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Abstract. We introduce the corrupted token model. This model gener-
alizes the tamper-proof token model proposed by Katz (EUROCRYPT
’07) relaxing the trust assumption on the honest behavior of tokens.
Our model is motivated by the real-world practice of outsourcing hard-
ware production to possibly corrupted manufacturers. We capture the
malicious behavior of token manufacturers by allowing the adversary to
corrupt the tokens of honest players at the time of their creation.
We show that under minimal complexity assumptions, i.e., the existence
of one-way functions, it is possible to UC-securely realize (a variant
of) the tamper-proof token functionality of Katz in the corrupted to-
ken model with n stateless tokens assuming that the adversary corrupts
at most n − 1 of them (for any n > 0). We apply this result to existing
multi-party protocols in Katz’s model to achieve UC-secure MPC in the
corrupted token model assuming only the existence of one-way functions.
Finally, we show how to obtain the above results using tokens of small
size that take only short inputs. The technique in this result can also
be used to improve the assumption of UC-secure hardware obfuscation
recently proposed by Nayak et al. (NDSS ’17). While their construction
requires the existence of collision-resistant hash functions, we can obtain
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the same result from only one-way functions. Moreover using our main
result we can improve the trust assumption on the tokens as well.

1 Introduction

UC-secure MPC. Secure multi-party computation [27] (MPC) allows mutually
distrustful parties to jointly compute a function f , while preserving the pri-
vacy of their inputs/outputs. Canetti [8] introduced the notion of universal
composability (UC) to model secure MPC in an environment where multiple
concurrent executions of different protocols take place. Unfortunately UC se-
curity is significantly harder to achieve than plain secure computation. In fact,
in the plain model (i.e., without trusted set-up assumptions, physical assump-
tions, superpolynomial-time simulation and so on) most functionalities can not
be UC-realized [11, 13]. Impossibility results exist even for the basic case of self-
concurrent composition with static inputs [4, 1, 25].

In light of these impossibility results, various trust assumptions have been
studied in order to obtain UC-secure constructions. Among these, one of the
most studied is that of tamper-proof hardware tokens. Hofheinz et al. [32], con-
sidered the notion of “tamper-proof devices” in the form of signature cards in
order to realize UC-secure protocols. They show how to construct UC-secure
commitment and zero-knowledge arguments using tamper-proof signature cards
as the setup assumption. The more general formalization of tamper-proof hard-
ware tokens was given by Katz [35]. Katz’s tamper-proof token functionality
abstractly captures a physical tamper-proof hardware token that is created and
sent by a sender to a receiver. The receiver can use the token to execute the
program stored in it multiple times as a black-box, on inputs of his choice.
Tokens can be either stateful (i.e., they retain an updatable memory between
executions; this is a stronger trust assumption because it additionally assumes a
tamper-proof updatable memory) or stateless (i.e., all executions start with the
same configuration). Motivated by the practical relevance of the model, as well
as the challenging open questions on the feasibility of protocols in this model,
UC-security with tamper-proof tokens has been widely explored with a focus on
the more challenging case of stateless tokens [14, 36, 29, 17, 15, 20, 31, 39, 5].

Token manufacturing. Assuming that tokens are honestly generated is clearly a
very demanding assumption that essentially requires honest players to rely on the
honesty of a token manufacturer that they trust. Hence, while the tamper-proof
token model works as a physical assumption in theory, in practice it degenerates
into a model where the security of an honest player depends on the honest be-
havior of an external player chosen by the honest player5. All prior works that
consider hardware-based security critically rely on the honest player being able to
reliably construct tamper-proof tokens. An attempt to relax this assumption was

5 A similar question for the case of Common Reference String (CRS) generation was
answered in the multi-string model [30]
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done in [23] focusing only on the set intersection functionality, without consider-
ing UC security. More recently, [2] considered the problem of outsourcing circuit
fabrication where a given circuit is compiled into smaller components, each of
which can be outsourced to a possibly malicious manufacturer. The components
(both honestly and maliciously manufactured) are then re-assembled honestly to
get a “secure hardware token”. Their (stand-alone) security model only allows
an adversary black-box access to the rebuilt circuit, and not the individual com-
ponents and additionally also requires one “small” tamper-proof token that can
be generated honestly in a trusted manner. In contrast, we do not wish to make
any assumptions on small trusted components and consider composability. The
above state of affairs brings us to the following natural question.

“Can we obtain UC-secure hardware-based security in a world
where most hardware token manufacturers may be corrupt?”

1.1 Our Results

We resolve the above open problem in the positive under minimal complexity
assumptions. We now discuss all our contributions in detail.

The corrupted token model. We consider the concrete scenario where the sender
of a token does not have the ability to physically create a tamper-proof token, but
instead has to rely on possibly untrusted manufacturers. In case a manufacturer
is corrupted (and may be colluding with other parties), the program embedded
in the token may be leaked, or replaced in its entirety. In other words, tokens in
this model can be tampered arbitrarily at the time of creation.

To model security, we define a functionality for UC security allowing the
design of protocols that make use of tokens generated by potentially adversarial
manufacturers. In turn, we propose a new model extending the stateless version
of Katz’s tamper-proof token model in [35], that we call corrupted token model.
In our new model, the adversary is allowed to corrupt tokens when they are
created by honest parties. The attack happens during the token creation phase,
and the adversary learns all information that the honest player wanted to store
in the token. Moreover the adversary is allowed to replace the token with a
different token of its choice, including even a stateful one.

The corrupted token model abstractly represents the process of outsourcing
the production of hardware tokens to possibly corrupted manufacturers. This is
the reason why we allow corruption to occur only at the time the tokens are
created. Our model also allows adaptive corruption of the manufacturers, in the
sense that the adversary may choose to corrupt the next request of token gen-
eration of an honest player depending on what has been learnt so far. Finally,
the adversary can freely decide the content of corrupted tokens and can even
make it stateful. This is similar to dealing with a real-world hardware Trojan
as described in [21, 38] with a few key differences. In the model of [21], there
exists an incorruptible “master circuit,” whose role is to manage communication
between tokens honestly. The model of [38] also has a “controller” circuit, whose
role is similar to the master circuit in [21], but is allowed to be compromised. On
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the other hand, our model does not have a token with a specific role and allows
any token to be corrupted. Both [21] and [38] do not consider UC security and
additionally the construction of [38] is based on variants of ElGamal public-key
encryption and Schnorr signature scheme, whose security are based on hard-
ness of elliptic curve Diffie-Hellman and discrete logarithm, respectively. Our
construction is UC-secure and is based on the minimal assumption of OWFs.

Katz’s token functionality in the corrupted token model. We construct a pro-
tocol in the corrupted token model using n tokens that UC-realizes a stronger
variant of Katz’s tamper-proof token functionality. We call such a variant the
tamper-proof token with abort functionality. The difference between the tamper-
proof token with abort functionality and the original Katz’s tamper-proof token
functionality is that our variant allows the adversary to learn that a token has
been sent (even between honest parties), and can choose to abort and prevent
the delivery of that token. This captures the realistic scenario where an adver-
sary physically prevents token delivery and thus stops the protocol that relies on
tokens. Still the adversary learns nothing about the program in the uncorrupted
token generated by the honest party. The need for abort in the functionality is
unavoidable as seen through the following reasoning. Suppose the tamper-proof
token functionality (without abort) can be realized by n corruptible tokens.
Then, the adversary in the corrupted token model corrupts all but one of the
tokens and replaces them with corrupted tokens that do nothing. Now, if the
tamper-proof token functionality without abort is realized with the remaining
(uncorrupted) token, then this token must hold the complete program and se-
crets of the honest party (so that it can carry out the computation by itself).
However, in an alternate corruption strategy, this token is also susceptible to cor-
ruption, and if the adversary had instead corrupted only this token, she would
have learnt all secrets of the original honest token in Katz’s model resulting in
the insecurity of the protocol. Hence, the functionality must allow for aborts.

It is easy to see that this argument extends to the case of any dishonest major-
ity (i.e., even with only bn/2 + 1c corrupted tokens). Our protocol UC-realizes
the tamper-proof token with abort functionality assuming that the adversary
corrupts at most n− 1 tokens where n is the number of token creations invoked
by an honest party. We remark that, if we were willing to make the assumption
that a majority of token manufacturers were honest, then we can avoid aborting
the protocol when the adversary corrupts a (minority) fraction of the tokens.

The notion of token transfer across the environment in various sessions in
the Global-UC (GUC) framework has been studied recently by Hazay et al. [31].
Obtaining GUC security is more challenging and we leave the question of GUC
security in the corrupted token model to future research. Still, we stress that in
many natural scenarios, UC security already suffices and achieves a very strong
level of security under composition with any other protocol as long as there is a
way to avoid the sharing of the same setup among sessions.

