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Abstract. Attribute-based Encryption (ABE), first introduced by [SW05,
GPSW06], is a public key encryption system that can support multiple
users with varying decryption permissions. One of the main properties of
such schemes is the supported function class of policies. While there are
fully secure constructions from bilinear maps for a fairly large class of
policies, the situation with lattice-based constructions is less satisfactory
and many efforts were made to close this gap. Prior to this work the
only known fully secure lattice construction was for the class of point
functions (also known as IBE).
In this work we construct for the first time a lattice-based (ciphertext-
policy) ABE scheme for the function class t-CNF, which consists of CNF
formulas where each clause depends on at most t bits of the input, for
any constant t. This class includes NP-verification policies, bit-fixing
policies and t-threshold policies. Towards this goal we also construct a
fully secure single-key constrained PRF from OWF for the same function
class, which might be of independent interest.

1 Introduction

Atrribute-based Encryption (ABE), first introduced in [SW05, GPSW06], is a
public key encryption system that can support multiple users with varying de-
cryption permissions. In this work we focus on ciphertext-policy ABE schemes,
where each ciphertext is associated with a public policy f and each decryption
key is associated with a public attribute x, such that decryption succeeds con-
ditioned on f(x) = 1. One of the main properties of an ABE scheme is the
function class of policies that can be attached to ciphertexts. In fact, ABE was
originally suggested as a generalization of identity-based encryption (IBE), in
which each ciphertext is destined to a single attribute x (i.e. the policies are
point functions).

Bilinear Maps Constructions. It was shown in a long line of works that bilin-
ear maps prove to be useful for the task of constructing IBE and ABE under
varying group assumptions. [BF03,Coc01] constructed the first IBE schemes in
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the random oracle model. [CHK03,BB04a] showed constructions in the standard
model, however their security was proven under a weaker notion, called selective
security.

A few approaches were suggested to go beyond selective security. [BB04b,
Wat05] introduced the first constructions with full security in the standard
model, using a partitioning technique. Their solutions were proved to be secure
via a lossy reduction, where the simulator aborts with probability that grows
with the number of keys owned by the adversary. [Gen06] introduced the tagging
technique, with which he managed to construct a fully secure IBE scheme with
a tight reduction, however the hardness assumption was still related to the num-
ber of keys. Finally, [Wat09] introduced the dual system encryption technique
and achieved the first fully secure IBE scheme with a tight reduction to a fixed
assumption.

The first ABE construction was suggested by [SW05] and supported thresh-
old policies. Later, [GPSW06] constructed a key-policy1 ABE scheme for poli-
cies that can be expressed as a linear secret-sharing (LSSS) access structure
and [OSW07] constructed a key-policy ABE scheme for all formulas. [Wat11]
showed a ciphertext-policy ABE construction for LSSS access structures. All of
those works were proved to be secure in the weaker selective mode. The works
of [LOS+10,LW12,KL15,CGKW18] expand the dual system technique of [Wat09]
to derive fully secure ABE for LSSS and recently [KW19] showed a construction
for all monotone access structures in NC1.

Lattice-Based Constructions. The emerging interest in hard problems over lat-
tices, which are believed to be hard even at the presence of quantum ma-
chines, led to the development of a cryptographic toolbox [Ajt96, Ajt99, Reg05]
that allows to base the security of various systems over random instances of
such problems. This gave rise to a line of works about lattice-based IBE and
ABE schemes. The first lattice-based IBE constructions were introduced by
[GPV08, CHKP12, ABB10a] and were secure in the selective model. Shortly af-
ter, [ABB10b] presented a construction with full security and [BL16] constructed
a fully secure scheme with a tight reduction.

The first schemes to support richer classes of polices were [AFV11,ABV+12],
which constructed ABE for inner product policies and threshold policies re-
spectively. [Boy13] showed key-policy ABE schemes for LSSS access structures.
Lastly, the works of [GVW13,BGG+14] constructed key-policy ABE for all poli-
cies that can be described by a bounded-depth polynomial-size circuit.

All of the aforementioned ABE constructions were proved to be selectively
secure. The works of [BV16, GKW16] showed how to boost the security of
[GVW13, BGG+14] to an intermediate notion, named semi-adaptive security,
however it is not clear how to further develop those techniques. The question
of whether it is possible to construct fully-secure ABE schemes from lattices
beyond point functions remained open.

1 In key-policy ABE the policies are attached to the keys and the attributes are at-
tached to the ciphertexts.
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Our Contribution. In this work we construct for the first time a lattice-based
ciphertext-policy ABE scheme for the ensemble of function classes t-CNF, which
consists of formulas in conjunctive normal form where each clause depends on at
most t bits of the input, for any constant t. Our construction supports functions
of unbounded size, that is, every function consisting of polynomial number of
clauses. Those function classes includes NP-verification policies, bit-fixing poli-
cies and t-threshold policies. Towards this goal we also construct a fully secure
single-key constrained PRF from OWF for the same function class, which might
be of independent interest.

1.1 Technical Background

Let us first describe the difference between full security and selective security.
The former is modeled as a game between an adversary A and a challenger C as
follows. At the beginning of the game, C publishes the public parameters of the
scheme. At any point of the game, A can query for multiple decryption keys to
attributes x of its choice. In the challenge phase, A chooses a challenge policy
f∗ and C returns a ciphertext respective to f∗. The goal of A is to determine
whether this is an encryption of 0 or 1, and the scheme is secure if it cannot do
that as long as none of its queried keys x are authorized by f∗. The selective
security game is identical, except that A has to announce the challenge policy
f∗ before the game begins.

In the latter game the security reduction has the opportunity to generate
the public parameters according to f∗. Selective security proofs usually follow a
similar structure, where f∗ introduces a partitioning of the identity space. The
public parameters are generated in the security reduction such that for all x for
which f∗(x) = 0 (i.e. not authorized by f∗) it is possible to simulate a decryption
key, and for all x for which f∗(x) = 1, a key for x would allow to break the hard
problem. Since A can only query for keys of the first type, the reduction can still
answer all of the queries appropriately.

Tagging. In [Gen06] Gentry presented an adaptively secure IBE scheme from
bilinear maps, using a tagging technique as follows. In the real scheme, every
ciphertext is associated with a random tag rct and every key is associated with
a random tag rsk. Decryption works as long as the IBE condition is satisfied and
rct 6= rsk. The probability that decryption fails is negligible since the tags are
random. In the security proof, a random degree-Q polynomial P is embedded into
the public parameters, such that it is possible to generate a challenge ciphertext
respective to any x with the tag rct = P (x) and similarly it is possible to generate
a key respective to any x with the tag rsk = P (x). That is, the security reduction
can answer any key query and can generate a challenge ciphertext respective to
any x, however if it generates a ciphertext and a key for the same identity then
the decryption fails because they both have the same tag. Recall that in the
security game A is not allowed to query for a challenge and a key respective to
the same attribute and therefore it cannot detect that case. Since P is a random
polynomial, the values of P on up to Q points are distributed uniformly. For that
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reason security is guaranteed as long as A can only query for up to Q− 1 keys.
The evaluation of P has to be performed on a secret element in the exponent of
a group. Since it is only possible to compute linear functions over the exponent,
the reduction needs to get information that grows linearly with Q and makes
the assumption stronger.

