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Abstract. Is it possible to measure a physical object in a way that
makes the measurement signals unintelligible to an external observer? Al-
ternatively, can one learn a natural concept by using a contrived training
set that makes the labeled examples useless without the line of thought
that has led to their choice? We initiate a study of “cryptographic sens-
ing” problems of this type, presenting definitions, positive and negative
results, and directions for further research.

1 Introduction

The traditional goal of cryptography is to design cryptographic algorithms for
well-defined tasks, such as public-key encryption. In this work we study the
following question: when can we embed a cryptographic function in a function
that was not designed for this purpose, say a function created by nature?

To make the question more concrete and illustrate a potential application
scenario, consider the goal of observing a physical object in total darkness. Is
it possible to design a flashlight, and a matching pair of glasses, such that the
flashlight will only make the object visible to the owner of the glasses? Note
that we are not attempting to hide the existence of the object and the flashlight.
Our goal is to embed in the physical implementation of the flashlight a hidden
secret (which is only explicitly found in the glasses), such that without knowing
this secret it is computationally infeasible to make sense of the signals directed
at and reflected from the object. The latter requirement should hold even if the
flashlight can be captured and analyzed completely by an adversary, and even if
the adversary can design its own pair of glasses based on this analysis.

A bit more rigorously and abstractly, we model the object being observed
as a vector x ∈ X , where X = {0, 1}n by default. The flashlight is modeled as
a randomized measurement algorithm Sen that can carefully choose a sequence
of measurement functions f1, f2, . . ., where each fi is taken from some fixed and
publicly known class F . For each function fi, the algorithm Sen learns the value
ai = fi(x). The choice of the measurement sequence fi may either be adaptive, in
the sense that each fi can depend on a1, . . . , ai−1, or non-adaptive, in the sense
that all fi are chosen together. We would like the following two requirements
to hold. First, given the randomness that was used to choose the measurement
functions fi, it is possible to efficiently decode the object x from the sequence
(fi, ai). In the flashlight example, this decoding algorithm is performed by the
glasses. Second, we would like the object x to remain “hidden” (in a sense that
should be defined) from any polynomial-time (passive) external observer Adv
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who can only view the measurements (fi, ai) without the randomness that was
used to generate them. We refer to such an algorithm Sen as a cryptographic
sensing algorithm for the measurement class F .

For the purpose of obtaining better efficiency or stronger security, it will
sometimes be useful to relax the above goal by settling for Sen learning only
partial information g(x) about x (e.g., a lower resolution version of an image x
or some targeted portion of x), or by allowing Adv to learn partial information
`(x) about x (e.g., the brightness level of an image). As long as Sen has a
meaningful advantage over Adv, we realize a non-trivial notion of cryptographic
sensing. A different type of relaxation is to consider a distributed setting, where
two or more instances of Sen can be executed. Here Adv only has access to a
bounded number of these instances (say, one out of two) but the decoder has
access to all of them. This is analogous to the type of security provided by secret
sharing schemes or protocols for secure multiparty computation.

One can also consider a dual formulation of the problem in the language
of computational learning theory. Here the object is a secret concept, namely
a function f ∈ F , and the goal of the (active, randomized) learning algorithm
Sen is to come up with a training set x1, x2, . . . such that given the labeled
examples (xi, f(xi)) it can efficiently learn some representation of f . The unusual
requirement we make here is that without the “line of thought” that has led to
the choice of the training set, it should be impossible for an efficient, passive Adv
to learn f from the labeled examples. There are instances of the cryptographic
sensing problem that are better motivated or are more naturally cast in this dual
form; however, most instances considered in this work are more naturally cast
in the original “sensing” framework.

If we could choose the class F at will, we could simply make it rich enough
to directly implement an encryption of x via a standard public-key encryption
scheme, say the RSA scheme. This is akin to allowing the flashlight to shoot
a miniature robot at the object, where the robot physically senses the object
and sends back an encrypted image using the flashlight’s public encryption key.
However, our goal here is to study the possibility of coping with natural classes
F , such as ones that can potentially be realized by a simple physical measure-
ment process (in the sensing formulation) or that capture simple and/or realistic
classes of concepts (in the learning formulation).

Other than the type of “sensing” applications illustrated by the cryptographic
flashlight metaphor, it is not hard to imagine additional potential application
scenarios. For instance, consider a drug company A that must outsource expen-
sive experiments to a company B for the purpose of determining the chemical
structure of some virus. Company A would like to deter employees of B who
conduct the actual experiments from selling the results to a competing drug
company C. Here too, our goal is not to hide the fact that a virus is being an-
alyzed, but rather to render the “questions and answers” that must inevitably
be obtained by B in the process of analysis useless to anyone but the company
A that designed (and paid for) the experiments. A similar goal can apply to
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other measurement and learning scenarios such as conducting polls, training
deep neural nets, and many more.

1.1 Our Contribution

In this work we initiate a study of cryptographic sensing by presenting defini-
tions, some positive and negative results, and directions for further research.

Formalizing Security. We start by putting forward different notions of secu-
rity for cryptographic sensing. The weakest notion is that of one-way security,
which ensures that Adv has a negligible success of guessing x exactly, when x
is picked at random. Using standard cryptographic terminology, a non-adaptive
cryptographic sensing algorithm for F with one-way security is equivalent to an
F-computable injective trapdoor function, namely one that can be computed by
concatenating functions from F . One-way security is typically not very useful,
since it only applies to a specific object distribution and even in this case it does
not rule out revealing a big amount of partial information about the object.

A stronger and more useful notion is that of entropic security, requiring that
any two object distributions that have high min-entropy cannot be distinguished
by Adv. This intuitively means that the interaction does not help Adv distinguish
between objects that were sufficiently unpredictable to start with. Using stan-
dard cryptographic terminology, a non-adaptive cryptographic sensing algorithm
with entropic security for F can be viewed as an F-computable one-time-secure
deterministic public-key encryption scheme [46, 24, 13].

As in the case of non-cryptographic sensing (e.g., compressed sensing), it is
often useful to settle for lossy decoding, where Sen outputs some useful partial
information about x such as a projection of x to a subset of the coordinates
or a compressive linear sketch of x from which an approximate version (e.g., a
lower resolution image) can be recovered. Note that with lossy decoding, one-
way security may become meaningless. However, entropic security is still as
meaningful. Lossy decoding is motivated by the possibility of obtaining better
efficiency (e.g., fewer measurements) and better security (e.g., entropic security
with a lower entropy bound).

