queries to xL, abort
and output 0k.

Fig. 1. Simulator for (Enc,Dec)

a distribution such that Gk,n(Dk,n) is uniform over n-bit strings with hamming
weight k. Note that Gk,n can be computed efficiently and Dk,n can be sampled
efficiently by simply sampling k locations from [n] without replacement. For k, n
and m ≥ k log n, we define an encoding Enc∗n,k,m : {0, 1}k → {0, 1}4m × {0, 1}n,
as follows: on a k-bit string x, sample a random seed ζ ← Dk,n for Gk,n, and
output (EncRSS(ζ), c) so that c is 0 everywhere except cG(ζ) = x. Dec∗n,k,m is
defined in the straightforward way (it first decodes ζ using DecRSS , then outputs
cG(ζ)).

The high level idea of our reduction is to use two copies of Enc∗ to hide
inputs xL and xR independently inside two long messages (with different length).
Let nL,mL, nR,mR be parameters to be determined later. We define Enc as
Enc(xL, xR) = (EncL(xL),EncR(xR)) where EncL = Enc∗nL,k,mL

and EncR =



Enc∗nR,k,mR
. And we define Dec as Dec(yL, yR) = (DecL(yL),DecR(yR)) where

DecL = Dec∗nL,k,mL
and DecR = Dec∗nR,k,mR

.
Now we show (Enc,Dec) non-malleably reduces DT(t) to α-SSk and prove

Lemma 3. First observe that Dec ◦ Enc is the identity function due to the cor-
rectness of (EncL,DecL) and (EncR,DecR). It remains to show that for any
f : {0, 1}n → {0, 1}n ∈ DT(t), Dec ◦ f ◦ Enc becomes α-split state functions. In
fact, in Figure 1, we reduce decision trees to a simpler subclass of α-SSk where
Alice and Bob, in parallel, make at most αk/(2(log k + 1))-bounded number of
adaptive queries to locations of the other party’s inputs, then output tampered
values.

By the special condition (∗) in gL, gR, g = (gL, gR) is indeed α-split state
function because Alice and Bob communicates at most log k + 1 bits per query
(including the answer). Moreover, for any x,Gf (x) distributes identically to Dec◦
f ◦ Enc(x) conditioning on that (∗) doesn’t happen. Therefore ε, the difference
between the simulation and the real experiment, is at most the probability that
(∗) happens. To bound the event that (∗) happens, we begin by proving the
following more general proposition.

Proposition 1. For integers n, k,m ≥ k log n. Let A be an arbitrary algorithm
that makes at most m adaptive queries to (EncRSS(ζ), G(ζ)). Let Y denote the
number of distinct 1’s in G(ζ) which are queried by A. It holds that over the
randomness of ζ and EncRSS,

Pr[Y ≥ 2mk/n] ≤ exp(−mk/3n).

Proof. Note that, for any fixed ζ, any A that makes at most m adaptive queries
cannot distinguish (EncRSS(ζ), G(ζ)) and (U,G(ζ)) where U is uniformly dis-
tributed over {0, 1}4m. That’s because (U,G(ζ)) generates any possible tran-
script (i1, b1, . . . , im, bm), (EncRSS(ζ), G(ζ)) with exactly the same probability
due to the secrecy property of EncRSS . Because U and ζ are independent, it
suffices to bound the probability that AU,G(ζ) queries more than 2mk/n number
of 1’s for an arbitrary fixed choice of U and a random ζ.

Without loss of generality, we assume A queries m distinct locations of G(ζ)
because any algorithm can be made into one which sees more ones from G(ζ)
by querying distinct locations. Let Y1, . . . , Ym be indicators that G(ζ) returns 1
for these m queries made by A. Note that Y = Y1 + · · ·+Ym and E[Y ] ≤ mk/n.
In addition, observe that for any b1, . . . , bm ∈ {0, 1}, Pr[∀i ∈ [m], Yi = bi] =(
n−m
k−|b|0

)
/
(
n
k

)
. It follows that for any set S ⊆ [m], E[Πi∈SYi] =

(
n−|S|
k−|S|

)
/
(
n
k

)
≤

(k/n)|S|. By the generalized Chernoff bound by Theorem 7 with δ = k/n, we
obtain the desired conclusion.