The BGG+ Lattice-Based Construction. A long sequence of works [ABB10b,
MP12,GSW13,AP14,BGG+14] led to a selectively secure key-policy ABE scheme
with security based on LWE, for the function class of all policies that can be
described as a bounded-depth polynomial-size circuit. We now give an overview
of their technique.

The public parameters consist of a matrix A, and for each attribute x (resp.
policy f) there is a related efficiently computable matrix Ax ← EncodeX(A, x)
(resp. Af ← EncodeF(A, f)). Encryption for an attribute x is a Dual-Regev
encryption (see [GPV08]) respective to the public matrix Ax, while a decryption
key for f is a Dual-Regev key respective to the public matrix Af . The matrices
Ax,Af are cleverly defined s.t., informally, for all x, f

f(x) = 1 ←→ It is possible to convert a ciphertext respective to Ax

to a ciphertext respective to Af .

Let Convert be the “ciphertext conversion algorithm” that satisfies the above
condition, then we can informally say that

f(x) = 1 ←→ Convert(Ax, x, f) = Af .

The property that is important to us, is that Convert works gate-by-gate and
therefore respects function composition. That is, if f = g2 ◦ g1, then for all x it
holds that

Convert(Ax, x, f) = Convert (Convert(Ax, x, g1), g1(x), g2) (1)

and therefore

f(x) = 1 ←→ Convert (Convert(Ax, x, g1), g1(x), g2) = Af .

The security proof follows similar lines to other selectively-secure schemes as
described at the beginning of this section. That is, the challenge attribute x∗

is embedded into the public parameters A such that it is possible to create a
challenge ciphertext only respective to Ax∗ = EncodeX(A, x∗), and it is possible
to generate keys only respective to Af = EncodeF(A, f) for which f(x∗) = 0.

1.2 Our Techniques

Identity-Based Encryption. We first describe how to construct a fully secure
IBE scheme with our approach. The main idea is to use the tagging technique
of [Gen06], but with a PRF instead of a random polynomial. The rich function
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class supported by [BGG+14] allows us to compute a PRF over a seed that is
secretly embedded into the public parameters in the security proof. The tag of
a key for an attribute x is the value of the PRF on the input x, i.e. rx. That
is, a key for x can decrypt any ciphertext respective to x unless the ciphertext
tag is equivalent to rx. In the real scheme the tags of ciphertexts are sampled
uniformly, while in the security reduction they are determined by the PRF seed
that is embedded into the public parameters. Details follow.

For all x we let Ux denote the circuit that on inuput σ evaluates the PRF on
the point x with the seed σ. For all r we let Īr denote the circuit that on input
r′ returns 1 if and only if r′ 6= r.

The public parameters of the IBE scheme are identical to [BGG+14] and the
master secret key includes a PRF seed σ. To encrypt respective to x, one samples
a fresh PRF seed σ′ and computes the Dual-Regev encryption with the public
matrix A′x = Convert(Aσ′ , σ

′, Ux) where Aσ′ = EncodeX(A, σ′). To generate
a key respective to x, one first computes rx = Ux(σ) and then generates the
Dual-Regev key respective to the matrix Afx = EncodeF(A, fx), where fx =
Īrx ◦ Ux. Note that fx(σ′) = Īrx(Ux(σ′)) where rx = Ux(σ). Therefore, if σ =
σ′ then fx(σ) = 0, but for any uniformly sampled σ′, Ux(σ′) 6= Ux(σ) with
high probability and therefore fx(σ′) = 1. That is, with high probability over a
uniform σ′ it holds that

fx(σ′) = 1 ←→ σ′ 6= σ

i.e.
Īrx ◦ Ux(σ′) = 1 ←→ σ′ 6= σ .

By the properties of [BGG+14] described above, it holds that

Īrx ◦ Ux(σ′) = 1 ←→ Convert
(
Convert(Aσ′ , σ

′, Ux), Ux(σ′), Īrx
)

= Afx

and therefore

σ′ 6= σ ←→ Convert
(
A′x, Ux(σ′), Īrx

)
= Afx .

That is, whenever σ′ 6= σ it is possible to convert a ciphertext respective to A′x
to a ciphertext respective to Afx and thus to decrypt. However, when σ′ = σ
there is no such conversion algorithm.

In the security proof we encode σ in the public parameters, such that it is
only possible to simulate Dual-Regev encryptions respective to matrices of the
form Ax = Convert(Aσ, σ, Ux) (where Aσ = EncodeX(A, σ)) but not respective
to any other σ′. The indistinguishability relies on the pseudorandomness of the
PRF and the properties of [BGG+14].

Expanding the Function Class. The main idea here is to replace the PRF with a
constrained PRF. A constrained PRF, first defined in [BW13,KPTZ13,BGI14],
allows the key owner to generate constrained keys σf respective to functions f ,
with which it is possible to compute the value of the PRF only on points x
where f(x) = 1. More formally, there are two additional algorithms (Constrain,
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ConstrainEval) such that if σf = Constrain(σ, f), then for all x for which f(x) = 1
it holds that ConstrainEval(σf , f, x) = Eval(σ, x), while for all x for which f(x) =
0, σf does not reveal information about Eval(σ, x).

Our construction uses a cPRF for policies in a function class F in order
to construct an ABE scheme for policies in F . The cPRF has to be single-key
adaptively secure, and in addition it has to satisfy two properties as follows.

– Gradual Evaluation requires that for any f, x for which f(x) = 1, the circuit
descriptions of the algorithms Eval(·, x) and ConstrainEval(Constrain(·, f), f, x)
are identical.

– Key Simulation requires an additional public algorithm KeySim(f) → σ′f
that allows to simulate constrained keys. The keys should be indistinguish-
able from real constrained keys to a distinguisher with no access to evalua-
tions on points x where f(x) = 1.

We call a cPRF that satisfies all of those properties a conforming cPRF. The
ABE construction from a cPRF is a generalization of the IBE construction from
a PRF. Details follow.

In the encryption algorithm, in order to encrypt respective to a policy f we
compute a Dual-Regev encryption with the public matrix A′f = Convert(Aσ′ , σ

′, Uf ),
where Aσ′ = EncodeX(A, σ′) (as in the IBE construction) and Uf is the circuit
description of Constrain(·, f). The key generation algorithm remains the same
as in the IBE construction. To decrypt with a key respective to x, one has to
first convert the ciphertext to be respective to the matrix A′x. This is done by
computing Convert(A′f , Uf (σ′), Uf→x), where Uf→x is the circuit description of
ConstrainEval(·, f, x). Note that

Convert(A′f , Uf (σ′), Uf→x) = Convert(Convert(Aσ′ , σ
′, Uf ), Uf (σ′), Uf→x)

= Convert(Aσ′ , σ
′, Ux) (2)

= A′x

where the last equation holds by definition, and Equation (2) holds since Uf→x ◦
Uf = Ux by the gradual evaluation property of the cPRF, and since Convert
respects function composition as described in Equation (1).

