
The Distinction Between Fixed and Random
Generators in Group-Based Assumptions?

James Bartusek1, Fermi Ma1, and Mark Zhandry2

1 Princeton University
{bartusek.james,fermima1}@gmail.com
2 Princeton University & NTT Research

mzhandry@princeton.edu

Abstract. There is surprisingly little consensus on the precise role of
the generator g in group-based assumptions such as DDH. Some works
consider g to be a fixed part of the group description, while others take it
to be random. We study this subtle distinction from a number of angles.

– In the generic group model, we demonstrate the plausibility of groups
in which random-generator DDH (resp. CDH) is hard but fixed-
generator DDH (resp. CDH) is easy. We observe that such groups
have interesting cryptographic applications.

– We find that seemingly tight generic lower bounds for the Discrete-
Log and CDH problems with preprocessing (Corrigan-Gibbs and
Kogan, Eurocrypt 2018) are not tight in the sub-constant success
probability regime if the generator is random. We resolve this by
proving tight lower bounds for the random generator variants; our
results formalize the intuition that using a random generator will
reduce the effectiveness of preprocessing attacks.

– We observe that DDH-like assumptions in which exponents are drawn
from low-entropy distributions are particularly sensitive to the fixed-
vs. random-generator distinction. Most notably, we discover that the
Strong Power DDH assumption of Komargodski and Yogev (Komar-
godski and Yogev, Eurocrypt 2018) used for non-malleable point
obfuscation is in fact false precisely because it requires a fixed gen-
erator. In response, we formulate an alternative fixed-generator as-
sumption that suffices for a new construction of non-malleable point
obfuscation, and we prove the assumption holds in the generic group
model. We also give a generic group proof for the security of fixed-
generator, low-entropy DDH (Canetti, Crypto 1997).

1 Introduction

Starting with the seminal work of Diffie and Hellman [21], the Computational
Diffie-Hellman (CDH) assumption in certain cyclic groups has become a core
pillar of modern cryptography. For a finite cyclic group G and generator g, the
assumption holds if it is hard to compute gab given (g, ga, gb) for random a, b.

? The full version of this paper is available at ia.cr/2019/202 [3].

ia.cr/2019/202

The corresponding Decisional Diffie-Hellman (DDH) assumption, introduced by
Brands [12], is that given (g, ga, gb) for random a, b, it is hard to distinguish gab

from gc for random c.

A somewhat subtle issue is the precise role of g in these assumptions: is it
fixed in the group description, or is it randomly chosen along with a and b? For
CDH in groups where the totient of the order is known, a folklore equivalence
between the fixed and random generator variants exists (e.g. see Chapter 21 of
Galbraith’s textbook [25]). For DDH, Shoup [40] observed that the fixed genera-
tor assumption appears to be a stronger assumption than the random generator
version, though a formal separation between the two is unknown. Despite this
apparent distinction, the cryptographic literature commonly refers to both the
fixed and random generator variants simply as “DDH”.3

A likely explanation for this practice is that in most applications of crypto-
graphic groups, it is straightforward to switch between fixed and random gener-
ators. For example, in ElGamal encryption [22], users who want the additional
security of random-generator DDH can easily specify a random generator in their
public key.

Sadeghi and Steiner [37] observed that this justification does not apply in
settings where the choice of group generator is left to a potentially untrusted
party.4 They give the example of a bank that offers its customers an anonymous
payment system, claiming provable security under group-based assumptions. If
the bank is free to choose parameters such as the group generator, then for secu-
rity it is crucial that any underlying assumptions hold in their (stronger) fixed
generator form. While Sadeghi and Steiner did not point to specific assumptions
that can be broken simply by fixing the group generator, they stressed that con-
tinuing to conflate these distinct assumptions could lead to serious ambiguities
and mistakes in the future.

In the nearly two decades since Sadeghi and Steiner [37] first called attention
to the above issue, dozens of new and increasingly sophisticated group-based
assumptions have been introduced. Accordingly, researchers have devoted sig-
nificant effort to evaluating the plausibility of these assumptions (e.g. [2, 20]),
frequently in idealized models such as the generic group model [36, 39, 34]. We
observe that these generic group justifications generally ignore the question of
whether the generator is fixed or random, but that in most cases this distinction
does not seem to affect real world security of these assumptions.

In this work, however, we will see that this is not always the case.

3 For example, the Katz-Lindell textbook [29] defines DDH with a fixed generator,
while Cramer-Shoup [19] defines DDH with a random generator.

4 Sadeghi and Steiner [37] actually consider the more general possibility of the un-
trusted party choosing the group itself maliciously. This question is beyond the
scope of our work, but in many cases it is an equally important consideration.

2

1.1 Our Results

We first examine how the fixed vs. random generator distinction affects the
classical Discrete-Log, CDH, and DDH problems in a variety of different settings,
obtaining the following results:

– Generic Separations for CDH and DDH. We prove that fixed- and
random-generator DDH are inequivalent assumptions in the generic group
model [36, 39, 34]. We show that for groups of unknown order, fixed- and
random-generator CDH are also inequivalent assumptions in the generic
group model. In addition, we give evidence (relying on a new assumption
about arithmetic circuits) that they are inequivalent even if the group order
is known but its factorization is not.5

– Split-CDH and Split-DDH Groups. We define Split-CDH (resp. Split-
DDH) groups for which the fixed-generator variant of CDH (resp. DDH) is
easy but the random-generator variant is hard, and we observe that such
groups imply interesting cryptographic applications. A split-CDH group can
be turned into a self-bilinear map [43, 30] where the random-generator vari-
ant of the Multilinear CDH assumption holds. This implies powerful primi-
tives such as multiparty non-interactive key agreement (with trusted setup).6

A split-DDH group can be used to instantiate a variant of the Boneh-Franklin
identity-based encryption [8] scheme. We stress here that giving candidate
constructions of these groups is outside of the scope of this work. On the
negative side, we prove that a natural class of non-interactive key exchange
protocols (without trusted setup) are insecure in certain split-CDH groups.

– Asymptotic Bounds for Discrete-Log and CDH with Preprocess-
ing. We revisit the recent work of Corrigan-Gibbs and Kogan [18], which
seemingly resolves the generic hardness of Discrete-Log and CDH with pre-
processing. We observe that while their lower bounds are tight for the fixed-
generator variants, they leave a gap in the random-generator setting for
algorithms with sub-constant success probability. We close these gaps by
proving tight lower bounds for the random-generator variants. Our bounds
suggest that using a random generator can reduce the impact of prepro-
cessing attacks, and in turn group parameters can be set more aggressively
than previously thought in situations where random-generator Discrete-Log
or CDH are sufficient.

Next, we turn our attention to the class of Diffie-Hellman-like assumptions
involving non-uniform random exponents. An example of such an assumption is
Canetti’s “DDH-II” assumption [13], which states that DDH remains hard even if
the exponent a in (g, ga, gb, gab) is drawn from a well-spread distribution (so that
a has super-logarithmic min-entropy). While these assumptions are somewhat
undesirable due to their non-standard nature [27], Wee [42] showed that these

5 This inequivalence was also suggested by Saxena and Soh [38].
6 A similar observation was also made in [38].

3

assumptions (ones that require hardness given only super-logarithmic entropy)
are necessary for applications such as point-function obfuscation.

Before we rely on such assumptions, it is important to rule out idealized
adversaries that attack the underlying structure of the assumption. The most
common technique for achieving this is to prove the assumption holds in the
generic group model [36, 39, 34]. Such proofs certainly do not imply the validity
of the assumption; instead, these proofs are generally viewed as a minimal level
of guarantee we need to gain confidence in an assumption [2].

Our central focus is on the recently proposed “Strong Power DDH” assump-
tion of Komargodski and Yogev [31]. The assumption states that for x sampled

from any arbitrary well-spread distribution D, that gx, gx
2

, . . . , gx
k

is indistin-
guishable from k uniformly random group elements. Our results are the following:

– Strong Power DDH is False for a Fixed Generator. We demonstrate
the “Strong Power DDH” assumption underlying Komargodski and Yogev’s
non-malleable point obfuscator [31] as well as Fenteany and Fuller’s non-
malleable digital locker [23] is false in the fixed-generator setting. 7This
results from a subtle issue in the order of quantifiers; if g is fixed, an arbitrary
well-spread distribution could depend on g. For example, x can come from
the distribution that conditions on the bit-representation of gx beginning
with 0. Unfortunately, these constructions can only be instantiated with a
fixed generator, so the original security proofs in [31] and [23] must rely on
a false assumption.8,9

In response to private communication from the authors of this work, Komar-
godski and Yogev have offered a simple fix [32] for their original construction
through a new “Entropic Power DDH” assumption.10 This new assumption
suffices for non-malleable point obfuscation and is formulated precisely to
address the vulnerability described above.

– Fixing Non-Malleable Point Obfuscation and Justifying Assump-
tions in the Generic Group Model. In this work, we offer an alternative
resolution. We construct a new non-malleable point obfuscator that is qual-
itatively different from the one in [31]. Security of our construction relies
on a newly formulated fixed-generator entropic assumption that we prove
holds in the generic group model. Note that neither the Strong Power DDH
Assumption [31] nor the revised Entropic Power DDH Assumption [32] come
with generic group proofs of security.

7 The authors privately communicated these issues to the authors of [31, 23].
8 Relying on a random generator would require a common random string, which is

not the model considered in [31] or in the version of [23] dated Jan 30, 2019 at
eprint.iacr.org/2018/957/20190130:190441.

9 This issue appears in the Eurocrypt 2018 version of [31], in an older ePrint ver-
sion of [32] dated May 1, 2018 at eprint.iacr.org/2018/149/20180211:142746,
and in the ePrint version of [23] dated Jan 30, 2019 at
eprint.iacr.org/2018/957/20190130:190441.

10 This refers to the newer ePrint version of [32] dated Feb 21, 2019 available at
https://eprint.iacr.org/2018/149/20190221:133556.