We then apply proposition 1 in following two claims to bound (*), the prob-
ability that the number of bits required from the opposite side exceeds some
threshold for either half of the simulated tampering function. We will handle
each side separately. In particular, these claims will bound the number of queries
or probes made to bits on the opposite side that depend on the input (if we fix



the randomness of encoding). Because in the simulated tampering, both Alice
and Bob jointly know the randomness of encoding, if a bit on the opposite side is
not dependent on the input, then both Alice and Bob know this and do not need
to request its value. So, in order to complete the proof we only need to bound
queries the simulator makes to the opposite side that additionally correspond to
locations specified by the respective ζ (in the respective Enc∗).

Claim. Suppose mR ≥ (4mL + k)t, then for any x ∈ {0, 1}2k, the event that gL
makes more than 2(4mL + k)tk/nR queries to xR happens with probability at
most exp(−(4mL + k)tk/3nR).

Proof. Fix any xL, xR and the randomness for EncL(xL). Note that DecL reads
at most 4mL + k coordinates from its input, 4mL to reconstruct the tampered
“seed” ζ̃ and then the at most k locations specified by G(ζ̃). Each decision tree
tampering one of these bits makes at most t queries EncR(xR) (it makes at most
t queries total). Therefore gL, in order to simulate the tampering of the bits DecL
requires, makes at most (4mL+k)t queries to EncR(xR) = (EncRSS(ζR), G(ζR)).
By Proposition 1, gL queries more than 2(4mL+k)tk/nR locations happens with
probability at most exp(−(4mL + k)tk/3nR).

Claim. Suppose mL ≥ t, then for any x ∈ {0, 1}2k, the event that gR makes
more than 2(4mR + nR)tk/nL queries to xL happens with probability at most
(nR + 4mR)t/mL · exp(−mLk/3nL).

Proof. Fix any xL, xR and the randomness for EncR(xR). Note that any subset
of mL/t outputs of fR makes at most mL queries to EncL(xL). By Proposi-
tion 1, the probability that 2mLk/nL ones in G(ζL) are queried is at most
exp(−mLk/3nL). We partition the output bits of fR into (nR + 4mR)t/mL dis-
joint subsets of size mL/t. By a union bound over these subsets, the even that
fR makes more than 2(4mR +nR)tk/nL queries to xL happens with probability
at most (nR + 4mR)t/mL · exp(−mLk/3nL). The number of queries made by gR
to xL is at most the queries made by fR and the desired conclusion follows.

Then for fixed α, there exists constants c1, c2, c3 (only dependent on α)
such that if we set mL = c1k log n, nR = mR = c2tk log n log k and nL =
c3t

2k log n log2 k, then (*) (the event that the number of queries to either oppos-
ing side exceeds αk/(2(log k + 1)) happens with probability at most (t2 log k) ·
exp(−Ω(k/t2 log2 k)). Note that it follows that the rate is k/n = Ω(1/t2 log3 n)

and for t = O(n1/4/ log3/2 n), the error can be simplified to exp(−Ω(n/t4 log5 n))
because Ω(n/t4 log5 n) = Ω(log n) and t2 log k = exp(O(log n)).

4 Leaky Split-State to Split-State Model

In this section, we show how to reduce leaky split-state to split-state non-
malleability. In other words, we show how to add leakage-resilience generically
to any split-state non-malleable code. Our construction handles up to 1

4 fraction



leakage. Concretely, we prove the following lemma, where the tampering classes
SSk (split-state) and α-SSn (leaky split-state) are defined in Definition 3 and 4
respectively.

Lemma 4. For any constant α ∈ [0, 1/4), α-SSn non-malleably reduces to SSk
with loss exp(−Ω(n))

)
and constant rate.

Our main tool is new notion of (information-theoretic, one-time) leakage-
resilient encryption defined below.

Definition 11 (Leakage-Resilient Encryption). We consider a (random-
ized) encryption scheme (Encrypt,Decrypt) which encrypts message x of length
|x| = k using a key of size |key| = m. For some message x ∈ {0, 1}k we consider
the following randomized experiment GameLRENC(x):

– Choose key← {0, 1}m, ct← Encrypt(key, x).
– Alice gets ct and Bob gets key. They can run an arbitrary protocol with

each other subject to the total communication being at most `1 bits. Let
trans ∈ {0, 1}`1 be the transcript.

– At the end of the protocol, Alice also outputs an additional value aux ∈
{0, 1}`2 .

– The output of the game is key, trans, aux.