A compiler to reduce trust in tokens. As our main result, we show how to trans-
form any protocol in Katz’s tamper-proof token model into a protocol in our
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corrupted token model thereby improving the trust assumption of several hard-
ware token-based protocols. Indeed the transformed protocol remains secure even
when n − 1 out of the n tokens created by honest parties are corrupted at the
time of creation. Our transformation preserves UC security and only assumes the
existence of one-way functions (OWF). We focus on stateless tokens since this is
the milder physical assumption and is the most challenging case. We remark here
that requiring one token to be uncorrupted is unavoidable. To see this, suppose
for the sake of contradiction, there is a protocol UC-realizing a tamper-proof
token functionality using n corruptible tokens that remains secure even when an
adversary corrupts all n tokens. Now suppose an adversary in the secure com-
putation protocol corrupts all but one of the parties and corrupts all the tokens
manufactured by this party. Now, if the resulting protocol still remains secure,
then this would give us a UC-secure MPC protocol (secure against all-but-one
corruption) with no trusted setup, as all “trusted” components created by the
honest party are corrupted (in more detail, generating and sending a token could
then be replaced by sending a message with the description of the program of
the token). This contradicts known impossibility results [11, 13]. Hence, we must
assume that at least one hardware token created by every honest party is un-
corrupted. Additionally, the existence of OWFs is the minimal assumption that
one can hope for since, as argued in [29], any unbounded adversary can query a
stateless tokens exponentially many times to learn the programs embedded.

Our transformation can be applied to existing protocols in the Katz’s token
model to obtain new results in the corrupted token model. For instance, starting
with the recent UC-secure MPC constructions in the tamper-proof token model
based on OWFs [31], we get the same results in the corrupted token model
assuming only OWFs.

Other results and sub-protocols. As an additional result, we improve the result
of [39] by removing the need of collision-resistant hash functions, and apply our
transformation to obtain an obfuscation protocol in the corrupted token model
based solely on OWFs. Moreover, as a building block for our constructions, we
present a simultaneous resettable zero-knowledge (sim-res ZK) argument and
UC-secure MPC for any well-formed functionality in the correlated randomness
(CR) model assuming OWFs only. In the CR model, each party has access to
a private, input-independent, honestly generated, string before the execution of
the protocol by the correlated randomness functionality. These protocols may be
of independent interest. We stress that correlated randomness is not required as
a setup for our construction achieving UC security in the corrupted token model
and is only used as an intermediate building block.

1.2 High-Level Overview of Our Constructions

Realizing Katz’s token functionality. We begin by describing how to UC-realize
Katz’s token functionality in the (n, n−1)-token-corruptible hybrid model, (i.e.,
the model where n tokens are generated by an honest player and at most n− 1
are corrupted by the adversary at the time of token generation). We refer to
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the final protocol that realizes Katz’s functionality as Π. Protocol Π will make
use of a UC-secure n-party protocol Π ′ and a sim-res ZK argument ΠrsZK

with straight-line simulator, both in the CR model6. At a very high level, we
construct Π as follows. Given a description of the program P for Katz’s tamper-
proof token (such a description is specified by the protocol in Katz’s model) we
first create n shares of the description of P using an n-out-of-n threshold secret
sharing scheme. Then n tokens are created as follows. The program of the i-th
token includes: 1) the i-th share; 2) commitments of all shares; 3) decommitment
information for the i-th share; 4) correlated randomness to run the n-party UC-
secure MPC in the CR model; 5) correlated randomness to run a simultaneous
resettable ZK in the CR model; 6) seed for a PRF; and 7) random tape for
commitment of the seed.

When a user must query a Katz token implementing program P on input
x, he/she must first send each token this input value (a dishonest user may
send different values to different tokens). We shall refer to the “version” that
the ith token receives by xi. When queried with an input xi, the i-th token first
commits to its input (i.e., xi) and to its seed for the PRF (see point 6 above). The
randomness used for the first commitment comes from evaluating the PRF using
the above seed and the input xi while the randomness for the second commitment
is the string stored in the token (see point 7 above). These commitments provided
by all the tokens together is called the determining message. For the remaining
execution of Π, each token obtains the random tape needed by Π ′ and ΠrsZK by
computing the PRF on the determining message (and a unique ID value) using
its seed. The tokens will execute an n-party UC-secure MPC protocol in the CR
model, Π ′ (see point 4 above). More specifically, the i-th token, if honest, will run
the code of the i-th player of Π ′ on input the following pair: the received input
(i.e., xi) and the i-th share of P (see step 1 above). Π ′ will securely compute
the functionality that reconstructs P from the shares that are part of the inputs
of the players and then executes P on input x. The reconstruction aborts if
x 6= xi for some i. Each Π ′ message m sent by the ith token is followed by a
simultaneous resettable ZK argument of knowledge (see step 5 above) proving
that the message m is computed correctly according to the committed PRF seed
and the i-th committed share (see step 2 and 3 above) of P .

The resettable soundness of the ZK argument guarantees that a corrupted
token cannot deviate from the underlying MPC protocol Π ′ even when the
adversary can execute any tokens any number of times on any inputs of his choice
(even after resetting the state of the honest token several times). Moreover, the
security of Π ′ guarantees that the adversary corrupting all but one token does
not learn anything about the inputs of uncorrupted tokens other than xi he
chooses and the output. This means the adversary only learns at most n − 1

6 The correlated randomness is the key that allows us to avoid the impossibility of
resettably-secure computation in the standard model proven in [25]. However, we
stress that correlated randomness is not required by our main theorem for UC secu-
rity with tamper-proof stateless corruptible tokens from OWFs.
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shares of the program P , and thus learns nothing about P by the security of the
secret sharing scheme.

Since tokens are stateless, we employ the technique in [39] to encrypt the state
of the token and output it along with the message. Each subsequent invocation of
the token requires an encrypted previous state as additional input. A symmetric
key encryption scheme is used to prevent the adversary to learn or modify states
of uncorrupted tokens. This allows us to construct a simulator that simulates
both the MPC and ZK messages using their simulators.

Simultaneous resettable ZK argument in the CR model. The above discussion
assumed the existence of a sim-res ZK argument ΠsrZK with straight-line simu-
lator in the CR model. We obtain this result in 2 steps starting from a 3-round
public-coin ZK argument Σ, in the CRS model with straight-line simulation
based on OWFs (such as the one in [37]).

First, we add the argument of knowledge (AoK) property with straight-line
witness extractor to Σ in the CR model. For this, we use a technique similar
to the one used in [24] where a prover encrypts a witness, sends the encryption
as a message, and then uses Σ to prove that it is the encryption of the right
witness. To avoid the use of stronger assumptions than OWFs, we replace a
public-key encryption scheme in [24] with a secret-key encryption scheme and
a commitment scheme. The commitment of a secret key and its corresponding
decommitment information are given to the prover while only the commitment
is given to the verifier as part of their correlated randomness. The resulting
protocol is still 3-round, public-coin and with straight-line simulation.

In the second step, we add a simultaneous resettable witness indistinguisha-
bility (sim-res WI) argument of knowledge from OWFs to construct a simulta-
neous resettable zero-knowledge argument in the CR model with straight-line
simulation. To prevent a malicious prover from resetting, the verifier uses a PRF
applied to the statement and the prover’s message to generate a string c to play
in the second round of Σ instead of uniformly sampling her message. Then, to
prevent a malicious verifier from resetting, the verifier runs the prover of the
sim-res WI to prove that c is generated honestly or that a given long string d
is an output of a PRG on input a short seed. Since d is uniformly chosen as
part of the correlated randomness, the verifier cannot maliciously manipulate c.
Resettable soundness can then be shown through a hybrid experiment where d
is generated from the PRG similarly to [19].

UC-secure n-party computation in the CR model. Our main result also assumed
Π ′, i.e., a UC-secure n-party computation protocol in the CR model for any well-
formed functionality. We next outline how we construct Π ′ based on OWFs.

First, we consider UC-secure MPC in the OT-hybrid model against a mali-
cious adversary corrupting all but one party such as the one in [34]. Since OT
can be generated using correlated randomness [6], we focus towards obtaining a
UC-secure MPC in the CR model. However, we face a new challenge. Since our
final protocol can be executed on polynomially many inputs, where the polyno-
mial is not apriori known to the correlated randomness generator, we must be
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able to produce “different” randomness for any input on which the protocol is
generated. This would require a stronger version of the OT extension technique
from [7] that allows the extension to super-polynomial number of OTs. This is
similar in spirit to constructing a PRF that can generate “super-polynomial”
randomness from a short seed (even though it will only be evaluated on polyno-
mially many inputs). In particular, we modify the technique in [7] to construct
UC-secure unbounded number of OTs from a small number of OTs distributed
as setup in the CR model. We do this as follows. In the OT extension protocol
in [7], a sender uses a circuit that first computes a PRG that takes a small input
and outputs a large random string and then uses the string to obtain a large
number of OTs. The circuit is then garbled using Yao’s garbled circuit and sent
to a receiver. The receiver then uses a small number of OTs to obtain a garbled
input correspond to its small random seed. In our approach, the sender uses a
PRF that allows us to generate super-polynomial number of such random strings.
While a computationally bounded sender cannot compute a garbled circuit of
super-polynomial size, it only needs to send a smaller subcircuit to compute
the ith string in each execution. This garbled circuit is of polynomial size as in
Beaver’s version, computing only the required amount of OTs at a time. This
is repeated to give an (apriori) unbounded number of OTs. Composing the UC-
secure unbounded number of OTs in the CR model and a UC-secure MPC in
the OT-hybrid model, we get UC-secure MPC in the CR model.