4

https://eprint.iacr.org/2018/957/20190130:190441
https://eprint.iacr.org/2018/149/20180211:142746
https://eprint.iacr.org/2018/957/20190130:190441
https://eprint.iacr.org/2018/149/20190221:133556

Along the way, we develop general techniques (based heavily on [16]) for
proving generic security of non-standard, entropic assumptions. As a final
contribution, we demonstrate the applicability of these techniques by show-
ing that the fixed- and random-generator versions of Canetti’s DDH-II as-
sumption [13] hold in the generic group model.11 This assumption has been
used in both its fixed-generator form (e.g. [28, 14, 20]) and random-generator
form (e.g. [13, 6]).

1.2 Technical Overview

Part 1: Generic Separations and Split Groups.

Formalizing the Distinction. We will assume some process for generating a group
description G of order N . This group description is assumed to include a gen-
erator g. The fixed-generator DDH assumption, or f-DDH, states that the tu-
ples (gx, gy, gxy) and (gx, gy, gz) are computationally indistinguishable, given
the description of G. Here, x, y, z are chosen randomly in ZN . On the other
hand, the random-generator DDH assumption, or r-DDH, states that the tuples
(h, hx, hy, hxy) and (h, hx, hy, hz) are computationally indistinguishable. Here,
x, y, z are chosen randomly in ZN , and h is a random generator of G (chosen, say,
by setting h = gr for a random r in Z∗N). We can also define fixed- and random-
generator variants of Computational Diffie-Hellman (CDH) and Discrete-Log
(DLog). For example, f-CDH states that given (gx, gy) for random x, y, it is
computationally infeasible to find gxy.

We consider the following three settings of groups: known prime group order,
known composite group order of unknown factorization, and unknown group
order. For each of the three assumptions and three settings (for 9 instances
in total) we explore the relationship between the fixed- and random-generator
variants. Trivially, the f- variants of the assumptions are at least as strong as
the r- variants. In the other direction, some instances have known or folklore
reductions showing equivalence [25]. For each of the cases that do not have a
proof of equivalence, we provide a separation. This is formalized by augmenting
the generic group model [39] with an oracle for the f- variant, and showing
(potentially under reasonable computational assumptions) that the r- variant
still holds. Table 1 summarizes our findings.

Applications of Split Groups. Looking at Table 1, we see that in the case of DDH,
there is the potential for a group where f-DDH is easy but r-DDH is hard. We
will call such groups split-DDH groups. Similarly, if the group order is unknown,
potentially f-CDH is easy but r-CDH is hard; we call such groups split-CDH

11 Previously, such proofs had been obtained by Bitanksy and Canetti [6] and Damg̊ard,
Hazay, and Zottarel [20], who considered the random- and fixed-generator versions,
respectively. We observe that both of these proofs treat the well-spread distribution
as independent of the generic group labeling. Our proof handles distributions with
arbitrary dependence on the labels; for more discussion refer to Part 4 of Section 1.2.

5

DLog CDH DDH

Known Order X X ×
FL FL

Unknown Factorization X ×? ×
FL

Unknown order X ×? ×
FL [44]

Table 1. Generic equivalences and separations. FL denotes a folklore result. X means
that the fixed and random generator versions are equivalent. × means that the random
generator version is harder than the fixed generator version (in the generic model). ×?
means the result holds under a plausible conjecture. These results are all given in the
full version [3].

groups. In this section, we will see that such split Diffie-Hellman groups have
useful cryptographic applications.

First, we observe that a split-CDH group is very close to a self-bilinear
map [43]. A self-bilinear map is a group G together with a pairing e : G2 → G
such that e(gx, gy) = e(g, g)xy. Let g1 = g and gn = e(g, gn−1). A typical compu-
tational assumption on self-bilinear maps would be the multilinear CDH assump-

tion [9]: for any n > 1, given gx0 , . . . , gxn , it is hard to compute g
∏n
i=0 xi

n . Notice

that by applying the mapping e(·, ·), it is only possible to compute g
∏n
i=0 xi

n+1 .
An f-CDH oracle gives such an oracle where e(g, g) = g. Therefore, a split-

CDH group gives all the functionality of a self-bilinear map. But notice that since
e(g, g) = g, gn = g for any n. Therefore, the multilinear CDH assumption is false.
However, we observe that if we choose a random element h, then e(h, h) = hr

where h = gr. As such, the f-CDH oracle would also give a self-bilinear map
with respect to the random generator h. We then show that multilinear CDH
is actually hard relative to h, assuming r-CDH is hard. Thus, we obtain a self-
bilinear map from any split-CDH group. As a consequence, following [43] we
would immediately obtain multiparty non-interactive key agreement, broadcast
encryption satisfying a distributed setup notion [10], and attribute-based en-
cryption for circuits.

In the full version [3] we show that Split-DDH groups allow for a simple
identity-based encryption (IBE) scheme based on the Boneh-Franklin [8] con-
struction.

Part 2: Trusted Setup Assumptions The previous sections demonstrated
that the f- and r-DDH assumptions are distinct assumptions that may not both
be true. But then which DDH assumption should be used? In practice, g is
typically part of a standards library chosen by a trusted third party (e.g. NIST).
As such, users have essentially three choices:

1. Believe that the trusted third party chose g at random, and use the r-DDH
assumption.

6

2. Do not trust the third party, but instead assume that there are no bad g. In
other words, rely on the f-DDH assumption for g.

3. Do not trust the third party, but instead have one of the users generate a
random g and distribute it to everyone else. Then rely on r-DDH.

Option 1 means that users need to trust that no one could have subverted g
and chosen a bad generator for which DDH is actually easy; history has shown
such trust could very well be misplaced. Only Options 2 and 3 remove the need
to trust a third party.

Remark 1. Note that to remove trusted setup assumptions entirely, we would
need to ensure that G itself is guaranteed to satisfy f-DDH. One option is to
assume that both G and g were generated by a deterministic process, so that all
parties can calculate G, g for themselves without any setup. For groups based
on finite fields, this requires deterministically generating large primes; while no
polynomial-time provable algorithms are known, there are very simple heuristic
algorithms. For elliptic curve-based groups, other options are available (e.g. us-
ing a field with small characteristic). For one approach to deterministic curve
generation, see [11].

In most cases, it is straightforward to switch between Options 2 and 3. A
scheme designed for f-DDH can often be converted into a scheme that relies
only on r-DDH by having one of the parties choose a random generator. On the
other hand, a scheme designed for r-DDH can often be converted into an f-DDH
scheme by fixing a group element and not including it with the user’s messages,
saving slightly on transmission costs.

The above means slightly different parameter sizes for the two assumptions.
For example, for public key schemes, the extra group element would naturally
go in the public key. The result is that schemes secure under r-DDH naturally
require one additional group element in the public key relative to the f-DDH
analog. As authors often compare parameter sizes in terms of group elements
(e.g. [24]), it is important that they clearly identify which assumption is used.

In some cases, however, switching between f-DDH and r-DDH will have a
more profound impact. For example, in a protocol between mutually distrusting
parties, which party will be entrusted to come up with the generator? While we
are not aware of any instances of protocols in the literature that cannot be made
to work with a random generator, it is straightforward to devise protocols where
no single party can be trusted to choose the generator. As such, care must be
taken when using the r-DDH assumption in these settings.

Diffie-Hellman Key Exchange. For the remainder of this section, we will focus on
a concrete setting where it is not possible to trivially switch between f-DDH and
r-DDH: Diffie-Hellman key exchange. In the protocol, Alice chooses a random
a← ZN and computes A = ga, and Bob chooses a random b← ZN and computes
B = gb. Then the two parties exchange A,B. In most treatments, Diffie-Hellman
is a non-interactive key exchange (NIKE), which means that A and B are sent

7

simultaneously. Alice then computes the secret key K = gab = Ba and Bob
computes K = gab = Ab. By the DDH assumption, an eavesdropper who learns
A,B can learn nothing about K.

The key issue here is that Alice and Bob need to know g in order to generate
their first message. So if we want one of them, say Alice, to come up with the gen-
erator, the result is an interactive protocol with Alice sending the first message,
and only then can Bob send his. Therefore, in addition to requiring slightly more
communication, Option 3 actually changes the nature of the protocol. What we
see is that Diffie-Hellman can only remain a setupless NIKE under the f-DDH
assumption.

Now, it is possible to alter Diffie-Hellman to work with CDH by extracting
hardcore bits from the unpredictable key. By the equivalence of f-CDH and r-
CDH in known prime-order groups, we can obtain a setupless NIKE protocol
from r-CDH (and hence also r-DDH). In groups of unknown order, however,
this does not apply. As our main technical result from this section, we give
evidence that in groups where the totient of the order is unknown, r-CDH alone
is insufficient for constructing setupless NIKE. This is formalized by assuming
that f-CDH is easy and demonstrating an attack on a wide class of key agreement
protocols that generalize the classical Diffie-Hellman protocol.

Part 3: Random-Generator Discrete-Log and CDH with Preprocess-
ing. A recent line of works [35, 33, 5, 18, 16] have explored non-uniform attacks
on various problems in cryptographic groups. Here, a computationally expensive
offline pre-processing stage generates an advice string, which in a later online
stage can be used to speed up computation in the group. We are interested in
the relationship between the length S of the advice string, the running time T
of the online stage, the group order N , and the success probability ε.

Very recently, Corrigan-Gibbs and Kogan [18] seemingly resolve the non-
uniform hardness of the discrete logarithm problem. Namely, they show in the
generic group model that ε = Õ(ST 2/N), where the Õ hides logarithmic factors.
This matches known upper bounds (attacks) up to logarithmic factors.

However, all the works in this line (both lower bounds and attacks) only
consider the fixed generator version of discrete log. Corrigan-Gibbs and Kogan
briefly mention this, concluding that “using a fixed generator is essentially with-
out loss of generality” since a discrete log with respect to one generator can be
solved by solving two discrete logs with respect to a different generator.

