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Abstract. We construct non-interactive non-malleable commitments with-
out setup in the plain model, under well-studied assumptions.

First, we construct non-interactive non-malleable commitments w.r.t.
commitment for ε log logn tags for a small constant ε > 0, under the
following assumptions:

1. Sub-exponential hardness of factoring or discrete log.

2. Quantum sub-exponential hardness of learning with errors (LWE).

Second, as our key technical contribution, we introduce a new tag am-
plification technique. We show how to convert any non-interactive non-
malleable commitment w.r.t. commitment for ε log log n tags (for any
constant ε > 0) into a non-interactive non-malleable commitment w.r.t.
replacement for 2n tags. This part only assumes the existence of sub-
exponentially secure non-interactive witness indistinguishable (NIWI)
proofs, which can be based on sub-exponential security of the decisional
linear assumption.

Interestingly, for the tag amplification technique, we crucially rely on
the leakage lemma due to Gentry and Wichs (STOC 2011). For the con-
struction of non-malleable commitments for ε log log n tags, we rely on
quantum supremacy. This use of quantum supremacy in classical cryp-
tography is novel, and we believe it will have future applications. We
provide one such application to two-message witness indistinguishable
(WI) arguments from (quantum) polynomial hardness assumptions.

1 Introduction

Non-malleability, first introduced by Dolev, Dwork and Naor [11] aims to counter
the ubiquitous problem of man-in-the-middle (MIM) attacks on cryptographic
protocols. A MIM adversary participates in two or more instantiations of a
protocol, trying to use information obtained in one execution to breach security
in the other protocol execution. A non-malleable protocol should ensure that
such an adversary gains no advantage. A long-standing problem in this area has
been to build non-malleable protocols, without any additional setup or rounds of
interaction. In this paper, we develop techniques to address this question based
on well-studied assumptions. We focus on a core non-malleable primitive – a
commitment scheme.
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Non-interactive Commitments. A non-interactive commitment scheme consists
of a commitment algorithm, that on input a message m and randomness r,
outputs a commitment to m, which is denoted by com(m; r)1. A commitment
scheme is required to be both binding and hiding. The (statistical) binding re-
quirement asserts that a commitment cannot be opened to two different mes-
sages m 6= m′, namely, there do not exist m 6= m′ and randomness r, r′ such
that com(m; r) = com(m′; r′). The (computational) hiding property asserts that
for any two messages, m and m′ (of the same length), the distributions com(m)
and com(m′) are computationally indistinguishable. We note that one could also
consider computational binding and statistical hiding, however such commitment
schemes are known to require at least two rounds of interaction when dealing
with non-uniform adversaries. The focus of this work is on the non-interactive
setting.

Non-interactive non-malleable commitments. Loosely speaking, a commitment
scheme is said to be non-malleable if no MIM adversary, given a commitment
com(m), can efficiently generate a commitment com(m′), such that the message
m′ is related to the original message m.

Non-malleable commitments are among the core building blocks of various
cryptographic protocols such as coin-flipping, secure auctions, electronic voting,
general multi-party computation (MPC) protocols, and non-malleable proof sys-
tems. Therefore, they have a direct impact on the round complexity of such pro-
tocols. For example, many constructions of concurrent MPC against Byzantine
adversaries are bottlenecked by the round complexity of non-malleable commit-
ments.

As such, there has been a long line of work on obtaining constructions
of non-malleable commitments in the plain model in as few rounds as possi-
ble (e.g [11,2,32,34,30,31,27,36,35,26,15,17,19,18,9,10,23,29,24]). So far, the only
known constructions of non-interactive non-malleable commitments (without
setup) are the ones by Pandey, Pass and Vaikuntanathan [31], based on a strong
non-falsifiable assumption, and Bitansky and Lin [5], based on a relatively new
assumption about sub-exponential incompressible functions. We elaborate on
these related works in Section 1.3.

Indeed, constructing non-interactive non-malleable commitment schemes (with-
out setup) from standard assumptions, has been a long standing open problem
and is the focus of this work. Three primary flavours of non-malleability have
been considered in the literature:

– Non-malleability w.r.t. commitment. Intuitively, non-malleability w.r.t.
commitment, which is the strongest of the three definitions, requires that for
any two messages m0,m1 ∈ {0, 1}p, the distributions (Com(m0), m̃0) and
(Com(m1), m̃1) are computationally indistinguishable. Here m̃b is the mes-
sage committed to by the MIM given Com(mb), and is set to ⊥ if the adver-
sary given Com(mb) outputs c̃ for which there do not exist any (m̃, r̃) such
that c̃ = com(m̃; r̃). Another definition that is considered in the literature is

1 We will sometimes omit explicitly writing the randomness r.
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that of CCA-security for commitment schemes. It is known [7] that in the
case of non-interactive commitments, non-malleability w.r.t. commitment is
equivalent to (one-to-one) CCA-security.

– Non-malleability w.r.t. replacement. A weaker, yet natural, notion of
malleability is non-malleability w.r.t. replacement [15]. This requires that
for any two messages m0,m1 ∈ {0, 1}p, the distributions (Com(m0), m̃0)
and (Com(m1), m̃1) are indistinguishable whenever m̃0, m̃1 6= ⊥.2 This is
exactly like non-malleability w.r.t. commitment, except that the adversary
is allowed to perform “selective abort” attacks, where the event that the
adversary committed to an invalid message, is allowed to be correlated with
the honest message. This guarantees that a man-in-the-middle adversary
cannot commit to valid messages that are related to the message committed
in an honest protocol. We observe that the proofs in [7] demonstrate that
non-interactive non-malleability w.r.t. replacement is equivalent to a weaker
form of CCA-security. We further elaborate upon this in Section 1.2.

– Non-malleability w.r.t. opening. This is an even weaker3, yet natural
notion, which requires that for any two messages m0,m1, the joint distribu-
tion of (Com(m0), m̃0) and (Com(m1), m̃1) are indistinguishable whenever
m̃0, m̃1 6= ⊥, where m̃b is the message opened by the MIM given Com(mb).
The crucial difference from both the previous definitions is that m̃0, m̃1 rep-
resent the messages opened by the adversary, as opposed to the messages
committed. Informally, this allows an adversary to commit to a message
that is related to an honest message, as long the adversary is unable to
convincingly open these commitments.

This work focuses on the first two definitions. We also note that all non-
malleable commitment schemes assume that parties have “tags” (or id’s), and
require non-malleability to hold whenever the adversary is trying to commit
w.r.t. t̃ag that is different from an honest tag. We differentiate between the
following two settings:

– One-to-one setting, where the man-in-the-middle (MIM) gets a single com-
mitted message and generates a single commitment.

– Many-to-many (concurrent) setting, where the MIM receives many commit-
ments and is allowed to generate many commitments. Here, the guarantee
is that for any two sets of committed messages sent to the MIM, the joint
distribution of these committed messages and the messages that the MIM
commits to, are indistinguishable.

In this work, we focus on the one-to-one definition. But as a stepping stone,
we define and construct many-to-many same-tag non-malleable commitments.
This is similar to the many-to-many notion, except that it restricts the MIM to
use the same tag in all commitments that he outputs.

2 As earlier, m̃b denotes the message committed to by the MIM given Com(mb).
3 Non-malleability w.r.t. replacement implies non-malleability w.r.t. opening, as de-

fined by Goyal et al. [16].
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1.1 Our Results

In this paper, we first construct non-malleable commitments w.r.t. commitment
for ε log log n tags (for some small constant ε > 0) in the many-to-many same-
tag setting, based on well-studied hardness assumptions, which we elaborate on
below. Then we present a general “tag amplification” compiler that converts any
non-malleable commitment w.r.t. replacement with ε log log n tags in the many-
to-many same tag setting, into a non-malleable commitment w.r.t. replacement
with 2n tags in the one-to-one setting, assuming sub-exponential NIWI (which
can in turn be based on sub-exponential decisional linear (DLIN)).

For the first result, our contribution is primarily conceptual, and relies on
using quantum supremacy. Our second result contains the bulk of the technical
difficulty. In this part, we make a novel use of the leakage lemma due to Gentry
and Wichs [13]. The use of the leakage lemma in this context is surprising, since
a-priori the problem of non-malleability seems quite unrelated to leakage. In
what follows, we state our results in more detail.

Non-interactive non-malleable commitments for O(log logn) tags. We
construct non-interactive non-malleable commitments w.r.t. commitment for
ε log log n tags (for a small constant ε > 0) assuming:

– Sub-exponential hardness of factoring or discrete log.
– Sub-exponential hardness of learning with errors (LWE) or learning parity

with noise (LPN) against quantum circuits.

More generally, we construct non-malleable commitments w.r.t. commitment
for ε log log n tags from any sub-exponentially secure bit commitment for 2 tags
(denoted by com0 and com1), for which the hiding property of com0 holds even
given an oracle that breaks com1, and similarly the hiding property of com1 holds
even given an oracle that breaks com0. Such commitments are known as adaptive
or CCA-secure commitments [31,28], and imply many-to-many non-interactive
non-malleable commitments w.r.t. commitment.

Informal Theorem 1 Assuming the existence of sub-exponentially CCA-secure
many-to-many non-interactive bit commitments for 2 tags, there exist many-to-
many same-tag non-interactive non-malleable string commitments w.r.t. com-
mitment for ε log log n tags (for a small constant ε > 0).

To achieve this, we start with the leveraging technique of Pass and Wee [35]
that allows us to construct, from any sub-exponentially secure non-interactive
commitment, a series of ε log log n commitments, each harder than the previous
one. But this only provides hardness in one direction, and in particular does not
even yield commitments for 2 tags that are non-malleable w.r.t. each other.