Getting rid of correlated randomness. While the building blocks Π ′ and ΠrsZK

are in the CR model, our main protocol Π is not. Both subprotocols will be run
by n tokens created by a single honest party to emulate the token functionality of
a single well-formed token in Katz’s model. Therefore, in Π, the party requesting
the creation of a token can generate and give the correlated randomness to n
different manufacturers. Hence, the correlated randomness is not a setup of our
main result, and is computed by an honest player in our protocol to run subpro-
tocols that need it. An adversary can replace the correlated randomness in n−1
of those tokens arbitrarily, and still our protocol is secure because Π ′ and ΠrsZK

are secure with respect to such behavior. In fact, as a further optimization, if we
wish to create tokens that are completely independent of each other, then the
honest player in our protocol can create tokens that will only contain private
keys to encryption and MAC schemes – the correlated randomness and shares of
program required by the token can then be provided as encrypted and MACed
input by the honest player to the token when they need to be used.

Reducing the token size. In order to ensure that the queries to tokens are short
and the size of each token is small, we consider a technique used in [39] where a
large input is fed into a token in blocks of small size. To ensure the consistency
of the input, in [39] a Merkle’s tree based on CRHFs is used to commit to the
input beforehand. We improve on this technique by replacing the Merkle’s tree
with a new construction based on OWFs. At a very high level, we require the
user to “commit” to his/her input by feeding the input bit-by-bit into to the
token. The token will produce an authentication tag for every bit of the input
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sequentially, such that the final authentication tag will act as a “commitment” to
the user’s input. This result is of independent interest as an improvement on the
assumption of [39]. We generalize the technique of “bounded-size” tokens to our
corrupted token protocol. We first give a variant of corrupted token functionality
where the token size is independent of program P and the token can only accept
queries of (apriori) fixed, constant size. We then construct a protocol that UC-
realizes the corrupted token functionality in the corrupted “bounded-size” token
hybrid model using the above technique. Finally, we combine this protocol with
our main result to give a protocol that UC-realizes ‘standard’ tamper-proof token
functionality in the corrupted “bounded-size” token hybrid model.

2 Preliminaries

A polynomial-time relation R is a relation for which it is possible to verify in
time polynomial in |x| whether R(x,w) = 1. Let us consider an NP-language L
and denote by RL the corresponding polynomial-time relation such that x ∈ L
if and only if there exists w such that RL(x,w) = 1. We will call such a w a valid
witness for x ∈ L. Let λ denote the security parameter. A negligible function ν(λ)
is a non-negative function such that for any constant c < 0 and for all sufficiently
large λ, ν(λ) < λc. We will denote by Prr[X] the probability of an event X over
coins r, and Pr[X] when r is not specified. The abbreviation “PPT” stands for
probabilistic polynomial time. For a randomized algorithm A, let A(x; r) denote
running A on an input x with random coins r. If r is chosen uniformly at random
with an output y, we denote y ← A(x). For a pair of interactive Turing machines
(P, V ), let 〈P, V 〉(x) denote V ’s output after interacting with P upon common
input x. We say V accepts if 〈P, V 〉(x) = 1 and rejects if 〈P, V 〉(x) = 0. We

denote by view
P (w)
V (x,z) the view (i.e., its private coins and the received messages)

of V during an interaction with P (w) on common input x and auxiliary input
z. We will use the standard notion of computational indistinguishability [28].

2.1 Building Blocks

The main building blocks of our construction include simultaneous resettable ZK
arguments and MPC in the CR model. Please see the full version of this paper [9]
for various definitions related to interactive argument systems, zero-knowledge
arguments of knowledge, witness indistinguishability and resettability in the CR
model, adapted from their counterparts [12, 22, 3] in the plain model. We also
present other standard definitions of commitments, secret sharing schemes and
pseudorandom functions that we make use of in our construction.

2.2 UC Security in the Correlated Randomness (CR) Model

The correlated randomness (CR) model is an extension of the CRS model where
each party has access to a string generated by a trusted third party. Unlike in
the CRS model, the strings for parties may be different, but possibly correlated.
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and unlike in the augmented CRS model of [10], honest parties can access their
strings privately. Thus, it can be considered as a variant of the key registration
(KR) model of [10].

Our CR model is defined to be consistent with the one of [33], taking into
account the UC setting. A protocol φ in the CR model is defined with the cor-
responding correlated randomness functionality Fφcorr, which generates a corre-
lated random string for each party in the protocol φ independently of the parties’
input. Each party can access its string (but not other parties’ random strings)
by invoking Fφcorr. In the security proof, the ideal world simulator is allowed to
obtain the correlated random strings associated to all parties, thereby having an
advantage over the real-world adversary.

Let φ be n-party protocol in the CR model. Let D be a distribution on
S1 × . . . × Sn where Si is the set of possible random strings for party Pi. The
correlated randomness functionality Fφcorr is defined in Figure 1.

Fφcorr

When receiving (sid) from Pi:

1. If there is no tuple of the form (sid, ?, . . . , ?),
(a) Generate (s1, . . . , sn)← D(1λ).
(b) Store (sid, s1, . . . , sn).
Otherwise, retrieve the stored (sid, s1, . . . , sn).

2. Send (sid, si) to Pi.

Fig. 1. Correlated Randomness Functionality Fφcorr

Definition 1. Let F be an ideal functionality and let φ be a multi-party protocol.
Then the protocol φ UC realizes F in Fφcorr-hybrid model if ∀ PPT hybrid model
adversary A, ∃ a uniform PPT simulator S such that for every non-uniform en-
vironment Z, the following two ensembles are computationally indistinguishable

{ViewF
φ
corr

φ,A,Z(λ)}λ∈N ≈c {ViewF,S,Z(λ)}λ∈N.

3 Simultaneous Resettable ZK from OWFs

In this section, we construct a simultaneous resettable ZK argument in the cor-
related randomness model with straight-line simulation. The security of our con-
struction relies only on the existence of OWFs. The main building block for our
construction is a 3-round public-coin ZK argument system in the CRS model
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with straight-line simulation based on OWFs (such as in [37]). Using this public-
coin argument system, we first construct a zero-knowledge argument of knowl-
edge (ZKAoK) in the CR model with straight-line simulation and extraction.
We then use this ZKAoK protocol to construct a simultaneously resettable zero-
knowledge protocol in the correlated randomness model, based only on OWFs.
We do so, in the following way: As part of the correlated randomness, the prover
is given the commitment t, to the seed of a PRF, s, as well as a long random
string d. The verifier is given the decommitment information (s and random-
ness) to this commitment t as well as d. Now, we have the verifier prove, using a
simultaneous resettable WI (srWI) argument (based on OWFs [16]), that: either
the verifier’s random message c in the ZKAoK protocol is the output of a PRF
(using seed s) on input the transcript so far, or that d is the output of a PRG
on input a short string. The prover verifies the srWI argument and if this is
successful, will execute the remainder of the ZKAoK taking c as the verifier’s
message. More details follow.

3.1 ZKAoK in the Correlated Randomness Model from OWFs

We first show how to convert a 3-round public-coin ZK argument system in
the CRS model with straight-line simulation (based on OWFs) into one that is
also an argument of knowledge (with straight-line simulation and straight-line
witness extractor) in the CR model. Let ΠZK = (K,P, V ) be the ZK argu-
ment in the CRS model with a straight-line simulator S = (S1,S2) (e.g. [37]).
Let (KeyGen,Enc,Dec) be a CPA-secure secret key encryption scheme. Define
(K ′, P ′, V ′) in the CR model as in Figure 2.

Lemma 1. ΠZKAoK is ZKAoK with straight-line simulator and witness extrac-
tor in the correlated randomness model.

For a proof of the above lemma, please see the full version of this paper [9].
Note that if the protocol ΠZK is 3-round and public-coin, the resulting protocol
ΠZKAoK is also 3-round and public-coin.

3.2 Simultaneous resettable ZK in the CR model from OWFs

We now construct a simultaneous resettable ZK argument system in
the correlated randomness model based on OWFs. Let ΠZKAoK =
(KZKAoK , PZKAoK , VZKAoK) be a 3-round ZK argument of knowledge protocol
in the CR model with transcript (m1, c,m2) where c ∈ {0, 1}λ is chosen uniformly
at random, a straight-line simulator SZKAoK = (S1,S2), and a straight-line wit-
ness extractor EZKAoK = (E1, E2) from Lemma 1. Let (PWI , VWI) be a srWI
argument (e.g. [16]). Let {fs}s be a family of pseudorandom functions such that
for s ∈ {0, 1}`0(λ), fs outputs c ∈ {0, 1}λ. Let f : {0, 1}`1(λ) → {0, 1}`2(λ) be a
PRG. We define ΠsrZK as in Figure 3.