We say that an encryption scheme is (`1, `2, ε)-leakage-resilient if for any adver-
sarial strategy of Alice and Bob and for any x0, x1 the outputs of GameLRENC(x0)
and GameLRENC(x1) have statistical distance at most ε.

The above definition is similar to the “forward-secure storage” of Dziem-
bowski [Dzi06], which corresponds to our notion with `1 = 0 (there is only
leakage on the ciphertext; it is completely independent of the key but can be
much larger than the key). It is also similar to the notion of “leakage-resilient
storage” of Davi, Dziembowski and Venturi [DDV10], which corresponds to our
notion with `2 = 0 (there is back-and-forth leakage on the ciphertext and the
key but the total leakage is smaller than either the ciphertext or the key). Our
definition combines the two notions. We will crucially rely on a setting of pa-
rameters where, if the key size is m and the message size is k then we need
`1 < m ≤ `2 < k. In other words, we allow `1 bits of back-and-forth leakage
between the ciphertext and the key where `1 is smaller than either component,
but then allow and additional `2 bits of leakage on the ciphertext where `2 is
larger than the key.

Reduction via Leakage-Resilient Encryption. We first show how to use leakage-
resilient encryption as defined above to construct a reduction from leaky split-
state to split-state tampering. We do so by encrypting the two states xL, xR using
leakage-resilient encryption and storing the key with the other state (i.e., the key
used to encrypt the left state is stored on the right sides and vice versa). Intu-
itively, the leakage-resilient encryption ensures that the leakage is independent
of the actual states xL, xR. However, we face the challenge that, by tampering



the key on the right side we can influence how the left side is decrypted and
vice versa. We get around this by thinking of the tampered keys as additional
leakage (aux).

Let E = (Encrypt,Decrypt) be a leakage-resilient encryption with message
size k and key length m. We define our reduction (Enc,Dec) below:

– Enc(xL, xR): Sample keyL ← {0, 1}m, ctL ← Encrypt(xL), keyR ← {0, 1}m,
ctR ← Encrypt(xR). Output (yL, yR) where yL = (ctL, keyR), yR = (ctR, keyL).

– Dec(yL, yR): Parse yL = (ctL, keyR), yR = (ctR, keyL) and output xL =
Decrypt(keyL, ctL) and xR = Decrypt(keyR, ctR).

Lemma 5. Assume E is an (`1, `2, ε)-leakage-resilient encryption with message
length k, key length m ≤ `2 and ciphertext length c. Then (Enc,Dec) defined
above is a 2ε-non-malleable reduction from (`1/(c+m))-leaky split-state to split-
state. For a messages (xL, xR) of length 2k, the resulting codeword Enc(xL, xR)
has length 2(c+m)

Proof. Consider the following game: GameNM(xL, xR):

1. Compute (yL = (ctL, keyR), yR = (ctR, keyL))← Enc(xL, yL)
2. Give Alice yL and Bob yR. They can run an arbitrary protocol with each

other subject to the total communication being at most `1 bits. Let trans ∈
{0, 1}`1 be the transcript.

3. At the end of the protocol Alice outputs y′L = (ct′L, key
′
R) and Bob outputs

y′R = (ct′R, key
′
L).

4. The output of the game (x′L, x
′
R) = Dec(y′L, y

′
R),

so that x′L = Decrypt(key′L, ct
′
L) and x′R = Decrypt(key′R, ct

′
R).

To prove the Lemma, we fix an arbitrary strategy of Alice and Bob and
need to show that there exist some distribution G over functions (gL, gR) such
that for every xL, xR the output of GameNM(xL, xR) is 2ε-statistically close to
gL(xL), gR(xR) where (gL, gR)← G.

Let us define the distribution z ← D(xL, xR) to be the distribution of the
values

z = (keyL, keyR, trans, key
′
L, key

′
R)

in the context of GameNM(xL, xR). We make two observations, which we then
combine to prove our lemma.

Observation 1. In GameNM(xL, xR), if we condition on some particular choice
of z ← D(xL, xR), then the distribution of x′L a is completely independent of
(xR, x

′
R) and similarly x′R is independent of (xL, x

′
L). In particular, we can define

the randomized process gzL which has z hard-coded and samples x′L ← gzL(xL) by
first sampling Alice’s view in the game conditioned on z and xL, computing her
output ct′L and setting x′L = Decrypt(key′L, ct

′
L). We can define the randomized

process x′R ← gzR(xR) analogously. It is easy to see that the distribution of

GameNM(xL, xR) is then identical to sampling z ← D(xL, xR) and outputting
x′L ← gzL(xL), x′R ← gzR(xR).



