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Abstract. The famous Fiat-Shamir transformation turns any public-
coin three-round interactive proof, i.e., any so-called ¥-protocol, into a
non-interactive proof in the random-oracle model. We study this trans-
formation in the setting of a quantum adversary that in particular may
query the random oracle in quantum superposition.

Our main result is a generic reduction that transforms any quantum
dishonest prover attacking the Fiat-Shamir transformation in the quan-
tum random-oracle model into a similarly successful quantum dishon-
est prover attacking the underlying X-protocol (in the standard model).
Applied to the standard soundness and proof-of-knowledge definitions,
our reduction implies that both these security properties, in both the
computational and the statistical variant, are preserved under the Fiat-
Shamir transformation even when allowing quantum attacks. Our result
improves and completes the partial results that have been known so far,
but it also proves wrong certain claims made in the literature.

In the context of post-quantum secure signature schemes, our results im-
ply that for any X-protocol that is a proof-of-knowledge against quantum
dishonest provers (and that satisfies some additional natural properties),
the corresponding Fiat-Shamir signature scheme is secure in the quan-
tum random-oracle model. For example, we can conclude that the non-
optimized version of Fish, which is the bare Fiat-Shamir variant of the
NIST candidate Picnic, is secure in the quantum random-oracle model.

1 Introduction

The (quantum) random-oracle model. The random-oracle model (ROM)
is a means to treat a cryptographic hash function H as an ideal primitive. In
the ROM, the only way to “compute” the hash H(x) of any value z is by making
a query to an imaginary entity, the random oracle (RO), which has chosen H
uniformly at random from the set of all functions with the considered domain
and range.

The hope is that if a cryptographic scheme is secure in the ROM then it is
also secure in the standard model, as long as H is instantiated with a “good



enough” cryptographic hash function. Even though in general we cannot hope
to obtain provable security in the standard model in this way, (since there exist
artificial counter examples [CGHO04|), this approach works extremely well in
practice, leading to very efficient schemes that tend to resist all known attacks.

What makes the ROM particularly convenient is that in the security proof of
a cryptographic scheme, we can control the RO. For instance, simply by recording
the queries that the adversary makes to the RO, we know exactly which hash
values he knows, and the hash value H(z) is random to him for any x that he
has not queried. Furthermore, we can reprogram the RO, meaning that we can
let H(z) be some particular value y for some specific z, as long as it is random
from the adversary’s perspective.

When considering a quantum adversary, the picture changes a bit. In order
to model that such an adversary can evaluate any hash function in superposition
on different inputs, we must allow such a quantum adversary in the ROM to
make superposition queries to the RO: for any superposition ) a|z) it may
learn ) ag|z)|H(x)) by making a single query to the RO. This is referred to
as the quantum random-oracle model (QROM) [BDF*11].

Unfortunately, these superposition queries obstruct the above mentioned ad-
vantages of the ROM. By basic properties of quantum mechanics one cannot
observe or locally copy such superposition queries made by the adversary with-
out disturbing them. Also, reprogramming is usually done for an z that is queried
by the adversary at a certain point, so also here we are stuck with the problem
that we cannot look at the queries without disturbing them.

As a consequence, security proofs in the ROM almost always do not carry
over to the QROM. This lack of proof does not mean that the schemes become
insecure; on the contrary, unless there is some failure because of some other
reason®, we actually expect typical schemes to remain secure. However, it is
often not obvious how to find a security proof in the QROM. Some examples
where security in the QROM has been established are [Unrl4, Zhal5, ES15,
Unrl5, KLS18, ABB*17, Zhal8, SXY18, BDK™"18].

Main technical result. Our main technical result (Theorem 2) can be under-
stood as a particular way to overcome —to some extent —the above described
limitation in the QROM of not being able to “read out” any query to the RO
and to then reprogram the corresponding hash value. Concretely, we achieve the
following.

We consider an arbitrary quantum algorithm A that makes queries to the
RO and in the end outputs a pair (z,z), where z is supposed to satisfy some
relation with respect to H(z), e.g., z = H(x). We then show how to extract early
on, by measuring one of the queries that A makes, the very x that A will output,
and to reprogram the RO at the point z with a fresh random value @, with the
effect that the pair (z,z) that A then outputs now satisfies the given relation
with respect to @, with a not too large loss in probability.