Finally, we consider a useful combination of entropic security and lossy de-
coding we refer to as security with background noise. Here we aim to completely
hide the object x by masking it with “background noise” r, where measure-
ments apply jointly to (x, r). (In the case of physical measurements, r can be
taken from parts of the object that are considered irrelevant, or from nearby
objects.) This is analogous to the role of randomness in semantically secure
probabilistic encryption [27]. We distinguish between different types of security
with background noise, depending on whether r is assumed to be random and
whether it is independent of x.

Constructions and Negative Results. At a first glance, obtaining cryp-
tographic sensing algorithms for natural classes F may seem hopeless. Indeed,
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such classes are expected to be either hard to learn (even without any security
requirements) or alternatively admit simple learning algorithms in which case
there is no hope to embed any cryptographic hardness, let alone the intricate
structure of public-key cryptography.

However, a second thought reveals that this view may be too pessimistic.
First, there is a rich line of work on low complexity cryptography (see Sec-
tion 1.2), showing that sophisticated cryptographic primitives can be imple-
mented in low complexity classes under well studied intractability assumptions.
Second, an even richer line of work shows how to construct code-based [39, 2]
or lattice-based [1, 44, 25] public-key encryption schemes in which encryption
can be implemented by computing a linear function of the message and secret
randomness over some finite ring Zq. In our language, these cryptosystems im-
ply cryptographic sensing algorithms with Zq-linear measurements that achieve
semantic security using random background noise. In fact, lattice-based deter-
ministic public-key encryption schemes imply a similar result with entropic se-
curity [42, 19, 15] and without the need for background noise.

Let us pause to explain how linear functions, that are trivially “learnable” by
using Gaussian elimination, can be a source for cryptographic hardness. The key
feature that makes this possible is that the object x is restricted to be in {0, 1}n
(or, more generally, a vector of a small norm) whereas the linear combinations are
taken over the larger domain Znq . This means that even though Adv can obtain
an explicit description of affine space of objects in Znq that are consistent with
the labeled examples, it has no obvious way of making sense of this information.
Indeed, the affine space is of exponential size, which makes it possible to hide
inside it a low-norm object x that has sufficient entropy.

The simplicity of linear functions makes lattice-based cryptography an attrac-
tive venue for cryptographic sensing algorithms. However, even when restricting
attention to linear measurements, there are several reasons why these off-the-
shelf solutions from the literature are not completely satisfying.

First, they all inherently require modular linear measurements, modulo some
finite integer q ≥ 2. While the class of such measurements is very natural from
a theory perspective, we are not aware of any realistic way of obtaining a direct
physical implementation of such measurements. Note that it is crucial that no ad-
ditional information except the output of the measurement is leaked. In contrast,
linear combinations with small integer coefficients (or alternatively bounded-
precision reals) can conceivably be realized without significant additional leak-
age. As a toy example, consider an implementation of a “flashlight” that shoots
small balls or a spray of water at a metal board with holes. The amount of noise
made by the impact (alternatively the amount of substance that bounces back)
reveals a linear combination over the integers of the characteristic vector of the
board (0 for hole, 1 for no hole) and the density vector of objects shot at it.
One can easily imagine more sophisticated and scalable physical measurement
processes of this type. Other disadvantages of off-the-shelf solutions is that their
entropically secure variants have a poor quality of entropic security and require
a large number of measurements.
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We start by addressing the latter disadvantages. We show a simple cryp-
tographic sensing algorithm that achieves a good quality of entropic security
(i.e., with weak entropy requirements) and only uses a small number of linear
measurements over Zq. The price we pay is that we settle for lossy decoding,
revealing a sublinear number of linear combinations of the object x. In the con-
text of natural objects (such as images), such compressive linear mappings are
often almost as good as full recovery (see, e.g., [29] for a survey). Our algorithm
is simple and intuitive, and builds on the same technique that underlies lattice-
based encryption schemes such as Regev’s cryptosystem [44]. The high level idea
is to hide the “useful” linear combinations in a low-dimensional linear space by
adding noise. Using a combination of the Learning With Errors assumption and
the Leftover Hash Lemma, it is ensured that the linear space spanned by the
measurements together with the measurement outcomes looks completely ran-
dom to a computationally bounded Adv, assuming that the object has sufficient
entropy.

Then, we use a simple generic transformation from cryptographic sensing
algorithms that use linear measurements over Zq to ones that use linear mea-
surements over the integers. This transformation relies on background noise,
effectively implementing mod-q reduction by adding secret random multiples of
q that are harvested from the background noise. This transformation has two dis-
advantages: first, if the coefficients of the linear combinations are polynomially
bounded, Adv gets an inverse polynomial distinguishing advantage (compared
to the negligible advantage in the Zq solutions). Second, the resulting algorithm
relies on background noise and does not achieve entropic security. While we
show that both disadvantages are in some sense inherent, there is still a lot of
room for improving both the qualitative security guarantee and the quantitative
parameters.

We conclude by presenting positive and negative results for other classes F ,
beyond linear measurements. These results build heavily on previous results in
the literature on computational learning theory or low-complexity cryptography.
See Section 5 for details.

Can public-key encryption really be implemented by nature? As dis-
cussed above, cryptographic sensing for naturally occurring functions essentially
requires public-key encryption (PKE) to be implemented by nature. This may
seem inconceivable in light of the complexity and relative scarcity of known PKE
candidates. However, as our results suggest, this view may be overly pessimistic
for several reasons.

First, it ignores the extra degree of freedom one has by encoding the out-
put of a standard PKE scheme. Indeed, even complex functions can be encoded
by randomized functions (such as NC0 functions [9]) for which every individual
output is a very simple function of the input. The space of possible construc-
tions of such randomized encoding schemes for functions is far from being well
understood or even systematically explored.
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A second degree of freedom that our constructions exploit is the ability of
the sensing algorithm to pick an arbitrary, possibly contrived, distribution over
the class of measurement functions. We heavily exploit this in our sensing algo-
rithm that uses linear measurement functions with small integer coefficients. (As
argued above, this class of measurements admits simple physical realizations.)
In the dual learning formulation, this amounts to using a contrived training set
or input distribution. The combination of a “contrived” input distribution with
a “natural” function class might be just as powerful as the usual combination
of “contrived” function class with a “natural” input distribution, which is com-
monly used in cryptography. For instance, for all we know, even DNF formulas
can compute weak pseudo-random functions or public-key encryption schemes
for contrived input distributions.