The rest of the analysis is very similar to the IBE case. The key-simulation
property guarantees that the adversary cannot tell whether the challenge cipher-
text f∗ is generated respective to σ or to a random σ′, as long as it cannot query
for evaluations of σ on points x where f∗(x) = 1 (which is indeed guaranteed by
the ABE security game).

Constructing a Conforming cPRF. We construct a conforming cPRF for the
function class t-CNF for any constant t. A policy f is in the class t-CNF if it can
be described by a conjunctive normal form (CNF) formula, where each clause
depends on t bits of the input. Our construction is inspired by the [DKNY18]
construction of bit-fixing cPRF for a constant number of keys. In fact, their
technique can be generalized to instantiate a family of cPRF schemes with a
tradeoff between the “CNF locality” of the supported policies and the number
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of keys. They instantiate it with CNF locality 1 (i.e. bit-fixing) and t keys, while
we instantiate it with CNF locality t and a single key. Details follow.

Let ` be the input length of the cPRF. We consider the set S = {(T, v)} of
all pairs (T, v) such that T ⊆ [`], |T | = t, v ∈ {0, 1}t. For any input x ∈ {0, 1}`
we define the set Sx = {(T, xT )}T where xT is the substring of x on indices T .
For all f we define the set Sf ⊆ S of all of the pairs (T, v) that do not violate
any of the clauses of f . It is easy to verify that for all x and f ,

f(x) = 1 ←→ Sx ⊆ Sf . (3)

The master secret key is a key σ of a standard PRF. Evaluation on a point x
returns the value rx, computed as

rx =
⊕

(T,v)∈Sx

Eval(σ(T,v), x) where σ(T,v) = Eval(σ, (T, v)) .

A constrained key for f consists of the values {σ(T,v)}(T,v)∈Sf . Correctness
holds by Equation (3), security and key simulation holds by the pseudoran-
domness of the underlying PRF and gradual evaluation holds since the circuit
CPRF.Eval(·, x) is a sub-circuit of CPRF.ConstrainEval(Constrain(·, f), f, x).

1.3 Related Work

The idea to embed a PRF seed in a [BGG+14]-like construction was previously
suggested by [BV16,BL16].

Comparison with BV16. The work of [BV16] focuses on key-policy ABE with
unbounded attribute length. In their scheme, the evaluation of the PRF allows
to dynamically increase the width of the A matrix, so that Ax ← EncodeX(A, x)
can be computed for x of varying length. In particular, the PRF is evaluated over
values that only depend on the length of the attribute, where in our scheme the
PRF is evaluated over the attribute value itself. Their ciphertexts contain two
“pieces” for every bit of the attribute and they use an additional ABE scheme in
a black-box manner in order to control the access that keys have to those pieces.

Their construction achieves semi-adaptive security, which means that the
challenge attribute x∗ has to be announced before the first key query, but pos-
sibly after seeing the public parameters. This property is due to the fact that in
their cihpertexts the attribute value is implicitly XORed with a hidden random
string ∆, that can be chosen in the security reduction at the first key generation.
We note that if one desires a semi-adaptive scheme for a fixed attribute length
`, their technique can be instantiated with a PRG with poly(`) stretch instead
of a PRF. That is, the incentives for using a PRF are different in their work and
ours.

Comparison with BL16. The work of [BL16] focuses on fully-secure signatures
and IBE schemes with tight reductions. Their usage of a PRF in the IBE scheme
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has some similarities to an IBE instantiation of our approach, however the techni-
calities are different and the cPRF expansion is not applicable to their approach.
They use a PRF with tight security that on input x outputs a single bit bx. A
ciphertext for an identity x contains two independent Dual-Regev encryptions
of the message under two matrices Ax,0,Ax,1, and a key for x can only decrypt
one of them Ax,bx . In the security proof the PRF seed is encoded into the public
parameters such that it is possible to simulate keys for Ax,bx without the master
secret key, while it is only possible to simulate the “undecryptable” ciphertext
part respective to Ax,1−bx .

1.4 Paper Organization

In Section 2 we go over the definitions of ABE and cPRF, and summarize lattice
techniques from previous works. In section 3 we define the conforming cPRF and
provide a construction for policies in t-CNF. In Section 4 we construct a fully
secure ABE scheme that can be instantiated with any conforming cPRF.

2 Preliminaries

2.1 Constrained PRF, Attribute-Based Encryption, t-CNF Policies

Definition 1 ((Standard) PRF). A pseudo-random function family (PRF) is
a pair of ppt algorithms (Setup,Eval) with the following syntax. Setup(1λ)→ sk
takes as input a security parameter λ and outputs a secret key sk. Evalsk(x)→ rx
takes as input a secret key sk and a bit-string x ∈ {0, 1}`, and outputs a bit-sting
rx ∈ {0, 1}k.

Pseudorandomness. A PRF family is secure if for any ppt adversary A it holds
that ∣∣∣Pr[AEvalsk(·)(1λ) = 1]− Pr[AO(·)(1λ) = 1]

∣∣∣ = negl(λ)

where sk← Setup(1λ) and O is a random oracle.

Definition 2 (Constrained PRF). Let F be a function class such that F ⊆
{0, 1}` → {0, 1}. A constrained pseudo-random function (cPRF) for policies in
F is a tuple of ppt algorithms with the following syntax.

– Setup(1λ)→ pp,msk takes as input a security parameter λ and outputs public
parameters pp along with a master secret key msk.

– Evalmsk(x) → rx is a deterministic algorithm that takes as input a master
secret key msk and a bit-string x ∈ {0, 1}`, and outputs a bit-sting rx ∈
{0, 1}k.

– Constrainmsk(f)→ skf takes as input a master secret key msk and a function
f ∈ F , and outputs a constrained key skf .

– ConstrainEvalskf (x) is a deterministic algorithm that takes as input a con-

strained key skf and a bit-string x ∈ {0, 1}`, and outputs a bit-string r′x ∈
{0, 1}k.
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Correctenss. A cPRF scheme is correct if for all x ∈ {0, 1}` and f ∈ F for
which f(x) = 1, it holds that Evalmsk(x) = ConstrainEvalskf (x) where (pp,msk)←
Setup(1λ) and skf ← Constrainmsk(f).

Pseudorandomness. The adaptive security game of a cPRF scheme between an
adversary A and a challenger C is as follows.

1. Initialization: C generates (pp,msk)← Setup(1λ) and sends pp to A.

2. Queries Phase I: A makes (possibly many) queries in an arbitrary order:

– Evaluation Queries: A sends a bit-string x ∈ {0, 1}`, C returns rx ←
Evalmsk(x).

– Key Queries: A sends a function f ∈ F , C returns skf ← Constrainmsk(f).

3. Challenge Phase: A sends the challenge bit-string x∗ ∈ {0, 1}`. C uniformly

samples b
$← {0, 1}. If b = 0 then C returns r∗

$← {0, 1}k. Otherwise it
returns r∗ ← Evalmsk(x

∗).