Our main conceptual novelty in this part, which we describe next, is the idea
of constructing a CCA secure commitment scheme for 2 tags using quantum
supremacy. Later, we describe how we can carefully combine this insight with
the technique of [35] to obtain non-malleable commitments for ε log log n tags.
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Using Quantum Supremacy. Loosely speaking, in order to construct a CCA-
secure commitment for 2 tags, we need two axes of hardness: One axis in which
com0 is harder than com1, and the other in which com1 is harder than com0.

We build such an axis by relying on quantum supremacy, which is the ability
of quantum computers to solve problems (such as factoring) that are believed
to be hard for classical computers. Namely, we construct two commitment al-
gorithms com0 and com1 such that for quantum algorithms, breaking com1 is
harder than breaking com0, and yet for classical algorithms, breaking com0 is
harder than breaking com1.

This is achieved by instantiating com1 as a post-quantum secure commitment
(such as one based on LWE or LPN [14]); and instantiating com0 as a post-
quantum insecure commitment (such as one based on factoring or discrete log),
albeit with a much larger security parameter. Now, given a BQP oracle, com1

is secure but com0 is not; at the same time, classical machines can break com1

faster than they can break com0. We prove the following claim:

Informal Claim 1 Assuming sub-exponential hardness of factoring/discrete log
and sub-exponential quantum hardness of LWE /LPN, there exist sub-exponentially
CCA secure many-to-many non-interactive commitments for 2 tags.

Combining this with Informal Theorem 1, we have:

Informal Theorem 2 Assuming sub-exponential hardness of factoring/discrete
log, and sub-exponential quantum hardness of LWE/LPN, many-to-many same-
tag non-interactive non-malleable commitments w.r.t. commitment exist for ε log log n
tags, for a small constant ε > 0.

Prior to this work, obtaining non-interactive non-malleable commitments
w.r.t. commitment, even for just two tags, required the non-standard assumption
that there exist sub-exponential incompressible one-way functions, and either
sub-exponentially secure time-lock puzzles or sub-exponentially secure one-way
functions admitting hardness amplification [5]. The work of [29] constructed
non-interactive non-malleable commitments w.r.t. extraction (which is similar
to w.r.t. replacement) for O(log log n) tags assuming sub-exponentially secure
time-lock puzzles or sub-exponentially secure one-way functions that admit hard-
ness amplification [5]. We show that non-interactive non-malleable commitments
w.r.t. commitment for ε log log n tags (in fact, even parallel CCA commitments
for 2 tags) can be constructed based on much more well-studied assumptions
than previously known.

We also remark that one can substitute the assumption on sub-exponential
quantum hardness of LWE with sub-exponentially secure time-lock puzzles [29],
or sub-exponentially secure one-way functions [5] admitting hardness amplifica-
tion, to obtain (many-to-many) non-malleable commitments w.r.t. replacement
for ε log log n tags.

We believe that this idea of using quantum supremacy may have other ap-
plications in classical cryptography. In particular, the technique of complexity
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leveraging, which breaks hardness of one primitive while retaining hardness of an-
other, is extensively used in cryptography. Typically, when this technique is used,
the resulting scheme relies on super-polynomial (and often sub-exponential)
hardness. We believe that in several such applications, the complexity lever-
aging technique can be replaced with quantum supremacy, thus converting such
super-polynomial hardness assumptions to quantum polynomial hardness. For
example, using our ideas, one can appropriately instantiate the protocols in [21]
to obtain two-message witness indistinguishable protocols based on quantum-
polynomial hardness of LWE, and polynomially hard one-way functions (such as
those based on factoring or discrete log) that are invertible in BQP.

Non-interactive Tag Amplification from NIWIs Our more involved tech-
nical contribution is a non-interactive tag amplification technique that relies only
on sub-exponentially secure non-interactive witness indistinguishable (NIWI)
proofs for NP.

Informal Theorem 3 (Tag Amplification from NIWIs) Assuming many-
to-many same-tag non-malleable commitments w.r.t. replacement for ε log log n
tags (for an arbitrarily small constant ε > 0) and sub-exponentially secure NI-
WIs for NP, there exist non-interactive non-malleable commitments w.r.t. re-
placement for 2n tags.

We note that sub-exponentially secure NIWIs can be constructed assuming the
sub-exponential hardness of the decisional linear problem [20], or from deran-
domization assumptions [3], or assuming indistinguishability obfuscation [6]. In-
terestingly, to prove this theorem, we crucially rely on the Gentry-Wichs leakage
lemma [13]. We provide a high-level overview of this amplification technique, as
well as its proof, in Section 2.2. To summarize, assuming sub-exponential hard-
ness of factoring or discrete log, as well as sub-exponential quantum hardness of
LWE or LPN, there exist:

– Non-interactive non-malleable commitments w.r.t. commitment for ε log log n
tags.

– Non-interactive non-malleable commitments w.r.t. replacement for 2n tags,
additionally assuming sub-exponentially secure NIWIs for NP.

1.2 Applications and Directions for Future Work

As mentioned above, our final result (for 2n tags) satisfies non-malleability w.r.t.
replacement. In what follows, we give applications of this notion. Prior to our
work, these were only known under strong non-standard assumptions [5].

Applications to Other Notions of Commitment

– Non-malleability w.r.t. Opening. As previously mentioned, non-malleable
commitments wr.t. replacement imply non-malleable commitments w.r.t.
opening, as defined in [8,16]. Therefore, we obtain the first non-interactive
non-malleable commitments w.r.t. opening from well-studied assumptions.
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Informal Theorem 4 Assuming sub-exponential hardness of discrete log
or factoring, sub-exponential quantum hardness of LWE or LPN, and sub-
exponentially secure NIWIs, there exist non-interactive non-malleable com-
mitments w.r.t. opening (for 2n tags).

– CCA Secure Commitments. It was observed by [7] that the definitions
of (one-to-one) non-malleability w.r.t. commitment and (one-to-one) CCA-
security are equivalent in the non-interactive setting. We observe that in a
similar way, non-malleability w.r.t. replacement implies a weaker notion of
one-to-one CCA-security, where if the adversary queries the CCA oracle with
a commitment to an invalid value, the oracle self-destructs.

– Restricted Adversaries. When restricted to adversaries that only output
valid commitments, the notions of non-malleability w.r.t. replacement and
non-malleability w.r.t. commitment are equivalent. Therefore, non-malleable
commitments w.r.t. replacement can be combined with an appropriate ZK
proof of validity of the commitment (as is implicit in [19,9]) to obtain non-
malleable commitments w.r.t. commitment. For instance, (sub-exponential)
NIWI and (sub-exponential) keyless collision resistant hash functions against
uniform adversaries are known to imply one-message zero-knowledge with
soundness against uniform (sub-exponential time) adversaries [4,29], and ad-
mitting a non-uniform simulator. Combining these with our non-malleable
commitments w.r.t. replacement, we have the following theorem.

Informal Theorem 5 Assuming sub-exponential hardness of discrete log
or factoring against non-uniform adversaries, sub-exponential quantum hard-
ness of LWE or LPN against non-uniform adversaries, sub-exponentially se-
cure keyless collision-resistant hash functions against uniform adversaries,
and sub-exponentially secure NIWIs against uniform adversaries, there ex-
ist non-interactive non-malleable commitments w.r.t. commitment against
uniform adversaries.

In a similar way, our commitment with can be appended with one-message
ZK arguments of validity of the commitments, against any restricted class of
adversaries, to yield non-malleable commitments w.r.t. commitment, against
the same restricted classes of adversaries.

Other Applications

– Upgrading NIZKs. Non-interactive non-malleable commitments can also
be used to upgrade NIZKs to satisfy a form of simulation soundness, without
modifying the CRS. Informally, to give a simulation sound NIZK for state-
ment x with witness w, the prover can generate a non-malleable commitment
to w with tag x, and provide a (standard) NIZK proof that the commitment
is a valid commitment to a witness for x. Note that non-malleability with
respect to replacement suffices for this application because the NIZK can be
used to provide a proof of validity of the commitment.
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– Block-wise Non-Malleable Codes. Non-interactive non-malleable com-
mitments w.r.t. opening are known to be equivalent to block-wise non-
malleable codes [8] with two blocks. Block-wise non-malleable codes are a
strengthening of the notion of split-state non-malleable codes. Using our re-
sult, we obtain the first block-wise non-malleable codes that only require two
blocks (or states), based on well-studied assumptions.

Informal Theorem 6 Assuming sub-exponential hardness of discrete log
or factoring, sub-exponential quantum hardness of LWE or LPN, and sub-
exponentially secure NIWIs, there exist 2-block blockwise non-malleable codes.

Directions for Future Work

– MPC. Non-malleable commitments w.r.t. replacement are known to be suf-
ficient for MPC [15]. We believe that our constructions of non-malleable com-
mitments w.r.t. replacement will help obtain constructions of two-message
concurrent secure computation against malicious adversaries (with super-
polynomial simulation) from well-studied assumptions. A detailed explo-
ration is beyond the scope of this work.

– Non-Malleable Cryptographic Primitives. The recent works of [25,12]
give constructions of non-malleable point obfuscation and non-malleable dig-
ital lockers from strong variants of the DDH assumption. We believe that our
commitments will find applications to achieving non-malleability in context
of witness encryption, obfuscation and many other inherently non-interactive
primitives, based on well-studied assumptions.

1.3 Prior work

The work of [29] constructed non-interactive non-malleable commitments w.r.t.
commitment against a restricted class of uniform adversaries, assuming sub-
exponentially secure time-lock puzzles, sub-exponential NIWI and sub-exponential
collision-resistant hash functions against uniform adversaries. A very recent inde-
pendent work [1] constructs an object called non-interactive quasi-non-malleable
commitment (w.r.t. commitment), based on well-studied assumptions. This guar-
antees security against adversaries running in a-priori bounded polynomial time
O(nc), but allows honest parties to run in longer (polynomial) time.