The proof of resettable soundness goes as follows. We first consider the ex-
periment with an imaginary protocol ΠF where a truly random function is used
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ΠZKAoK = (K′, P ′, V ′)

K′(1λ):

1. σ ← K(1λ), sk ← KeyGen(1λ). Let k = com(sk) and γ0 be the decommitment
information.

2. K′ outputs sP = (σ, sk, k, γ0) and sV = (σ, k).

Execution phase: P ′ on input (x,w) and private string sP ; V ′ on input x and
private string sV

1. P ′ parses sP = (σ, sk, k, γ0), computes e← Enc(sk, w) and sends e to V ′.
2. V ′ parses sV = (σ, k).
3. P ′ and V ′ run 〈P (w′), V 〉(σ, x′) where x′ = (x, e, k) and w′ = (w, sk, γ0) to

prove that there exists w, sk, γ0 such that (x,w) ∈ RL and w = Dec(sk, e)
and k can be decommitted to sk using γ0.

4. V ′ outputs the output of V .

Fig. 2. ZKAoK argument protocol ΠZKAoK in the correlated randomness model

instead of the PRF, and the verifier uses an alternate witness for the sim-res WI.
We will show that ΠF is resettably sound by contradiction. Finally, we show that
the probability that any resetting adversary can prove a false theorem in ΠsrZK

is negligibly close to that of ΠF through a series of hybrids. This implies that
ΠsrZK is also resettably-sound.

Lemma 2. The protocol ΠsrZK in the CR model is resettably-sound.

Lemma 3. Protocol ΠsrZK is resettable ZK in the CR model with a straight-line
simulator.

For proofs of the above lemmas, please see the full version of this paper [9].
Lemmas 2 and 3 together gives us the following theorem:

Theorem 4. Assuming the existence of OWFs, there exists a simultaneous re-
settable ZK argument protocol in the CR model with a straight-line simulator.7

4 MPC in the Correlated Randomness Model

In this section, we construct a UC-secure MPC protocol in the CR model based
on OWFs. The key ingredients are an MPC protocol in the OT-hybrid model
UC-secure against an adversary corrupting all but one party, and a protocol UC-
realizing unbounded number of OTs in the CR model. In [34], Ishai, Prabhakaran

7 Our ZK argument protocol also has a straight-line witness extractor, but it is not
necessary for our applications.
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ΠsrZK = (K,P, V )

K(1λ):

1. (σP , σV ) ← KZKAoK(1λ), s ← U`0(λ), d ← U`2(λ). Let t = com(s) and γ be
the decommitment information.

2. K outputs sP = (σP , t, d) and sV = (σV , s, γ, t, d).

Execution phase: P on input (x,w) and private string sP ; V on input x and private
string sV

1. P parses sP = (σP , t, d), runs PZKAoK(x,w, σP ) to compute m1, and sends
m1 to V .

2. V parses sV = (σV , s, γ, t, d), runs VZKAoK(x, σV ) to sends c = fs(x||m1)
on behalf of VZKAoK to P (running PZKAoK), and runs PWI(y, (s, γ)), with
y = (t, c, d, x,m1), proving to P running VWI(y) that one of the following
statements hold
– there exists s′ and γ such that t can be decommitted to s′ using γ and
c = fs′(x||m1).

– there exists d′ such that d = f(d′).
3. If VWI accepts, P continues running PZKAoK(x,w, σP ) to compute m2 and

send it to V .
4. V runs VZKAoK on (m1, c,m2) and outputs the output of VZKAoK .

Fig. 3. Simultaneous resettable ZK argument protocol ΠsrZK in the CR model

and Sahai introduce the IPS compiler which combines an MPC with an honest
majority and a protocol secure against semi-honest adversary in the OT-hybrid
model to get a protocol UC-secure against malicious adversaries in the setting of
no honest majority. One of their main applications, by applying the compiler to
a variant of the protocol in [18], gives an MPC protocol in the OT-hybrid model
that is UC-secure against a malicious adversary corrupting all but one party,
assuming only a PRG. Unlike their main result, however, this MPC protocol
requires a large number of OTs, proportional to the circuit size.

To address the number of OTs required, we then construct a UC-secure
protocol for unbounded number of OTs in the CR model. The first attempt is
to use Beaver’s OT extension [7] from a bounded number of OTs which can be
generated using correlated randomness [6]. The problem with this approach is
that we can only get polynomial number (in the number of original OTs) of
OTs for some fixed polynomial known in advance. However, in our protocol, we
would require (an apriori) unknown number of OTs to be generated from the
initial OTs – this is because the number of OTs needed depends on the number
of times the hardware token is executed.

13



To get around this problem, we do as follows. We have the sender construct
a super-polynomial size Yao’s garbled circuit that computes the OTs. Of course,
the sender cannot compute this entire garbled circuit. So, instead of sending
the garbled circuit to the receiver, the sender commits to the first layer of the
garbled circuit and the seed for the PRF that is used to generate the rest of the
garbled circuit. When the receiver queries for the ith OT, the sender sends a
section of the garbled circuit that suffices to compute the output followed by the
ZK argument that it is consistent with committed values. However, this section
of the circuit is now of polynomial size. This technique is similar in spirit to the
GGM [26] technique for constructing a PRF. We now present more details.

4.1 Beaver’s OT Extension

Before we construct a UC-secure protocol computing unbounded number of OTs,
we first recall Beaver’s construction [7]. Beaver considers two notions of OT.

– 1
2OT: the sender S has x0 and x1. At the end of the protocol, the receiver
learns (b, xb) for a random bit b, the sender learns nothing about b.

–
(
2
1

)
OT: the sender has x0 and x1, the receiver has a bit b. At the end of the

protocol, the receiver learns xb, the sender learns nothing about b.

In [6], Beaver shows that O(n) instances of
(
2
1

)
OT can be generated from O(n2)

instances of 1
2OT. In [7], the sender constructs a garbled circuit that takes a

short input for a PRG, then expands it to a long string. Each bit of the string is
used to select one of each pair of the sender’s inputs. In order to get a garbled
input corresponding to the receiver’s seed and the garbled circuit, the sender
and the receiver only need to perform a small number of OTs for each bit of the
short input. This OT extension technique extends λ

(
2
1

)
OTs to poly(λ) 1

2OTs.
This small number of OTs can be precomputed [6] as part of the correlated
randomness. While this OT extension results in 1

2OT, smaller number (but still

polynomial) of
(
2
1

)
OT can be generated using the same number of starting OTs.

4.2 Unbounded Number of OTs

We now construct a UC-secure protocol computing unbounded number of OTs
in the correlated randomness model assuming only OWFs. We consider the fol-
lowing modification to the OT extension above. Instead of a PRG, we use a
PRF to generate a pseudorandom ri for any i ∈ {0, 1}λ using seed s1 given to
the sender on input s2||i where s2 plays the same role as the seed in Beaver’s
extension protocol. Each ri can be used to select the sender’s input in the same
way as in Beaver’s protocol. However, the entire circuit (for all i) will have ex-
ponential size. To get around this problem, for each i, the sender only sends a
garbled circuit corresponding to a subcircuit that suffices to compute an output
based on the sender’s ith input and ri. We also use UC-secure ZK argument
and commitment to ensure that malicious parties cannot deviate from the pro-
tocol. Since the whole garbled circuit is fixed given the committed values, the
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sender cannot change the circuit and still successfully provide the ZK argument.
Sender security is proved by arguing that the receiver does not learn more than
the intended output by the property of the garbled circuits.

OTunbounded = (K,S,R)

K(1λ):

1. (σS , σR) ← K0(1λ), σZK ← KZK(1λ), s1, s2, s3 ← S. For i = 1, 2, 3, let
(ci, γi)← com(si) with decommitment information γi ∈ {0, 1}`(λ).

2. K outputs sS = (σS , σZK , s1, γ1, s3, γ3, c2) and sR = (σR, σZK , s2, γ2, c1, c3).

Before 1st Execution phase: S on private string sS ; R on private string sR

1. S parses sS = (σS , σZK , s1, γ1, s3, γ3, c2). Let C(s, i) = CX,s1,c2(s, i) be a
circuit that outputs (r1, . . . , rn) = Fs1(s||i). Let (G, π) = GC(C; fs3(0)).

2. R parses sR = (σR, σZK , s2, γ2, c1, c3). R runs R0(s2, σR) to query π(s2) from
S running S0(π, σS). R records the output s.