Observation 2. For any xL, xR the distribution of D(xL, xR) is 2ε-statistically
close to D(0k, 0k). We argue that this holds via two steps. We first argue that
D(xL, xR) is ε-close to D(0k, xR) and then argue that D(0k, xR) is ε-close to
D(0k, 0k). For the first step, we can fix any worst case choice of keyR, ctR and use
the security of leakage-resilient encryption to argue that the joint distribution of
keyL, trans, key

′
R is ε-close between D(xL, xR) and D(0k, xR); we set aux = key′R

in this argument and use the fact that |key′R| = m ≤ `2. We then note that key′L
is just a function of ctR, keyL and trans and therefore the total distribution of
(keyL, keyR, trans, key

′
L, key

′
R) is ε close between D(xL, xR) and D(0k, xR). The

argument that D(0k, xR) is ε-close to D(0k, 0k) is identical.

By combining observations 1 and 2, we see the distribution of GameNM(xL, xR)
is 2ε statistically close to sampling z ← D(0k, 0k) and outputting x′L ← gzL(xL),
x′R ← gzR(xR). This concludes our reduction as desired; we define the dis-
tribution G over functions (gL, gR) by sampling z ← D(0k, 0k) and setting
gL = gzL and gR = gzR. The output of GameNM(xL, xR) is 2ε-statistically close to
gL(xL), gR(xR) where (gL, gR)← G.

Construction of Leakage-Resilient Encryption. Let Ext be a seeded strong extrac-
tor with r-bit source, d-bit seed and output size k which is (r−`1−`2, ε1)-secure.
Let 2Ext be a strong two-source extractor with m-bit sources and d-bit output
which is (2m− `1, ε2)-secure.

Define the scheme (Encrypt,Decrypt) as follows:

– Encrypt(key, x):
Choose u← {0, 1}r, y ← {0, 1}m, s = 2Ext(key, y), z = Ext(u; s)⊕ x.
Output ct = (u, y, z).

– Decrypt(key, ct = (u, y, z)):
Compute s = 2Ext(key, y) and output z ⊕ Ext(u; s).

Claim. Consider a variant of the leakage-resilient encryption game, which we
denote “weak leakage resilience”, where Alice does not get the z part of the
ciphertext during the game but the output of the game is key, trans, aux, z. If the
scheme is (`1, `2, ε)-“weak leakage resilient” then it also satisfies (`1, `2, ε · 2k)-
leakage resilience.

Proof. Assume there exists some (Alice, Bob, Distinguisher) strategy in the orig-
inal game such that the Distinguisher has an ε2k advantage in distinguishing the
game with x0 and x1. We convert this into an (Alice’, Bob, Distinguisher’) strat-
egy for the weak game by guessing a random value v ← {0, 1}k at the beginning
of the game and having Alice’ run Alice with v in place of z. Then Distinguisher’
gets z and if v = z it runs the original Distinguisher else outputs 0. It’s easy
to see that the advantage of Distinguisher’ is the same as that of Distinguisher
when v = z, which happens with probability 2−k, and 0 otherwise. Therefore,
Distinguisher’ has advantage 2−k smaller than Distinguisher which proves the
claim.



Lemma 6. (Encrypt,Decrypt) is (`1, `2, (ε1 + ε2)2k+1)-leakage-resilient.

Proof. It suffices to show that the scheme is (`1, `2, 2(ε1 + ε2)) weak leakage
resilient and the rest follows by the preceding claim. We use a statistical hybird
argument.

Hybrid 1: This is the weak leakage resilient game with message x0. Recall that
in the game Alice gets (u, y) and Bob gets key. They run a protocol with `1
bits of communication resulting in transcript trans. At the termination of the
protocol, Bob also outputs an additional `2-bit value aux. The output of the
protocol is key, trans, aux, z where z = Ext(u; s)⊕ x0 and s = 2Ext(key, y).

Hybrid 2: Note that, in Hybrid 1, conditioned on the random variable V1 =
(s, y, trans) the random variables V2 = (u, aux, z) and V3 = key are indepen-
dent. Therefore, we can define Hybrid 2 to run the same game as Hybrid
1, which defines (V1, V2, V3), but then, instead of key, output a freshly re-
sampled key′ from the correct distribution of V3 conditioned on V1. This is
distributed identically to Hybrid 1.