When considering just polynomial reductions between problems, the above
is certainly true. However, when it comes to precisely quantifying hardness,
the problem no longer remains identical for different generators. In particular,
suppose we have an algorithm that solves discrete log with respect to generator
g with probability ε and we want to solve a discrete log instance with respect to
generator h = gr. To do so, on input hx, we apply the algorithm twice to find
the discrete logs of h and hx with respect to g. This gives r and rx, allowing us
to solve for x. But since we needed to solve both instances correctly, our overall
success probability is only ε2. Of course if ε is a constant so is ε2, but in the

8

low success probability regime, squaring the advantage significantly changes the
hardness of the problem.

We resolve the question of the hardness of random-generator discrete log in

the pre-processing setting, showing that ε = Θ̃
(
T 2

N + S2T 4

N2

)
. The attack side

is simple: there are two natural ways to attack a random-generator discrete
log instance h, hx. One is to ignore the pre-processing, and apply the Baby-step

Giant-step algorithm, with success Ω(T
2

N). The other is to use the pre-processing
to solve two discrete log instances relative to some fixed generator g, in the

manner described above. This gives success Ω((ST
2

N)2), as shown in [18]. By
choosing which algorithm to use based on the parameters S, T,N , one obtains

ε = Ω
(
T 2

N + S2T 4

N2

)
.

On the other hand, to prove the lower bound we need to show, essentially,
that the two algorithms above are the only possible algorithms. This does not
follow from the analysis of [18]. Instead, we use the tools developed in subse-
quent works [17, 16] (based on the earlier pre-sampling techniques developed by
Unruh [41] for the Random Oracle model) to switch to a “bit-fixing” model,
where we then show the optimality of the algorithms. In addition, we show that
the same relationship holds as well for r-CDH. Generically, auxiliary input r-
CDH is as hard as either using the auxiliary information to solve two discrete
logarithms, or ignoring the input and solving one discrete logarithm.

1.3 Part 4: Low-Entropy Fixed-Generator Assumptions

Background: Point Obfuscation from Low-Entropy Assumptions. Our discussion
thus far has focused on Discrete Log/Diffie-Hellman-type assumptions where
ga, gb are uniformly random group elements. However, the security of many
important cryptographic applications often relies on a stronger version of these
assumptions in which a and/or b might not be drawn uniformly at random.

Canetti’s construction of point function obfuscation is perhaps the most well-
known example. A point function fx(·) is a boolean function that accepts on x
and rejects on all other inputs. Roughly speaking, an obfuscated point function
O(fx(·)) implements the same input/output functionality as fx(·), but leaks
no information about x beyond what can be learned through black-box oracle
queries to fx(·). In other words, the obfuscated program acts as a virtual black box
for evaluating the function.12 Canetti’s point function obfuscator is simple: to
obfuscate fx(·), draw a random group element gb and output (gb, gxb). Evaluation
on input y is done by computing (gb)y and accepting if it matches gxb.

The security of this construction follows from an assumption Canetti refers
to as DHI-II (in subsequent works it has been renamed to “DDH-II”; we will
adopt this name), which states that (g, ga, gb, gab) ≈C (g, ga, gb, gc) where g
is a random generator, b, c are chosen uniformly at random, and a has super-
logarithmic min-entropy, i.e. it is sampled from a well-spread distribution D.

12 We defer a more detailed discussion on virtual-black-box obfuscation to [1] (see [42]
for specifics on point function obfuscation).

9

We stress that DDH-II is technically an infinite family of assumptions, since it
requires indistinguishability if D is any well-spread distribution (even ones that
are not efficiently sampleable).

Under DDH-II, the obfuscated program (gb, gxb) hides all information about
the point x as long as x is drawn from a well-spread distribution, since gxb

is indistinguishable from gc. This immediately implies a notion of average-case
virtual-black-box (VBB) security. Canetti proves that if a point function ob-
fuscator is average-case VBB for any well-spread distribution, this implies full
(worst-case) VBB security. It was later shown by Wee ([42], Section 4.2) that
Canetti’s approach is essentially inherent: VBB-secure point function obfusca-
tion requires strong assumptions that are hard for any well-spread distribution.

Background: Non-Malleable Point Obfuscation. Canetti’s original motivation for
studying point obfuscation was to realize useful properties of random oracles [4]
in the standard model. If H(·) is a random oracle, observe that H(x) is a secure
point obfuscation of fx(·), where evaluation is a single random oracle call fol-
lowed by a comparison. Komargodski and Yogev [31] observe that the random
oracle obfuscator H(x) satisfies a strong non-malleability property, in the sense
that given H(x) it is impossible to compute H(f(x)) for any (meaningfully)
related point f(x), without first recovering x. This property is missing from
Canetti’s point obfuscator [13], e.g. since given (gb, gxb), one can easily compute
(gb, g(x+1)b), which is an obfuscation of the related point f(x) = x+ 1.

Komargodski and Yogev [31] propose the following modification to Canetti’s
point obfuscator. To obfuscate the point x, sample a random b and output

(gb, (gb)g
x4+x3+x2+x

). Note that for this expression to make sense, gx
4+x3+x2+x

must be mapped back into the exponent space under some fixed public mapping.
Evaluation on input y is done by computing gy

4+y3+y2+y, mapping this element
back to the exponent space and raising gb to that power, and finally comparing

to (gb)g
x4+x3+x2+x

.
Komargodski and Yogev [31] argue their obfuscation resists bounded-degree

polynomial mauling attacks, in which an adversary given an obfuscation of x
attempts to produce an obfuscation of P (x) for some bounded-degree polyno-
mial P (·). Roughly, the intuition is that the adversary cannot replace gb with

any other gb
′
, since generating (gb

′
)g
P (x)

does not appear possible given only

(gb)g
x4+x3+x2+x

. But if the adversary cannot change gb, the argument is that the
linear constraints imposed by the form of x4 + x3 + x2 + x make it impossible
to replace x with P (x).

Formally, security in [31] is proved under the newly introduced “Strong Power

DDH” assumption, which states it is hard to distinguish gx, gx
2

, . . . , gx
`

from `
random group elements, if x is drawn from any well-spread distribution.

Fixed-Generator Strong Power DDH is False. In stating the assumption, Ko-
margodski and Yogev [31] do not specify how g is chosen or the relationship
between g and the distribution over x. We observe that if g is a fixed generator,
then their assumption is false. For a uniformly random group element, there

10

must be some bit in its description with noticeable entropy. If it is bit i, we let D
be the distribution over all points x such that the ith bit of the description of gx

is 0. Then D has high min-entropy, and moreover gx for x← D is distinguishable
from a random group element by inspecting the ith bit.

If the assumption is taken in its random-generator formulation, the security
proof in [31] breaks down, since an adversary can potentially replace g with
a different generator g′. A natural idea to fix the construction would be to
generate g using a public source of randomness.13 However, this would move the
construction into the CRS model, where strong non-malleability results were
previously known [15].

Fixing Non-Malleable Point Obfuscation. We remedy this situation by giving
an alternative low-entropy fixed-generator assumption, and proving that this as-
sumption is sufficient to achieve their notion of non-malleable point obfuscation.
We formulate our assumption in a way that allows us to prove it holds in the
generic group model. Our assumption is the following:

Let p ∈ [2λ−1, 2λ] and let n be at most poly(λ). Fix a group G of order
p along with a generator g and any well-spread distribution D over Zp
(which can depend on G). Next sample k2, . . . , kn uniformly at random

from Zp. Then no efficient adversary can distinguish {gkix+xi}i∈{2,...,n}
for x ← D from n − 1 uniformly random group elements, even given
k2, . . . , kn.14

The intuition for the design of this assumption is the following. We want
to modify the group elements gx, gx

2

, . . . in Strong Power DDH to block dis-
tributions D which “condition” on the fixed g, as we have already seen how
such distributions falsify the assumption. However, we are restricted to modifi-
cations that preserve our ability to perform a security reduction for the proof of
non-malleability, as in [31].

Without delving into the non-malleability security proof itself, the key re-
quirement is that the reduction must be able to construct specific polynomials
(in x) in the exponent. We tweak the construction so that the reduction can con-
struct a polynomial of the form ax+x2+x3+x4+x5, where a is an arbitrary but
known scalar. Then by using terms of the form gkix+x

i

, we enable the reduction
to construct this polynomial by simply multiplying the i = 2, . . . , 5 terms; it will
know a since the ki’s are given in the clear. Intuitively, the ki scalars contribute

13 As noted in Section 1.1, Komargodski and Yogev have offered a fix through a new
Entropic Power DDH Assumption in a revised ePrint posting [32], which does not
come with a generic group proof. The goal of this section is to build non-malleable
point obfuscation from an assumption that holds against generic adversaries.

14 The assumption we actually use is slightly different: instead of stating indistinguisha-

bility from uniform, we require indistinguishability from {gkiy+yi}i∈{2,...,n} for the
same {ki}i but uniformly random y. We can prove both forms of this assumption
hold in the GGM, but this second form yields a simpler proof of VBB security. For
the purposes of this technical overview this distinction can be ignored.

11

enough randomness to prevent distributions D which make the gkix+x
i

terms
distinguishable from random.

Our resulting construction of non-malleable point obfuscation is (essentially)

a, gax+x
2+x3+x4+x5

. We note that our construction does not require the “double
exponentiation” of [31]. The full construction comes with two additional scalars
and group elements that ensure that x is the only accepting input.

Discussion: Low-Entropy Fixed Generator Assumptions in the Generic Group
Model. In order to gain confidence in our assumption, we prove it secure in the
generic group model. As discussed in Section 1.1, this is usually viewed as a min-
imum requirement in order to gain confidence in a new group-based assumption.
Recall that in the generic group model, group elements gx are replaced with
random “labels” σ(x), where σ is a uniformly random injection from the space
of exponents to some space of labels. An oracle stores the entire description of σ,
and allows the generic adversary oracle access to honest group operations. For
example, an adversary with labels σ(x), σ(y) can request the label for σ(x+ y).