5 E.g., the underlying computational hardness assumption does not hold anymore in
the context of a quantum adversary.



The way this works is surprisingly simple. We choose the query that we
measure uniformly at random among all the queries that .4 makes (also counting
A’s output), in order to (hopefully) obtain x. Subsequently we reprogram the
RO, so as to answer x with ©, either from this point on or from the following
query on, where this binary choice is made at random. This last random decision
seems counter-intuitive, but it makes our proof work. Indeed, we prove that the
probability that (z,z) satisfies the required relation drops by no more than a
factor O(q?), where g is the number of oracle queries A makes.

Application to the Fiat-Shamir transformation. The Fiat-Shamir trans-
formation [FS87] turns any public-coin three-round interactive proof, i.e., any
so-called Y-protocol, into a non-interactive proof in the (Q)ROM. In the classical
case it is well known that the security properties of the ¥-protocol are inherited
by the Fiat-Shamir transformation [BR93, FKMV12]. In the quantum setting,
when considering the security of the Fiat-Shamir transformation against quan-
tum dishonest provers in the QROM, mainly negative results are known — see
below for a more detailed exposition of previous results and how they compare
to ours.

It is quite easy to see that the above result on the reprogrammability of the
RO is exactly what is needed to turn a quantum prover that attacks the Fiat-
Shamir transformation into a quantum prover that attacks the underlying X
protocol. Indeed, from any Fiat-Shamir dishonest prover A that tries to produce
a proof m = (a, z) for a statement z, we obtain an interactive dishonest prover
for the X' protocol that extracts a from A and sends it to the verifier, and then
uses the received challenge ¢ to reprogram the RO, so that the z output by A
will be a correct reply with respect to ¢ with a probability not much smaller
than the probability that A succeeds in forging 7 in the QROM.

This gives us a very generic transformation (stated in Theorem 8 below) from
a Fiat-Shamir dishonest prover to a X-protocol dishonest prover that is similarly
successful, up to a loss in probability of order O(¢?). Applied to the standard
notions of soundness and proof-of-knowledge, we prove that both these security
properties, in both the computational and the statistical variant, are preserved
under the Fiat-Shamir transformation in the QROM (Corollaries 13 and 16).

Comparison with prior results. Mainly negative results are known about
the security of the Fiat-Shamir transformation against quantum attacks. Figure 1
shows a table copied from [ARU14], which outlines the different negative results
on the security of X-protocols against quantum attackers that carry over to the
Fiat-Shamir transformation. All the potential positive claims on the security of
the Fiat-Shamir transformation were left unanswered (see Figure 1).

Currently, the only known positive result on the security of the Fiat-Shamir
transformation against quantum attacks is the result by Unruh [Unr17], which
shows that statistical soundness of the X-protocol implies computational sound-
ness of the Fiat-Shamir transformation. This means, the lower right stat in the
Fiat-Shamir column in Figure 1 was known to be ‘comp’.



Properties of 3-protocol | 3-protocol directly | Fiat-Shamir transf.
special strict
soundness soundness PoK proof PoK proof
perf comp attack stat attack stat
comp comp attack attack attack attack
perf perf stat stat stat stat

Fig. 1: Table adapted from [ARU14|, showing which versions of special soundness and
strict soundness, which we call unique responses, imply that the X-protocol is a proof
of knowledge (PoK) or a proof (in the sense of ordinary soundness). The values comp,
stat and perf mean that the considered property holds respectively computationally,
statistically and perfectly, and attack means that there exist example schemes that
allow an attack. Gray values are copied from [ARU14]. The last column shows that
the negative results carry over to the Fiat-Shamir transformation, while our results (in
bold face) complete the table by showing that also the positive results carry over.
Previously, the lower right corner entry was only known to be comp, and the other
two entries were unknown. If the computational version of the unique responses, or
strict soundness, property is replaced by our quantum strengthening (Definition 24),
all instances of attack can be replaced by comp.

Our generic transformation from a Fiat-Shamir dishonest prover to a -
protocol dishonest prover implies that all the (considered) security properties
of the X-protocol carry over unchanged to the Fiat-Shamir transformation, i.e.,
without degradation from ‘stat’ to ‘comp’. Hence, we show that all the three
open settings from [ARU14]| are statistically secure, as shown in Figure 1. 6

We point out that [DFG13| claims an impossibility result about the sound-
ness of the Fiat-Shamir transformation as a quantum proof of knowledge, which
contradicts one of our implications above. However, their result only applies to
a restricted notion of proof of knowledge where the extractor is not allowed
to measure any of the adversary’s queries to the random oracle. The rational
for this restriction was that such a measurement would disturb the adversary’s
quantum state beyond control; however, our technical result shows that it actu-
ally is possible to measure one of the adversary’s queries and still have sufficient
control over the adversary’s behavior.