4. Queries Phase II: same as the first queries phase.

5. End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b, (2) all of the evaluation queries are not for x∗

and (3) all of the key queries f are such that f(x∗) = 0. The single-key adaptive
security game is as described above, except that A can only make a single key
query throughout the entire game. A cPRF scheme is secure (resp. single-key
secure) if for any ppt adversary A, the probability that A wins in the adaptive
(resp. single-key adaptive) security game is at most 1/2 + negl(λ).

Definition 3 (Attribute-Based Encryption). Let F be a function class such
that F ⊆ {0, 1}` → {0, 1}. A (ciphertext-policy) atrribute-based encryption (ct-
pABE) for policies in F is a tuple of ppt algorithms with the following syntax.

– Setup(1λ)→ pp,msk takes as input a security parameter λ and outputs public
parameters pp along with a master secret key msk.

– KeyGenmsk(x)→ skx takes as input a master secret key msk and a bit-string
x ∈ {0, 1}`, and outputs a key skx.

– Enc(f, µ)→ ct takes as input a function f ∈ F and plaintext µ ∈ {0, 1}, and
outputs a ciphertext ct.

– Decskx(ct, f) takes as input a key skx, a ciphertext ct and a function f ∈ F ,
and outputs a bit µ′ ∈ {0, 1}.

Correctenss. A ctpABE scheme is correct if for all x ∈ {0, 1}` and f ∈ F for
which f(x) = 1, and for all µ ∈ {0, 1}, it holds that

Pr[Decskx(Enc(f, µ), f) 6= µ] = negl(λ)

where (pp,msk)← Setup(1λ) and skx ← KeyGenmsk(x).



10 R. Tsabary

Security. The adaptive security game of a ctpABE scheme between an adversary
A and a challenger C is as follows.

1. Initialization: C generates (pp,msk)← Setup(1λ) and sends pp to A.
2. Queries Phase I: A makes (possibly many) key queries. For each query, A

sends a string x ∈ {0, 1}` and C returns skx ← KeyGenmsk(x).
3. Challenge Phase: A sends the challenge function f∗ ∈ F . C uniformly sam-

ples b
$← {0, 1} and returns ct∗ ← Enc(f∗, b).

4. Queries Phase II: same as the first queries phase.
5. End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b and (2) all of the key queries x are such that
f∗(x) = 0. A ctpABE scheme is secure if for any ppt adversary A, the proba-
bility that A wins in the adaptive security game is at most 1/2 + negl(λ).

In this work we focus on the class of functions that can be described in a
conjunctive normal form (CNF), where each clause is of constant locality. We
give now a definition.

Definition 4 (t-CNF). A t-CNF policy f : {0, 1}` → {0, 1} is a set of clauses
f = {(Ti, fi)}i, where for all i, Ti ⊆ [`], |Ti| = t and fi : {0, 1}t → {0, 1}. For
all x ∈ {0, 1}` the value of f(x) is computed as

f(x) =
∧
i

fi(xTi)

where xT is the length-t bit-string consisting of the bits of x in the indices T .
A function class F is t-CNF if it consists only of t-CNF policies for some fixed
` ∈ N and a constant t ≤ `. If F is a t-CNF function class, we say that t is the
CNF locality of F .

2.2 Lattice Trapdoors, Bounded Distributions, LWE

Lattice Trapdoors. Let n, q ∈ Z, g = (1, 2, 4, . . . , 2dlog qe−1) ∈ Zdlog qeq and m =
ndlog qe. The gadget matrix G is defined as the diagonal concatenation of g n
times. Formally, G = g⊗ In ∈ Zn×mq . For any t ∈ Z, the function G−1 : Zn×tq →
{0, 1}m×t expands each entry a ∈ Zq of the input matrix into a column of size
dlog qe consisting of the bits representation of a. For any matrix A ∈ Zn×tq , it

holds that G ·G−1(A) = A.
The (centered) discrete Gaussian distribution over Zm with parameter τ ,

denoted DZm,τ , is the distribution over Zm where for all x, Pr[x] ∝ e−π‖x‖
2/τ2

.
Let n,m, q ∈ N and consider a matrix A ∈ Zn×mq . For all v ∈ Znq we let A−1τ (v)
denote the random variable whose distribution is the Discrete Gaussian DZm,τ
conditioned on A ·A−1τ (v) = v.

A τ -trapdoor for A is a procedure that can sample from a distribution within
2−n statistical distance of A−1τ (v) in time poly(n,m, log q), for any v ∈ Znq . We

slightly overload notation and denote a τ -trapdoor for A by A−1τ . The following
properties had been established in a long sequence of works.
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Corollary 1 (Trapdoor Generation [Ajt96, MP12]). There exists an effi-
ciently computable value m0 = O(n log q) and an efficient procedure TrapGen(1n, q,m)
such that for all m ≥ m0 outputs (A,A−1τ0 ), where A ∈ Zn×mq is 2−n-uniform

and τ0 = O(
√
n log q log n).

We use the most general form of trapdoor extension as formalized in [MP12].

Theorem 1 (Trapdoor Extension [ABB10b, MP12]). Given A ∈ Zn×mq

with a trapdoor A−1τ , and letting B ∈ Zn×m′q be s.t. A = BS (mod q) where

S ∈ Zm′×m with largest singular value s1(S), then (A−1τ ,S) can be used to
sample from B−1τ ′ for any τ ′ ≥ τ · s1(S).

A few additional important corollaries are derived from this theorem. We
recall that s1(S) ≤

√
m′m ‖S‖∞ and that a trapdoor G−1O(1) is trivial. The first

is a trapdoor extension that follows by taking S = [Im′‖0m]T .

Corollary 2. Given A ∈ Zn×m′q , with a trapdoor A−1τ , it is efficient to generate

a trapdoor [A‖B]−1τ ′ for all B ∈ Zn×mq , for any m ∈ N and any τ ′ ≥ τ .

Next is a trapdoor extension that had been used extensively in prior work.
It follows from Theorem 1 with S = [−RT ‖Im]T .

Corollary 3. Given A ∈ Zn×m′q , and R ∈ Zm′×m with m = ndlog qe, it is

efficient to compute [A‖AR + G]−1τ for τ = O(
√
mm′ ‖R‖∞).

Note that by taking A uniformly and R to be a high entropy small matrix, e.g.
uniform in {−1, 0, 1}, and relying on the leftover hash lemma, Corollary 1 is in
fact a special case of this one.

Lattice Evaluation. The following is an abstraction of the evaluation procedure in
previous LWE based FHE and ABE schemes, that developed in a long sequence
of works [ABB10b,MP12,GSW13,AP14,BGG+14,GVW15].

Theorem 2. There exist efficient deterministic algorithms EvalF and EvalFX
such that for all n, q, ` ∈ N and m = ndlog qe, for any depth d boolean circuit
f : {0, 1}` → {0, 1}k and for every x ∈ {0, 1}`, for any matrix A ∈ Zn×m·`q , the

outputs H← EvalF(f,A) and Ĥ← EvalFX(f, x,A) are both in Zm·`×m·k and it

holds that ‖H‖∞ ,
∥∥∥Ĥ∥∥∥

∞
≤ (2m)d and

[A− x⊗G]Ĥ = AH− f(x)⊗G (mod q)2 .