We find that in the setting of fixed generator lower entropy assumptions, the
standard intuition for designing generic group model proofs falls short. Our goal
is to prove no generic adversary can distinguish between {ki, σ(kix+xi)}i∈{2,...,n}
and {ki, σ(ri)}i∈{2,...,n} for uniformly random ki, ri, and x← D. Since the group
and generator are fixed in this assumption, we must consider distributions which
depend on the group description itself. So in the generic model, any distribution
D should be viewed as the output distribution of a potentially inefficient sam-
pling algorithm S that is free to scan the entire labeling function σ. The only
requirement we enforce is that given σ, the point x← S(σ) has super-logarithmic
entropy.

To illustrate the difference in this setting, suppose for a moment that the
sampler S had to output x without seeing σ (as is the case when x is drawn
uniformly at random from Zp). The standard generic group argument for indis-
tinguishability would use the following structure:

Imagine treating x as a formal variable instead of as a randomly drawn
value. This replaces the group exponent space Zp with formal polyno-
mials Zp[x], so the oracle now returns labels by sampling a uniformly
random label from the image of σ each time it encounters a distinct
formal polynomial. Observe that there are no (non-trivial) linear com-
binations of the {kix + xi}i polynomials (taken as formal polynomials
in x) that evaluate to identically zero polynomials over x. This implies
that the adversary will never encounter non-trivial collisions in the labels
it sees, and we can use the Schwartz-Zippel Lemma to argue that the
adversary’s view is identical in the world where x is random instead of
a formal variable.

This type of argument breaks down if S can choose x after seeing the labeling
function σ. Now S can try to pick x so that σ(kix + xi) conveys non-trivial
distinguishing information to the adversary. In particular, it is no longer accurate

12

to argue that we can produce an identical view for the adversary by replacing x
with a formal variable.

We could intuitively hope that S is powerless to pick x that can bias the
distribution of σ(kix+ xi) away from uniform, as it does not know the random
ki. However, this intuition proves tricky to formalize, especially since S is given
unlimited computational power and access to the entire function σ.

Connection to Preprocessing Attacks. To solve this problem, we apply the “bit-
fixing” technique from Coretti, Dodis, and Guo [16]. They consider generic algo-
rithms which are given an additional advice string, computed beforehand using
a computationally unbounded algorithm with access to σ. Conditioned on the
advice string, it is no longer accurate to argue σ is a random labeling function.
However, they show (roughly) that if we obtain at most P bits of advice about
σ, this only leaks useful information about σ on O(P) points. So for generic
security proofs, this allows us to switch to a setting in which σ is a random
labeling function on all but O(P) inputs.

We apply these techniques to our setting by re-casting the sampler S out-
putting x as a computationally unbounded algorithm outputting x as “advice”.
However in our setting, the challenger is the one receiving the advice instead of
the adversary. It turns out that the [16] techniques still apply here, allowing us
to argue that σ can be re-sampled on all but polynomially many points. Once we
perform this re-sampling, we show that the adversary will not be able to apply
group operations to its set of initial group elements and produce a point that
was not re-sampled, except with negligible probability. Once this is established,
standard generic group techniques suffice to complete the proof.

Generic Hardness of DDH-II. As a final contribution, we also prove the generic
hardness of Canetti’s DDH-II assumption. We remark that previous proofs of
DDH-II [6, 20] operate in a highly idealized model that assumes the sampler is
independent of the labeling function σ. Preventing the sampler from seeing the
labels implicitly relies on the group itself being drawn at random, which in par-
ticular leads to counterexamples when dealing with fixed generator assumptions.
For example, the Strong Power DDH assumption with fixed generator can be
proven in this model even though it is false in the real world.

In the case of DDH-II, one of the elements the adversary receives is σ(a) for
low entropy a. We must show at a minimum that this does not allow the adver-
sary to recover a (i.e. compute the discrete log), as distinguishing would then be
trivial. Such a claim might not be immediately obvious, especially considering
that we can distinguish σ(a) from σ(r) for uniform r for certain distributions on
a. We observe that any adversary which succeeds in solving discrete log of σ(a)
with noticeable advantage for a well-spread distribution is also an adversary that
solves discrete log (with much smaller advantage) for the uniform distribution.
However, the resulting advantage exceeds the known generic bounds for discrete
log algorithms [39]. The remainder of our proof makes use of bit-fixing techniques
to reduce the problem of distinguishing the DDH-II instance to the problem of
recovering a given just σ(a).

13

2 Preliminaries

For n ∈ N, let [n] denote the set {1, . . . , n}. We specify formal variables by bold
letters x. For a function f , let im(f) denote the image of f .

Throughout, we let λ ∈ N be the security parameter. We use the usual
Landau notations. A function f(λ) is said to be negligible if it is λ−ω(1) and we
denote it by f(λ) := negl(λ). A function f(λ) is said to have polynomial growth
rate if it is λO(1) and we denote it by f(λ) := poly(λ). A probability p(λ) is said
to be overwhelming if it is 1−λ−ω(1). We refer to A as PPT if it is a probabilistic
polynomial time algorithm. If A has access to an oracle O, we write AO.

The statistical distance between two distributions D1 and D2 over a count-
able support S is defined to be ∆(D1, D2) := 1

2

∑
x∈S |D1(x)−D2(x)|. Let γ > 0.

We say that two distributions D1 and D2 are γ-close if ∆(D1, D2) ≤ γ. We let
x← D denote drawing x from the distribution D. When X is a set, then x← X
denotes drawing x uniformly at random from the set X. The following definition
regarding infinite families of distributions will be used throughout.

Definition 1 (Well-Spread Distribution Ensemble). An ensemble of dis-
tributions {Dλ}λ over domains {Xλ}λ is well-spread if for all large enough λ ∈ N,

H∞(Dλ) = − min
x∈Xλ

log2 Pr[x← Dλ] = ω(log(λ)).

2.1 Generic Group Model

Definition 2 (Generic Group Model (GGM) [36, 39]). An application in
the generic group model is defined as an interaction between a T -attacker A and
a challenger C. For a cyclic group of order N with fixed generator g, a random
injective function σ : [N]→ [M] is sampled, mapping group exponents in ZN to
a set of labels L. Label σ(x) for x ∈ ZN corresponds to the group element gx.
C initializes A with some set of labels {σ(xi)}i. It then implements the group

operation oracle OG(·, ·), which on inputs σ1, σ2 ∈ [M] does the following:

– If either of σ1 or σ2 is not in L, return ⊥.
– Otherwise, set x = σ−1(σ1) and y = σ−1(σ2), compute x + y ∈ ZN , and

return σ(x+ y).

A is allowed at most T queries to the oracle, after which C outputs a bit indi-
cating whether A was successful. We refer to the probability that this bit is 1 as
SuccC(A).

Remark 2. It will often be convenient to represent each query to OG as a linear
polynomial over the initial set of elements {xi}i given to A.

For an indistinguishability application, we define the advantage of attacker A as
AdvC(A) = 2|SuccC(A)−1/2|. For an unpredictability application, the advantage
is defined as AdvC(A) = SuccC(A). An application with associated challenger C
is (T, ε)-secure in the GGM is for every T -attacker A, AdvC(A) ≤ ε.

14

Definition 3 (Auxiliary-Input Generic Group Model (AI-GGM)). We
now consider (S, T)-attackers A = (A1,A2). First σ : [N] → [M] is sampled.
A1 receives σ as input and outputs an S-bit string aux. Then the challenger
C operates as before, modeling interaction between A2 and OG(·, ·). Now A2

receives aux as input and is allowed T queries to the oracle. Success, advantage,
and security are defined analogously.

Definition 4 (Bit-Fixing Generic Group Model (BF-GGM)). We now
consider (S, T, P)-attackers A = (A1,A2). First σ : [N] → [M] is sampled. A1

receives σ as input and outputs an S-bit string aux along with a set P ⊆ ZN of
size P . Then σ is uniformly re-sampled on all but the points P (conditioned on
maintaining the same image), producing the injection σ′. We let im(P) refer to
the images under σ and σ′ of the points in P. Then the challenger C operates as
before, modeling interaction between A2 and OG(·, ·), where OG(·, ·) uses σ′ to
answer queries. A2 receives aux as input and is allowed T queries to the oracle.
Success, advantage, and security are defined analogously.

Theorem 1 ([16]). Let N,M,P ∈ N, N ≥ 16, and γ > 0. If an unpredictabil-
ity application with challenger C that initializes A with T ′ group elements is
((S, T, P), ε′)-secure in the BF-GGM for

P ≥ 18(S + log(γ−1))(T + T ′),

then it is ((S, T, P), ε)-secure in the AI-GGM for ε ≤ 2ε′ + γ.

3 Lower Bounds for Random Generator Discrete Log and
CDH

We proceed to give tight lower bounds (up to logarithmic factors) for r-DLog
and r-CDH in the AI-GGM, making use of the following special case of a lemma
due to Yun [45].

Lemma 1 (Search-by-Hyperplane-Queries [45] (SHQ)). Consider draw-
ing z1, z2 uniformly at random from ZN , and allowing an adversary A hyper-
plane queries of the form (a1, a2, b) where 1 is returned if a1z1 + a2z2 = b and 0
otherwise. Then the probability that A outputs (z1, z2) after q hyperplane queries
is at most q2/N2.

Theorem 2. The r-Dlog problem is ((S, T), ε)-secure in the AI-GGM for any
prime N ≥ 16 and

ε = Õ

(
T 2

N
+

(
ST 2

N

)2
)
.