Relativizing prior negative results. At first glance, the negative results
from [ARU14] together with our new positive results, as shown in the Fiat-
Shamir column in Figure 1, seem to give a complete answer to the question of the
security of the Fiat-Shamir transformation against quantum attacks. However,
there is actually more to it.

We consider a stronger but still meaningful notion of computational unique
responses, which is in the spirit of the collapsing property as introduced by Un-
ruh [Unrl6]. We call the new notion guantum computationally unique responses

5 In the (quantum) random-oracle model, statistical security considers a computation-
ally unbounded attacker with a polynomially bounded number of oracle queries.



and define it in Definition 24. Adapting a proof from [Unrl2], it is not hard
to see that a 3-protocol with (perfect or computational) special soundness and
quantum computational unique responses is a computational proof of knowl-
edge. Therefore, our result then implies that its Fiat-Shamir transformation is
a computational proof of knowledge as well.

Finally, our result also implies that if the 3-protocol is computationally sound
(as a ‘proof’), then its Fiat-Shamir transformation is computationally sound as
well. Interestingly, Unruh seems to suggest in [Unrl7] (right after Theorem 21)
that this is not true in general, due to a counterexample from [ARU14|. The
counter example is, however, a Y-protocol that is computationally special sound
but not computationally sound (the issue being that in the quantum setting,
special soundness does not imply ordinary soundness).

Thus, with the right adjustments of the considered computational soundness
properties, the three negative answers in the Fiat-Shamir column in Figure 1
may actually be turned into positive answers. One caveat here is that we expect
proving quantum computationally unique responses to be much harder than
computational unique responses.

Application to signatures. Our positive results on the Fiat-Shamir transfor-
mation have direct applications to the security of Fiat-Shamir signatures. From
the proof-of-knowledge property of the Fiat-Shamir transformation we immedi-
ately obtain the security of the Fiat-Shamir signature scheme under a no-message
attack, assuming that the public key is a hard instance (Theorem 21). Further-
more, [Unrl7] and [KLS18] have shown that for Fiat-Shamir signatures, up to
some loss in the security parameter and under some additional mild assumptions
on the underlying Y-protocol, one can also derive security under chosen-message
attack.

In conclusion, Fiat-Shamir signatures offer security against quantum attacks
(in the QROM) if the underlying 3-protocol is a proof of knowledge against quan-
tum attacks and satisfies a few additional natural assumptions (Theorem 22).

As a concrete application, using Unruh’s result on the collapsing property of
the RO [Unrl6] to argue the collapsing version of computational unique responses
(which we call quantum computational unique responses) for the underlying ¥-
protocol, we can conclude that the non-optimized version of Fish, which is the
Fiat-Shamir variant of Picnic, is secure in the QROM.

Comparison with concurrent results. In concurrent and independent work
[LZ19]7, Liu and Zhandry show results that are very similar to ours: they also
show the security of the Fiat-Shamir transformation in the QROM, and they
introduce a similar stronger version of the computational unique responses prop-
erty in order to argue that a ¥-protocol is a (computational) proof of knowledge
against a quantum adversary. In short, [LZ19] differs from the work here in the

" The paper [LZ19] was put on eprint (ia.cr/2019/262) a few days after our eprint
version (ia.cr/2019/190).



following aspects. In [LZ19], the result on the Fiat-Shamir transformation is ob-
tained using a very different approach, resulting in a greater loss in the reduction:
O(q°) compared to the O(g?) loss that we obtain. On the other hand, on the
quantum proof of knowledge front, Liu and Zhandry introduce some additional
techniques that, for instance, allow them to prove that the ¥-protocol underlying
Dilithium satisfies (their variant) of the newly introduced strong version of the
computational unique responses property, while we phrase this as a conjecture
in order to conclude the security of (some variant of) the Dilithium signature
scheme.

2 Reprogramming the Quantum Random Oracle

We show and analyze a particular way to reprogram a random oracle in the
quantum setting, where the oracle can be queried in superposition.