3. R runs PZK(σZK , (s2, γ2)) to prove to S running VZK(σZK) that c2 can be
decommitted to s2 using γ2 and R queries for s2. If VZK rejects, S aborts.

ith Execution phase: S on input Xi = {xi,j0 , xi,j1 }j∈[n], where xi,jb ∈ {0, 1} and
private string sS ; R on private string sR

1. S parses sS = (σS , σZK , s1, γ1, s3, γ3, c2). Let Ci(s) = Ci,X,s1,c2(s) be a
circuit that first computes r = C(s, i), and if r = (r1, . . . , rn) 6= ⊥, out-
puts ((r1, x

i,1
r1 ), . . . , (rn, x

i,n
rn )); otherwise, outputs ⊥. S computes (Gi, π) =

GC(Ci; fs3(0), fs3(i)) such that fs3(0) is used for input wires (for consistency
of π) and fs3(i) is used for the rest. S sends Gi to R

2. R parses sR = (σR, σZK , s2, γ2, c1, c3); S runs PZK(σZK , (s1, s3, γ1, γ3))) to
prove to R running VZK(σZK) that Gi is generated using s1 and s3, which
decommitted to c1 and c3 using γ1 and γ3, respectively. R aborts if VZK
rejects.

3. R outputs GE(Gi, s).

Fig. 4. UC-Secure Unbounded OT Protocol

Let G = (GC,GE) be Yao’s garbling circuit scheme where each gate and
wire are encrypted. For a circuit C, let (G, π) ← GC(C) consist of a garbled
circuit C and garbled input function π such that π(i, x) is a garbled input
for ith position input x ∈ {0, 1}. Let OT0 = (K0, S0, R0) be a protocol for
λ
(
2
1

)
OTs in the CR model. Let {fs}s∈S be a family of PRFs with seed space

S and fs : {0, 1}2λ → {0, 1}p1(λ) for some polynomial p1. The unbounded OT
protocol construction, OTunbounded, is provided in Figure 4. Each execution of
OTunbounded gives n = p1(λ) 1

2OTs similar to Beaver’s, which can be turned into
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p2(λ)
(
2
1

)
OT for a smaller polynomial p2. A computational-bounded receiver can

execute OTunbounded polynomially many times for any polynomial not known at
construction time (as long as the polynomial is smaller than 2λ).

Theorem 5. Assuming OWFs, the protocol in Figure 4 is a UC-secure protocol
computing unbounded number of OTs in the CR model.

For a proof of the above theorem, please see the full version of this paper [9].

4.3 MPC in the OT-hybrid Model

Ishai et al. [34], construct a compiler that turns an MPC protocol that is secure
against adversary corrupting less than half of the parties (honest majority) into
a UC-secure MPC protocol in the OT-hybrid model. They apply this transfor-
mation to a variant of the MPC protocol from [18] to obtain the following:

Theorem 6 (Theorem 3 in [34]). Assuming a PRG, for any n ≥ 2, ∃ an
n-party constant-round MPC protocol in the OT-hybrid model that is UC-secure
against an active adversary adaptively corrupting at most n− 1 parties.

Combining this theorem with our UC-secure protocol for unbounded number
of OTs in the CR model, we get the following corollary.

Corollary 1. Assuming OWFs, for any n ≥ 2, there exists an n-party constant-
round MPC protocol in the CR model that is UC-secure against an active adver-
sary adaptively corrupting at most n− 1 parties.

5 Corrupted Token Model

We consider a generalization of the Katz’s tamper-proof token model [35] where
tokens can be corrupted by adversaries even when they are created by honest
parties. Our model is inspired by the real world application where honest users
cannot create tokens themselves. They instead rely on a number of manufactur-
ers, some of whom could be malicious. Thus, the secrets embedded in the token
description can be revealed to the adversary. Furthermore, the adversary can
replace the tokens with ones of its choice.

5.1 Katz’s Stateless Tamper-Proof Token Functionality Ftoken

Our model is based on the stateless version of Katz’s tamper-proof token
model [35]. In this model, each user can create a stateless token by sending
its description to Ftoken. The token is tamper-proof in the sense that the re-
ceiver can only access it through Ftoken functionality in a black-box manner. We
consider the case of stateless tokens where the tokens do not keep information
between each access and use the same random tape. Hence, without loss of gen-
erality, we can assume that the function computed by the token is deterministic.
In this case, we may represent the function with a circuit.
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Our protocol will UC-realize a variant of Ftoken, called Fabort
token , in which the

adversary is notified whenever a party creates a token and can choose to inter-
rupt its delivery. The receiver will not receive the token, but will be notified
with the special message interrupted. In such a case, the receiver aborts the pro-
tocol. This (otherwise unavoidable) change can be avoided by restricting the
adversary to corrupt less than half of the corruptible tokens, which will allow
the receiver to compute the output using the remaining uncorrupted tokens, but
will weaken the threshold of corruptions tolerated. For formal descriptions of the
two functionalities, please see the full version of this paper [9].

5.2 Corruptible Tamper-Proof Token Functionality Fcorruptible
token

We generalize the tamper-proof token model to accommodate such a scenario
by allowing an adversary to corrupt each token upon its creation. We define
corruptible tamper-proof token functionality F corruptible

token in Figure 5 by modifying
Ftoken as follows. Every time a user sends create command to the functionality
F corruptible

token , it first notifies the adversary and waits for one of two possible re-
sponses. The adversary may choose to learn the description of the token, and
replace it with another (possibly stateful) token of its choice. We call the token
chosen by the adversary a corrupted token. Alternately, the adversary may ig-
nore the creation of that token, and therefore, that token creation is completed
successfully and in this case, the adversary will not learn the description of the
token. After uncorrupted tokens are created, they are tamper-proof in the same
sense as in Katz’s model. The stateful program for the corrupted token can be
represented by a Turing machine.

In the case that the adversary chooses not to corrupt any token created
by honest users, our model is identical to the model of Katz. Thus, our model
generalizes the standard tamper-proof token model. We show that we can achieve
UC-secure 2PC/MPC in the corrupted token model allowing the adversary to
corrupt one party and all but one token generated by every honest party.

6 A Compiler to the Corrupted Token Model

6.1 Protocol for Corruptible Tokens

In this section, we describe a multi-party protocol that the n corruptible tokens
will run in order to emulate the Katz’ stateless token functionality.

Let (KsrZK , PsrZK , VsrZK) be a simultaneous resettable ZK argument in the
correlated randomness model with straight-line simulator. Let S = (share, recon)
be an n out of n secret sharing scheme. Let Γ0 be a UC-secure MPC protocol in
the CR model for functionality F described in Figure 6.

We define a multi-party protocol Γ = Γ (Π) on input (x1, . . . , xn) to compute
Π(x) when x = xi for all i ∈ [n] in Figure 7.
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F corruptible
token

Upon receiving (create, sid, Pj , Π) from Pi with i 6= j:

1. If there is no tuple of the form (sid, Pi, Pj , ?, ?), store (sid, Pi, Pj , Π, creating).
2. Send (create, sid, Pi, Pj) to Adv.

Upon receiving (corrupt, sid, Pi, Pj) from Adv:

1. Find the stored tuple (sid, Pj , Pi, Π, creating). If no such tuple exists, abort.
2. Send Π to Adv.

Upon receiving (replace, sid, Pi, Pj , Π
∗, state0) from Adv:

1. Find and remove the unique stored tuple (sid, Pj , Pi, Π, creating). If no such
tuple exists, abort.

2. Store (sid, Pi, Pj , Π
∗, state0), send (done, sid) to Pi, send (create, sid, Pi) to Pj .

Upon receiving (notcorrupt, sid, Pi, Pj) from Adv:

1. Find and remove the unique stored tuple (sid, Pj , Pi, Π, creating). If no such
tuple exists, abort.

2. Store (sid, Pi, Pj , Π,⊥), send (done, sid) to Pi and send (create, sid, Pi) to Pj .

Upon receiving (execute, sid, Pi, inp) from Pj with i 6= j:

1. Find the stored tuple (sid, Pi, Pj , Π, state). If no such tuple exists, abort.
2. Run Π(state, inp) and let (state′, out) be the output. If state 6= ⊥, set state =

state′.
3. Send (sid, out) to Pj .

Upon receiving (read, sid, Pi, Pj) from Adv:

1. Find the unique stored tuple (sid, Pj , Pi, P, state). If no such tuple exists, abort.
2. Send (sid, state) to Adv.

Fig. 5. Token Functionality F corruptible
token

6.2 Realizing a Tamper-Proof Token with Corruptible Tokens

Now we are ready to describe our protocol realizing the tamper-proof token
with n corruptible tokens. To compute Π, the corruptible tokens are given the
setup parameters for the MPC protocol Γ (Π). Up on execution with input xi,
they will run Γ (Π) to compute Π(x) only if x = xi for all i ∈ [n]. We let Γi
be the Turing machine computing messages Party Pi in Γ sends to other Pj ,
j ∈ [n]\{i} in each round of Γ . Since our token are stateless, Γi takes as input a
state statek−1 which stores internal memory of Pi in round k − 1 together with
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F
On input ((Π1, x1), . . . , (Πn, xn))

1. If xi 6= xj for some i 6= j, output ⊥. Otherwise, let x be the common input.
2. Π = recon(Π1, . . . , Πn).
3. Output Π(x).