Proof. In the r-Dlog game, the challenger C draws x← Z∗N , y ← ZN and initial-
izes A with (σ(1), σ(x), σ(xy)). A is successful if it outputs y after at most T
generic group queries. We show that r-Dlog is

15

(
(S, T), O

(
T 2

N + T 2P 2+T 3P
N2

))
-secure in the BF-GGM. Then we can apply Theo-

rem 1 with γ = 1/N to get the result, noting that T ′ = 3 and log(1/γ) = log(N),

so P = Õ(ST).
A := A2 takes as input the advice string aux generated by A1, makes T

adaptive queries {c(t)1 σ(x)+c
(t)
2 σ(xy)+c

(t)
3 σ(1)}t∈[T] to the generic group oracle

and receives {σ(c
(t)
1 x + c

(t)
2 xy + c

(t)
3)}t∈[T] in return. Let E be the event that

there exists an a ∈ P and t ∈ [T] such that c
(t)
1 x+ c

(t)
2 xy+ c

(t)
3 = a and c

(t)
3 6= a.

Then

Pr
σ,x,y

[y ← AOG(aux)] ≤ Pr
σ,x,y

[y ← AOG(aux) | E] + Pr
σ,x,y

[y ← AOG(aux) | ¬E].

We begin by analyzing the first probability in the sum. Condition on a par-
ticular image L of σ and a particular set of fixed points P. The following holds
for any such choice. We set up a reduction B which plays the SHQ game defined
above and perfectly simulates the generic group game for A. B has access to
L,P, im(P), and hyperplane query access to uniform values z1, z2 in ZN which
we implicitly set to be x, xy. We assume that z1 6= 0, which happens except with
probability 1/N . B operates as follows.

– Maintain a table mapping linear polynomials in ZN [z1, z2] to L. For each
a ∈ P, record the pair (a, σ(a)).

– Query the SHQ oracle on hyperplane (1, 0, a) for each a ∈ P. If any query
returns 1, record the pair (z1, σ(a)), otherwise choose a uniform value r from
all unused values in L \ im(P) and record (z1, r). Do the same for z2. Next,
store 1 along with its image. If 1 ∈ P this is already done. If not, query
(1, 0, 1) to determine if z1 = 1 and if so store 1 along with the image of
z1. Do the same for z2. Otherwise, draw a uniform value r from all unused
values in L \ im(P) and record (1, r). Initialize A with the images of 1, z1,
and z2.

– When A submits a query c1z1 + c2z2 + c3, subtract each previously stored
polynomial Q(z1, z2), resulting in some polynomial k1z1 + k2z2 + k3. Query
the SHQ oracle on (k1, k2,−k3). If 1 is returned, let s be the element stored
along with Q(z1, z2), record (c1z1 + c2z2 + c3, s), and return s to A. Other-
wise, choose a uniform value r from all unused values in L \ im(P), record
(c1z1 + c2z2 + c3, r) and return r.

– If E occurs, B will see a 1 returned by the SHQ oracle on a hyperplane
query (k1, k2, k3) for k3 6= 0, meaning at least one of k1, k2 6= 0. Record this
tuple. At the end of the interaction, A will return a y ∈ ZN . Now B outputs
(k3(k1 + k2y)−1, y).

Setting z1 = x and z2 = xy, it is clear that B perfectly simulates the r-Dlog
game for A. If E occurs, we know that k3 = k1x + k2xy = x(k1 + k2y), and
k3 6= 0, so k1 + k2y 6= 0. Thus if A is successful and returns y, B successfully
computes x = k3(k1 +k2y)−1. Applying Lemma 1, and noting that B makes less
than 2(P + 1) + T (P + T) = O(TP + T 2) queries, we get that

16

Pr
σ,x,y

[y ← AOG(aux) | E] = O

(
T 2P 2 + T 3P + T 4

N2

)
.

To analyze the second probability, we move to a hybrid game in the BF-GGM
where x and y are set to be formal variables x and y at the beginning of the
game. The challenger implements group operations over ZN [x,y], initializing its
table with the points in (a, σ(a)) for all a ∈ P. Every time A queries for a new
polynomial, C chooses a uniform element in L \ im(P) among those unused so
far. When A outputs a guess for y at the end of the game, the true value is
chosen uniformly at random, so A wins with probability 1/N . Given that E
does not occur, A’s probability of distinguishing these two games is bounded
by the probability that in the original game, two of its T queries are different
polynomials over x and y but evaluate to the same element, or there exists

some query c
(j)
1 x + c

(j)
2 xy + c

(j)
3 such that c

(j)
1 x + c

(j)
2 xy = 0 and at least one

of c
(j)
1 , c

(j)
2 6= 0. So there are O(T 2) possible equations that could be satisfied

and by Schwartz-Zippel, each occurs with probability O(1/N) over the random
choice of x and y. Thus by a union bound, A’s probability of distinguishing is
O(T 2/N).

Combining, we have that A’s probability of success is

O

(
T 2P 2 + T 3P + T 4

N2

)
+O

(
T 2

N

)
+O

(
1

N

)
= O

(
T 2

N
+
T 2P 2 + T 3P

N2

)
.

ut

In the full version [3], we use similar techniques to show the same bound for
r-CDH, which again is tight.

Theorem 3. The r-CDH problem is ((S, T), ε)-secure in the AI-GGM for any
prime N ≥ 16 and

ε = Õ

(
T 2

N
+

(
ST 2

N

)2
)
.

4 Non-Malleable Point Obfuscation

In this section, we construct a non-malleable point obfuscator secure against
polynomial mauling attacks, which were first considered by Komargodski and
Yogev [31]. We first briefly review relevant definitions.

4.1 Definitions

Denote by Ix the function that returns 1 on input x and 0 otherwise.

Definition 5. (Point Obfuscation) A point obfuscator for a domain {Xλ}λ of
inputs is a PPT Obf that takes as input a point x ∈ Xλ and outputs a circuit
such that the following hold.

17

– Functionality Preservation: For all λ ∈ N, there exists a negligible func-
tion µ such that for all x ∈ Xλ,

Pr[Obf(x) ≡ Ix] = 1− µ(λ).

– Virtual Black Box (VBB) Security: For all PPT A and any polynomial
function p, there exists a PPT S such that for all x ∈ Xλ and any predicate
P : Xλ → {0, 1}, and all large enough λ,∣∣Pr[A(Obf(x)) = P (x)]− Pr[SIx(1λ) = P (x))]

∣∣ ≤ 1

p(λ)
.

We give another property of point obfuscators first considered in [13] and
re-defined in [7].

Definition 6 (Distributional Indistinguishability). Let {Xλ}λ be a fam-
ily of domains. Then a point obfuscator Obf for {Xλ}λ satisfies Distributional
Indistinguishability if for all PPT A and well-spread ensembles of distributions
{Dλ}λ over {Xλ}λ, there exists a negligble function µ(λ) such that

|Pr[A(Obf(x)) = 1]− Pr[A(Obf(u)) = 1]| = µ(λ),

where x← Dλ and u is drawn from the uniform distribution over Xλ.

[13, 7] show that Distributional Indistiguishability is equivalent to VBB se-
curity for point obfuscators. Now we give the [31] definition of non-malleability.
This definition involves the notion of a Verifier algorithm, which simply checks
that the potentially mauled obfuscation is valid.

Definition 7. (Verifier) A PPT V for a point obfuscator Obf for an ensemble
of domains {Xλ}λ is called a Verifier if for all λ ∈ N and x ∈ Xλ, it holds that
Pr[V(Obf(x)) = 1] = 1, where the probability is taken over the randomness of V
and Obf.

Definition 8. (Non-malleable Point Function Obfuscation) Let Obf be a point
function obfuscator for an ensemble of domains {Xλ}λ with an associated verifier
V. Let {Fλ}λ = {f : Xλ → Xλ}λ be an ensemble of families of functions, and
let {Dλ}λ be an ensemble of distributions over Xλ. Then Obf is a non-malleable
point obfuscator for F and D if for any PPT A, there exists a negligible function
µ such that for any λ ∈ N,

Pr[V(C) = 1, f ∈ Fλ, C ≡ If(x) | x← Dλ, (C, f)← A(Obf(x))] ≤ µ(λ).

In the following, we rely on the existence of a pseudo-deterministic GroupGen
algorithm that may use randomness, but on input the security parameter 1λ

outputs a unique description of a group Gλ with a unique generator g and prime
order p(λ) ∈ [2λ−1, 2λ]. As discussed in the introduction, this would involve
psuedo-deterministic generation of large primes. This is not provably efficient,
but we can rely for example on Cramer’s conjecture to argue efficiency. See [26]
for further discussion on psuedo-deterministic algorithms, including group gen-
erator generation.

18

4.2 Assumptions

Assumption 1 Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let
{Dλ} be a family of well-spread distributions where the domain of Dλ is Zp(λ).
Then for any n = poly(λ), for any PPT A,∣∣∣Pr[A({ki, gkix+x

i

}i∈[2,...,n]) = 1]− Pr[A({ki, gkir+r
i

}i∈[2,...,n]) = 1]
∣∣∣ = negl(λ),

where x← Dλ, r ← Zp(λ), and ki ← Zp(λ).

Assumption 2 Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let
{Dλ} be a family of well-spread distributions where the domain of Dλ is Zp(λ).
Then for any n = poly(λ), for any PPT A (which outputs an element of Gλ),

Pr[gx = A({ki, gkix+x
i

}i∈[2,...,n])] = negl(λ),

where x← Dλ and ki ← Zp(λ).

We prove the following in the full version [3].

Lemma 2. Assumption 1 implies Assumption 2.

4.3 The Obfuscator

Our obfuscation consists of three scalars and three group elements. We remark
that the first group element is sufficient for our proof on non-malleability, but
that we include the next two to obtain functionality preservation.

– Obf(1λ, x): Compute GroupGen(1λ) = (Gλ, g, p(λ)). Draw a, b, c← Zp(λ) and
output

a, b, c, gax+x
2+x3+x4+x5

, gbx+x
6

, gcx+x
7

.