2.1 Notation

We consider a quantum oracle algorithm A that makes ¢ queries to an oracle,
i.e., an unspecified function H : X — ) with finite non-empty sets X', ). We may
assume without loss of generality that A makes no intermediary measurements.
Formally, A is then described by a sequence of unitaries Ai,..., A4, and an
initial state |¢g).® The unitaries A; act on registers X, Y, Z, E, where X and Y
have respective |X|- and |Y|-dimensional state spaces, while Z and E is arbitrary.
As will become clear, X and Y are the quantum registers for the queries to H as
well as for the final output x, Z is for the output z, and E is internal memory.
For any concrete choice of H : X — ), we can write

.AH|¢Q> = Aqu e A10H|¢0> 5

for the execution of A with the oracle instantiated by H, where O is the unitary
OH 1 |z)|y) = |z)|y ® H(z)) that acts on registers X and Y.
It will be convenient to introduce the following notation. For 0 < i,j < q we
set
A= A 00 A0

i—J

with the convention that .Afi ji= 1 for j < i. Furthermore, we set

[6i") = (AgL) o)

to be the state of A after the i-th step but right before the (i + 1)-st query, and
so that |¢>é{) equals (Aé{_m) |po) = A |¢g), the output state produced by A.

Finally, for a given function H : X — Y and for fixed z € X and © € ),
we define the reprogrammed function H+Ozx : X — ) that coincides with H on
X\ {z} but maps = to ©. With this notation at hand, we can then write

(A7) (AL:) [90) = (A7) 16i)

8 Alternatively, we may understand |¢o) as an auxiliary input given to A.



for an execution of A where the oracle is reprogrammed at a given point x after
the i-th query.

We are interested in the probability that after the execution of A¥ and upon
measuring register X in the computational basis to obtain x € X, the state of
register Z is of a certain form dependent on 2 and H (). This relation is captured
by a projection G, where, more generally, for z,7’ € X and © € ) we set

G, =|¥')e'|®1®l,e®1,

where {II; o }zcx 0cy is a family of projections acting on Z, which we refer to
as a quantum predicate. We use the short hands G& for Gﬁw and G for Gf(x),
ie.,

For an arbitrary but fixed z, € X, we then consider the probability
G313 -

Understanding A as an algorithm that outputs the measured z together with
the state z in register Z, we will denote this probability also by

Pr[ac:xo ANV (z,H(x),2): (x,2) + AH} )

understanding V' to be a quantum predicate specified by the projections I1;; p()-

2.2 Main technical result

We consider a quantum oracle algorithm A as formalized above, and we define a
two-stage algorithm S with black-box access to A as follows. In the first stage,
S tries to predict A’s future output x, and then, upon input a (random) O, in
the second stage tries to output what A is supposed to output, but now with
respect to © instead of H(x).

S works by running A, but with the following modifications. First, one of
the ¢ + 1 queries of A (also counting the final output in register X) is selected
uniformly at random and this query is measured, and the measurement outcome
x is output by (the first stage of) S. Then, this very query of A is answered either
using the original H or using the reprogrammed oracle H x @z, with the choice
being made at random, while all the remaining queries of A are answered using
oracle H+Ox.” Finally, (the second stage of) S outputs whatever A outputs.

Here, the figure of merit is the probability that for a fixed z, both the inter-
mediate measurement and a measurement of the register X return = and that
the register Z contains a state that satisfies the considered quantum predicate
with respect to x and its (now reprogrammed) hash value ©. Formally, this
probability is captured by

£, 102 (AZ25) (ALLiss) X1

9 If it is the final output that is measured then there is nothing left to reprogram.



where here and from now on, we use X as a short hand for the projection |z)z|
acting on X. The expectation is taken over © € ), i € {0,...,¢q} and b € {0,1}
uniformly random. Note that the random bit b € {0,1} determines whether the
measured query is answered with H or with H*Ox.

We write SA[H] to emphasize that S only makes black-box access to A and
that it depends on H. Our main technical lemma below then ensures that for
any H and for a random © € ), the success probability of SA[H] is up to an
order-¢? loss not much smaller than that of Af*®® and therefore not much
smaller than that of A¥ in case of a random H.