Fig. 6. Function F

Γ (Π)

Setup:

1. Let (Π1, . . . , Πn) ← share(Π). Let ci = com(Πi) with decommitment infor-
mation di for i ∈ [n].

2. For i 6= j ∈ [n], let (σi,j,P , σi,j,V )← KsrZK(1λ) be the correlated randomness
for the simultaneous resettable ZK argument with prover Pi and verifier Pj .

3. Let (σ1, . . . , σn)← SetUpΓ0
(1λ) be the correlated randomness for Γ0.

4. For i ∈ [n], send Σi = (Πi, σi, ci, di, {cj , σi,j,P , σj,i,V }j∈[n]\{i}) to Party Pi.

Execution: Party Pi on input xi, correlated string Σi and a random tape Ri =
(si, ri)

1. For each i ∈ [n], Pi commits to its input xi and its PRF seed si using random-
ness ri,x = PRFsi(xi) and ri, respectively. Pi sends its determining message
Mi = (com(xi; ri,x)||com(si; ri)) to all Pj, j 6= i.

2. For each i ∈ [n], Pi computes R′i = PRFsi(M1|| . . . ||Mn) consisting of R′i[0]
for running Γ0 and R′i[1] for running (PsrZK , VsrZK).

3. For each i ∈ [n], Pi executes as the ith party in Γ0 where Pi follows kth round
message mi,k by running PsrZK to prove that there exists αi = (xi, si) and
Πi such that
(a) Mi = (Mi[0],Mi[1]) where Mi[0] can be decommitted to xi and Mi[1] can

be decommitted to si;
(b) ci can be decommitted to Πi;
(c) mi,k is correctly computed using R′i[0] in Γ0 with (Πi, xi) as an input

where R′i = PRFsi(M1|| . . . ||Mn).

Fig. 7. Multi-party protocol Γ (Π) computing Π

in which consists of all incoming messages Pi receives in round k−1. Γi outputs
a new state statek and outgoing messages for round k.

Formally, Γi(statek−1, ink−1) = (statek, outk) where statek is the internal
state of Pi in round k and
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– ink−1 = {mj,i,k−1}j∈[n]\{i} where mj,i,k−1 is the incoming message from
Party Pj to Party Pi in round k − 1. mj,i,k−1 = ⊥ if Pi does not receive a
message from Pj in round k − 1.

– outk = {mi,j,k}j∈[n]\{i} where mi,j,k is the outgoing message from Party Pi
to Party Pj in round k. mi,j,k = ⊥ if Party Pi does not send a message to
Party Pj in round k.

– Let state0 = ⊥ and in0 be Pi’s input for Γ .
– If Pi terminates at the end of round t, Γi(statet, int) = (done, output) where
output is Pi’s output for Γ .

In order to protect Γi’s state statek when a token is sent to a malicious party,
we use a symmetric key encryption scheme with a secret key embedded in the
token to encrypt a state state before outputting. Let S = (SetUp,Enc,Dec) be a
symmetric key encryption scheme. Let state denote an encryption of state using
S. Let si consists of all information embedded in the ith token. Formally, we
define Ti = T (si) in Figure 8.

On input (Initialize, xi)

1. Parse si = (i, ski, Ri, Πi, σi, ci, di, {cj , σi,j,P , σj,i,V }j∈[n]\{i}).
2. Initiate Γi on setup parameters (Πi, σi, ci, di, {cj , σi,j,P , σj,i,V )}j∈[n]\{i}), ran-

dom tape Ri
3. Let Γi(⊥, xi) = (state, out).
4. Output (Enc(ski, state), out).

On input (state, in)

1. Parse si = (i, ski, Ri, Πi, σi, ci, di, {cj , σi,j,P , σj,i,V }j∈[n]\{i}).
2. Initiate Γi on setup parameters (Πi, σi, ci, di, {cj , σi,j,P , σj,i,V )}j∈[n]\{i}), ran-

dom tape Ri.
3. Decrypt state = Dec(ski, state), abort if fail.
4. Let Γi(state, in) = (state′, out)
5. Output (Enc(ski, state

′), out).

Fig. 8. Token Ti = T (si)

Finally, protocol Λ in F corruptible
token -hybrid model realizing Fabort

token is in Figure 9.

6.3 Proof of Security

Let SsrZK = (S1,S2) be the straight-line simulator for the simultaneous reset-
table ZK, and SimMPC be the UC simulator for the UC-secure MPC.

Let Adv be an adversary corrupting up to n−1 tokens. Let nc be the number
of corrupted tokens, and nh = n − nc be the number of honest (uncorrupted)
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Λ

To create a token running Π for Pj , Pi does the following:

1. Generate the setup parameters for Γ (Π):
(Πk, σk, ck, dk, {cl, σk,l,P , σl,k,V )}l∈[n]) for k ∈ [n] as defined in Figure 7.

2. Generate secret keys for decrypting share/state skk ← KeyGen(1λ) for all
k ∈ [n].

3. Let sk = (k, skk, Rk, Πk, σk, ck, dk, {cl, σk,l,P , σl,k,V }l∈[n]).
4. Send (create, sidk, Pj , Tk) to F corruptible

token where Tk = T (sk) for k ∈ [n].

To execute a token running Π sent by Pi, Pj does the following:

1. For k ∈ [n], initialize Tk by sending (execute, sidk, S, (initialize, inp)) to
F corruptible

token to compute Tk(initialize, inp) = (statek, outk).
2. While statek 6= done for all k ∈ [n], for k ∈ [n]

(a) Parse outk = {mk,l}l 6=k. Let ink = {ml,k}l 6=k.
(b) Send (execute, sidk, Pi, (statek, ink)) to F corruptible

token to compute
Tk(statek, ink) = (state

′
k, out

′
k).

(c) Replace statek by state
′
k and outk by out′k.

3. Let out = outk for k ∈ [n] such that statek = done.

Fig. 9. Protocol Λ in F corruptible
token -hybrid model UC realizing Fabort

token

tokens. We construct a UC simulator Sim in Figure 10 internally running Adv
such that any environment E cannot distinguish between interacting with Adv
running Λ in the real world and interacting with Sim running Fabort

token in the ideal
world. Now consider the series of hybrids:

Hybrid H0: This hybrid is the real world execution.

Hybrid H1: This hybrid is similar to H0 except that every message to F corruptible
token

goes to Sim, and Sim acts honestly on behalf of F corruptible
token while recording the

messages. This hybrid is identical to H0.

Let t be the maximum number of call from Adv to execute uncorrupted
tokens. Let Hybrid H2.0 = H1. For k = 1, . . . , t

Hybrid H2.k: This hybrid is similar to H2.(k−1) except that Sim records and

replaces the kth encrypted state state from uncorrupted Tl with state
∗

=
Enc(skl, 0

|state|) before sending it to Adv and replaces state
∗

with state before
applying Tl. Hybrid H2.(k−1) and H2.k are indistinguishable by the security of
the symmetric key encryption S.

Let Hybrid H3.0 = H2.t. For k = 1, . . . , nh · nc,
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Sim

Whenever Sim receives (create, sid, Pi, Pj) from Fabort
token , Sim does the followings:

1. For each k ∈ [n], send (create, sidk, Pi, Pj) to Adv.
2. If Adv replies with (corrupt, sidk, Pi, Pj) for any k ∈ [n] or Pj is corrupted,

(a) Follow the protocol of Λ for creating a token, except that Sim uses
zero string 0|Π| instead of the actual token Π to create secret shares
Π1, . . . , Πn, and uses S1 to generate (σi,j,P , σi,j,V , τi,j) instead of KsrZK

and SimMPC to generate σi instead of SetUpΓ0
for the setup parame-

ters of Γ for the corruptible tokens. Sim stores the secret shares for later
comparison.

(b) Send Tk to Adv for each k Adv chose to corrupt.
(c) Store (replace, sidk, Pi, Pj , T

′
k, statek) from Adv.

(d) Send (interrupt, sid, Pi, Pj) to Fabort
token .

3. Otherwise, send (notinterrupt, sid, Pi, Pj) to Fabort
token .

Whenever Adv runs the protocol for execution that involves both corrupted and
uncorrupted tokens, Sim does the following:

1. Sim generates the Γ messages for uncorrupted Tk using S2(τk) and SimMPC

as follows:
(a) Sim generates and commits to αk honestly as in Γ .
(b) Sim runs SimMPC to generate messages for Γ0.
(c) Sim For each message generated by SimMPC , runs S2(τk) to generate

messages for the following sim-res ZK argument.
(d) When SimMPC queries the functionality of the function F on input

((Π ′1, x
′
1), . . . , (Π ′n, x

′
n)), if x′k’s are all equal to x′, send (execute, sid, Pi, x)

to Fabort
token and passes the output to SimMPC . Otherwise, Sim aborts.