– Eval(1λ, (a, b, c, ha, hb, hc), x): Compute GroupGen(1λ) = (Gλ, g, p(λ)). Ac-
cept if and only if

ha = gax+x
2+x3+x4+x5

, hb = gbx+x
6

, hc = gcx+x
7

.

Theorem 4. The above point obfuscator satisfies functionality preservation.

Proof. Fix a point x ∈ Zp(λ). We show the probability that there exists a y 6= x

such that Eval(1λ,Obf(1λ, x), y) accepts is at most 4/p(λ)2. Union bounding over
all x completes the proof.

The randomness in Obf consists of the elements a, b, c. Fix just a for now and
let t = ax+ x2 + x3 + x4 + x5. Then any y which causes Eval to accept satisfies
ay + y2 + y3 + y4 + y5 = t. This leaves four possible y 6= x. For each such y,
we write P (b) = (x6 − y6) + (x − y)b and Q(c) = (x7 − y7) + (x − y)c which
are linear polynomials over b and c respectively with non-zero linear coefficient.
Then y only causes Eval to accept if P (b) = 0 and P (c) = 0. But these occur
simultaneously with probability 1/p(λ)2 over the uniform randomness of b, c. So
by a union bound, there exists a y 6= x such that Eval(1λ,Obf(1λ, x), y) accepts
with probability at most 4/p(λ)2. ut

19

Theorem 5. Under Assumption 1, the above point obfuscator satisfies Virtual
Black Box Security.

Proof. The obfuscator satisfies distributional indistinguishability, which follows
directly from Assumption 1 with n = 7. A reduction simply receives {ki, hi}i∈[2,...,7]
and forms the obfuscation (

∑5
i=2 ki, k6, k7,

∏5
i=2 hi, h6, h7). As mentioned ear-

lier, this is equivalent to VBB security. ut

Theorem 6. Let {Dλ} be a well-spread distribution ensemble with domain {Zp(λ)}λ.
Let Fpoly = {fλ : Zp(λ) → Zp(λ)}λ be the ensemble of functions where fλ is the
set of non-constant, non-identity polynomials 15 in Zp(λ)[x] with poly(λ) degree.
Then under Assumption 1, the above obfuscator is non-malleable for Fpoly and
distribution ensemble {Dλ}.

Proof. First, we fix the verifier to check that the Eval circuit is using the g output
by GroupGen(1λ). Now we show that any mauling adversary A can be used to
break Assumption 2, which as seen above follows from Assumption 1.

We first handle the case where A outputs an f of degree at least 2. Let m ≥ 2
be the degree of A’s polynomial. We define the following reduction B.

– Receive {ki, hi}i∈[2,...,7m] := {ki, gkix+x
i}i∈[2,...,7m] from the Assumption 2

challenger, where x← Dλ.
– Send (

∑5
i=2 ki, k6, k7,

∏5
i=2 hi, h6, h7) to A, which returns (f, a, b, c, ja, jb, jc)

where a, b, c ∈ Zp(λ) and ja, jb, jc are group elements.
– Compute cf(x) + f(x)7 = `0 + `1x+ · · ·+ `7mx

7m.

– Return (jc/(g
`0
∏7m
i=2(h`ii)))1/(`1−

∑7m
i=2 ki`i).

B perfectly simulates the obfuscation for x← Dλ for A, which is guaranteed
to return a valid obfuscation of f(x) with 1/poly(λ) probability. In this case, fc =

g`0+`1x+···+`7mx
7m

. Then B successfully computes gx unless `1 −
∑7m
i=2 ki`i = 0.

We know that `7m 6= 0 and that k7m is uniformly random and independent of
A’s view, so this occurs with probability at most 1/p(λ) = negl(λ). Thus, B
breaks Assumption 2 with 1/poly(λ) probability.

In the case that f is linear, we set up the same reduction B, except for the
last two steps.

– Compute af(x) + f(x)2 + f(x)3 + f(x)4 + f(x)5 = `0 + `1x+ · · ·+ `5x
5.

– Return (ja/(g
`0
∏5
i=2(h`ii)))1/(`1−

∑5
i=2 ki`i).

Like before, it suffices to argue that `1−
∑5
i=2 ki`i 6= 0 except with negligible

probability. In this case, the adversary receives z := k2 + k3 + k4 + k5. Thus
letting k5 = z− k2− k3− k4, there are 3 free variables k2, k3, k4 in A’s view. We
can then re-write `1 −

∑5
i=2 ki`i 6= 0 as

`1 − `5z + (`5 − `2)k2 + (`5 − `3)k3 + (`5 − `4)k4.

15 Note that constant and identity polynomials correspond to “trivial” mauling attacks
that cannot be prevented. A constant polynomial corresponds to picking an unrelated
y and obfuscating y, while the identity polynomial corresponds to doing nothing.

20

So in order for this to evaluate to 0 with non-negligible probability, each of
the coefficients on k2, k3, k4 must be 0. Let f(x) = rx+s. Then writing out what
the `i are, we see that the following must hold.

r5 = 5r4s+ r4 = 10r3s2 + 4r3s+ r3 = 10r2s3 + 6r2s2 + 3r2s+ r2

It is easily verified that the only solutions to the above system are when
r = 0 or (r = 1, s = 0). These correspond to when f is constant or the identity,
so we can conclude that if A succeeds in breaking non-malleability, B breaks
Assumption 2 with 1/poly(λ) probability. ut

5 Justifying Assumptions in the Generic Group Model

We will need some additional background from [16], plus a couple of new simple
lemmas. Note that while we make use of techniques from [16] that establish
theorems relating the AI-GGM and BF-GGM, we never technically operate in
the BF-GGM. We need a more fine-grained approach, starting in the plain GGM
and modifying the labeling function and challenger’s game incrementally.

5.1 Background

Definition 9 ([16]). An (N,M)-injection source Σ is a random variable that
takes on as value function tables corresponding to injections σ : [N]→ [M]. An
(N,M)-injection source Σ is called (P,L, 1− δ)-dense for L ⊆ [M] if it is fixed
on at most P coordinates and if for every subset I of non-fixed coordinates,

H∞(ΣI) ≥ (1− δ) log

(
(N − P)!

(N − P − |I|)!

)
,

where ΣI is the random variable Σ restricted to the coordinates in I. When
δ = 0, the source is called (P,L)-fixed.

Remark 3. We denote by AΣ an algorithm that has oracle access to an injection
σ drawn from the source Σ. This means that A can perform forward queries
where on input x the oracle returns σ(x) or backward queries where on input x
the oracle returns σ−1(x).

Lemma 3 ([16]). Let Σ be a uniform (N,M)-injection source and f : [M][N] →
{0, 1}S a potentially randomized function. Let Σf,x,L be the random variable cor-
responding to the distribution of Σ conditioned on f(Σ) = x and im(Σ) = L.
Then for any γ > 0, P ∈ N, there exists a family {Yx,L}x,L, indexed by val-
ues x ∈ {0, 1}S and size-N subsets L of [M], of convex combinations Yx,L of

(P,L, 1 − S+log(1/γ)
P log(N/e))-dense sources, such that Σf,x,L is γ-close to Yx,L. Fur-

thermore, replacing each Yx,L with its corresponding convex combination Zx,L of
(P,L)-fixed sources, we have that for any distinguisher D taking an S-bit input
and making at most T queries to its injection oracle,

|Pr[DΣ(f(Σ)) = 1]− Pr[DZf(Σ),im(Σ)(f(Σ)) = 1]| ≤ 2(S + log 1/γ) · T
P

+ γ.

21

The above is actually slightly modified from the statement in [16], with the
only difference being that we allow f to be randomized. The only place in their
proof that makes use of f being deterministic is Claim 19, essentially that (where
everything is conditioned on some range L), Ex[H∞(Σ|f(Σ) = x)] ≥ log(N !)−S.
Their proof of this claim can easily be adapted to allow randomized f . Say
that f uses k uniformly random bits. Then define the deterministic function
f ′ : {0, 1}k×[N][N] → {0, 1}S that runs f using its first input as the randomness.
Let K be the random variable corresponding to drawing a uniformly random
string in {0, 1}k. Now by averaging, we have that for any x, H∞(Σ|X = x) ≥
H∞((K,Σ)|X = x)− k. Then, following the proof in [16],

Ex[H∞(Σ|f(Σ) = x)] ≥ Ex[H∞((K,Σ)|f ′(K,Σ) = x)]− k
= Ex[H((K,Σ)|f ′(K,Σ) = x)]− k ≥ log(N !) + k − S − k = log(N !)− S,

where H is Shannon entropy, and the equality is due to the fact that condi-
tioned on x, (K,Σ) is uniform over all values (r, σ) such that f ′(r, σ) = x.

Lemma 4 ([16]). For any (P,N, 1−δ)-dense (N,N)-injection (bijection) source
Y and its corresponding (P,N)-fixed source Z, it holds that for any (adaptive)
distinguisher D that makes at most T queries to its oracle,

|Pr[DY = 1]− Pr[DZ = 1]| ≤ Tδ logN.

Now we give two additional lemmas, useful for proving Theorem 7.

Lemma 5. Let Σ be a uniform (N,N)-injection (bijection) source with log(N) =
Θ(λ) and f : [N][N] → {0, 1}S a potentially randomized function. Let Σ′ be
the random variable on σ′ that results from drawing σ ← Σ, x ← f(σ), and
then σ′ ← Σf,x,[N] defined in Lemma 3. Say that for all σ, H∞(X|Σ = σ) =
ω(log(λ)). Then

EΣ′ [max
x
{Pr[X = x|Σ′ = σ]}] = negl(λ).

Proof. With two applications of Bayes’ Theorem, we see that for any x ∈ {0, 1}S

Pr[X = x|Σ′ = σ] =
Pr[Σ′ = σ|X = x] Pr[X = x]

Pr[Σ′ = σ]
=

Pr[Σ = σ|X = x] Pr[X = x]

Pr[Σ′ = σ]

=

(
Pr[X=x|Σ=σ] Pr[Σ=σ]

Pr[X=x]

)
Pr[X = x]

Pr[Σ′ = σ]
= Pr[X = x|Σ = σ]

(
Pr[Σ = σ]

Pr[Σ′ = σ]

)
.