Finally, as we demonstrate in Section 5, relaxing the basic model to a dis-
tributed setting, which allows two or more separate interactions, breaks the PKE
implication and opens the space to a much larger class of cryptographic sensing
and learning schemes.

1.2 Related Work

A central theme of this work is that of using simple forms of cryptography, that
one can actually implement via physical measurements. The study of simple
forms of cryptography is not new and has already lead to rich and often surprising
results. This study of low-complexity cryptography includes works on local one-
way functions and other cryptographic primitives [26, 9] that led to the notion of
randomized encoding (RE), works on low-degree polynomials [30, 8], linear-time
functions [31], as well as similar results for arithmetic functions [32, 6].

By necessity, we will generally focus on less traditional notions of crypto-
graphic security and correctness. For instance, we will largely eschew the tradi-
tional notion of probabilistic encryption with semantic security [27] in favor of
entropic security [46, 24, 13] notions that have arisen primarily in the context of
deterministic encryption. Moreover, we will consider relaxations of correctness,
as well, inspired by compressed sensing (see, e.g., [33, 29]) where not the entire
message is recovered.

Finally, the interaction between cryptography and learning has rich history.
Valiant [48] already pointed out that if F contains a cryptographic pseudo-
random function (PRF) then this makes the class F hard to learn, even given
membership queries. Other cryptographic primitives like PKE, were used to base
some more advanced hardness results in learning theory, e.g., [35, 4, 36] (beyond
hardness results for so-called “proper” learning [43]). See [23] for a more recent
work in this direction. Concretely, the work of [4] may seem as an obstacle for
cryptographic-sensing of sufficiently rich classes F (such as CNF formulae) that
allow embedding of signature verification. For such classes, they prove that if
F can be leaned from random examples and membership queries (MQs) then
F can also be leaned from random examples and without membership queries,
which seems to indicate that whatever the sensing algorithm can learn the ad-
versary will be able to learn as well. This however is not the case as, in the
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construction of [4], for learning f ∈ F wrt distribution D and without MQs,
the learner invokes a learning algorithm with MQs that learns a different (but
related) function f ′ ∈ F wrt a related distribution D′. This is not possible in
the physical setting of cryptographic sensing where f,D are chosen by nature
and the sensing algorithm and the adversary both have access to them.

In the reverse direction, hard learning problems were proposed as a source for
cryptographic assumptions [16] where the LPN and LWE assumptions (proposed
by [16, 44] respectively) serve, due to their convenient structure and simplicity,
as some of the most useful assumptions for cryptographic constructions. There
is currently a large body of work on adversarial machine learning (e.g, [22, 38]
and references therein); these works are mainly concerned with the correctness
of the learning process in the presence of adversaries that harm the samples
(e.g., by changing examples and/or their labels). In a very different direction,
[34] initiated the study of private learning, whose goal is to protect the privacy
of individuals whose sensitive inputs are used for learning.

1.3 Future Directions

Our work leaves many directions for future research. Which natural classes admit
cryptographic sensing algorithms? We note that not much attention has been
spent on finding explicit “hard distributions” for classes that are learnable with
membership queries, but for which PAC learning algorithms are unknown. This
includes even very simple classes such as DNF formulas. Hard input distributions
for these classes can serve as a starting point for designing a cryptographic
sensing algorithm. Another direction that we haven’t explored at all is potential
applications in the context of practical machine learning algorithms.

On the physical side: which simple functions of an object can be measured
(say, using radar technologies or particle physics) without significant additional
leakage? We described specific toy experiments for realizing linear measurements
with small non-negative integer coefficients. Is there a direct way to measure
mod-q linear combinations using quantum measurements or classical wave in-
terference? Is there a good algorithmic way to cope with the type of additional
leakage that can be expected from physical measurements?

To conclude, while the feasibility of implementing a cryptographic flashlight
“in the wild” is left open, we do not see any fundamental barriers to making this
idea applicable for real-world sensing and learning problems. Our results leave
much room for further quantitative and qualitative improvements that can help
make this happen. Alternatively, the question of cryptographic sensing can help
motivate a rich line of theoretical questions that explore new kinds of interaction
between cryptography and computational learning theory.

2 Preliminaries

In this section we recall some standard definitions and facts that will be useful
for formalizing our security notions and analyzing the constructions.
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Definition 1 (Statistical distance) The statistical distance between distribu-
tions X and Y , denoted SD(X,Y ), is defined as the maximum, over all functions
A, of the distinguishing advantage |Pr[A(X) = 1]− Pr[A(Y ) = 1]|.

Definition 2 (Min-Entropy) We say that a random variable X over a set S
has min-entropy k, and denote H∞(X) = k, if maxs∈S Pr[X = s] = 2−k.

We will use the following standard Leftover Hash Lemma (LHL).

Lemma 3 (Leftover Hash Lemma [28]). Let H = {h} be a family of pairwise-
independent hash functions h : D → R. Let X be a distribution over D with
H∞(X) ≥ k, where k ≥ log |R| + 2 log(1/ε). Then, the distribution (h, h(x))
with h ∈R H and x selected according to X is ε-close to (h, r), with h ∈R H
and r ∈R R.

2.1 The LWE Assumption

We rely on well studied decisional variants of the Learning with Errors (LWE)
assumption [44]. This assumption says that a random noisy codeword in a pub-
licly known random linear code is pseudo-random. More precisely, the distribu-
tion (M,Ms + e), for a random matrix M ∈R Zn×mq , secret vector s ∈R Zmq
and appropriately chosen noise distribution e ∈ Znq is computationally indistin-
guishable from the distribution (M,u), where u is uniformly distributed over Znq
independently of M . The noise distribution for LWE is χn for some distribution
χ over Zq, which is typically a discrete Gaussian. For simplicity, it is conve-
nient to replace the Gaussian distribution with a uniform distribution over an
interval [0, b], where b = qΩ(1). When q is super-polynomial in λ, security with
such an “interval noise” reduces to security with Gaussian noise of standard
deviation ≈ b. While no such reduction is known in the regime of polynomially
large q (which is more relevant to our work), this alternative form of the LWE
assumption resists known attacks.