In this paper, our focus is on the non-interactive setting in the plain model
against non-uniform adversaries with arbitrary polynomial running time. In this
setting, constructions of non-malleable commitments have remained elusive, ex-
cept based on non-standard assumptions. In particular, prior to our work, there
were only two known constructions, described below.

Pandey et al. [31] constructed non-interactive concurrent non-malleable com-
mitments w.r.t. commitment, starting from a non-falsifiable assumption, that
already incorporates a strong form of non-malleability called adaptive injective
one-way functions. Very recently, Bitansky and Lin [5] constructed concurrent
non-interactive non-malleable commitments w.r.t. commitment, based on the
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(relatively new, non-standard) assumption that there exist sub-exponential in-
compressible functions, sub-exponentially secure NIWI proofs, and either sub-
exponential injective one-way functions that admit hardness amplification or
sub-exponential time-lock puzzles.

Non-Interactive Tag Amplification. Tag amplification has been extensively
studied in the non-malleability literature (e.g. [11,27,36,29,5]). Of these, only
the recent work of [5] considers tag amplification in the non-interactive setting
against general adversaries. They make a relatively non-standard assumption
about the existence of sub-exponential incompressible one-way functions, in ad-
dition to assuming the existence of a sub-exponentially secure NIWI proofs. Us-
ing this incompressibility assumption, they construct a variant of one-message
ZK proofs with weak soundness guarantees, and they use this variant of ZK to
emulate techniques used in prior work for tag amplification.

On the other hand, our tag amplification technique only assumes the exis-
tence of a sub-exponentially secure NIWI proof, and is therefore substantially
different from prior techniques for tag amplification (all of which crucially re-
quired ZK). However, while our tag amplification technique yields commitments
that are non-malleable w.r.t. replacement, the one in [5] yields commitments
that are (concurrent) non-malleable w.r.t. commitment.

2 Overview of Our Techniques

We now provide an informal overview of our techniques.

2.1 Non-Malleable Commitments w.r.t. Commitment for ε log logn
Tags

As discussed earlier, we realize sub-exponential adaptive commitments for two
tags based on sub-exponential quantum hardness of LWE/LPN and sub-exponential
hardness of factoring/discrete log. We now describe how we use these to obtain
non-malleable commitments for a small number of tags (ε log log n tags where
ε > 0 is a small constant), which satisfy many-to-many same-tag non-malleability
w.r.t. commitment. We give a formal construction of non-malleable commitments
for ε log log n tags, and its proof in Section 4.

Assume the existence of adaptive commitments com0, com1, and oraclesO0,O1

such that com0 is sub-exponentially hard to invert given oracle O1, but com1 is
invertible in the presence of O1. Similarly, com1 is sub-exponentially hard to
invert given oracle O0, but com0 is invertible in the presence of O0.

We show that from any such adaptive commitments, one can use complexity
leveraging to derive a sequence of (bit) commitments {comd,i}d∈{0,1},i∈[ζ], where
ζ = ε log log n for a small constant 0 < ε < 1, and where

comd,i : {0, 1} × {0, 1}`d,i(n) → {0, 1}∗

such that for each d ∈ {0, 1},

`d,1 = ω(log n) < `d,2 < . . . < `d,ζ−1 < `d,ζ , n
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and for every i, j, k ∈ [ζ] for which k > i, inverting comd,k relative to the oracle
O1−d requires more time than jointly inverting comd,i and com1−d,j , relative to
the oracle O1−d. A variant of this technique was used by Pass and Wee [35].

Construction. In order to commit to a bit b with tag ∈ [ζ], the committer first
XOR secret shares the bit b to obtain two shares b1 and b2. The commitment to

b simply consists of
(
com0,tag(b1), com1,ζ−tag(b2)

)
.

Analysis. Suppose there exists a MIM (adversary) that on input a commitment
to a bit b w.r.t. tag tag, commits to a related bit b′ w.r.t. t̃ag 6= tag. We have
the following possibilities:

– If tag > t̃ag, then breaking com0,tag relative to oracle O1 is harder than
jointly breaking com0,t̃ag and com1,ζ−t̃ag relative to O1.

– If tag < t̃ag, then breaking com1,ζ−tag relative to O0 is harder than jointly
breaking com0,t̃ag and com1,ζ−t̃ag relative to O0.

In the first case, we extract the bit b′ committed by the MIM by jointly breaking
com0,t̃ag and com1,ζ−t̃ag relative to O1, and if b′ is related to b, we get a contra-
diction to the hardness of breaking com0,tag relative to O1. We can use a similar
argument in the second case.

We also observe that we can allow the MIM to generate an arbitrary number
of commitments on the right with the same t̃ag, and rely on the same assump-
tions to argue that the joint distribution of bits committed by the MIM (in many
right commitments) remains independent of the honest bit. This gives us many-
to-many same tag non-malleable commitments w.r.t. commitment for ε log logn
tags. For simplicity, we only focused on bit commitments in this overview. How-
ever it is easy to extend this construction to obtain string commitments for
ε log log n tags, based on sub-exponential adaptive bit commitments for two tags.

2.2 Non-interactive Tag Amplification

Our starting point is the following basic idea. Start with a non-malleable com-
mitment scheme com for tags in [α] where α ≤ poly(n), and obtain a scheme
Com for tags in

[
2α/2

]
, as follows: To commit to a message m w.r.t. a tag T ,

first compute {t1, t2, . . . tα/2}, such that each ti = (i||Ti) where Ti denotes the

ith bit of T 4. Let
ComT (m) , {comti(m)}i∈[α/2].

Note that for any two tags T = {t1, t2, . . . , tα/2} and T̃ = {t̃1, t̃2, . . . , t̃α/2}
such that T̃ 6= T , there exists at least one index i such that t̃i 6∈ {t1, t2, . . . tα/2}.
Therefore, if the underlying com is α/2-to-1 non-malleable, then given ComT (m) =
{comti(m)}i∈[α/2], it should be hard to generate comt̃i

(m′) for a related mes-
sage m′. Therefore, an adversary cannot generate a valid commitment comT̃ (m̃)

4 Our actual encoding of T to {t1, t2, . . . tα/2} is slightly more sophisticated, but
achieves the same effect.
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to a related message m̃, i.e., that the resulting scheme is non-malleable w.r.t.
replacement.

However, the security of this scheme completely breaks down even if the ad-
versary receives two commitments. Specifically, an adversary that receives two
commitments ComT (m) and ComT ′(m) with different tags T = {t1, t2, . . . , tα/2}
and T ′ = {t′1, t′2, . . . , t′α/2}, can easily output ComT̃ (m), where

T̃ = {t1, . . . tα/4, t′α/4+1, . . . t
′
α2
}. In other words, the resulting scheme does not

satisfy many-to-1 non-malleability (or even 2-to-1 non-malleability), and is only
non-malleable in the 1-to-1 setting.

Thus, using this idea we can go from η log log n tags to 2
η
2 log logn = log

η
2 n

tags, but cannot continue further, since this compiler uses an underlying com-
mitment which is many-to-one non-malleable (or more specifically, α/2-to-1 non-
malleable).

The blueprint in Khurana and Sahai [24] describes how this problem can
be solved using a NIZK argument, which requires the existence of a common
random string (which we want to avoid). Namely, they show that if we append
to the commitment C = {comti(m)}i∈[α/2] a NIZK proof that all these α/2
commitments comti are to the same message m, then one can indeed prove that
this resulting scheme is many-to-one non-malleable5. Instead, in this work, we
rely on non-interactive proofs satisfying a weaker hiding property, i.e., witness
indistinguishability6. This introduces several problems that do not come up when
using NIZKs. In particular, techniques in [24] rely on the reduction’s ability to
generate “simulated” proofs, a notion that is not applicable when using NIWIs.
We discuss these barriers in further detail below.

Tag Amplification using NIWIs: First Stab. While NIWI proofs have been
extremely useful in a wide variety of cryptographic settings, they often become
meaningless when trying to prove NP statements that have a single witness, such
as the one described above. Typically, NIWI proofs are only useful for statements
that have at least two independent witnesses.

One can create a statement with two independent witnesses by repeating the
blueprint twice in parallel. Namely, commit to a message m by computing C1 =

{comti(m; ri,1)}i∈[α/2], C2 = {comti(m; ri,2)}i∈[α/2] where {ri,b}i∈[α/2],b∈{0,1}
$←

{0, 1}∗, and add a NIWI proving that all the commitments, in either C1 or C2,
are to the same message.

Indeed, one can easily prove that if the underlying scheme for α tags is (α/2)-
to-1 non-malleable, then the resulting scheme is one-to-one non-malleable w.r.t.
replacement (which was the case even before we started using NIWIs) 7. Unfortu-

5 To be precise, they need to rely on the fact that the NIZK is “more secure” than
the underlying commitment scheme.

6 As with NIZKs used in [24], we also require our NIWI to be more secure than
the underlying commitment, which results in a sub-exponential assumption on the
NIWI.

7 On the other hand, if we used a NIZK, the resulting scheme would be many-to-1
non-malleable w.r.t. commitment.
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nately, it is not clear if the resulting scheme satisfies even 2-to-1 non-malleability
(w.r.t. replacement). Roughly speaking, the problem is as follows. For simplic-
ity, consider a MIM that obtains commitments which are both commitments to
m1 or both to m2, and tries to copy m1 (or m2). A natural approach to rule
out such a MIM would be to rely on an intermediate hybrid, in which the MIM
obtains a commitment to (m1,m2).8 Unfortunately, we have no way to use a
hybrid argument to rule out a MIM that does the following:

– In the first hybrid, on input commitments to (m1,m1), outputs a (valid)
commitment to m1.