Hybrid 3: In this hybrid, we choose s uniformly at random instead of s =
2Ext(key, y) and set z = Ext(r; s) ⊕ x0. We still sample key′ from the same
distribution of V3 conditioned on V1 at the end of the game, just like in
Hybrid 2.
The statistical distance between Hybrid 2 and Hybrid 3 is ε2. We rely on
the fact that 2Ext is a strong extractor and that trans amounts to `1 bits
of entropy loss from key to argue that, even given (u, y, trans) the value s is
ε2-close to uniform.

Hybrid 4: In this hybrid, we set z to uniform instead of z = Ext(u; s)⊕ x0.
The statistical distance between Hybrid 3 and Hybrid 4 is ε1. This follows
from the strong-extractor property of Ext and the fact that trans, aux gives
`2 + `1 bits of leakage on u.

Hybrid 5,6,7: Are the same as 3,2,1 with x0 replaced by x1. In particular
Hybrid 7 is the weak leakage resilience game with message x1.
Hybrids 4,5 are ε1 close (same argument as Hybrids 3,4), Hybrids 5,6 are ε2
close (same argument as Hybrids 2,3) and Hybrids 6,7 are identical (same
argument as 1,2).

Combining the above we get a total distance of 2(ε1 + ε2) between Hybrids 1
and 7 as we wanted to show.

We can now plug in parameters using the inner-product two-source extrac-
tor [CG88], and the strong extractor [GUV09] to prove the main Lemma of this
section:

Proof (Proof of Lemma 4). For ε ∈ (0, 1), let ε1 = ε2 = ε/2k+3 and `2 = m. By
Theorem 5, there exists some constant c1, c2 ≥ 1 and explicit Ext such that for
r − `1 − `2 ≥ c1 · k, Ext can extract k bits from (r, r − `1 − `2) source with d =
c2 log(r/ε1)-bit seed and error ε1. By Theorem 6, for 2m−`1 ≥ m+d+2 log(1/ε2),
there exists explicit 2Ext that extracts d bits with error ε2 from m-bit sources



with entropy 2m− `1. Plugging in Ext and 2Ext, by Lemma 6 and Lemma 5, we
obtain (`1, `2, (ε1+ε2)2k+1) leakage-resilient encryption and a (ε1+ε2)2k+2-non-
malleable reduction from (`1/n)-split state to split state with n = r + 2m + k.
By setting r = `1 + m + c2k, m = `1 + d + 2 log(1/ε2) and d = c2(log(r/ε1)),
we obtain that n ≤ 4`1 + c3(k+ log 1/ε) for some constant c3 ≥ 1. Therefore for

any α < 1/4 and `1 = αn, we can set n = Θ(k+log(1/ε)
1/4−α ). The desired conclusion

follows from setting ε = exp(−Ω(k)) and n = Θ(k).

5 Putting things Together

Combining Lemma 3 and Lemma 4, we obtain a non-malleable reduction from
decision trees to split-state model.

Lemma 7. For t = O(n1/4/ log3/2 n), there is a (DT(t)⇒ SSk, ε) non-malleable
reduction with rate Ω(1/t2 log3 n) where ε ≤ exp(−Ω(n/t4 log5 n)).

Plugging in the construction of non-malleable codes for split state model [Li18]
with rate Ω(log log n/ log n) and error exp(−Ω(n log log n/ log n)), we obtain our
main theorem.

Theorem 8. For any t = O(n1/4/ log3/2 n), there is an explicit and efficient
non-malleable code that is unconditionally secure against depth-t decision trees
with codeword length n = O(kt2 log4 n/ log log n) and error exp(−Ω(n/t4 log5 n))
for a k-bit message.

Ball et al. [BDG+18] gave a non-malleable reduction from small-depth cir-
cuits to a leaky variant of decision trees, LLd,m,n[DT(t)] (See definition 12).

Lemma 8. [BDG+18] For S, d, n, t ∈ N, p, δ ∈ (0, 1), there exist

σ = poly(t, log(2tS), log(1/δ), log(1/p))11

and m = O(σ log n) such that, for any 2m ≤ k ≤ n(p/4)d,

(ACd(S) =⇒ LLd,m,n[DT(t)], dε)

where
ε = nS

(
22t+1(5pt)t + δ

)
+ exp(− σ

2 log(1/p) ).