Definition 4 (Learning With Errors) Let λ be a security parameter. For
m = m(λ), n = n(λ), q = q(λ), b = b(λ), t = t(λ), and ε = ε(λ), we say that
the decisional learning with errors problem (with interval noise) LWEm,n,q,b is
(t, ε)-hard if for all sufficiently large λ, every circuit of size t = t(λ) has at most
an ε = ε(λ) advantage in distinguishing between the distributions (M,Ms + e)

and (M,u), where M
R← Zn×mq , s

R← Zmq , e is uniformly distributed in [0, b]n,

and u
R← Znq . We say that LWE holds with parameters m,n, q, b, if LWEm,n,q,b is

(t = p(λ), ε = 1/p(λ))-hard for every polynomial p(λ).

Our typical choice of parameters ism = λ, n ≤ poly(m), q ≈ n2, and b ≈
√
m;

however, smaller values of q and b can be used for better efficiency. See [40] and
references therein for choices of LWE parameters that resist known attacks,
including ones that are provably secure under worst-case hardness assumptions
for integer lattices. We note that one could alternatively settle for sampling
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the secret s from the the same distribution as the noise instead of the uniform
distribution [7]. This optimization can improve the concrete efficiency of our
LWE-based constructions.

3 Defining Cryptographic Sensing

In this section we formalize our notion of cryptographic sensing. We start with
the default “sensing” formulation and then describe how to modify it to get the
dual “learning” formulation.

Function classes. A function class F is defined by a polynomial-time algorithm
that given a description f̂ of a finite function f and an input x for f outputs f(x).
(We will often abuse notation and identify functions and other objects with their

representations.) We assume that f̂ includes a description of the input domain

Xf and that F outputs ⊥ when the input (f̂ , x) is not of the expected form,

namely when f̂ is not a valid function description or when x 6∈ Xf . We let X (F)
denote the set of (descriptions of) valid input domains for F and FX denote

the set of function descriptions f̂ with input domain X . The set FX defines
the allowable measurement functions that can apply to a hidden object x ∈ X .
The function class F also assigns a cost measure to every function description
f̂ . For instance, if F is the class of DNF formulas then a natural cost of f̂ is
the number of clauses and if F is the class of linear functions with non-negative
integer coefficients then a natural cost is the sum of all coefficients.

Cryptographic sensing: syntax. A cryptographic sensing algorithm for F is a
PPT algorithm Sen with oracle access to F that, given a security parameter 1λ

and description of an input domain X ∈ X (F), proceeds as follows. It starts by
randomly generating a secret decoding key sk. (If concrete efficiency is not a
concern, one can let sk include all random coins of Sen.) It then interacts with

F , feeding it with measurement functions f̂i ∈ FX , and receiving the outcomes
ai = fi(x) on some fixed object x ∈ X unknown to Sen. We will mostly consider

non-adaptive sensing algorithms Sen in which all measurements f̂i are chosen
simultaneously before querying F . In this case, we will sometimes consider the
concatenation of all fi as a single function f taken from the multi-output exten-
sion of F . Once it is done querying, Sen uses sk and the interaction transcript
I = ((f̂1, a1), . . . , (f̂m, am)) to produce a guess for x.

Correctness. The default correctness requirement, which will later be relaxed, is
that for every efficient non-uniform adversary that on input 1λ picks an input
domain X ∈ X (F) and an object x ∈ X , the interaction of Sen(1λ,X ) with FX
on object x results in Sen outputting the correct value of x except with neg(λ)
probability.
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One-way security. The minimal security requirement we consider is one-wayness.
Since it is not always natural to consider a uniform distribution over objects
(let alone over functions in the learning formulation), we allow an arbitrary
efficiently samplable distribution. Concretely, we say that Sen is one-way secure
with respect to F if there is a PPT object sampling algorithm S such that every
efficient non-uniform adversary Adv succeeds in the following game with neg(λ)
probability. First, S(1λ) outputs a challenge input domain X ∈ X (F) and an
object x ∈ X . Then, Sen(1λ,X ) interacts with FX on object x, resulting in an

interaction transcript I = ((f̂1, a1), . . . , (f̂m, am)). Finally, Adv(X , I) outputs a
guess for x. We say that Adv succeeds if its guess is correct.

Using standard cryptographic terminology, a non-adaptive cryptographic sens-
ing algorithm with one-way security for F is equivalent (up to the choice of input
distribution) to an F-computable injective trapdoor function, namely one that
can be computed by concatenating functions from F . One-way security is typ-
ically not very useful, since it only applies to a specific object distribution and
even in this case it does not rule out revealing a big amount of partial infor-
mation about the object. Below we define several stronger notions, analogously
to different notions of security for (one-time) encryption in the cryptographic
literature.

Entropic security. Entropic security is in a sense the best possible notion of se-
curity for deterministic encryption. It requires that any two object distributions
that have high min-entropy cannot be distinguished by Adv. This intuitively
means that the interaction does not help Adv distinguish between objects that
were sufficiently unpredictable to start with. Formally, let k : N × X (F) → R
be an entropy bound function, specifying a lower bound on object entropy as
a function of the security parameter λ and object domain X . For ε = ε(λ) we
say that Sen is (k, ε)-entropically secure if every efficient non-uniform adversary
Adv succeeds in the following game with at most 1/2 + ε(λ) probability for all
sufficiently large λ. First, Adv(1λ) outputs an input domain X ∈ X (F) and a
pair of circuits describing input distributions X0, X1 over X with H∞(Xσ) ≥ k
for σ = 0, 1. Then, a challenger picks a random bit σ ∈ {0, 1} and lets Sen(1λ,X )
interact with FX on an object x sampled from Xσ. This results in an interaction
transcript I = ((f̂1, a1), . . . , (f̂m, am)). Finally, Adv(I) outputs a guess for σ. We
say that Adv succeeds if its guess is correct. When ε is omitted we assume it is
negligible; however, some of our results inherently require ε to be non-negligible.