– In the intermediate hybrid, on input commitments to (m1,m2), outputs an
invalid commitment where the first repetition in the MIM’s commitment
consists of all commitments to m1, and the second repetition consists of
all commitments to m2, and these commitments are accompanied with an
accepting NIWI proof.

– In the final hybrid, on input commitments to (m2,m2), outputs a (valid)
commitment to m2.

The problem is that neither of the two pairs of adjacent hybrids can be used
to get a contradiction to the one-to-one non-malleability, because neither are
violating the non-malleability criterium w.r.t. replacement9.

However, as we already noted above, many-to-one non-malleability is essen-
tial if we want to use the compiler again. In fact, it may seem like the NIWIs
were not useful at all, since we could get one-to-one non-malleability even for the
basic scheme described at the beginning of this overview, which did not require
any NIWI (or NIZK). While at first, this approach seems to be inherently prob-
lematic, we will now describe how we can nevertheless rely on NIWIs to obtain
our desired compiler, as follows

Overview of Our Compiler. Our idea is to have each commitment consist
of (`+ 1) repetitions (as opposed to only 2), where ` is the number of commit-
ments that the adversary can receive (on the left).

Namely, our new (outer) commitment scheme will consist of a matrix of
(inner) commitments corresponding to the underlying small tag commitment
scheme. This matrix contains (` + 1) rows, corresponding to each of the repe-
titions, and (α/2) columns, corresponding to the small tags of the underlying
scheme. The honest committer generates all (α/2) · (`+1) inner commitments to
the same message (with independent randomness). Additionally, the committer
is required to provide a NIWI proof that ` out of the (` + 1) rows satisfy the
following property: The message committed using the inner commitment scheme
across all α/2 tags is identical for this row (but this message is not required to
be identical accross different rows).

8 This is the standard approach used in all previous work on this topic.
9 This problem can be avoided by relying on NIZKs which would prevent the MIM

from behaving as in the intermediate hybrid. However, we cannot rely on NIZKs
because they require a CRS.
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Now, let us perform the same hybrid argument as above, where in the jth

hybrid, we change the jth left outer commitment from a commitment to m1 to a
commitment to m2. Then, for the outer commitment output by the MIM, which
is an (`+ 1)× (α/2) matrix of inner commitments, the following must be true.

1. Recall that at least one small tag of the MIM differs from every small tag
used in the jth left outer commitment. Therefore, by the non-malleability of
the underlying commitment, the value committed by the MIM in all inner
commitments accross at least one column (corresponding to this differing
small tag) does not change.

2. Moreover, by the soundness of the NIWI provided by the MIM, at least ` of
the rows satisfy the following property: the values committed across all α/2
tags is identical for this row.

Combining (1) and (2) implies that the values committed by the MIM across
at least ` rows do not change. In other words, the MIM may change the values
committed in at most one row in every hybrid.

But since there are (` + 1) rows and only ` hybrids, we deduce that there
exists at least one row for which the messages remained unchanged at the end
of all ` hybrids10. Therefore, no adversary can commit to a valid message that
is related to the messages committed to in the left executions.

We show that this compiler works even if the underlying scheme is non-
malleable w.r.t. replacement (as opposed to being non-malleable w.r.t. commit-
ment). However, there is a loss in parameters when applying this compiler, i.e.,
the compiler converts any `-to-z non-malleable commitment w.r.t. replacement
into an `′-to-z′ non-malleable commitment w.r.t. replacement, where `′ and z′

are smaller than ` and z. We do not discuss exact parameter constraints here,
but refer the reader to Theorem 3 for details. We will give a more detailed
explanation in Section 2.2.

Technical Bottlenecks. The intuition above seems to imply that the adversary
cannot convert a commitment to m into a commitment to a related message m′.
Proving this formally requires overcoming many technical difficulties. Specifi-
cally, the definition of non-malleability w.r.t. replacement11, requires that there
exist an (inefficient) extractor VReal that extracts the message committed by
the adversary from a transcript of a “real” experiment with honest messages
(m1, . . .m`), and an (inefficient) extractor VIdeal that extracts the message com-
mitted by the adversary from a transcript of an “ideal” experiment with honest
messages (0, 0, . . . , 0), such that the joint distribution of the view of the MIM in
the real experiment and the values output by VReal, is indistinguishable from the
joint distribution of the view of the MIM in the ideal experiment and the values
output by VIdeal. Furthermore, whenever the MIM generates a “valid” commit-
ment c̃ to a message m̃ in either the real or ideal experiment, VReal and VIdeal are

10 To simplify our proof, we rely on 10` repetitions (instead of ` + 1) repetitions, to
ensure that the messages in most repetitions remain unchanged.

11 We refer the reader to Definition 3 for a one-to-one definition, and Definition 2 for
a many-to-many definition.
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required to output m̃. Whenever the message committed by the MIM is invalid,
we impose no restrictions on the output of VReal and VIdeal. To formally prove
security, we will need to define these extractors VReal and VIdeal, and ensure that
their output distributions remain indistinguishable.

It is tempting to define VReal and VIdeal to output M̃ corresponding to the
MIM’s commitment string c̃, if there exists r̃ such that c̃ = com(M̃, r̃), and other-
wise output ⊥. However, as observed by the intuition above, these distributions
will not necessarily be indistinguishable.12 Namely, the adversary may generate
valid commitments when given commitments to m and commit to ⊥ when given
commitments to 0.

Intuitively, to make these distributions indistinguishable, we will introduce
some “slack”, and sometimes output a valid message even though the adversary
did not commit to a “perfectly valid” message. The question is the following:
Suppose that the adversary outputs a commitment that is “close to” being a valid
commitment to a message m̃. Should the extractors VReal or VIdeal output m̃ or
output ⊥? This is precisely where the leakage lemma of Gentry and Wichs [13]
plays a crucial role. More specifically, we define a function π that outputs the
decision bit of whether to output ⊥, or to output one of the extracted messages
(and also specifies which of the extracted messages should be output). This
function is inefficient.

Now informally, the leakage lemma states that for every two indistinguishable
distributions (X,Y ) and every unbounded leakage function π, there exists a
relatively efficient simulator that outputs a leakage π′ such that (X,π(X)) is
indistinguishable from (Y, π′(Y )).

In our context, the decision of whether to output m̃ or output ⊥ in any
particular hybrid will be dictated by the leakage lemma. Specifically, we will
rely on the lemma where X and Y correspond to the view of the MIM in two
consecutive hybrids, and where π is the leakage function described above. The
leakage lemma will help us “carry over” this leakage across indistinguishable
hybrids in a relatively efficient manner. The proof of non-malleability of this
amplification step is the primary technical contribution of our paper.

There are many additional technical subtleties that were not discussed. For
instance, in order to argue that the compiler can be applied several times, we
work with a strong variant of non-malleability w.r.t. replacement (which only
strengthens our final result). We give a more detailed protocol description to-
wards the end of this section, and also refer the reader to Section 5 for details
of the construction.

Putting Things Together. We now describe how we use this compiler to obtain
our final result, i.e. non-malleable commitments for 2n tags. Our starting point
is our scheme for η log log n tags which is many-to-many same-tag non-malleable
w.r.t. commitment, and in particular is many-to-many same-tag non-malleable
w.r.t. replacement (we give an overview of this scheme in Section 2.1). We will

12 We note that these distributions are indeed indistinguishable if the adversary always
generates valid commitments.
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use the compiler above three times: First we convert the scheme for η log log n
tags into a scheme for logη/2(n) tags, then we convert the resulting scheme for

logη/2(n) tags into a scheme for 2log
ε n tags (for a small constant ε > 0). We

apply the compiler one final time to the scheme for 2log
ε n tags to get a scheme

for ω(nlogn) tags.
We note that it is not clear that we can run the compiler on itself many times,

since every time we run the compiler, there is a loss in parameters. However, we
set parameters carefully so that this nevertheless goes through.

To go from nlogn tags to 2n tags, we use the (standard) idea of relying on
sub-exponentially secure signatures. Specifically, to commit to a message m with
tag T ∈ [2n], we generate a random pair sk, vk of signing and verification keys
for the underlying scheme, where the verification key is of length log2 n bits.
We use vk as our “small” tag for the non-malleable commitment, and sign the
larger tag T ∈ [2n] with sk. The security of this construction follows by the
(sub-exponential) unforgeability of the underlying signature scheme. We refer
the reader to Section 6 for more details.

More Detailed Protocol Description. Finally, to help the reader navigate
our tag amplification protocol, we now give a slightly more detailed description
of our protocol, and the intuition for non-malleability. As mentioned above, to
commit to a message m with tag T = {t1, t2, . . . tα/2}, the committer commits
to the message k = 10` times in parallel with tags {t1, t2, . . . tα/2}, using fresh
randomness each time.

Our protocol is described informally in Figure 1. Note that the resulting
commitment is not many-to-many, because as explained above, even for `-to-1
non-malleability, the size of the resulting commitment grows linearly with `.

Roughly, we prove that if our underlying commitment scheme com is many-
to-z non-malleable w.r.t. replacement, and is secure against 2y-sized adversaries,
then the resulting scheme is `-to-y same-tag non-malleable w.r.t. replacement,
for any y and ` such that ` · y < z

10 . We require the NIWI to be WI against
poly(T )-time adversaries, where T is the time required to brute-force break com.

Intuition for Non-Malleability. For simplicity, let us consider a MIM that on
input ` commitments, with corresponding tags T1, T2, . . . T`, outputs a single
commitment c̃ with tag T̃ (in our actual proof, the MIM is allowed to output
multiple commitments, albeit using the same tag).