Moreover, for any pair of circuits f : {0, 1}` → {0, 1}k, g : {0, 1}k → {0, 1}t and
for any matrix A ∈ Zn×m·`q , the outputs Hf ← EvalF(f,A), Hg ← EvalF(g,AHf )
and Hg◦f ← EvalF(g ◦ f,A) satisfy HfHg = Hg◦f .

2 For all n ∈ Z and v ∈ {0, 1}n the term v⊗G denotes a tensor product of the binary
row-vector v = (v1, . . . , vn) and the matrix G. That is, v⊗G = [v1 ·G‖ . . . ‖vn ·G].
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Bounded Distributions. The following definitions and corollaries, taken from
[BV16], will allow us to properly set the parameters of our scheme.

Definition 5. A distribution χ supported over Z is (B, ε)-bounded if Pr
x

$←χ
[|x| >

B] < ε.

Definition 6. A distribution χ̃ supported over Z is (B, ε)-swallowing if for all
y ∈ [−B,B] ∩ Z it holds that χ̃ and y + χ̃ are within ε statistical distance.

Corollary 4. For every B, ε, δ there exists an efficiently sampleable distribution
that is both (B, ε)-swallowing and (B ·

√
log (1/δ)/ε,O(δ))-bounded.

Definition 7. A distribution χ̃ supported over Z is (χ, ε)-swallowing, for a dis-
tribution χ, if it holds that χ̃ and χ+ χ̃ are within ε statistical distance. We omit
the ε when it indicates a negligible function in a security parameter that is clear
from the context.

Corollary 5. Let B(λ) be some function and let B̃(λ) = B(λ) ·λω(1), then there
exists an efficiently sampleable ensemble {χ̃λ}λ such that χ̃ is χ-swallowing for
any B(λ)-bounded {χλ}λ, and also B̃(λ)-bounded.

Learning With Errors. The Learning with Errors (LWE) problem was introduced
by Regev [Reg05]. In this work we will use its decisional version.

Definition 8 (Decisional LWE (DLWE) [Reg05] and its HNF [ACPS09]).
Let λ be the security parameter, n = n(λ) and q = q(λ) be integers and let
χ = χ(λ) be a probability distribution over Z. The DLWEn,q,χ problem states
that for all m = poly(n), letting A← Zn×mq , s← Znq , e← χm, and u← Zmq , it

holds that
(
A, sA + e

)
and

(
A,u

)
are computationally indistinguishable.

In this work we only consider the case where q ≤ 2n. Recall that GapSVPγ
is the (promise) problem of distinguishing, given a basis for a lattice and a pa-
rameter d, between the case where the lattice has a vector shorter than d, and
the case where the lattice doesn’t have any vector shorter than γ · d. SIVP is
the search problem of finding a set of “short” vectors. The best known algo-

rithms for GapSVPγ ( [Sch87]) require at least 2Ω̃(n/ log γ) time. We refer the
reader to [Reg05,Pei09] for more information. The following corollary allows us
to appropriately choose the LWE parameters for our scheme according to known
reductions from GapSVPγ and SIVPγ to DLWEn,q,χ.

Corollary 6 ( [Reg05,Pei09,MM11,MP12,BLP+13]). For all ε > 0 there
exists functions q = q(n) ≤ 2n, χ = χ(n) such that χ is B-bounded for some
B = B(n), q/B ≥ 2n

ε

and such that DLWEn,q,χ is at least as hard as the classical
hardness of GapSVPγ and the quantum hardness of SIVPγ for γ = 2Ω(nε).
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3 Conforming cPRF

Our ABE construction in the next section instantiates a constrained PRF that
has to satisfy some special properties, gathered under the following definition.

Definition 9 (Conforming cPRF). A cPRF scheme is conforming if, in ad-
dition to the correctness and single-key addaptive security properties (see Defi-
nition 2), the following holds.

Gradual Evaluation. The algorithm Constrain (in addition to Eval,ConstrainEval)
is deterministic and the following holds. For any fixing of pp← Setup(1λ), f ∈ F
and x ∈ {0, 1}` for which f(x) = 1, define the following circuits:

– Uσ→x : {0, 1}λ → {0, 1}k takes as input msk and computes Evalmsk(x).
– Uσ→f : {0, 1}λ → {0, 1}`f takes as input msk and computes Constrainmsk(f).
– Uf→x : {0, 1}`f → {0, 1}k takes as input skf and computes ConstrainEvalskf (x).

We require that for all pp, f, x as defined above, the circuit Uσ→x and the effective
sub-circuit of Uf→x ◦ Uσ→f are the same. That is, the description of Uσ→x as
a sequence of gates is identical to the sequence of gates that go from the input
wires to the output wires of the circuit Uf→x ◦ Uσ→f .

Key Simulation. We require a ppt algorithm KeySimpp(f)→ skf such that any
ppt adversary A has at most 1/2+negl(λ) probability to win the following game
against a challenger C.

– Initialization: C generates (pp,msk)← Setup(1λ) and sends pp to A.
– Evaluation Queries I: A makes (possibly multiple) queries. In each query it

sends a bit-string x ∈ {0, 1}` and C returns rx ← Evalmsk(x).
– Challenge Phase: A sends the challenge constraint f∗ ∈ F . C uniformly sam-

ples b
$← {0, 1}. If b = 0 then C returns skf∗ ← Constrainmsk(f), otherwise it

returns skf∗ ← KeySimpp(f).
– Evaluation Queries II: same as the first queries phase.
– End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b and (2) all of the evaluation queries x are such
that f∗(x) = 0.

Remark 1. The requirement for a deterministic Constrain algorithm is for sim-
plicity of exposition and since in our construction this requirement holds trivially.
We note, however, that our ABE scheme can be extended to support a random-
ized Constrain algorithm. Alternatively, any cPRF scheme with a randomized
Constrain algorithm can be converted to one with a deterministic algorithm by
generating the randomness with an additional standard PRF.

Example. The [GGM86] PRF is a conforming cPRF for prefix policies. Gradual
evaluation holds since for any x ∈ {0, 1}` and any length-t prefix f ∈ {0, 1}t, it
holds that Uσ→x(·) = Gx`(· · ·Gx2(Gx1(·))) while Uσ→f (·) = Gft(· · ·Gf2(Gf1(·)))
and Uf→x(·) = Gx`(· · ·Gxt+2

(Gxt+1
(·))). Key simulation holds since a con-

strained key for f is indistinguishable from uniform to any adversary that cannot
query for evaluations on points accepted by f .
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3.1 Construction for t-CNF Policies

We now describe our single key construction for the function class F consisting of
CNF formulas where each clause depends on t bits of the input (see Definition 4).
Our construction is inspired by the [DKNY18] construction of bit-fixing cPRF
for a constant number of keys. In fact, their technique can be generalized to
instantiate a family of cPRF schemes with a tradeoff between the CNF locality
of the supported policies and the number of keys. They instantiate it with CNF
locality 1 (i.e. bit-fixing) and t keys, while we instantiate it with CNF locality t
and a single key.

Let (P.Setup,P.Eval) be a (standard) PRF (Definition 1), let t ≤ ` be a fixed
constant and let S denote the set of all (T, v) pairs where T ⊆ [`], |T | = t and
v ∈ {0, 1}t.