To gain more flexibility, it can be convenient to give an entropy bound k as
an additional input for Sen and modify the above definition accordingly (allow-
ing Sen to declare failure in case k is too low; for instance, when k = O(log(λ))
a brute-force search attack is possible). Using standard cryptographic terminol-
ogy, a non-adaptive cryptographic sensing algorithm with entropic security for
F can be viewed as an F-computable one-time-secure deterministic public-key
encryption scheme [46, 24, 13].
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Lossy decoding. A useful relaxation of the above correctness requirement settles
for lossy decoding, where Sen outputs some useful partial information about x
such as a projection of x to a subset of the coordinates or a compressive linear
sketch of x from which an approximate version (e.g., a lower resolution image)
can be recovered. We formalize this by introducing a target function class G with
the same input domains as F (i.e., X (G) = X (F)) and adding to the inputs of
Sen a description ĝ of a target function g : X → Z. The correctness requirement
is changed in a natural way, requiring that Sen(1λ,X , ĝ) correctly output g(x).
In the definition of entropic security, the entropy bound k is allowed to also
depend on g (where typically k needs to grow with the output size of g). Note
that with lossy decoding, one-way security may become meaningless. However,
entropic security is still as meaningful.

Allowing background noise. A useful special case of lossy decoding is a projec-
tion to a fixed set of coordinates, where the other coordinates are viewed as
background noise whose entropy can be exploited to protect the target output.
In this case we will view the measurements of Sen as applying to (x, r), where
x is the target object and r is the background noise, and require Sen to only
output x. One can consider three notions of security with background noise. The
strongest, referred to as security with correlated background noise does not as-
sume independence between x and r and only requires entropic security when the
joint entropy is at least k. The second, referred to as security with independent
background noise, requires that x remain completely hidden if the background
noise is independent and has high min-entropy. This is formalized as in the def-
inition of entropic security, except that the distributions X0 and X1 are of the
form (x0, R) and (x1, R) for x0, x1 ∈ X and an adversarially chosen R such that
H∞(R) ≥ k. Finally, the third and weakest notion, referred to as security with
random background noise, is similar to the above except that the noise is picked
from some specified noise distribution (uniform by default).

The weakest variant of security with background noise corresponds to the
usual notion of semantically secure probabilistic encryption [27]. The strongest is
equivalent to (one-time) indistinguishability under a chosen distribution attack,
as defined in [14].

A dual learning formulation. In the above, we assumed that Sen tries to re-
cover a secret object x ∈ X using a sequence of measurement functions fi. In
the setting of computational learning theory [48], one considers the dual goal

of learning a secret concept f̂ ∈ F by evaluating it on a sequence of inputs xi.
The above definitions can be adapted in a natural way to this dual formulation.
However, some changes should be made. First, the role of the object domain X ,
which is given as input to Sen, is replaced by a sub-class of concepts in F from
which the target concept is picked. For instance, if F is the class of DNF formu-
las, this sub-class can include all formulas with a fixed number of inputs n, or
alternatively formulas with n inputs and ` clauses. Second, since F may define
many equivalent representations f̂ for the same concept f , we define the entropic
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security requirements semantically, namely with respect to the functions rather
than their representations. Finally, our correctness requirements can accommo-
date relaxed notions of correctness from the machine learning literature. For
instance, we can allow approximate correctness as in the PAC model (except
that we need to additionally allow membership queries), and we can consider
improper learning, namely allow Sen to output a general circuit representation
of the target concept or its approximation.

The distributed setting. Finally, we will consider a distributed relaxation of the
above notions, where Sen may be involved in d ≥ 2 separate interactions, pro-
ducing transcripts I1, . . . , Id. The output can be decoded by Sen given all tran-
scripts, but only a bounded number t of these transcripts is available to Adv.
In the context of the drug company example from the Introduction, this corre-
sponds to distributing the experiments among d companies B1, . . . , Bd, where
security of A is only guaranteed as long as no more than t companies Bi reveal
their information to C.

4 Cryptographic Sensing with Linear Measurements

In this section we describe simple cryptographic sensing algorithms that use
different types of linear measurement functions: linear functions over Zq and
linear functions over the integers.

4.1 Linear Measurements over Zq

Code-based public-key encryption schemes presented by McEliece [39] and by
Alekhnovich [2] imply cryptographic sensing algorithms with linear measure-
ments over Z2 that require uniformly random background noise and a large
number of measurements. These constructions can in fact be generalized to apply
over any finite field. Lattice-based encryption schemes such as Ajtai-Dwork [1],
Regev [44] and GPV [25] imply similar algorithms with linear measurements over
Zq, where q grows with the object length n. These lattice-based constructions
have the additional benefit of provable security under well-studied worst-case
hardness assumptions; however they still require a random background noise
and a large number of measurements.

Targeting the stronger security notion of entropic security, one could obtain
lattice-based cryptographic sensing algorithms with Zq-linear measurements by
using known lattice-based constructions of deterministic encryption schemes [19],
which in turn are based on constructions of lossy injective trapdoor functions
[42, 15]. However, these constructions require a large number of measurements,
and only tolerate a constant entropy rate.

In the following we present an LWE-based lossy cryptographic sensing algo-
rithm that uses Zq-linear measurements and achieves entropic security, where
both the entropy bound and the number of measurements are comparable to
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the length of the lossy output g(x), independently of the length of the measured
object x.

We first assume for simplicity that the object is x ∈ Xn = {0, 1}n and the
target function class G is the class of mod-2 linear mappings with output length
t < n. This is already useful for obtaining many natural approximations of x [33].
We then generalize the algorithm to the case where x is a vector of bounded-
size integers and G includes compressive linear mappings with bounded integer
coefficients. This generalization allows for a wider range of useful approximations,
via compressed sensing and other linear sketching techniques (cf. [29]).

The algorithm uses the standard approach of lattice-based cryptosystems,
in particular Regev’s cryptosystem [44]. The high level idea is as follows. If
the object x has min-entropy k, then (by Lemma 3) revealing up to ≈ k/ log q
publicly known random Zq-linear combinations of the entries of x gives essentially
no information about x. However, if we could choose special linear combinations,
say ones in which each coefficient is either close to 0 or to q/2 (where q � n), then
we could learn parities of subsets of the bits of x. Assuming LWE, we can hide
such special linear combinations in the span of a small number of random-looking
linear combinations. We formalize this idea below. Note that below we assume
LWE for uniform noise. However, this is strictly for simplicity of exposition; all
our results also hold assuming LWE with discrete Gaussian noise.

Decoding a single parity. We start by considering the case t = 1, namely the
target function g computes 〈y, x〉 mod 2 for y ∈ {0, 1}n, and then generalize
to t > 1. The class of measurement functions F includes all linear functions
mod q. That is, each measurement fi is represented by ` ∈ Znq and returns
〈`, x〉 mod q. We will also have a dimension parameter m and noise parameter b
where the choice of n,m, q, b (all as functions of a security parameter λ) satisfies
the LWE assumption with interval noise. Furthermore, we require that q be at
most polynomial in n and that q > 4nb. See Section 2.1 for possible choices of
parameters.