We need to argue that the MIM on input ` commitments to messagesm1, . . . ,m`

cannot output a valid commitment to a related message m̃. As eluded to ear-
lier, this is done via hybrids. Let us suppose for contradiction that on input
commitments to m1, . . . ,m`, the adversary outputs a valid commitment to m̃.

We consider a hybrid where the first honest commitment (on the left) is
generated as a commitment to 0 (but the rest are commitments to m2, . . .m`).
Letting T1 := {t1,1, t1,2, . . . t1,α/2}, one can argue that the distribution of the

message m̃ committed by the MIM in the column corresponding small tag t̃1 6∈
{t1,1, t1,2, . . . t1,α/2} cannot change in all k rows. This follows from the many-to-z
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Parameters: Set k = 10`.
Committer Input: Message M ∈ {0, 1}p(n), and tag {t1, t2, . . . tα/2}.
Commit Stage:

1. Committer Message.

– For every λ ∈ [α/2] and every j ∈ [k], sample randomness rλ,j
$←

{0, 1}poly(n) and compute Cλ,j = comtλ(M ; rλ,j).
– Use witness J = [k−1], {M, rλ,j}λ∈[t/2],j∈J to compute a NIWI proof Π

that there exists J ⊆ [k] of size at least (k − 1), such that:
For every j ∈ J , ∃Mj , {rλ,j}λ∈[α/2] so that {Cλ,j =
comtλ(Mj ; rλ,j)}λ∈[α/2].

– Send to the receiver the message (tag, {(Cλ,j , tλ)}λ∈[t/2],j∈[k], Π).
– Receiver Acceptance. Accept the comitment if and only if Π verifies.

Reveal Stage: The committer sends M and {rλ,j}λ∈[t/2],λ∈[k] to the receiver.

Receiver Output: The receiver accepts the decommitment if all k · α/2
are valid commitments to M .

Fig. 1. Round-Preserving Tag Amplification

non-malleability w.r.t. commitment of com for z ≥ k (and relying on the fact
that NIWI is hard against poly(T )-time adversaries).

Furthermore, by the soundness of the MIM’s NIWI, this implies that the MIM
continues to commit to m̃ in at least (k − 1) of the rows. This implies that the
MIM continues to commit to m̃ in least (k − 1) of the rows, for every tag. the
MIM continues to commit to m̃ in at least (k − 2) of the rows, for every tag.

Continuing this way, we observe that the MIM continues to commit to m̃ in
at least (k−`) of the rows, w.r.t. every tag, on input ` commitments to messages
(0, 0, . . . , 0). Therefore on input (0, 0, . . . 0), the MIM either continues to commit
to m̃ or commits to an invalid value, and therefore, m̃ must be unrelated to m.
This is the key intuition for the security of our scheme.

As explained above, the actual analysis of indistinguishability of the joint dis-
tribution of the protocol transcript and messages committed by the MIM is quite
involved, and requires multiple careful applications of the leakage lemma [13].
We refer the reader to Section 5 for details.

3 Definitions

Let n denote the security parameter. In all our definitions, the input message to
the commitment scheme will be sampled from {0, 1}p for a polynomially bounded
function p = p.

For any T = T (n), we use X ≈poly(T (n)) Y to denote two distributions such

that for every (T (n))O(1)-size distinguisher D,

Pr[D(x) = 1|x $←X ]− Pr[D(x) = 1|x $←Y] = negl(n).
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We denote by X ≈ Y, the event that X ≈poly(n) Y.

3.1 Non-Malleable Commitments w.r.t. Replacement

In this section, we present the main definition of non-malleability that we achieve,
which is known as non-malleability w.r.t. replacement ( [15]). This definition is
weaker than the original definition of non-malleability, which is known as non-
malleability with respect to commitment (and is formally defined in Section 3.2).

Non-malleability considers a man-in-the-middle that receives a commitment
to a message m ∈ {0, 1}p and generates a new commitment c̃. We say that
the man-in-the-middle commits to ⊥ if there does not exist any (m̃, r̃) such
that c̃ = com(m̃; r̃). Intuitively, the definition of non-malleability with respect
to commitment requires that for any two messages m0,m1 ∈ {0, 1}p, the joint
distributions of (Com(m0), m̃0) and (Com(m1), m̃1) are indistinguishable, where
m̃b is the message committed to by the MIM given Com(mb). The definition of
non-malleability w.r.t. replacement (that we achieve) intuitively requires this to
hold only conditioned on m̃0, m̃1 6= ⊥.

We emphasize that we consider the case where the MIM gets a single com-
mitted message and generates a single commitment. This is known as the “one-
to-one” definition. A stronger definition is the “many-to-many” definition (also
known as concurrent non-malleability), where the MIM receives many commit-
ments and is allowed to generate many commitments, and the guarantee is that
for any two sets of messages committed to and sent to the MIM, the joint distri-
bution of these commitments and the messages committed to by the MIM, are
indistinguishable.

Definition 1 (Non-Malleable Commitments w.r.t. Replacement). A non-
interactive non-malleable (one-to-one) string commitment scheme with N tags
consists of a probabilistic poly-time algorithm C, that takes as input a message
m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(n), and a tag ∈ [N ], and outputs a com-
mitment comtag(m; r). It is said to be non-malleable w.r.t. replacement if the
following two properties hold:

1. Statistical binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈ {0, 1}poly(n)
and tag0, tag1 ∈ [N ] such that m0 6= m1 and comtag0(m0; r0) = comtag1(m1; r1).

2. One-to-One Non-malleability. For any poly-size adversary A, any m ∈
{0, 1}p and any tag ∈ [N ], there exist (possibly inefficient) functions VReal
and VIdeal such that the following holds:

(a) Sample r
$← {0, 1}poly(n) and set c = comtag(m; r). Let (c̃, z) = A(c). If

there exists t̃ag ∈ [N ] \ {tag}, M̃ ∈ {0, 1}p(n) and r̃ ∈ {0, 1}poly(n) such

that c̃ = comt̃ag(M̃ ; r̃) then m̃ = M̃ , otherwise no restrictions are placed
on m̃. We require that

Pr[VReal(c, c̃) = m̃] = 1− negl(n).

(b) Sample rIdeal
$←{0, 1}poly(n) and set cIdeal = comtag(0

p; rIdeal). Let (c̃Ideal, zIdeal) =

A(cIdeal). If there exists t̃ag ∈ [N ] \ {tag}, M̃Ideal ∈ {0, 1}p(n) and r̃Ideal ∈
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{0, 1}poly(n) such that c̃Ideal = comt̃ag(M̃Ideal; r̃Ideal) then m̃Ideal = M̃Ideal,
otherwise no restrictions are placed on m̃Ideal. We require that

Pr[VIdeal(cIdeal, c̃Ideal) = m̃Ideal] = 1− negl(n).

(c) We require:(
c, c̃, z,VReal(c, c̃)

)
≈c
(
cIdeal, c̃Ideal, zIdeal,VIdeal(cIdeal, c̃Ideal)

)
.

over the randomness of sampling r, rIdeal
13.

We next present an (intermediate) security definition that we use as a step-
ping stone to achieve our main result. This is a many-to-many version of Defini-
tion 1, that restricts the adversary to use the same tag in all commitments that
he outputs.

Definition 2 (`-to-y Same-tag Non-malleable Commitments w.r.t. Re-
placement). A non-interactive non-malleable commitment scheme with N tags
consists of a probabilistic poly-time algorithm C, that takes as input a message

m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(n), and a tag ∈ [N ], and outputs a
commitment comtag(m; r). It is said to be `-to-y same-tag non-malleable w.r.t.
replacement for polynomials `(·) and y(·), if the following two properties hold:

1. Statistical binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈ {0, 1}poly(n)
and tag0, tag1 ∈ [N ] such that m0 6= m1 and comtag0(m0; r0) = comtag1(m1; r1).

2. `-to-y Non-malleability. For any poly-size adversary A, any m1, . . . ,m` ∈
{0, 1}p, and any tag1, . . . , tag` ∈ [N ], there exist (possibly inefficient) func-
tions VReal and VIdeal such that the following holds:
(a) Sample r1, . . . , r`

$←{0, 1}poly(n), set ci = comtagi(mi; ri) for every i ∈ [`],
and let (c̃1, . . . , c̃y, z) = A(c1, . . . , c`).
If there exists t̃ag ∈ [N ] \ {tagi}i∈[`] such that c̃1, . . . c̃y all use t̃ag, then
continue. Otherwise set (m̃1, . . . m̃n) = abort.

For each i ∈ [y], if there exists M̃i ∈ {0, 1}p and r̃i ∈ {0, 1}poly(n) for

which c̃i = comt̃ag(M̃i; r̃i), set m̃i = M̃i, and otherwise no restrictions
are placed on m̃i. We require that

Pr[VReal(c1, . . . , c`, c̃1, . . . c̃y) = (m̃1, . . . , m̃y)] = 1− negl(n)

(b) Sample rIdeal,1, . . . , rIdeal,`
$← {0, 1}poly(n), set cIdeal,i = comtagi(0

p; rIdeal,i)
for every i ∈ [`], and let (c̃Ideal,1, . . . , c̃Ideal,y, zIdeal) = A(cIdeal,1, . . . , cIdeal,`).
If there exists t̃ag ∈ [N ] \ {tagi}i∈[`] such that c̃Ideal,1, . . . c̃Ideal,y all use

t̃ag, then continue. Otherwise set (m̃Ideal,1, . . . m̃Ideal,n) = abort.