– Setup(1λ): Sample and output (pp,msk)← P.Setup(1λ).
– Eval(msk, x): Let Sx ⊆ S denote the set of all (T, v) ∈ S pairs that “agree”

with x, that is, Sx = {(T, xT ) ∈ S} where xT is the length-t bit-string
consisting of the bits of x in the indices T . For all (T, v) ∈ Sx compute
skT,v ← P.Evalmsk(T‖v). Output

rx =
⊕

(T,v)∈Sx

P.EvalskT,v (x) . (4)

– Constrainmsk(f): Parse f as a set of clauses f = {(Ti, fi)} and recall that for
all i, Ti ⊆ [`], |Ti| = t and fi : {0, 1}t → {0, 1}. For any clause (Ti, fi) ∈ f
let Sfi ⊆ S be the set of all (T, v) ∈ S pairs that “agree” with (Ti, fi), that
is,

Sfi = {(Ti, v) ∈ S : fi(v) = 1} .

Moreover, let Sfrest ⊆ S be the set of all (T, v) ∈ S pairs such that f does
not have a clause respective to T . That is,

Sfrest = {(T, v) ∈ S : ∀i Ti 6= T} .

Finally let Sf = Sfrest ∪
⋃

(Ti,fi)∈f S
f
i . For all (T, v) ∈ Sf compute skT,v ←

P.Evalmsk(T‖v). Output skf = {skT,v}(T,v)∈Sf .
– Evalskf (x): If f(x) = 0 then abort, o.w. note that Sx ⊆ Sf and compute rx

as in Eq. (4).

Correctness. Fix x ∈ {0, 1}` and f ∈ F for which f(x) = 1. It is enough to
prove that Sx ⊆ Sf . Note that Sx = {(T, xT ) ∈ S} and parse f = {(Ti, fi)}.
For each (T, xT ) ∈ Sx consider two options. If f has a clause respective to T ,
i.e. there exists i such that Ti = T , then since f(x) =

∧
fi(xTi) and f(x) = 1,

it also holds that fi(xTi) = 1, and therefore (T, xT ) = (Ti, xTi) ∈ Sfi ⊆ Sf .
Otherwise, f does not have a clause respective to T , i.e. ∀i Ti 6= T , and therefore
(T, xT ) ∈ Sfrest ⊆ Sf .



Fully Secure Attribute-Based Encryption for t-CNF from LWE 15

Single-Key Adaptive Security. We sketch here the proof, which follows similar
lines to [DKNY18]. Consider the single-key adaptive security game and let x∗

and f be the challenge query and (single) key query respectively. It is guaranteed
by the game that f(x∗) = 0, therefore there exists at least one clause (Ti, fi) ∈ f
such that fi(x

∗
Ti

) = 0 and therefore (Ti, x
∗
Ti

) /∈ Sf .

In the simulated security game, the challenger guesses the value (Ti, x
∗
Ti

) at

the beginning of the game by sampling a random pair (T ′, v′)
$← S. When a key

for f is queried, if there is no clause (Ti, fi) ∈ f such that Ti = T ′ and fi(v
′) = 0,

then the challenger aborts. When a challenge for x∗ is queried, if x∗T ′ 6= v′

then the challenger aborts. Since there must exist an element (T ′, v′) ∈ S that
does not cause an abort, and since (T ′, v′) is chosen uniformly from S where
|S| = O((2`)t), there is a significant probability 1/O((2`)t) that the challenger
does not abort when t is constant.

If the challenger does not abort, it replaces the element EvalskT ′,v′ (x
∗) in the

challenge ciphertext with a uniform bit-string. This is indistinguishable by the
pseudorandomness of P (respective to the key skT ′,v′) and since the challenger
does not have to provide skT ′,v′ in the constrained key. At this point the challenge
ciphertext is completely uniform, which completes the proof.

Gradual Evaluation. Fix x ∈ {0, 1}` and f ∈ F for which f(x) = 1 and note that
Sx ⊆ Sf . The circuit Uσ→x(·) can be divided to two layers, where the first layer
computes skx = {skT,xT }(T,xT )∈Sx and the second layer computes rx from skx.
Moreover, letting U∗f→x ◦ U∗σ→f denote the effective sub-circuit of Uf→x ◦ Uσ→f
(see Definition 9), it holds that U∗σ→f (resp. U∗f→x) is exactly the first (resp.
second) layer of Uσ→x(·).

Key Simulation. The simulator KeySim(f) simply samples all of the components
skf = {skT,v}(T,v)∈Sf uniformly. We sketch now the indistinguishability proof,
which goes via a sequence of hybrids H0, . . . ,HQ,HQ+1 where Q is the number
of evaluation queries made by A. For i = 0 . . . Q, in hybrid Hi the challenger
answers the first i evaluation queries with uniformly sampled values and answers
the challenge key query as in the real game. In hybrid HQ+1, the challenger an-
swers all of the evaluation queries uniformly and answers the challenge key query
with KeySim(f∗) regardless of the value of b. Note that hybrid H0 is identical to
the key simulation game and that in hybrid HQ+1 the adversary wins the game
with probability 1/2. For all i = 1 . . . Q, the indistinguishability of Hi and Hi−1
follows from the single-key adaptive security of the scheme. Lastly, in hybrid HQ
the components of the key challenge skf = {skT,v}(T,v)∈Sf are either uniform (if
b = 1) or from the distribution {sk(T,v) ← P.Evalmsk(T, v)}(T,v)∈Sf (if b = 0),
while in HQ+1 they are always uniform. Those hybrids are indistinguishable by
the pseudorandomness of P and since |Sf | ∈ poly(λ).
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4 Fully Secure ABE from Conforming cPRF

4.1 The Construction

We now construct a ciphertext-policy ABE scheme for a function class F from
a conforming cPRF (Definition 9) for F . Our construction has adaptive security
under the LWE assumption, and assuming that the underlying cPRF maintains
single-key adaptive security.

Let P = (P.Setup,P.Eval,P.Constrain,P.ConstrainEval) be a conforming cPRF
for a class family F with input length ` and output length k. W.l.o.g. assume
that the master secret key length of P is λ. For all f ∈ F let `f denote the size
of a constrained key for the function f . Note that `f is constant and is efficiently
computable given f and the description of P.Constrain. Let Uσ→x, Uσ→f and
Uf→x be the circuits as in Definition 9. Define ABE = (Setup,Enc,KeyGen,Dec)
as follows.

– Setup(1λ): Sample (P.msk,P.pp) ← P.Setup(1λ) and denote σ = P.msk. Fix
the parameters n, q,m′, τ, χ, χ̃ as explained below and let m = ndlog qe.
Sample a matrix with its trapdoor (B,B−1τ0 ) ← TrapGen(1n,m′, q). Sam-

ple uniformly a matrix A
$← Zn×m·λq and a vector v

$← Znq . Output pp =

(B,A,v,P.pp) and msk = (B−1τ0 , σ).