Algorithm Sen(1λ, 1n, y ∈ {0, 1}n):

1. Pick A ∈R Zm×nq and set z = sTA+ e+ bq/2c · y for “LWE secret” s ∈R Zmq
(which serves as the secret key sk) and “noise” vector e ∈R [0, b]n, as in the
LWE assumption. (Note that since sTA+ e is pseudorandom given A, then so
is z.)

2. Make the m+1 measurements corresponding to the m rows of A, as well as z.
Get in response m+ 1 values that are viewed as v1 = Ax ∈ Zmq and v2 = z · x
(where all arithmetic is over Zq).

3. Use the secret key s to compute w = v2 − sT v1 = z · x− sTAx = (sTA+ e+
bq/2c · y) · x − sTAx = e · x + bq/2c · y · x from which g(x) = 〈y, x〉 mod 2 is
decoded: 0 if w is closer to 0 than to bq/2c, and 1 otherwise.

The correctness of Sen follows from its description and from the choice of
parameters: we have 0 ≤ e ·x ≤ nb, and the parity of y ·x determines whether we
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add bq/2c an even number of times, implying that w ≈ 0 mod q or an odd num-
ber of times, implying that w ≈ bq/2c mod q. Hence, 〈y, x〉 mod 2 is correctly
decoded with probability 1.

Let us argue that Sen is entropically secure for entropy bound k ≈ m log q.
Note that the view of the adversary Adv consists of the queries of Algorithm
Sen, as well as the answers, namely A, z, v1, v2. Our goal is to argue that if the
entropy condition is met, this view is indistinguishable from a random tuple in
Zm×nq × Znq × Zmq × Zq. The proof will be based on the LWE assumption and
the leftover hash lemma (see Lemma 3). Note that if we take the collection of
matrices A ∈ Zm×nq and consider the functions hA(x) = Ax (from Znq to Zmq ),
then the family H = {hA} is indeed known to be pairwise-independent hash
family.

Security analysis: Let X be a distribution of objects with H∞(X) = k, for k ≥
(m+1) log q+2 log(1/ε). Let I = (A, z, v1, v2) be the distribution of interactions,
as generated by Sen, when interacting with an object x drawn from X. Let I ′ =
(A, z, v1, v2) be the same distribution, except that now z is selected by z ∈R Znq .
By the LWE assumption, I ≈c I ′. Let B be the (m+ 1)×n matrix obtained by
placing A on top of z and let v be the (m+ 1)-vector obtained by concatenating
v2 to v1. Observe that v = Bx. By the leftover hash lemma (with log |R| =
(m+ 1) log q), since X has sufficient min-entropy then the pair (B, v = Bx), for
a random B, is ε-close to a random pair (B, v) (of the corresponding lengths).
This means that I ′ is indistinguishable from a distribution I ′′ = (A, z, v1, v2)
consisting of randomly selected elements from Zq of the corresponding length.
This analysis yields the following theorem.

Theorem 5. Suppose n,m, q, b are chosen such that LWEm,n,q,b holds, q > 4nb,
and k ≥ m log q + λ. Then Sen is a k-entropically secure cryptographic sensing
algorithm for decoding a single parity of x ∈ {0, 1}n using m+ 1 linear measure-
ments over Zq.

Extensions. We now extend the previous algorithm in a few simple ways. First,
we observe that, for any “small” c, we can modify Sen to learn 〈y, x〉 mod c
(rather than only for c = 2, as above). This is simply done by computing z =
sTA + e + bq/cc · y. Again, each coordinate j where xjyj = 1 will contribute
≈ bq/cc to the value v2 − sT v1. As long as q is sufficiently large (say, q > 4cnb)
the noise does not prevent the algorithm from recovering 〈y, x〉 mod c. In fact,
in this case we can let y be any vector in [0, c−1]n and the algorithm still works,
as is. Moreover, it also works when x is not a binary vector but is rather an
integer-valued vector from [0, d]n, provided that q > 4cdnb.

Next, we consider the case where the sensing algorithm wishes to learn
not only a single linear combination 〈y, x〉 mod 2, but rather a few of those;
namely, for y1, . . . , yt, where each yj is in {0, 1}n, the algorithm needs to learn
all of 〈y1, x〉 mod 2, . . . , 〈yt, x〉 mod 2 (this can also naturally be combined with
the previous extensions, to allow learning linear combinations mod c of x ∈
[0, d]n). The first approach that comes to mind is to independently pick queries
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(A1, z1), . . . , (At, zt), as in the basic algorithm Sen. While this in principle works,
it rapidly “consumes” the entropy of x (as Adv gets to see m+1 linear combina-
tions per each yj). Instead, we will pick a single matrix A ∈R Zm×nq and t vectors

z1, . . . , zt, as above (namely, for each j ∈ [t], we set zj = sjA + ej + bq/2c · yj ,
for “secret” sj ∈R [b]m). The correctness remains unchanged. As for security, as
long as X has entropy k ≥ (m + t) log q + 2 log(1/ε), then a similar argument
holds. Namely, A, z1, . . . , zt is still pseudorandom, by repeated application of the
LWE assumption, and then the leftover hash lemma is applied where our hash
function has output of length m+ t.

Applying the above extensions to Sen, we get a general algorithm Sen′ for
decoding compressive linear mappings of x over the integers using Zq-linear
measurements.

Theorem 6. Suppose n,m, q, b, t, c are chosen such that LWEm,n,q,b holds, q >
4c3nb, and k ≥ (m+t) log q+λ. Then Sen′ is a k-entropically secure cryptographic
sensing algorithm for decoding Gx, where x ∈ [0, c]n and G is a t × n integer
matrix with entries in [0, c], using m+ t linear measurements over Zq.

Note that unlike solutions based on deterministic encryption, Theorem 6
cannot be used to obtain full decoding of x even when x is uniformly random.
Indeed, this would require choosing t so that the entropy requirement becomes
impossible to meet. However, for the case of lossy decoding Theorem 6 gives
near-optimal complexity.