Ball et al. [BDG+18] used the fact that for t < log n, leaky depth-t decision
trees is a subclass of leaky 2t-local functions and gave a non-malleable code for
leaky local functions based on a construction of Ball et al. [BDKM16]. Their
approach only works for t < log n. This limits the error of the composed code to
be n−O(logn) which, in turns, requires S = nO(logn). (The same restrictions also
appear in [CL17], but for other reasons.)

11 The exponent of this polynomial is a fixed absolute constant independent of all other
parameters.



We note that the “leakage” is simply a restricted form of dm adaptive queries
to depth-t decision trees. Thus, LLd,m,n[DT(t)] ⊆ DT(dmt). Therefore a non-
malleable code for large depth decision trees immediately yields a new non-
malleable code for small depth circuits (with improved error). In particular,
LLd,m,n[DT(t)] gives decision trees that are identical excepting (up to) the last
t queries before output (and that the last t-queries must be consistent with one
of n depth-t decision trees). Combining Lemma 8 and our new non-malleable
reduction from decision trees to split-state functions, we obtain an improved
non-malleable reduction from small-depth circuits to split-state functions.

Lemma 9. For S, d, n, t ∈ N, p, δ ∈ (0, 1), there exist

σ = poly(t, log(2tS), log(1/δ), log(1/p))

and m = O(σ log n) such that, for t′ = dmt = O(n1/4/ log3/2 n), k ≥ O(σ log n)
and k = Ω(n(p/4)d/(t′)2 log3 n),(

ACd(S) =⇒ SSk, dε+ exp(−Ω(n/(t′)4 log5 n))
)

where
ε = nS

(
22t
′+1(5pt′)t

′
+ δ
)

+ exp(− σ

2 log(1/p)
).

For constant-depth polynomial-size circuits (i.e.,AC0), by setting p = n−O(1/d)

(such as n−1/100d), t′ = 1/40p and δ = exp(n−Ω(1/d)), we improve the error of
the non-malleable reduction from AC0 to split-state from n− logn to exp(−nΩ(1)).

Corollary 1.
(
AC0 =⇒ SSk, exp(−nΩ(1))

)
for n = k1+c for a constant 0 <

c < 1.

The same setting of parameters lead to non-malleable reduction for circuits
of depth as large as Θ(log(n)/ log log(n)) and size S = exp(nO(1/d)) with error
exp(−nΩ(1/d)). Combining the non-malleable code for split state from [Li18] with
rate Ω(log log n/ log n) and error exp(−Ω(n log log n/ log n)), we obtain our main
theorem.

Theorem 9. For any constant c ∈ (0, 1), there exist constants c1, c2 ∈ (0, 1)
such that for any d ≤ c1 log n/ log log n and S = exp(nc2/d) there is an explicit,
efficient, information theoretic non-malleable code for depth d size S circuits
with error exp(−nΩ(1/d)) and encoding length n = k1+c.
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A Leaky Function Classes

Ball et al. [BDG+18] considered a leaky variant of a given tampering class C.

Definition 12 (Leaky Function Families). [BDG+18] Let LLi,m,N [C] de-
note tampering functions generated via the following game:

1. The adversary first commits to N functions from a class C, F1, . . . , FN = F .
(Note: Fj : {0, 1}N → {0, 1} for all j ∈ [N ].)

2. The adversary then has i-adaptive rounds of leakage. In each round j ∈ [i],
– the adversary selects s indices from [N ], denoted Sj,
– the adversary receives F (x)Sj

.

Formally, we take hj : {0, 1}m(j−1) → [N ]m to be the selection function such
that

hj(F (X)S1
, . . . , F (X)Sj−1

) = Sj .

Let h1 be the constant function that outputs S1.
3. Finally, selects a sequence of n functions (Ft1 , . . . , Ftn) (T = {t1, . . . , tn} ⊆

[N ] such that t1 < t2 < · · · < tn) to tamper with.
Formally, we take h : {0, 1}mi → [N ]n such that h(F (X)S1 , . . . , F (X)Si) =
T .

Thus, any τ ∈ LLi,m,N [C] can be described as (F , h1, · · · , hi, h) and denote the
tampering function described above via τ = Eval(F , h1, · · · , hi, h).
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