– Encpp(f, µ): Sample skf ← P.KeySimP.pp(f) and denote sf = skf . Sample

s
$← Znq , e0

$← χm, e1
$← χ̃m·`f , e2

$← χ, and output ct = (sf ,u0,u1, u2)
such that

u0 = sTB+eT0 , u1 = sT [Af−sf⊗G]+eT1 , u2 = sTv+e2+µbq/2e ,

where Af = AHσ→f for Hσ→f ← EvalF(Uσ→f ,A).

– KeyGenmsk(x): Compute the matrix Hσ→x ← EvalF(Uσ→x,A) and denote
Ax = AHσ→x. Compute r ← P.Evalσ(x) and let Ir : {0, 1}k → {0, 1} be the
function that on input r′ returns 1 if and only if r = r′3. Compute Hr ←
EvalF(Ir,Ax), denote Ax,r = AxHr and use B−1τ0 to compute [B‖Ax,r]

−1
τ .

Sample k← [B‖Ax,r]
−1
τ (v) and output skx = (r,k).

– Decskx(ct, f): Parse skx = (r,k) and ct = (sf ,u0,u1, u2). Compute r′ ←
Uf→x(sf ) and if r = r′ then abort. Otherwise, compute Af and Ax as in
Enc,KeyGen respectively, then compute

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ) and Ĥr,r′ ← EvalFX(Ir, r
′,Ax) .

Lastly, compute u = u2 − [u0‖u1Ĥsf→r′Ĥr,r′ ]k and output 1 if and only if
|u| ≥ q/4.

3 Previous works used an ABE definition where the decryption succeeds conditioned
on f(x) = 0, while we require that f(x) = 1. Note that in our scheme the decryption
succeeds conditioned on f(x) = 1 ∧ r 6= r′, i.e. f(x) = 1 ∧ Ir(r′) = 0.
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Choice of Parameters. We set the parameters according to constraints that rise
up in the security and correctness analysis. Choose k = λ, let d = poly(λ) denote
the depth of Uσ→x and note that since P is gradual the depths of Uσ→f , Uf→x
are bounded by d. Choose n ≥ λ such that (2n2)2d+4 ≤ 2n

ε

, where ε ∈ (0, 1) is a
security/efficiency tradeoff parameter. Note that n ≤ dO(1/ε) which is polynomial
in λ for any constant ε. Moreover, E′ ≤ 2n

ε

where E′ is as defined in Eq. (5).
Choose q,B, χ according to Corollary 6 and note that q/B ≥ 2n

ε

and that χ is
B-bounded. Choose m′ = (n+1)dlog qe+2λ and τ = max{τ0, τ ′}, where τ0 is as
in Corollary 1 and τ ′ is as in Eq. (6). Set χ̃ to be a B′-swallowing distribution,
where B′ = (m′ +m)λB(2m)d. By Corollary 5, χ̃ can be chosen such that it is
B̃-bounded for some B̃ ∈ O(B′, λ).

4.2 Correctness

Lemma 1. If P be a conforming cPRF for a class family F as per Definition
9, then ABE is a correct ciphertext policy attribute-based encryption scheme as
per Definition 3 for the class family F .

Proof. Fix µ ∈ {0, 1}, (pp,msk) ← Setup(1λ), f ∈ F and x ∈ {0, 1}` such
that f(x) = 1. Consider ct ← Enc(f, µ) and skx ← KeyGenmsk(x), and parse
skx = (r,k) and ct = (sf ,u0,u1, u2). Consider the execution of Decskx(ct, f).

We first prove that with all but negligible probability r 6= r′ via a re-
duction to the pseudorandomness game of P. Recall that r′ is computed as
P.ConstrainEvalsk′f (x) where sk′f ← P.KeySim(f), while r is computed as P.Evalmsk(x).

Consider an adversaryA in the pseudorandomness game of P as follows. Upon re-
ceiving P.pp, it computes sk′f ← P.KeySim(f) and then r′x ← P.ConstrainEvalsk′f (x).

It then requests for a challenge on x, and upon receiving the challenge r∗x it out-
puts 1 if and only if r∗x = r′x. The advantage of A is at least Pr[r = r′] and
therefore if P is pseudorandom then Pr[r = r′] is negligible.

We now prove that if r 6= r′ then the decryption succeeds with all but negli-
gible probability. Denote Hf→x = EvalF(Uf→x,Af ). Since P has gradual evalu-
ation (see Definition 9), the effective sub-circuit of Uf→x ◦Uσ→f and the circuit
Uσ→x are identical. By Theorem 2 it follows that Hσ→fHf→x = Hσ→x, and
therefore AfHf→x = AHσ→fHf→x = AHσ→x = Ax.

By applying Theorem 2 on (Hf→x, Ĥsf→r′) and (Hr, Ĥr,r′), we get respec-
tively

[Af − sf ⊗G] Ĥsf→r′ = AfHf→x − Uf→x(sf )⊗G = Ax − r′ ⊗G

and
[Ax − r′ ⊗G] Ĥr,r′ = AxHr − Ir(r′)G = Ax,r

where the last equation holds since r 6= r′ and thus Ir(r
′) = 0. Therefore,

u1Ĥsf→r′Ĥr,r′ =
(
sT [Af − sf ⊗G] + eT1

)
Ĥsf→r′Ĥr,r′

= sT [Af − sf ⊗G] Ĥsf→r′Ĥr,r′ + e′1 where e′1 = eT1 Ĥsf→r′Ĥr,r′

= sT [Ax − r′ ⊗G] Ĥr,r′ + e′1

= sTAx,r + e′1 .
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Hence,

u2 − [u0‖u1Ĥsf→r′Ĥr,r′ ]k = sTv + e2 + µbq/2e − sT [B‖Ax,r]k− [eT0 ‖e′1]k

= µbq/2e+ e2 − [eT0 ‖e′1]k .

Note that

‖e′1‖∞ ≤ m
2`fk

∥∥eT1 ∥∥∞ ∥∥∥Ĥsf→r′
∥∥∥
∞

∥∥∥Ĥr,r′

∥∥∥
∞
≤ m2`fkB̃(2m)dConEv+1

and that by the properties of discrete Gaussians, ‖k‖∞ ≤ τ
√
m′ +m with all

but 2−(m
′+m) = negl(λ) probability.

Therefore, ifm′, k, `f ∈ O(n, dlog qe), B̃ ∈ O(B,n) and τ ∈ O
(
k, λ, (2m)d+3

)
,

then with all but negligible probability∣∣e2 − [eT0 ‖e′1]k
∣∣ ≤ |e2|+ (m′

∥∥eT0 ∥∥∞ +m ‖e′1‖∞) · ‖k‖∞
≤ B + (m′B +m3`fkB̃(2m)dConEv+1)τ

√
m′ +m

≤ B · poly(n, dlog qe) · (2m)dConEv+d+4 .

Denoting
E = B · poly(n, dlog qe) · (2m)dConEv+d+4

and

E′ = 4E/B = 4 · poly(n, dlog qe) · (2m)dConEv+d+4 , (5)

by our choice of parameters E′ is bounded by q/B, and therefore E = BE′/4 is
bounded by q/4. Therefore, if µ = 0 then |u| ≤ q/4 and if µ = 1 then |u| > q/4.