For each i ∈ [y], if there exists M̃Ideal,i ∈ {0, 1}p and r̃Ideal,i ∈ {0, 1}poly(n)

for which c̃Ideal,i = comt̃ag(M̃Ideal,i; r̃Ideal,i), set m̃Ideal,i = M̃Ideal,i, and oth-
erwise no restrictions are placed on m̃Ideal,i. We require that

Pr[VIdeal(cIdeal,1, . . . , cIdeal,`, c̃Ideal,1, . . . , c̃Ideal,y) = (m̃Ideal,1, . . . , m̃Ideal,y)]

= 1− negl(n)
13 Note that this definition explicitly considers auxiliary information z, but is equivalent

to one that does not consider z. We explicitly consider z for convenience.
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(c) We require:(
(c1, . . . c`), (c̃1, . . . c̃y), z,VReal(c1, . . . , c`.c̃1, . . . c̃y)

)
≈c(

(cIdeal,1, . . . cIdeal,`), (c̃Ideal,1, . . . c̃Ideal,y), zIdeal,

VIdeal(cIdeal,1, . . . , cIdeal,`, c̃Ideal,1, . . . c̃Ideal,y)
)

over the randomness of sampling r1, . . . , r` and rIdeal,1, . . . , rIdeal,`.

In what follows, we define a slight strengthening of `-to-y same-tag non-malleability
w.r.t. replacement. Namely, in the definition below we allow the MIM to obtain
as input some restricted auxiliary information on the honest messages and ran-
domness.

Definition 3 (`-to-y Same-tag Auxiliary-Input Non-malleable Commit-
ments w.r.t. Replacement). A non-interactive non-malleable commitment
scheme with N tags consists of a probabilistic poly-time algorithm C, that takes as

input a message m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(n), and a tag ∈ [N ], and
outputs a commitment comtag(m; r). It is said to be `-to-y same-tag auxiliary-
input non-malleable w.r.t. replacement for polynomials `(·) and y(·), if the fol-
lowing two properties hold:

1. Statistical binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈ {0, 1}poly(n)
and tag0, tag1 ∈ [N ] such that m0 6= m1 and comtag0(m0; r0) = comtag1(m1; r1).

2. `-to-y Non-malleability. There exists a function tV : N→ N such that the
following holds.
Fix any messages m1, . . .m` ∈ {0, 1}p, any tag1, . . . tag`, and any efficient
auxiliary input functions aux1, aux2, . . . , aux`, where for every i ∈ [`], auxi
takes as input the commitments (c1, . . . c`) together with the messages and
randomness used to compute (c1, . . . ci−1, ci+1, . . . , c`). Set TV (n) = 2tV (n).
For every β ∈ [`] define ` commitments cβ,1, . . . , cβ,`, where cβ,i = comtagi(0

p; ri)
for every i ∈ [β], and cβ,i = comtagi(mi; ri) for every i ∈ [β + 1, `], where

r1, . . . , r`
$←{0, 1}poly(n).

Suppose that for every β ∈ [0, `− 1],(
cβ,1, . . . , cβ,`, auxβ(cβ,1, . . . , cβ,`, (0

p)×(β−1),mβ+1, . . . ,m`, (1)

r1, . . . , rβ−1, rβ+1, . . . , r`)
)
≈TV (n)

(cβ,1, . . . , cβ,`, auxβ+1(cβ,1, . . . , cβ,`, (0
p)×(β),mβ+2, . . . ,m`,

r1, . . . , rβ , rβ+2, . . . , r`))

where aux0 , aux`.
Fix any polynomial-size adversary A, and for every β ∈ [0, `] let

(c̃β,1, . . . , c̃β,y, zβ) =

A(cβ,1, . . . , cβ,`, auxβ(cβ,1, . . . cβ,`, (0
p)×(β−1),mβ+1, . . . ,m`,

r1, . . . , rβ−1, rβ+1, . . . , r`)).

We require that there exist (possibly inefficient) functions VReal and VIdeal,
each computable in time TV (n), such that:
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(a) If there exists t̃ag ∈ [N ]\{tagi}i∈[`] such that c̃0,1, . . . c̃0,y all use tag t̃ag,
then continue. Otherwise set (m̃1, . . . m̃n) = abort.

For each i ∈ [y], if there exists M̃i ∈ {0, 1}p and r̃i ∈ {0, 1}poly(n) for

which c̃0,i = comt̃ag(M̃i; r̃i), set m̃i = M̃i, and otherwise no restrictions
are placed on m̃i. We require that

Pr[VReal(c0,1, . . . , c0,`, a0, c̃0,1, . . . c̃0,y) = (m̃1, . . . , m̃y)] = 1− negl(n)

where a0 = aux0(c0,1, . . . , c0,`,m1, . . . ,m`−1, r1, . . . r`−1).
(b) If there exists t̃ag ∈ [N ]\{tagi}i∈[`] such that c̃`,1, . . . c̃`,y all use tag t̃ag,

then continue. Otherwise set (m̃1, . . . m̃n) = abort.

For each i ∈ [y], if there exists M̃i ∈ {0, 1}p and r̃i ∈ {0, 1}poly(n) for

which c̃`,i = comt̃ag(M̃i; r̃i), set m̃i = M̃i, and otherwise no restrictions
are placed on m̃i. We require that

Pr[VIdeal(c`,1, . . . , c`,`, a`, c̃`,1, . . . , c̃`,y) = (m̃1, . . . , m̃y)] = 1− negl(n)

where a` = aux`(c`,1, . . . , c`,`, (0
p)×(`−1), r1, . . . r`−1).

(c) We require:(
(c0,1, . . . c0,`), a0, (c̃0,1, . . . c̃0,y), z0,VReal(c0,1, . . . , c0,`, a0, c̃0,1, . . . c̃0,y)

)
≈c(

(c`,1, . . . c`,`), a`, (c̃`,1, . . . c̃`,y), z`,VIdeal(c`,1, . . . , c`,`, a`, c̃`,1, . . . c̃`,y)
)

over the randomness of sampling c0,1, . . . , c0,` and c`,1, . . . , c`,`.

Remark 1. One can strengthen these definitions, to require non-malleability to
hold for any two sets of messages (m1

1, . . .m
1
`) and (m2

1, . . . ,m
2
`), such that VReal

(as before) considers an experiment where the honest committer generates com-
mitments to (m1

1, . . .m
1
`), whereas VIdeal considers an experiment where the hon-

est committer generates commitments to (m2
1, . . . ,m

2
`) (instead of generating

commitments to 0s). The proofs of Theorem 2 and Theorem 3 show that our
constructions also satisfy this stronger definition.

3.2 Non-Malleable Commitments w.r.t. Commitment

We also consider the stronger definition of non-malleability with respect to com-
mitment [33]. This definition is standard in the literature; it is sometimes con-
sidered in the many-to-many setting (known as concurrent non-malleability),
where the adversary (man-in-the-middle) receives many commitments “on the
left” and generates many commitments “on the right”. It is also sometimes con-
sidered in the one-to-one setting, where the man-in-the-middle receives a single
commitment “on the left” and generates a single commitment “on the right”. In
this paper, we use a variant where we require the MIM to use the same tag in all
“right” commitments, and we refer to this as the many-to-k same-tag variant.
This definition is used as a stepping stone to achieve our main result, and is
omitted from this version due to space constraints.
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4 Non-Malleable Commitments for Small Tags

In this section, we construct a many-to-many same-tag non-malleable commit-
ment scheme w.r.t. commitment for ζ = η · log log n tags, for a small enough
constant η > 0, based on the following assumption.

Assumption 1 There exist non-interactive bit commitments com0 : {0, 1} ×
{0, 1}n → {0, 1}L(n) and com1 : {0, 1} × {0, 1}n → {0, 1}L(n) with the following
properties.

1. There exists an oracle relative to which com0 is sub-exponentially
hiding, but com1 is extractable. There exists an (inefficient, possibly
randomized) oracle O1 and a poly-size algorithm A1 such that for every
n ∈ N and every (m, r) ∈ {0, 1} × {0, 1}n,

Pr[A1
O1(com1(m; r)) = (m, r)] = 1− negl(n).

where the probability is over the randomness of O1. Moreover, on input any
string c for which 6 ∃(m, r) such that c = com1(m; r), we require that AO1

1

output ⊥.

Yet, there exists a constant δ > 0 such that for every n ∈ N, every poly
(

2n
δ
)

-

size adversary A, and every pair of messages m1 and m2 in {0, 1},∣∣∣Pr[AO1(com0(m1; r)) = 1]− Pr[AO1(com0(m2; r)) = 1]
∣∣∣ = negl(n),

where the probability is over r
$←{0, 1}n and over the randomness of O1.

2. There exists an oracle relative to which com1 is sub-exponentially
hard to invert but com0 is invertible. There exists an (inefficient, possi-
bly randomized) oracle O0 and a poly-size algorithm A0 such that for every
n ∈ N and every (m, r) ∈ {0, 1} × {0, 1}n,

Pr[AO0
0 (com0(m; r)) = (m, r)] = 1− negl(n)

where the probability is over the randomness of O0. Moreover, on input any
string c for which 6 ∃(m, r) such that c = com0(m; r), we require that AO0

0

output ⊥.

Yet, there exists a constant δ > 0 such that for every n ∈ N, every poly
(

2n
δ
)

-

size adversary A, and every pair of messages m1 and m2 in {0, 1},∣∣∣Pr[AO0(com1(m1; r)) = 1]− Pr[AO0(com1(m2; r)) = 1]
∣∣∣ = negl(n),

where the probability is over r
$←{0, 1}n and over the randomness of O0.

In the full version, we formally show that it suffices to instantiate com0

as any commitment whose hiding is based on the sub-exponential hardness of
factoring/discrete log or any other problem that is invertible given a BQP oracle,
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and it suffices to instantiate com1 as any commitment whose hiding holds against
sub-exponential quantum adversaries.

We note that Assumption 1 can be used to derive a sequence of commitments,
described below [35].