So plugging in,

EΣ′ [max
x
{Pr[X = x|Σ′ = σ]}] =

∑
σ

max
x
{Pr[X = x|Σ′ = σ]}Pr[Σ′ = σ]

=
∑
σ

max
x
{Pr[X = x|Σ = σ] Pr[Σ = σ]} ≤ max

x,σ
{Pr[X = x|Σ = σ]} = negl(λ).ut

22

Lemma 6. Consider n events X1, . . . , Xn such that each event occurs with prob-
ability at least α, where α > 2/n. Then for a uniformly random i, j ← [n],

Pr[Xi ∧Xj] ≥ α2

4 .

The proof can be found in the full version [3].

5.2 Proofs

Theorem 7. Assumption 1 (Section 4) holds in the Generic Group Model.

Proof. We define the following hybrid games.

– Hybrid 0. The Assumption 1 distinguishing game for generic adversary A.
Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ).
Sample a uniformly random injection σ : [p] → [p′] for an arbitrary p′ > p.
Let S : [p′][p] → Zp be a possibly inefficient randomized algorithm such that
H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).
The challenger C receives as input (Gλ, g, p, σ, x), chooses b← {0, 1}, r, ki ←
Zp for i ∈ [2, ..., n], and initializes the adversary A with {ki, σ(b(kix+ xi) +
(1−b)(kir+ri))}i∈[2,...n]. The challenger C proceeds to implement the generic
group oracle for A, after which A outputs a guess b′ ∈ {0, 1}. A wins if b′ = b.

– Hybrid 1. In this hybrid, we switch to a “bit-fixing” labeling σ′.
Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ).
Sample a uniformly random injection σ : [p] → [p′] for an arbitrary p′ > p.
Let S : [p′][p] → Zp be a possibly inefficient randomized algorithm such that
H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).
Let Zx,im(σ) be the family defined as in Lemma 3 (parameterized by some

P ∈ N and γ := 1/2λ). Sample σ′ ← Zx,im(σ)

The challenger C receives as input (Gλ, g, p, σ′, x), chooses b← {0, 1}, r, ki ←
Zp for i ∈ [2, ..., n], and initializes the adversary A with {ki, σ′(b(kix+xi) +
(1−b)(kir+ri))}i∈[2,...n]. The challenger C proceeds to implement the generic
group oracle for A, after which A outputs a guess b′ ∈ {0, 1}. A wins if b′ = b.

Now we assume the existence of an adversary A that makes T (λ) = poly(λ)
queries and attains non-negligible advantage ε(λ) in Hybrid 0. Let q(λ) =
poly(λ) be such that q(λ) > 1/ε(λ) for infinitely many λ. Let T := T (λ) and
q := q(λ). Set P = 30λT 4q = poly(λ).

Claim. A attains advantage at least 1/2q in Hybrid 1.

Consider the following distinguisher D(x), which interacts with an oracle
injection source mapping [p]→ [p′], and receives as input x← S(σ). D simulates
the interaction between C and A described in Hybrid 0 and outputs a bit
indicating whether A was successful or not. If the injection source that D is
interacting with is σ, then the simulation is exactly Hybrid 0. If it is Zx,im(σ),
then the simulation is exactly Hybrid 1.

23

Applying Lemma 3 with the sampler x ← S(σ) as the function f , we have
that the success probability of A in Hybrid 1 must be at least

ε(λ)− 2T (log p+ log(1/γ))

P
− γ ≥ 1

q
− 4λT

30λT 4q
− 1

2λ
≥ 1

2q
.

We show that A obtaining this advantage leads to a contradiction. Condition
on im(σ) = L for some L where A obtains at least advantage 1/2q. Here Σ is
defined as in Lemma 3, except [M] is fixed to be L, resulting in a bijection source.
We drop subscripts from the associated distributions, so Yx := Yx,L, Zx := Zx,L,
and Σx := ΣS,x,L. The distribution Zx is a convex combination of bit-fixing

distributions B(j)x with associated fixed points P(j)
x . Let this convex combination

be Jx. So to draw σ′ from Zx, we draw j ← Jx, then σ′ ← B(j)x .

Now we analyze the adversary’s generic group oracle queries. Any query A
makes can be viewed as a linear polynomial over its challenge elements

`1 +

n∑
i=2

`i(b(kix+ xi) + (1− b)(kir + ri)),

specified by coefficients [`1, ..., `n]. We split these queries into two parts based
on whether the linear polynomial is constant or non-constant over the challenge
elements (whether there is some i ∈ [2, ..., n] such that `i 6= 0). We will consider
each initial handle that A receives as a non-constant query where `i = 1 for
some i and `j = 0 for j 6= i. Assume without loss of generality that all of A’s
queries are distinct linear combinations.

Note that constant queries are identically distributed in the b = 0 and b = 1
cases. Let Tc denote the set of constants that are queried by A throughout its
interaction. Then observe that if, for both settings of b, all of A’s non-constant

queries result in distinct group elements that each lie outside of the set P(j)
x ∪Tc,

the oracle responses are identically distributed in both cases. Now, for any T -
query adversary that at some point queries two distinct non-constant linear
polynomials that evaluate to the same point, we can define a T 2-query adversary
that at some point queries a non-constant linear polynomial that evaluates to
zero. Redefine A to be this latter adversary. Thus if A distinguishes, it must at

some point form a non-constant query that evaluates to a value in P(j)
x ∪Tc∪{0}.

For a given query t, let T (t)
c denote the set of constants among the first t

queries made by A. There must exist some query t such that both of the following
hold with probability 1/(2qT 2).

– t is non-constant and evaluates to an element in P(j)
x ∪ T (t)

c ∪ {0} OR t is a
constant c and there exists an earlier non-constant query t′ such that query
t′ evaluates to c

– all previous non-constant queries (except perhaps t′) evaluate to an element

outside of P(j)
x ∪ T (t)

c ∪ {0}

24

Otherwise, by a union bound, A could not obtain distinguishing success
1/(2q). Note that every non-constant query prior to t except perhaps t′ is

answered with a uniformly random value in L \ im(P(j)
x ∪ T (t)

c ∪ {0}). Since

|P(j)
x ∪ T (t)

c ∪ {0}| = poly(λ), we can imagine instead drawing each response
uniformly from L, which by a union bound will change A’s view with negligible
probability. Then A can simulate these answers itself with uniform randomness,
with a negligible difference in success probability.

Now we are left with an adversary A that takes as input {ki} := {ki}i∈[2,...,n],
makes at most T 2 queries to σ′, and outputs a set of coefficients [`1, ..., `n]

(representing the non-constant query t or t′). Define P ′(j)x := P(j)
x ∪ T (t)

c ∪ {0}.
Now we break up the analysis into whether b = 0 or b = 1. If b = 0, we

are guaranteed that with probability 1/(2qT 2) − negl(λ) = 1/poly(λ) over all
randomness in the game setup, {ki}, and A, the following holds.

`1 +

n∑
i=2

`i(kir + ri) ∈ P ′(j)x

But note that r is drawn uniformly at random from a set of size p, inde-
pendently of A’s view. Thus by Schwartz-Zippel and a union bound, the above
holds with probability at most (T 2 + P + 1)n/p = negl(λ).

Now let b = 1. We are guaranteed that with probability 1/(2qT 2) − negl(λ)
over all randomness in the game setup, {ki}, and A, the following holds:

`1 +

n∑
i=2

`i(kix+ xi) ∈ P ′(j)x .

Redefine A to output the above polynomial Q(x) ∈ Zp[x] on input {ki}. Now
accounting for all randomness during the course of the game, we have that

Pr
σ←Σ,x←S(σ),j←Jx,
σ′←B(j)

x ,{ki}←Zn−1
p ,A

[Q(x) ∈ P ′(j)x : Q← Aσ
′
({ki})] =

1

2qT 2
− negl(λ).

Now we switch the distribution on σ′ from Z = {Zx}x to Y = {Yx}x. We

can still represent Yx in the same way as Zx except the B(j)x ’s are replaced by

(P, 1− δ)-dense sources D(j)
x . Referring to the Lemma 3 statement, we have that

δ ≤ 2λ+ log 1/γ

P log(p/e)
≤ 1

10T 4q log(p/e)
.

Now assume towards contradiction that this switch in distribution causes the
adversary’s success to become at most 1/(4qT 2). Then there must exist some
fixed choice of σ, x and j such that A’s difference in success over σ′ and its input

25

is at least 1/(4qT 2)− negl(λ). So we have

Pr
σ′←B(j)

x ,{ki}←Zn−1
p ,A

[Q(x) ∈ P ′(j)x : Q← Aσ
′
({ki})]−

Pr
σ′←D(j)

x ,{ki}←Zn−1
p ,A

[Q(x) ∈ P ′(j)x : Q← Aσ
′
({ki})] ≥

1

4qT 2
− negl(λ).

But now we can define a distinguisher that contradicts Lemma 4. The dis-

tinguisher knows the fixed x and the set of fixed points P(j)
x , and interacts with

either B(j)x or D(j)
x , simulating A making T 2 queries. It can tell whether A suc-

ceeds by plugging x into the polynomial produced and comparing the result to
the set of fixed points and the set of queries made by A. Yet it can only distin-
guish with probability at most T 2δ log p ≤ 1/(5qT 2) which is a contradiction.

Now we imagine picking c uniformly at random from P ′(j)x . Since 1/(4qT 2) =

1/poly(λ) and |P ′(j)x | ≤ T 2 + P + 1 = poly(λ), we can say that

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

c←P′(j)x ,{ki}←Zn−1
p ,A

[Q(x) = c : Q← Aσ
′
({ki})] =

1

poly(λ)
.