4.3 Security

Lemma 2. If P be a conforming cPRF for a class family F as per Definition
9, then ABE is a secure ciphertext policy attribute-based encryption scheme as
per Definition 3 for the class family F under the DLWEn,q,χ assumption.

Proof. We prove via a sequence of hybrids.

Hybrid H0. This is the adaptive security game from Definition 3.

Hybrid H1. We change the way C answers the challenge query f∗. Instead of
computing sf ← P.KeySimP.pp(f

∗), it computes sf ← P.Constrainσ(f∗). Note
that now sf = Uσ→f (σ).

We show computational indistinguishability via a reduction to the key simu-
lation game of P (see Definition 9). Let AP be an adversary in the key simulation
game. It operates as the challenger in the ABE security game as follows. For ev-
ery key query x sent by A, AP queries the P challenger for an evaluation over the
input x and proceeds with computing the ABE key for x as in the scheme. Note
that it is guaranteed by the ABE game that f∗(x) = 0 and therefore this query
is valid in the P game. When A asks for the challenge ciphertext, AP asks for
the challenge constrained key sk′f and proceeds with the encryption algorithm
as in the scheme. Any advantage of A at distinguishing between those hybrids
translates to identical advantage of AP in the key simulation game.
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Hybrid H2. We change the way C generates the matrix A as follows. It sam-

ples uniformly a matrix R
$← {0, 1}m′×m·λ and sets A = BR + σ ⊗ G. In-

distinguishability follows from the extended leftover hash lemma, since m′ ≥
(n+ 1)dlog qe+ 2λ and B is statistically-close to uniform by Corollary 1.

Hybrid H3. We change again the way C answers the challenge query f∗, specif-
ically the way it generates u1. Note that now

Af − sf ⊗G = AHσ→f − Uσ→f (σ)⊗G

= [A− σ ⊗G]Ĥmsk→sf where Ĥmsk→sf ← EvalFX(Uσ→f , σ,A)

= BRĤmsk→sf .

The values u0 and u2 will be generated as before, by sampling s
$← Znq , e0

$← χm,

e2
$← χ and computing u0 = sTB + eT0 and u2 = sTv + e2 + µbq/2e.
Recall that previously u1 was computed as u1 = sT [Af−sf⊗G]+eT1 , where

e1
$← χ̃m·`f . In this hybrid, it will be computed as u1 = u0RĤmsk→sf +eT1 . Note

that now

u1 = u0RĤmsk→sf + eT1

= (sTB + eT0 )RĤmsk→sf + eT1

= sT [Af − sf ⊗G] + eT0 RĤmsk→sf + eT1

and that B′ =
∥∥∥eT0 RĤmsk→sf

∥∥∥
∞
≤ (m′ + m)λ

∥∥eT0 ∥∥∞ ‖R‖∞ ∥∥∥Ĥmsk→sf

∥∥∥
∞
≤

(m′ + m)λB(2m)dCon , where dCon is the depth of Uσ→f . Therefore, if χ̃ is B′-
swallowing then this change is statistically indistinguishable.

Hybrid H4. We change the way C answers key queries. Let x be a query and fix
r ← P.Evalσ(x) and Ĥmsk→r ← EvalFX(Uσ→x, σ,A). Note that

[A− σ ⊗G]Ĥmsk→r = AHσ→x − r ⊗G

= Ax − r ⊗G where Ĥmsk→r ← EvalFX(Uσ→x, σ,A) ,

and since Ir(r) = 1,

[Ax − r ⊗G]Ĥr,r = AxHr − Ir(r)G = Ax,r −G where Ĥr,r ← EvalFX(Ir, r,Ax) .

Therefore, since A − σ ⊗G = BR it holds that BRĤmsk→rĤr,r = Ax,r −G
and hence

[B‖Ax,r] = [B‖BRĤmsk→rĤr,r + G] .

Note that ∥∥∥RĤmsk→rĤr,r

∥∥∥
∞
≤ m2kλ ‖R‖∞

∥∥∥Ĥmsk→r

∥∥∥
∞

∥∥∥Ĥr,r

∥∥∥
∞

≤ m2kλ(2m)d+1 ,
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and that Corollary 3, given B and RĤmsk→rĤr,r it is efficient to compute
[B‖Ax,r]

−1
τ ′ for some

τ ′ = O
(∥∥∥RĤmsk→rĤr,r

∥∥∥
∞

)
= O

(
k, λ, (2m)d+3

)
. (6)

Therefore, if τ ≥ τ ′ then C can now sample from [B‖Ax,r]
−1
τ (v) without B−1τ0 .

The distribution remains identical to the previous hybrid.

Hybrid H5. We change the way B is generated. Instead of sampling it via

TrapGen, sample uniformly B
$← Zn×mq . By Corollary 1 this change is statis-

tically indistinguishable.

Hybrid H6. We change again the way C answers the challenge query. It now

samples uniformly u0
$← Zm′q and u2

$← Zq. This change is computationally
indistinguishable under the DLWEn,q,χ assumption. At this step the challenge
completely hides b and so A has no advantage.

Acknowledgements

We thank Sina Shiehian for pointing out that the construction in Section 4 can be
initialized with a polynomial modulus q whenever the depth of the conforming
cPRF is logarithmic, which in turn implies that a low-depth PRF from LWE
with a polynomial modulus suffices to derive an ABE construction for t-CNF
with similar parameters.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE
in the standard model. In EUROCRYPT, pages 553–572, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation
in fixed dimension and shorter-ciphertext hierarchical IBE. In CRYPTO,
pages 98–115, 2010.

[ABV+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voul-
garis, and Hoeteck Wee. Functional encryption for threshold functions
(or fuzzy IBE) from lattices. In Public Key Cryptography - PKC 2012
- 15th International Conference on Practice and Theory in Public Key
Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings, pages
280–297, 2012.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
cryptographic primitives and circular-secure encryption based on hard
learning problems. In CRYPTO, pages 595–618, 2009.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan.
Functional encryption for inner product predicates from learning with er-
rors. In Advances in Cryptology - ASIACRYPT 2011 - 17th International
Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings, pages 21–
40, 2011.



Fully Secure Attribute-Based Encryption for t-CNF from LWE 21

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In STOC, pages 99–108, 1996.

[Ajt99] M. Ajtai. Generating hard instances of the short basis problem. In
ICALP, 1999.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with poly-
nomial error. In Advances in Cryptology - CRYPTO 2014, pages 297–314,
2014.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based
encryption without random oracles. In Advances in Cryptology - EU-
ROCRYPT 2004, International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Interlaken, Switzerland, May 2-6,
2004, Proceedings, pages 223–238, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption with-
out random oracles. In Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, California,
USA, August 15-19, 2004, Proceedings, pages 443–459, 2004.

[BF03] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil
pairing. SIAM Journal on Computing, 32(3):586–615, 2003. Preliminary
version in CRYPTO ’01.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayaga-
murthy. Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In EUROCRYPT, pages 533–556, 2014.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In Public-Key Cryptography - PKC 2014
- 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings,
pages 501–519, 2014.

[BL16] Xavier Boyen and Qinyi Li. Towards tightly secure lattice short signature
and id-based encryption. In Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part II, pages 404–434, 2016.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
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