There exist inefficient (possibly randomized) oracles O0,O1, a small constant
η > 0, and a sequence {comb,i}b∈{0,1},i∈[ζ] of commitment functions, where ζ =
η · log log(n) and

comb,i : {0, 1} × {0, 1}`b,i(n) → {0, 1}L(`b,i(n))

such that for each b ∈ {0, 1},

`b,1 = ω(log nlog logn) < `b,2 < . . . < `b,ζ−1 < `b,ζ , n

and for every i, j, k ∈ [ζ] such that k > i, inverting comb,k relative to the oracle
O1−b requires more time than jointly inverting comb,i and com1−b,j relative to
the oracle O1−b.

Formally, for every b ∈ {0, 1} and every i ∈ [ζ−1] there exists a Tb,i ·poly(n)-
size algorithm Ab,i such that for every j ∈ [ζ], every messages m1,m2 ∈ {0, 1},
every r ∈ {0, 1}`b,i and r′ ∈ {0, 1}`1−b,j ,

Pr
[(
AO1−b
b,i (comb,i(m1; r)) = (m1, r)

)
∧
(
AO1−b
b,i (com1−b,j(m2; r′)) = (m2, r

′)
)]

= 1− negl(n),

where the probability is over the randomness of O1−b. Moreover, on input any

element outside the range of comb,i or com1−b,j , A
O1−b
b,i outputs ⊥.

Yet, for every poly(Tb,i)-size adversary A and every k > i,∣∣∣Pr[AO1−b(comb,k(m1; r)) = 1]− Pr[AO1−b(comb,k(m2; r)) = 1]
∣∣∣ = negl(n),

where the probability is over r ← {0, 1}`b,k(n) and over the randomness of O1−b.
An overview of the construction of this sequence of commitments, following the
technique of [35], can be found in the full version of the paper.

Our construction of non-malleable commitments for ζ(n) tags To commit to
a message m = (m1, . . . ,mp) ∈ {0, 1} with respect to tag, using randomness

(ri, si, ai)i∈[p], where for every i ∈ [p], ri, si
$←{0, 1}`0,tag ×{0, 1}`1,ζ−tag and ai

$←
{0, 1}, our commitment algorithm is defined by:

Comtag

(
m; (ri, si, ai)i∈[p]

)
=
(
tag,

(
com0,tag(ai; ri)

)
i∈[p],

(
com1,ζ−tag(mi ⊕ ai; si)

)
i∈[p]

)
.

Theorem 2. If Assumption 1 holds, then there exists a constant η > 0 such that
Comtag is a non-interactive many-to-many same-tag non-malleable commitment
scheme w.r.t. commitment for ζ = η · log log(n) tags, against all 2poly(logn)-size
adversaries.
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Proof. The fact that Com is statistically binding follows from the fact that comb,i

are all statistically binding, which in turn follows from the fact that com0 and
com1 are statistically binding. We next argue that Com is many-to-many same-
tag non-malleable w.r.t. commitment against all 2poly(logn)-size adversaries. To
this end, it suffices to prove that it is 1-to-many same-tag non-malleable w.r.t.
commitment against all 2poly(logn)-size adversaries. This follows by a hybrid ar-
gument of [30], which proves that any commitment scheme that satisfies the
one-to-many definition also satisfies the many-to-many definition.

To prove non-malleability, fix a 2poly(logn)-size adversary A, and fix any
k ≤ poly(n). Given a message m = (m1, . . . ,mp) ∈ {0, 1}p,14 we consider the
following distribution:

Choose at random b
$← {0, 1} and R

$← {0, 1}poly(n). If b = 0 then let c =
Comtag(0

p;R). If b = 1 then let c = Comtag(m;R). Let

(t̃ag, c̃1, . . . , c̃k) = A(c).

Consider the joint distribution

(c, c̃1, . . . c̃k, m̃1, . . . m̃k),

where for every i ∈ [k], if there exists M̃i ∈ {0, 1}p and randomness Ri ∈
{0, 1}poly(n) such that c̃i = comt̃ag(M̃i, Ri), then m̃i = M̃i; else m̃i = ⊥.

To prove that this construction is secure, it suffices to prove that for every
2poly(logn)-size adversary D and every message m,

Pr[D(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k) = b] =
1

2
+ negl(n).

To prove this, it suffices to show that for every 2poly(logn)-size adversary D and
every message m, if Pr[t̃ag > tag] ≥ 1

poly(n) for some polynomial poly(·), then

Pr[D(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k) = b|t̃ag > tag] =
1

2
+ negl(n),

and if Pr[t̃ag < tag] ≥ 1
poly(n) for some polynomial poly(·), then

Pr[D(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k) = b|t̃ag < tag] =
1

2
+ negl(n).

Suppose that Pr[t̃ag > tag] = p̂ = 1
poly(n) . Note that t̃ag > tag implies, ζ − t̃ag <

ζ − tag. Suppose for the sake of contradiction that there exists a 2poly(logn)-size
distinguisher D and a non-negligible function ∆ such that

Pr[D(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k) = b|t̃ag > tag] ≥ 1

2
+∆. (2)

14 We overload notation, here mi denotes the ith bit of m, and below each m̃i consists
of p bits.
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Consider the following hybrid distributions H0, . . . ,Hp, where Hα is defined
by choosing m′ = (m1, . . . ,mα, 0, . . . 0) ∈ {0, 1}p and setting c = Comtag(m

′; r)

for a randomly chosen r
$←{0, 1}poly(n).

By a standard hybrid argument, we conclude that there exists α ∈ {0, 1 . . . , p}
and a 2poly(logn)-size distinguisher D′ such that

Pr[D′(c, c̃1, . . . c̃k, m̃1, . . . m̃k|t̃ag > tag, Hα) = 0]−

Pr[D′(c, c̃1, . . . c̃k, m̃1, . . . m̃k|t̃ag > tag, Hα+1) = 0] ≥ ∆

p+ 1
. (3)

Note that this implies that m̃α+1 = 1, since otherwiseHα andHα+1 are identical.

We use D to construct a poly(T1,ξ−t̃ag)-size adversary BO0 that breaks the
hiding property of com1,ζ−tag. Recall that

Comtag

(
m; (ri, si, ai)i∈[p]

)
=
(
tag,

(
com0,tag(ai; ri)

)
i∈[p],

(
com1,ζ−tag(mi ⊕ ai; si)

)
i∈[p]

)
.

Fix any tag ∈ [ζ]. The algorithm BO0 , given input a string C in the range of
com1,ζ−tag, and oracle access to D does the following:

1. For each j ∈ [p] sample rj
$←{0, 1}`0,tag and compute yj = com0,tag(aj ; rj).

2. For each j ∈ [α] ∪ [α + 2, p], sample sj
$← {0, 1}`1,ζ−tag and compute wj =

com1,ζ−tag(mj ⊕ aj ; sj).
3. Let wα+1 = C, c = (tag, {yj}j∈[p], {wj}j∈[p]). Set (t̃ag, c̃1, . . . , c̃k) = A(c).

4. If t̃ag < tag, then output a randomly chosen b
$←{0, 1}.

5. For each κ ∈ [k], do the following:

– Parse c̃κ = (t̃ag, {ỹκj }j∈[p], {w̃κj }j∈[p]).
– For each j ∈ [p], compute (ãκj , r̃

κ
j ) = AO0

1,ζ−t̃ag(ỹ
κ
j ) and (ã′

κ

j , s̃
κ
j ) = AO0

1,ζ−t̃ag(w̃
κ
j ).

– If there exists j ∈ [p] such that aκj = ⊥ or a′
κ
j = ⊥, then set mκ = ⊥.

– Else, set mκ = (mκ
1 ,m

κ
2 , . . .m

κ
p), where mκ

j = aκj ⊕ a′
κ
j .

Recall that for every t̃ag ∈ [ζ], AO0

1,ζ−t̃ag is a T1,ζ−t̃ag ·poly(n)-size oracle-aided

algorithm that:

– Inverts com0,t̃ag on any element in the image of com0,t̃ag with overwhelm-
ing probability (over the randomness of O0), and outputs ⊥ on input any
element outside the image of com0,t̃ag.

– Inverts com1,ζ−t̃ag on any element in the image of com1,ζ−t̃ag with over-
whelming probability (over the randomness of O0), and outputs ⊥ on
input any element outside the image of com1,ζ−t̃ag.

Therefore, (m̃1, . . . m̃k) are extracted correctly w.h.p.

6. Compute e = D′(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k).

7. If e = 0, output b′ = aα+1. If e = 1, output uniformly random b′.
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By Equation (3), together with the fact that m̃1, . . . , m̃k were computed
correctly with overwhelming probability,

Pr[e = 0|(t̃ag > tag) ∧ (aα+1 ⊕ b = 0)]−

Pr[e = 0|(t̃ag > tag) ∧ (aα+1 ⊕ b = 1)] ≥ ∆

p+ 1
.

Since aα+1
$←{0, 1} (independently of b), this implies that

Pr[(b′ = b) ∧ (e = 0)|t̃ag > tag] =
1

2
Pr[(e = 0)|t̃ag > tag] +

∆

4(p+ 1)

Also note that we sample b′ uniformly at random if e = 1. Therefore,

Pr[(b′ = b) ∧ (e = 1)|t̃ag > tag]−
Pr[(b′ 6= b) ∧ (e = 1)|t̃ag > tag] = 0

which implies

Pr[(b′ = b) ∧ (e = 1)|t̃ag > tag] =
1

2
Pr[(e = 1)|t̃ag > tag]

This implies that

Pr[BO0(com1,ζ−t̃ag(b)) = b|t̃ag > tag] ≥ 1

2
+

∆

4(p+ 1)
− negl(n),

contradicting Assumption 1. The case where Pr[t̃ag < tag] = 1
poly(n) , is identical

to the previous case, with the roles of com0 and com1 reversed, thus we omit the
proof. This completes the proof of non-malleability.