Now there must exist a 1/poly(λ) fraction of {ki} such that the above holds
with probability 1/poly(λ) on each of those inputs. Denote this set K, where Ki
denotes the ith element of the set. We also now give σ′ as an input to A rather
than just giving it oracle access. So we have

Pr
σ←Σ,x←S(σ),j←Jx,
σ′←D(j)

x ,c←P′(j)x ,A

[Q(x) = c : Q← A(σ′,Ki)] =
1

poly(λ)
∀i ∈ [|K|].

Then by Lemma 6, noting that |K| = ω(poly(λ)),

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

c←P′(j)x ,A,i1,i2←[|K|]

[
Q1(x) = c = Q2(x) :

Q1 ← A(σ′,Ki1)
Q2 ← A(σ′,Ki2)

]
=

1

poly(λ)
.

Thus we can get rid of c, and are guaranteed that

Pr
σ←Σ,x←S(σ),j←J ,x
σ′←D(j)

x ,A,i1,i2←[|K|]

[
Q1(x)−Q2(x) = 0 :

Q1 ← A(σ′,Ki1)
Q2 ← A(σ′,Ki2)

]
=

1

poly(λ)
.

Now since K is a 1/poly(λ) fraction of the entire domain of {ki}, we can
instead pick these sets from the entire domain, and with 1/poly(λ) probability
they will both lie in K. This gives

26

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

A,{k(1)i },{k
(2)
i }←Z

n−1
p

[
Q1(x)−Q2(x) = 0 :

Q1 ← A(σ′, {k(1)i })
Q2 ← A(σ′, {k(2)i })

]
=

1

poly(λ)
.

Now we look at the probability that Q1 and Q2 are distinct polynomials.
For any fixed Q, there are at most a 1/p fraction of sets {ki} such that A({ki})
could possibly output Q. This follows since given some {ki}, the coefficients on
x2, ..., xn in Q determine the `2, ..., `n in A’s linear combination. Then there
remains a 1/p chance that the {`i} and {ki} dot product to the correct linear

coefficient in Q. So for uniformly random choice of the {k(1)i } and {k(2)i } sets,
there is a negl(λ) chance that the resulting Q1 and Q2 output by A could possibly
be equal.

Let E1 be the event that Q1(x) − Q2(x) = 0 and E2 be the event that
Q1 6= Q2. We want to say that Pr[E1 ∧ E2] = 1/poly(λ). This follows from a
simple union bound: Pr[E1∧E2] = 1−Pr[¬E1∨¬E2] ≥ 1−Pr[¬E1]−Pr[¬E2] =
1− (1− 1/poly(λ))− negl(λ) = 1/poly(λ).

So we redefine A to generate two random sets {k(1)i } and {k(2)i } for itself,
determine the polynomials Q1 and Q2, solve for the roots of Q1 − Q2, and
output a uniformly random root. Note that the degree of Q1 − Q2 will be at
most n = poly(λ). Thus the following holds:

Pr
σ←Σ,x←S(σ),σ′←Yx,A

[x← A(σ′)] =
1

poly(λ)
.

Now we can switch Yx to Σx, and claim that

Pr
σ←Σ,x←S(σ),σ′←Σx,A

[x← A(σ′)] =
1

poly(λ)
.

If instead A’s success was negligible after this switch, then there exists a fixed
x for which the difference in success is 1/poly(λ). But Yx and Σx are γ-close with
γ = 1/2λ = negl(λ) so this is impossible. Then, we can write

Pr
σ′←Σ′,A

[x← A(σ′)] =
1

poly(λ)
,

where Σ′ is defined as in Lemma 5. This contradicts Lemma 5.
ut

Assumption 3 (f-DDH-II) Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 <
p(λ) < 2λ. Let {Dλ}λ be a family of well-spread distributions where the domain
of Dλ is Zp(λ). Then for any PPT A,

|Pr[A(gx, gr, gxr) = 1]− Pr[A(gx, gr, gs) = 1]| = negl(λ),

where x← Dλ, and r, s← Zp(λ).

27

Theorem 8. Assumption 3 holds in the Generic Group Model.

We give the proof in the full version [3]. Note that this trivially implies generic
security of r-DDH-II.

6 Acknowledgements

We thank Justin Holmgren for collaboration in the early stages of this work and
for contributing a number of extremely valuable insights. We also thank Alon
Rosen for helpful feedback regarding exposition and presentation.

This material is based upon work supported by the ARO and DARPA under
Contract No. W911NF-15-C-0227. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the ARO and DARPA.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (Aug 2001)

2. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J.C., Scedrov, A., Schmidt, B.:
Automated analysis of cryptographic assumptions in generic group models. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 95–
112. Springer, Heidelberg (Aug 2014)

3. Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and random gen-
erators in group-based assumptions. Cryptology ePrint Archive, Report 2019/202
(2019), https://eprint.iacr.org/2019/202

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 93. pp. 62–73. ACM Press (Nov
1993)

5. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: The power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 321–340. Springer, Heidelberg (Dec 2013)

6. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (Aug 2010)

7. Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation.
Journal of Cryptology 27(2), 317–357 (Apr 2014)

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(Aug 2001)

9. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temporary Mathematics 324, 71–90 (2002)

10. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (Aug
2014)

28

https://eprint.iacr.org/2019/202

11. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryp-
tography: an efficiency and security analysis. Journal of Cryptographic Engineering
6(4), 259–286 (Nov 2016), https://doi.org/10.1007/s13389-015-0097-y

12. Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract).
In: Stinson, D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 302–318. Springer, Hei-
delberg (Aug 1994)

13. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (Aug 1997)

14. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(Jul 2008)

15. Canetti, R., Varia, M.: Non-malleable obfuscation. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 73–90. Springer, Heidelberg (Mar 2009)

16. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 693–721. Springer, Heidelberg (Aug
2018)

17. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-
uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS,
vol. 10820, pp. 227–258. Springer, Heidelberg (Apr / May 2018)

18. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocess-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol.
10821, pp. 415–447. Springer, Heidelberg (Apr / May 2018)

19. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol.
1462, pp. 13–25. Springer, Heidelberg (Aug 1998)

20. Damg̊ard, I., Hazay, C., Zottarel, A.: Short paper on the generic hardness of ddh-ii
(2014)

21. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (Aug 1984)

23. Fenteany, P., Fuller, B.: Non-malleable digital lockers for efficiently sampleable dis-
tributions. Cryptology ePrint Archive, Report 2018/957 (2018), https://eprint.
iacr.org/2018/957

24. Fujisaki, E.: Improving practical UC-secure commitments based on the DDH as-
sumption. In: Zikas, V., De Prisco, R. (eds.) SCN 16. LNCS, vol. 9841, pp. 257–272.
Springer, Heidelberg (Aug / Sep 2016)

25. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge University
Press (2012)

26. Gat, E., Goldwasser, S.: Probabilistic search algorithms with unique answers and
their cryptographic applications. Electronic Colloquium on Computational Com-
plexity (ECCC) 18, 136 (2011)

27. Goldwasser, S., Kalai, Y.T.: Cryptographic assumptions: A position paper. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part I. LNCS, vol. 9562, pp. 505–
522. Springer, Heidelberg (Jan 2016)

28. Kalai, Y.T., Li, X., Rao, A., Zuckerman, D.: Network extractor protocols. In: 49th
FOCS. pp. 654–663. IEEE Computer Society Press (Oct 2008)

29

https://doi.org/10.1007/s13389-015-0097-y
https://eprint.iacr.org/2018/957
https://eprint.iacr.org/2018/957

29. Katz, J., Lindell, Y.: odern Cryptography, Second Edition (2014)
30. Kim, J., Kim, S., Seo, J.H.: Multilinear map via scale-invariant FHE: Enhancing

security and efficiency. Cryptology ePrint Archive, Report 2015/992 (2015), https:
//ia.cr/2015/992

31. Komargodski, I., Yogev, E.: Another step towards realizing random oracles:
Non-malleable point obfuscation. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part I. LNCS, vol. 10820, pp. 259–279. Springer, Heidelberg
(Apr / May 2018)

32. Komargodski, I., Yogev, E.: Another step towards realizing random oracles: Non-
malleable point obfuscation. Cryptology ePrint Archive, Report 2018/149 (2018),
https://ia.cr/2018/149

33. Lee, H.T., Cheon, J.H., Hong, J.: Accelerating ID-based encryption based on
trapdoor DL using pre-computation. Cryptology ePrint Archive, Report 2011/187
(2011), https://ia.cr/2011/187

34. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (Dec 2005)

35. Mihalcik, J.: An analysis of algorithms for solving discrete logarithms in fixed
groups (2010), master’s thesis, Naval Postgraduate School

36. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165–172 (1994)

37. Sadeghi, A.R., Steiner, M.: Assumptions related to discrete logarithms: Why sub-
tleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 244–261. Springer, Heidelberg (May 2001)

38. Saxena, A., Soh, B.: A new cryptosystem based on hidden order groups. Cryptology
ePrint Archive, Report 2006/178 (2006), https://ia.cr/2006/178

39. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997)

40. Shoup, V.: On formal models for secure key exchange. Tech. Rep. RZ 3120, IBM
(1999)

41. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (Aug 2007)

42. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th
ACM STOC. pp. 523–532. ACM Press (May 2005)

43. Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Self-bilinear map on un-
known order groups from indistinguishability obfuscation and its applications. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
90–107. Springer, Heidelberg (Aug 2014)

44. Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Generic hardness of in-
version on ring and its relation to self-bilinear map. Cryptology ePrint Archive,
Report 2018/463 (2018), https://ia.cr/2018/463

45. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 817–836.
Springer, Heidelberg (Apr 2015)

30

https://ia.cr/2015/992
https://ia.cr/2015/992
https://ia.cr/2018/149
https://ia.cr/2011/187
https://ia.cr/2006/178
https://ia.cr/2018/463

	The Distinction Between Fixed and Random Generators in Group-Based Assumptions