4.2 Linear Measurements over the Integers

The LWE-based solution inherently makes use of linear measurements over Zq.
From a physical realization perspective, it is much more desirable to use linear
measurements over the integers (or reals), since it is not clear how to design a
simple physical measurement process that reveals only a mod-q linear combi-
nation. However, applying the previous construction directly over the integers
would render it insecure, since modular reduction is crucial for ruling out efficient
real-valued approximation and decoding techniques [20].

We start by proving some inherent limitations on the type of security that
can be achieved using linear measurements over the integers, and then present
a positive result.

Can’t make ε negligible. Our first negative result says that even if x is a sin-
gle bit and we settle for semantic security with random background noise, we
cannot obtain a negligible distinguishing advantage with polynomial-size linear
measurement coefficients. This negative result is based on the following lemma,
which says that for a random variable Z over integers in a small range, the
statistical distance between Z and Z + 1 is noticeable.

Lemma 7. Let Z be distributed over [0, c− 1]. Then SD(Z,Z + 1) ≥ 1/c.
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Proof: Let Zi = Z + i. Since Z and Z + c have disjoint supports, we have
SD(Z0, Zc) = SD(Z,Z + c) = 1. By the triangle inequality, there must exist
0 ≤ j < c such SD(Zj , Zj+1) ≥ 1/c. The lemma follows by observing that
SD(Z,Z + 1) = SD(Zj , Zj+1). ut

It follows from the above lemma that for any vector of linear measurement
coefficients ` ∈ Nm+1 with `1 > 0 and `i ∈ [0, c−1], and for a random background
noise r ∈R {0, 1}n we have SD(〈`, (0, r)〉, 〈`, (1, r)〉) ≥ 1/(cm). Moreover, since
the distributions have polynomial-size support, a statistical distinguisher implies
(non-uniform) efficient distinguisher. This rules out security with negligible dis-
tinguishing advantage ε = neg(λ), polynomial background noise m = poly(λ),
and poly(λ)-bounded coefficients.

We note that this negative result does not apply to our minimal notion of
one-way security. Indeed, one-way security can be achieved with polynomial-size
coefficients by dividing x into λ disjoint blocks and applying the positive result
presented below for each block. This exploits the fact that one-way security can
be amplified via independent repetition.

Can’t get entropic 1/poly-security. Next, we show that our positive result for
entropic security with mod-q linear measurements (cf. Theorem 6) cannot be
achieved over the integers, even if one settles for 1/poly distinguishing advantage,
and even if there is no bound on the size of the integers. The intuition is that
when there is no background noise to mask the object x, there is a noticeable
difference between a “bright” object and a “dark” object. Concretely, consider
the case of entropy bound k = n/3, and let X0 be a distribution over {0, 1}n
in which a random set of n/3 bits are picked at random and the rest are set
to 0 (a bright object), and X1 is a similar except that the other bits are set
to 1 (a dark object). Then, for any nonzero ` ∈ Nn, a distinguisher that tests
whether its input is bigger than

∑n
i=1 `i/2 distinguishes between 〈`,X0〉 and

〈`,X1〉 with constant advantage. We leave open the question of obtaining security
up to leakage of brightness, namely obtaining an entropic secure solution (say,
with poly-bounded integer coefficients and constant fractional entropy bound)
in which the view of Adv can be simulated given

∑
xi with simulation error that

vanishes with n.

A positive result. Our positive result complements the first negative result above
by showing that semantic security with random background noise is indeed
achievable with ε ≥ 1/poly(λ) by only using polynomial-size non-negative in-
teger coefficients. More generally, we give a simple method for compiling any
solution that uses linear measurements over Zq into one that uses linear mea-
surements over the integers, at the price of relying on random background noise
and settling for an inverse polynomial error. More precisely, the cost of the lin-
ear measurements (namely, the magnitude of the coefficients) grows polynomially
with n/ε.

The high level idea is to perform the Zq measurements over the integers,
and effectively achieve modular reduction by adding (over the integers) a large



17

random multiple of q. (The previous negative result suggests that this is in
some sense inherent.) The randomness used by this reduction is taken from the
background noise. Concretely, given a bound µ = 2c on the coefficients, we add
to each original measurement a weighted sum of the form

∑c
i=1(2iq) · ri where

each measurement uses a disjoint set of c background points. Note that this
effectively means that we add a random multiple β · q for β ∈R [0, µ− 1].

We turn to analyze the correctness and security of the above transformation.
Decoding in the integer case can proceed as in the mod-q case, reducing the
integer measurement values modulo q. This is not affected by adding multiples
of q, hence correctness is maintained. The security analysis relies on the following
standard lemma (cf. [12]), showing that if we add βq to a value from a bounded
range [0, B] and β is uniform in [0, µ− 1] (for µ sufficiently large, depending on
B and q), then little is revealed beyond mod q.

Lemma 8. Let α1, α2 ∈ [0, B] be two integers such that α1 ≡ α2 mod q. Consider
the two distributions Y1, Y2 where Yi is obtained by αi + βq, for β ∈R [0, µ− 1].
Then, SD(Y1, Y2) ≤ B

qµ .

Note that when allowing a random background noise, the entropic security
with lossy decoding of Theorem 6 implies semantic security with full decoding by
applying the algorithm of Theorem 6 to the concatenation (x, r) and decoding
only the x portion. Applying the above transformation, we get the following
integer analogue.

Theorem 9. Suppose LWEm,n,q,b holds for m = λ, n = md (for some constant
d > 2), b =

√
q and q = Θ(c3n2) (for some positive integer c = c(λ)). Then

there is a semantically ε-secure cryptographic sensing algorithm with random
background noise for decoding Gx, where x ∈ [0, c]n and G is a t × n integer
matrix with entries in [0, c], using m+ t linear measurements with non-negative
integer coefficients, where the cost of each measurement is poly(n, c, 1/ε).

Studying the extent to which the random background noise assumption can
be relaxed, as well as a more refined study of the achievable tradeoffs between
the parameters, are left for future work.

5 Beyond Linear Measurements

In this section, we briefly discuss other classes of measurements, beyond linear
functions. Here we will typically use the learning formulation of cryptographic
sensing (see Introduction and Section 3). We give examples for positive and
negative results that follow quite easily from the literature, as well as some
directions for further research.

5.1 Negative Results for Simple Classes via Occam’s Razor

Our first observation in this section is that classes of functions F that are “learn-
able” in a strong sense (to be made precise below) cannot be used for crypto-
graphic sensing. The intuition being that the adversary Adv who observes the
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interaction transcript I can simply apply the learning algorithm to the examples
it sees throughout the observed interaction and learn the concept by itself. To
make this a bit more formal, we first recall the notion of OCCAM learning.