2. Sim records and replaces every encrypted state state from uncorrupted Tk with
state

∗
= Enc(skl, 0

|state|) before sending it to Adv and replaces state
∗

with state
before applying Tk.

3. Sim records all inputs/outputs to the tokens. If Adv queries with the same
input (state and incoming messages), Sim returns the recorded output (new
state and outgoing messages).

Fig. 10. UC Simulator Sim for Λ

Hybrid H3.k: This hybrid is similar to H3.(k−1) except that Sim uses S1 to
generate (σi,j,P , σi,j,V , τi,j) instead of KsrZK for honest token i and corrupted
token j with k = i(nc − 1) + j, and runs S2(τi,j) to generate the sim-res ZK
messages for token i by feeding the sim-res ZK messages from corrupted tokens.
Sim records the transcript leading to each sim-res ZK session. By the GUC-
security of the rZK, this hybrid is indistinguishable from H1.

Lemma 7. Hybrid H3.(k−1) and H3.k are indistinguishable.
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Proof. Suppose there exists a poly-time D that can distinguish H3.(k − 1) and
H3.k with non-negligible probability. We construct a distinguisher D′ that can
distinguish an interaction of PsrZK with a resetting verifier V ∗srZK and S2(τi,j)
for the sim-res ZK as follows. Given setup strings for the sim-res ZK,D′ generates
the setup for other pairs of tokens and the inputs for Γ (Π). D′ then runs H3.(k−
1) or H3.k until Adv queries the honest token to prove a statement x using the
sim-res ZK. D′ runs the interaction and passes the messages from and to Adv as
V ∗srZK ’s messages. When V ∗srZK resets PsrZK or S2(τi,j), D

′ queries the token
using the saved state of the earlier round in the sim-res ZK. Finally, D′ outputs
the output of D.

Claim. Fix a combined determining message M = M1|| . . . ||Mn, any
polynomial-time resetting machine Adv can find only one transcript of Γ0 in
Γ (Π) that every following sim-res ZK argument convinces the verifier to accept.

Proof. Suppose not. Let tr = (. . . ,mi,k) and tr′ = (. . . ,m′i,k) be the
partial transcripts of Γ0 generated by Adv up to the differing messages
mi,k,m

′
i,k with accepting sim-res ZK argument. Note that we cannot have

both (ci,Mi,M, tr), (ci,Mi,M, tr′) ∈ RrsZK . Otherwise, either Mi or ci can
be decommitted to two different values, and thus can be reduced to the se-
curity of the commitment scheme. Hence, either (ci,Mi,M, tr) /∈ RrsZK or
(ci,Mi,M, tr′) /∈ RrsZK . Thus, we can construct a resetting prover P ∗srZK that
can prove a false statement.

Let Hybrid H4.0 = H3.(nh·nc). Let m be the number of distinct sessions of Γ0

based on combined determining message M1|| . . . ||Mn generated through Adv
querying the tokens. For k = 1, . . . ,m,

Hybrid H4.k: This hybrid is similar to H4.(k−1) except that Sim runs SimMPC

to generate the MPC messages for uncorrupted tokens by feeding the MPC
messages from corrupted tokens in the execution of Γ (Π) following kth combined
determining message.

Lemma 8. Hybrid H4.(k−1) and H4.k are indistinguishable.

Proof. Suppose there exists a poly-time D that can distinguish H4.(k−1) and H4.k

with non-negligible probability. We construct a distinguisher D′ for SimMPC as
follows. Given the correlated randomness for the MPC, D′ generates the rest of
the setup parameters for Σ(Π) as in the experiment. D′ then passes the MPC
messages from Adv to D followed by the srZK messages from SimZK . Since
the accepting transcript is unique by the claim above, Adv cannot change the
messages. D′ outputs the output of D.

Let Hybrid H5.0 = H4.m. For k = 1, . . . , n,
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Hybrid H5.k: This hybrid is similar to H5.(k−1) except that if the kth token is
uncorrupted, Sim replaces the PRF in Γ (Π) with truly random function F .

Lemma 9. Hybrid H5.(k−1) and H5.k are indistinguishable.

Proof. Suppose there exists a PPT distinguisher D that can distinguish H5.(k−1)
and H5.k with non-negligible probability p. We construct a PPT D′ that given
function f , it runs H5.(k−1) and outputs the output of D when PRFsi is replaced
by f . By the property of the PRF, p is negligible.

Let Hybrid H6.0 = H5.n. For k = 1, . . . , n,

Hybrid H6.k: This hybrid is similar to H6.(k−1) except that if the kth token
is uncorrupted, Sim replaces the second half of the determining message Mi in
Γ (Π) with com(0|si|; ri) where si is the PRF seed in Γ (Π).

Lemma 10. Hybrid H6.(k−1) and H6.k are indistinguishable.

Proof. Suppose there exists a PPT distinguisher D that can distinguish H6.(k−1)
and H6.k with non-negligible probability p. We construct a PPT D′ that given a
commitment C of si or 0|si|, it runs H6.(k−1) or H6.k and outputs the output of
D when the second half of Mi is replaced by C. Since si is not used as a witness
nor as a PRF seed in H6.(k−1) or H6.k, D′ can generate the input for D. By the
hiding property of com, p is negligible.

Hybrid H7: This is similar to H6.n except that Sim checks if inputs xk, k ∈ [n],
are the same. If not, Sim records xk’s and replaces outputs of Γ (Π) by ⊥.

Lemma 11. Hybrid H6.n and H7 are indistinguishable.

Proof. By the binding of com, Adv cannot find x′k that com(xk; r) (where r is an
output of the truly random function f) decommitted to xk except with negligible
probability. In this case, by the soundness of rsZK, the output of Γ (Π) is ⊥.

Hybrid H8: This hybrid is similar to H7 except that Sim passes token creation
request from honest parties to Fabort

token and uses it to compute the output for
SimMPC .

Lemma 12. Hybrid H7 and H8 are indistinguishable.

Proof. Note that if Adv generates messages for the MPC honestly using the same
input xi and the share Πi given in the setup, then the output from Fabort

token must
be the same as the output of the MPC by the correctness of the MPC. Suppose
there exists a poly-time D that can distinguish H3 and H4 with non-negligible
probability p. There must be at least one MPC message m∗ from Adv that is not
generated honestly. Thus, we construct a resetting prover P ∗srZK for the sim-res
ZK argument following m∗ by randomly choosing a Γ0 message and passing the
following prover messages to V . When Adv sends a different message using the
same token state, P ∗srZK resets the verifier. It has at least 1/T probability of
choosing m∗ where T is the number of Γ0 messages sent by Adv. Thus, it has at
least p/T probability of proving a false statement, contradicting the resettable
soundness of the sim-res ZK.
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Hybrid H9: This hybrid is similar to H8 except that Sim generates secret share
of zero string 0|Π| instead of the one received from an honest party.

Lemma 13. Hybrid H8 and H9 are indistinguishable.

Proof. Suppose there exists a poly-time D that can distinguish H8 and H9 with
non-negligible probability. We construct a distinguisher D′ for the secret sharing
scheme S as follows. D′ runs the experiment for D until it is given Adv shares
consisting of less than n shares. D′ then continues the experiment and D distin-
guishes between H8 and H9. Using the result of D, D′ can distinguish between
less than n shares of 0 and some program Π, contradicting the security of S.

Let Hybrid H10.0 = H9. For k = 1, . . . , n,

Hybrid H10.k: This hybrid is similar to H10.(k−1) except that if the kth token
is uncorrupted, Sim replaces the second half of the determining message Mi in
Γ (Π) with com(si; ri) where si is the PRF seed in Ri. Hybrid H10.(k−1) and
H10.k are indistinguishable by similar argument as Lemma 10.

Let Hybrid H11.0 = H10.n. For k = 1, . . . , n,

Hybrid H11.k: This hybrid is similar to H11.(k−1) except that if the kth token is
uncorrupted, Sim replaces the truly random function F in Γ (Π) with PRFsi .
Hybrid H10.(k−1) and H10.k are indistinguishable by similar argument as
Lemma 9. This hybrid is the ideal world execution.

Using these, we prove our main theorem below.

Theorem 14. Assuming an existence of OWFs, there exists a protocol with n
corruptible tokens in F corruptible

token -hybrid model UC-realizing Fabort
token.