5 Non-Malleability Amplification

In this section, we present a non-interactive amplification technique to boot-
strap non-malleable commitments for small tags into non-malleable commit-
ments for large tags. We present a compiler that converts any 5`t-to-z same-tag
auxiliary-input non-malleable commitment scheme w.r.t. replacement (Defini-
tion 3) for tags in [t] into an `-to-y same-tag auxiliary-input non-malleable com-

mitment scheme w.r.t. replacement (Definition 3) for tags in

[(
t
t/2

)]
, for any y

and any ` such that `y ≤ z
10 . We describe our compiler in Figure 2. We emphasize

that the size of the resulting commitment scheme grows linearly with `.
We denote the commitment scheme for tags in [t] by Com. We require the

scheme Com to be secure against T -size adversaries, for T = poly
(
n · 2y

)
.

Let TV : N → N denote the time bound associated with Com (i.e., the time
required to compute VReal and VIdeal). Our compiler assumes the existence of a
NIWI (non-interactive witness indistinguishable) proof system, where witness
indistinguishability holds against poly(TV , T )-size adversaries. From now, we
assume for simplicity (and without loss of generality) that TV ≥ T .
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Parameters: Set k = 10` and let T denote the unordered set of all possible
subsets of [t] of size t/2.
Language L: We define language L = {{Cλ,j , sλ}λ∈[t/2],j∈[k] : ∃J ⊂ [k], |J | =
k − 1, ∃{Mj , rλ,j}j∈J,λ∈[t/2] s.t. Cλ,j = Comsλ(Mj ; rλ,j) ∀j ∈ J, λ ∈ [t/2]}.

Committer Input: Message M ∈ {0, 1}p(n), and tag ∈ [N ], where N =

(
t
t/2

)
.

Commit Stage: To commit to a message M w.r.t. tag tag, do the following:

1. Pick the ith element in T, for i = tag. Denote this element by {s1, . . . , st/2}.
2. Committer Message. For every λ ∈ [t/2] and every j ∈ [k], sample ran-

domness rλ,j
$←{0, 1}poly(n) and compute Cλ,j = Comsλ(M ; rλ,j). Use witness

J = [k] \ {1}, {M, rλ,j}λ∈[t/2],j∈J to compute a NIWI proof Π for:

{(Cλ,j , sλ)}λ∈[t/2],j∈[k] ∈ L.

Send to the receiver the message

(tag, {(Cλ,j , sλ)}λ∈[t/2],j∈[k], Π)

3. Receiver Acceptance. The receiver accepts (tag, {(Cλ,j , sλ)}, Π) if and
only if the proof Π is accepted by the verifier of the NIWI system and
{sλ}λ∈[t/2] is the ith element in T for i = tag.

Reveal Stage: The committer sends the message M and the randomness
{rλ,j}λ∈[t/2],λ∈[k] to the receiver.

Receiver Output: The receiver verifies that all the commitments were
correctly decommitted, and accepts the decommitment

(
M, {rλ,j}λ∈[t/2],j∈[k]

)
if

and only if ∀λ, j ∈ [t/2]× [k] : Cλ,j = Comsλ(M ; rλ,j).

Fig. 2. Round-Preserving Tag Amplification

Theorem 3. For any polynomials y, z, ` and t, where `y ≤ z
10 , assuming Com

is 5`t-to-z same-tag auxiliary-input non-malleable w.r.t. replacement (Defini-

tion 3) for tags in [t] against poly
(
n · 2y

)
-size adversaries, and assuming sub-

exponentially secure NIWI, the scheme in Figure 2 is `-to-y same-tag auxiliary-input

non-malleable w.r.t. replacement (Definition 3) for tags in

[(
t
t/2

)]
against poly-

nomial size adversaries.

An overview of the intuition for this construction was provided in Section 2.2.
In the formal proof (please refer to the full version of the paper [22]), for every
β ∈ [`], we define τβ as the transcript generated by the MIM when the first
β left commitments are to 0, and the remaining are to mβ+1, . . .m`. We then
build a sequence of extractors Vβ,real and Vβ,ideal for β ∈ [`], where Vreal roughly
corresponds to V1,real and Videal to V`,ideal. These are such that the joint distri-
bution (τβ ,Vβ,ideal(τβ)) ≈c (τβ−1,Vβ,real(τβ−1)). Roughly, we also define a 2y-bit
inefficient leakage function πβ and an efficient function f such that for every τ ,
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Vβ,real(τ) = f(Vβ−1,ideal(τ), πβ − 1(τ)). Combining these equations implies that
for every β ∈ [2, `]:

(τβ ,Vβ,ideal(τβ)) ≈c τβ−1, f(Vβ−1,ideal(τβ−1), πβ − 1(τβ−1))

We then use the leakage lemma to simulate leakage π̂β−1 such that

(τβ ,Vβ,ideal(τβ)) ≈c τβ−1, f(Vβ−1,ideal(τβ−1), πβ−1(τβ−1))

≈c τβ−2, f(Vβ−2,ideal(τβ−2), πβ−2(τβ−2)), π̂β−1(τβ−2) ≈c τβ−3...

Continuing this way, we obtain efficiently simulatable leakage η and an efficiently
computable function F such that τ`,V`,ideal(τ`) ≈c τ0, F (V1,real(τ0), η(τ0)). This
allows us to set Vreal as F (V1,real(τ0), η(τ0)) while preserving indistinguishability.
We refer the reader to the full version for a detailed proof.

6 Putting Things Together: Non-Malleable Commitments
for All Tags

In this section, we describe how one can combine results from Section 4 and
Section 5 to obtain our main result.

Theorem 4. There exists a non-interactive non-malleable commitment w.r.t.
replacement satisfying Definition 1, assuming the following:

– Sub-exponential hardness of factoring or discrete log.
– Sub-exponential quantum hardness of LWE.
– Sub-exponential non-interactive witness indistinguishable (NIWI) proofs.

Proof. To obtain this theorem, we apply the following sequence of steps:

– Let C[η log logn] denote a many-to-many same-tag non-malleable commitment
w.r.t. commitment for η log log n tags where 0 < η < 1, secure against
2poly logn-size adversaries. Such a scheme is constructed in Theorem 2, assum-
ing sub-exponential hardness of factoring or discrete log, and sub-exponential
quantum hardness of LWE.

– Apply the compiler in Section 5 to C[η log logn].

Specifically, setting y = log3 n, ` = log3 n, z = log7 n, t = η log log n in Theo-
rem 3, we note that z ≥ 10`y and C[η log logn] is 5`t-to-z same-tag auxiliary-
input non-malleable w.r.t. replacement against poly(n · 2y)-size adversaries.
Therefore, Theorem 3 gives a (log3 n)-to-(log3 n) same-tag auxiliary-input
non-malleable commitment w.r.t. replacement satisfying Definition 3, for
logε n tags, (for a small constant ε > 0), against polynomial-size adversaries.
Denote this resulting scheme by C[logε n].

– Apply the compiler in Section 5 once again, this time to C[logε n].
Specifically, setting y = 10, ` = 10 log2 n, z = 1000 log2 n, t = logε n in Theo-
rem 3, we note that z = 10`y and that C[logε n] is 5`t-to-z same-tag auxiliary-
input non-malleable w.r.t. replacement against poly(n · 2y)-size adversaries.
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Therefore, Theorem 3 gives a 10 log2 n-to-10 same-tag auxiliary-input non-
malleable commitment w.r.t. replacement satisfying Definition 3, for 2 log2 n
tags, against polynomial-size adversaries. Denote this resulting scheme by
C[2 log2 n].

– Apply the compiler in Section 5 one final time, this time to To C[2 log2 n],.

Specifically, setting ` = y = 1, z = 10, t = 2 log2 n in Theorem 3, we note that
z = 10`y and that C[log2 n] is 5`t-to-z same-tag auxiliary-input non-malleable
w.r.t. replacement against poly(n · 2y)-size adversaries.

Therefore, Theorem 3 gives a a 1-to-1 auxiliary-input non-malleable com-
mitment w.r.t. replacement satisfying Definition 3, for nlogn tags, against
polynomial-size adversaries. Denote this resulting scheme by C[nlogn].

– Next, assume the existence of a sub-exponentially secure digital signature
scheme. More specifically, assume the existence of a signature scheme such
that poly-size adversary cannot forge signatures w.r.t. verification keys of
size log2 n (except with negligible probability). Such a scheme is implied
by sub-exponential one-way functions. Denote the keys for such a scheme
by (vk, sk), the setup algorithm by Setup(1λ) and the signing algorithm by
Sign(sk, ·).
Then starting with a non-malleable commitment scheme (w.r.t. replacement)
according to Definition 1 for tags in [nlogn] (denoted by C[nlogn]), we build
non-malleable commitments for tags in [2n], satisfying Definition 1 as follows:

To commit to message m with tag T ∈ [2n], sample (vk, sk)
$←Setup(1log

2 n),
compute a commitment c ← Comvk(m), and a signature σ ← Sign(sk, T ).
Output (vk, c, σ). Here Comvk(·) denotes the commitment algorithm of C[nlogn]

corresponding to tag vk, and we note that |vk| = log2 n bits.

For every PPT man-in-the-middle A that outputs (ṽk, c̃, σ̃), one of the fol-
lowing holds.

• Either ṽk = vk, in which case by unforgeability of the signature scheme,
if T̃ 6= T then σ̃ does not verify.

• Or ṽk 6= vk, in which case the message committed to in c̃ is “unrelated”
to the message committed to in c, i.e., it satisfies the non-malleability
condition of Definition 1, since we assume Comvk satisfies Definition 1.
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