An OCCAM Learning algorithm for a class of functions F , using a class of
hypotheses H and constants a ≥ 0 and 0 ≤ b < 1, is an algorithm A that,
given any set (sample) S of m examples in {0, 1}n, labeled by any f ∈ F ,
outputs an hypothesis h ∈ H such that: (1) h is consistent with S (i.e., it agrees
with the hidden f on the labels of all examples); and (2) h is “succinct”, i.e.
size(h) is bounded by3 (n·size(f))a ·mb. Algorithm A is efficient if it runs in time
polynomial in n,m and size(f).

Occam’s Razor is a well-known philosophical principle. Its connection to
machine learning was made by [17], who showed that it is essentially equivalent
to Valiant’s notion of PAC-learnability [48]. Concretely, they showed that an
OCCAM learner A can be turned into a PAC learner A′ (essentially showing that
if A′ feeds A with enough random examples, as a function of the parameters a, b
of A, the hypotheses h that A outputs is good enough) thus providing a natural
approach for designing PAC-learning algorithms. The converse direction, namely
that PAC learnability implies OCCAM learnability also holds [47].4

We now conclude that, for classes F that admit OCCAM learnability, the
adversary Adv can apply the corresponding OCCAM algorithm A to get a hy-
pothesis h that is consistent with f on all examples. If there is a sensing algorithm
Sen that is able to identify the concept f based on these examples, then so can
Adv. This rules out even our weakest notion of one-way security.

Such efficient OCCAM (alternatively PAC) learning algorithms are known
for classes such as disjunctions, conjunctions and k-DNFs for constant k [48],
decision lists [45], and more. Thus, all these classes are not candidates for cryp-
tographic sensing. For a richer class such as (poly-size) DNFs, the question of
its efficient learnability is wide open. Designing (even a one-way secure) crypto-
graphic sensing algorithm for such a class would therefore imply that it cannot
be PAC-learned efficiently without membership queries. While proving hardness
under standard intractability assumptions may be a difficult challenge, coming
up with explicit plausible candidates for hard distributions is a problem that
apparently did not receive much attention.

On the optimistic side, PAC-learning algorithms are known only for limited
classes of functions (hence, the above negative result is limited as well). For other
classes, sensing may or may not be possible. Note that, intuitively, cryptographic
sensing is closer in spirit to the stronger setting of PAC with membership queries
(MQ). In such a model, one can learn more expressive classes such as Decision
Trees [21] and DFAs [3].

3 The requirement that b < 1 is what rules out the trivial solution where h is just the
list of labels for the m points in S and forces actual “learning”.

4 In the case of proper PAC-learning (i.e., when H = F), [18] present a condition
(called “closure under exception lists”) on F under which PAC still implies OCCAM
learning.
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There are several non-trivial sub-exponential algorithms for DNF. The best
such algorithm is by Klivans and Servedio [37] and has complexity of roughly

2O(n1/3 logn log s) for learning s-term DNF with n variables. Transforming this
algorithm to an OCCAM learning algorithm, as above, gives a limit on the
security of cryptographic sensing algorithms for DNF that one may hope to
achieve. We also remark that known results on PAC-learnability of DNF under
uniform distribution (this is known to be possible in quasi-polynomial time [49])
do not imply a negative result for cryptographic sensing.

5.2 Local Measurements

We now go back temporarily to the sensing formulation, focusing on a simple
class of measurements that corresponds to work on low-complexity cryptography.
Consider d-local measurement functions, namely the class F of “finite” functions
f that depend on at most d bits of x. We note that, despite the simplicity of
such functions, we are not aware of any natural physical realization that does
not involve additional leakage. Still, it is natural to study the power of this class.

Entropic security cannot be realized in NC0, as it is easy to construct, for any
d-local function f , a pair of high-entropy distributions X0, X1 where for every
x ∈ X0 we have f(x) = 0 and for every x ∈ X1 we have f(x) = 1 (the entropy
can be as large as, say, n − d). The same impossibility holds for security with
independent background noise (as defined in Section 3). However, in the setting
of random background noise, where noise is a uniformly random bit-string, we can
get positive results for d = 4. Indeed, under standard cryptographic assumptions,
there is 4-local PKE [9], which implies a cryptographic sensing algorithm with
random background noise. The above is still not satisfactory because it does
not respect physical locality. Under a less standard but still plausible security
assumption, namely the security of a variant of the McEliece cryptosystem, it is
possible to get an analogous result with constant physical locality [11].

The amount of background noise in the above solutions is very large, |x| ·
poly(λ). If we do not insist on physical locality, we can trade background noise for
locality by using polynomial-stretch local PRGs [26, 10, 31, 5]. This can reduce
the amount of background noise to |x|ε · poly(λ), for any constant ε, while still
maintaining constant locality d.

5.3 Distributed Solution for Learning Juntas

Finally, we demonstrate the potential usefulness of the distributed variant of
cryptographic sensing by showing a positive result for the class of juntas. Learn-
ing juntas on k = O(log n) inputs from random examples is conjectured to be a
hard learning problem (this conjecture is attributed to Avrim Blum). However,
we argue that such f can be learned in the distributed setting (see Section 3)
via two sets of labeled examples: S1 that contains poly(n) random examples
(the exact polynomial depends on k), and S2 that contains a random Hamming-
neighbor for each example in S1, namely each example in S2 is obtained by
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flipping a random bit in the corresponding example in S1. Note that each of
the two interactions I1, I2 separately is a collection of labeled random exam-
ples from which learning f , as mentioned, is conjectured to be hard. On the
other hand, putting together the two interactions allow Sen to identify each of
the k sensitive variables xi, with high probability (by selecting, with probability
≥ 2−k, an assignment to S1 that is sensitive at xi and selecting to S2 its i-th
neighbor). Then the function itself can recovered in polynomial time from the
answers to questions from, say, S1 that cover all 2k assignments to the k sensi-
tive variables. Note that here quasi-polynomial security is the best that one can
hope for, since the original problem can be solved in, roughly, nk+O(1) time (via
a naive algorithm that checks all subsets of k variables) or even slightly better
via a sophisticated algorithm of [41] that runs in time nck+O(1), for some c < 1.
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