7 RAM Obfuscation and Tokens with Bounded Memory

RAM obfuscation. We now describe how to obtain program obfuscation with
stateless hardware tokens solely from OWFs. This improves the assumption from
the work of Nayak et al. [39], who additionally also assumed collision-resistant
hash functions. At a very high level, the protocol of Nayak et al. makes use of
OWFs and CRHFs. First, they make use of CRHFs for the authenticated ORAM
structure. We observe that we can replace the authenticated ORAM used in
Nayak et al. with an authenticated ORAM based on OWF (that can be built
from the work of Ostrovsky and Goldreich, Ostrovsky). Next, in order to obtain
a single starting seed for randomness that depends on the specific execution of
the program and input, Nayak et al. require the user to first feed in a hash of
the input to the token and then use this hash to derive all randomness (along
with a unique program id). This gives them a unique execution id. We derive a
unique value based on the input and program by having the user feed the input
one-by-one to the token. Upon receiving one input, the token will authenticate it
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and provide an authentication tag (this process is deterministic) that will then
allow the user to input the next input. This process continues until the last input
is inserted into the token, upon which the authentication tag produced at this
stage is a unique id that can be used (in combination with the program id) to
derive all randomness needed by the token for program execution. This process
is similar in spirit to the GGM construction of deriving a PRF from a PRG.

7.1 High level description of the protocol

Program Authentication. At a high level, the program creation by the sender
works as follows. Let the program to be obfuscated be RAM := (cpustate,mem)
where mem is a list of program instructions and cpustate is the initial cpu
state. Let the program comprise of t instructions. The sender first creates
the token containing a hardwired secret key K where K := (Ke,Kprf). Ke

is used as the encryption key for encrypting state, Kprf is used as the key
to a pseudorandom function used by the token to generate all randomness
needed for executing the ORAM, creating ciphertexts, and so on. The sender
creates a unique execution identity idexec, which is unique for every program
created. The sender then encrypts mem||idexec||idinstr (one instruction at a
time) to obtain mem (memi denotes the ciphertext obtained upon encrypting
memi||idexec||i). The sender also computes a “tag” of the start ciphertext, mem1,
as τ1 = PRFKprf

(start,mem1). The sender creates an encrypted program header

Header := EncKe(cpustate, idexec, t). The receiver is sent mem,mem∗1 and Header
as the obfuscated program.

Program Feed. At a very high level, the receiver will feed in the program, one
instruction at a time, to the token, as follows:

1. As the first message, the token receives
(programauth, 1,mem1, τ1,mem2,Header). It will check that
PRFKprf

(start,mem1,Header) = τ1 and output ⊥ otherwise. Similarly, for

all 2 ≤ i < t−1, it receives (programauth, i, τi−1,memi, τi,memi+1,Header).
It will check that PRFKprf

(τi−1,memi,Header) = τi and output ⊥ otherwise.
2. Next, it decrypts memi and memi+1 to get memi and memi+1, and idexec as

well as decrypt Header to get idexec and t. It will check that idinstr = i and
i + 1 respectively (also that these values are ≤ t) and that the two idexec
values are the same and equal to the idexec value in Header. If these checks
do not pass, it will respond with ⊥. If the checks pass, the token will output
τi+1 = PRFKprf

(τi,memi+1,Header).

Input Feed. Let the input to the program be denoted by x1, · · · , xn. The receiver
will send the following instructions, step-by-step, for every input, to the token.

1. On input, (inputauth, 1, τt−1,memt, τt, x1, n,Header), it checks that
PRFKprf

(τt−1,memt,Header) = τt, that memt is the tth program instruc-

tion (by decrypting memt to get idinstr and Header to get t and comparing)
and output ⊥ otherwise. It outputs τt+1 = PRFKprf

(τt, 1, x1, n,Header).
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2. On input, (inputauth, j, τt+j−2, xj−1, τt+j−1, xj , n,Header), for 2 ≤ j ≤ n,
it checks that PRFKprf

(τt+j−2, j − 1, xj−1, n,Header) = τt+j−1 and outputs

⊥ otherwise. It then outputs τt+j = PRFKprf
(τt+j−1, j, xj , n,Header).

Program/Input ORAM Insertion. Once the program and input authentication
is done, the program and input, henceforth collectively referred to as memory,
must be inserted into the Authenticated Oblivious RAM structure. There are t
program instructions and n inputs that must be inserted. Let ` = t + n be the
total memory requirement of the program (we can assume this without loss of
generality as any additional memory needed by the program can be thought of
as dummy program instructions). First, a set of ` “zeroes” are inserted into the
ORAM structure (i.e., the values of memory in all locations is set to 0)8. The
insertion of a set of ` “zeroes” into the ORAM structure is done as follows:

1. For every memory location 1 ≤ i ≤ `, the user prepares the mes-
sage (ORAMsetup, i, `, τoraminit

i−1 , n, xn,Header, τ
oraminit
i , τ`) and gives it to the

token, with τoraminit
1 = τ` and τoraminit

0 = τ`−1. The token checks
that PRFKprf

(τoraminit
0 , n, xn, n,Header) = τoraminit

1 (for i = 1) and

PRFKprf
(ORAMsetup, i, `,Header, τoraminit

i−1 , τ`) = τoraminit
i (for all other i)

and outputs ⊥ otherwise.
2. Otherwise, the token derives a key for the ORAM structure − this ORAM

key is derived as Koram = PRFKprf
(ORAMKey, τ`).

(a) It creates an ORAM initialization structure (that is, creates an initial
random mapping of all virtual addresses to their real address); this ini-
tialization is done using randomness from the ORAM key Koram.

(b) In this map let address aj have been mapped to address i. In this case,
the token creates an authenticated encryption of (aj , 0) (again using keys
and randomness derived from Koram) to be inserted into the ORAM
structure at virtual address i.

(c) The token then outputs τoraminit
i+1 =

PRFKprf
(ORAMsetup, i, `,Header, τoraminit

i , τ`).

Once all ` memory locations have been inserted with 0 values, the user then
inserts the real input and program into the ORAM structure. This is done as
follows: in the reverse order, starting with the nth input to the first input, and
then the tth to the first program instruction. We now describe this process at a
high level. For ease of exposition, we shall assume that every ORAM operation is
a single step denoted as oramσ,Koram

(i, vi, read/write,⊥/v∗i ) (this can be easily
extended to the case when the ORAM read/write is a set of operations, similar
to Nayak et al. [39]). The protocol is as follows:

1. The user will insert the ith memory location (` ≥ i ≥ 1, which
is either an input or a program instruction) by sending the mes-
sage (MemORAMInsert, i, `, τoraminit

2`−i , n, xn, n,Header, τ
oraminit
2`−i+1 , τi, τi−1, wi),

8 Whenever, the state of the program (ORAM or otherwise) needs to be modified, this
is done by appending encrypted state with Header and then authenticating, similar
to Nayak et al. [39]
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where wi = (i− t, xi−t, n) if the ith location has an input (i.e., ` ≥ i ≥ t+ 1)
and wi = memi if the ith location has a program instruction (i.e., t ≥ i ≥ 1).

2. If the ith location has an input:

(a) The token will check that τi = PRFKprf
(τi−1, i − t, xi−t, n,Header) and

that τoraminit
2`−i+1 = PRFKprf

(ORAMsetup, i, `,Header, τoraminit
2`−i , τ`).

(b) The token will then execute the ORAM instruction
oramσ,Koram

(i, 0, write, xi−t).

(c) The token then outputs τoraminit
2`−i+2 = PRFKprf

(ORAMsetup, i −
1, `,Header, τoraminit

2`−i+1 , τ`).

3. If the ith location has a program instruction:

(a) The token will check that τi = PRFKprf
(τi−1,memi,Header) and that

τoraminit
2`−i+1 = PRFKprf

(ORAMsetup, i, `,Header, τoraminit
2`−i , τ`).

(b) The token decrypts memi to get memi||idexec||i and executes the ORAM
instruction oramσ,Koram

(i, 0, write,memi||idexec||i).
(c) The token then outputs τoraminit

2`−i+2 = PRFKprf
(ORAMsetup, i −

1, `,Header, τoraminit
2`−i+1 , τ`).

Program Execution. The program execution is similar to Nayak et al. [39].

8 Tokens with Small Memory

We consider a variant of F corruptible
token in Figure 5, called F corruptible,short,L1,L2

token where
create and execute only take Π and inp of short size. We also allow a token
sender to send a message along with the token created through the functionality.
This allows the adversary to intercept the message when it chooses to corrupt a
token without neither sender nor receiver knowledge. This is unavoidable as we
represent a token in the standard corruptible model with both a token and an
additional auxiliary string from the sender. We use F corruptible,short

token when L1 and
L2 are clear from the context.

In theory, we would like L1 and L2 be of constant size in security parameter.
Though [39] suggests using logarithmic size in practice for better performance.

We define an implementation Token of F corruptible
token in F corruptible,short

token -hybrid model
and prove the following theorem in the full version of this paper [9].

Theorem 15. The protocol Token UC-realizes F corruptible
token in F corruptible,short

token -
hybrid model.

Combining the above result with the result in Section 6 gives:

Corollary 2. Assuming OWFs, there exists a protocol that UC realizes Fabort
token

functionality in F corruptible,short
token -hybrid model using n corruptible tokens with short

inputs and small size against an adversary corrupting up to n− 1 tokens.
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