Lemma 1 Forany H: X — Y and x € X, it holds that

Eo {HG?|¢H*@$>H2} ||X|¢H>H2
©( JH*Ox H H\y||2 a 2 q /12
o5 G2 (AZ322) (AL, ) X16F) 5] = 2q+D(2¢+3) 2@+ )]

where the expectation is over random © € Y, i € {0,...,q} and b € {0,1}.1°

Proof. We assume that the Y-register of ) = (A{,,)|d0) is [0) no matter
what H is; this is without loss of generality since it can always be achieved by
an insignificant modification to A, i.e., by swapping Y with a default register
within E. For the purpose of the proof, we introduce an additional step .Af g1
that simply applies O, and we expand the notions of \qﬁf ) and AZH_,J» to allow
j = q+ 1. Finally, we “enhance” G to'!

GO =G92(120)0|®101)=X®|0)0|@ M, 1.
For any 0 < i < ¢, inserting a resolution of the identity and exploiting that

(Afi*le—icq-s-l) (»Afl—nﬂ) (1 - X)|¢1H> = ( fﬁffl) (1 - X)|¢11{> ,

we can write

H*@x H

( z+1—>q+1)|¢2+1>
= (AR ) (AL ) (L= X160 + (A2 40) (AL ) X [of)
= ( z‘lﬁfﬂ)(l - X)|¢1H> + (Aﬁ*1%q+1)(A£i+1)X|¢f>
= (Aﬂ?f1)|¢{{> - (Aﬂ?fl)X|¢fI> + (Ag-*léfq+1)(Afl—>i+1)X|¢fI>

10 We consider || to be superpolynomial in the security parameter, so that m
is negligible and can be neglected. In cases where |)| is polynomial, the presented
bound is not optimal, but an improved bound can be derived with the same kind of
techniques.

1 Informally, these modifications mean that we let A make one more query to get H(x)
into register Y, and GZ™) would then check that Y indeed contains H(z).



Rearranging terms, applying éf and using the triangle equality, we can thus
bound

I1GZ (AL Z)1e ), < 16T (AR )90,
+ G2 (AEER) X167
+ HG? (Agr*le—fq+1) <A1~>1+1)X|¢f{>H2 .

Summing up the respective sides of the inequality over ¢+ = 0, ..., q, we get

1621057, < (G216, + DG (AR 1) (ALia) X1, -
0<i<q
be{0,1}

By squaring both sides, dividing by 2¢+ 3 (i.e., the number of terms on the right
hand side), and using Jensen’s inequality on the right hand side, we obtain

(e

T 1621053 + D7 162 (AR5 1) (AL o) X 1o

0<i<q
bE{0,1}
and thus
2
~6( 4 H:O [ s [ [ ]
5) [HGE (‘Ai+bﬁq+1)("42%z+b)X‘¢ H ] = 2 q+ )(2q+3) 2(q+1)
(1)

Since both |©)6| and AFx9%, = OF*€* commute with GE, we get

162 (A2, 0) (AlLca) XI0T ;< 162 (A3 1) (AT 00) X1
= (|62 (Af525) (AL, ) XI5 @)

Also, because (X ®|0)O])OH*0* = (X 1)OH*O* and OF*O* commutes with
GY, we get

JGg1of e = o2 o ®

Finally,
e [IG2loa ] <€ [llore lexeno™ e ] < s Ix1el. @
Inserting (2), (3) and (4) into (1) yields the claimed result. O

2.3 Switching notation, and simulating the random oracle
Introducing more algorithmic-probabilistic notation, we write

(z,2',2) + (SA[H],0)



to specify the probability space determined as follows, relying on the above
construction of the two-stage algorithm S when given A. In the first stage S*[H]
produces x, and then in the second stage, upon receiving O, it produces 2’ and z,
where z may be quantum. Our figure of merit above, i.e., the left hand side of
the bound in Lemma 1 (with 2 replaced by z,), is then denoted by

%r[x:xo ANt'=xo ANV (2,0,2): (x,2,2) + (SA[H],@>] ,

where the subscript © in Prg denotes that the probability is averaged over a
random choice of O.

Using this notation, but also weakening the bound slightly by not requiring
x' = x,, for any H and z, the bound from Lemma 1 then becomes

%r[x:xo AV(z,0,2): (z,2) + (SA[H},QH

5 1
O(q?)

%r (=20 ANV (2, H(x),2) : (x,2) + AH*@“"]
where the approximate inequality 2 hides the term

1 ) H
mlﬁ“[m—xo (2, 2) + AM].
Recall that the output z may be a quantum state, in which case the predicate
V is given by a measurement that depends on z, and H(x) or O, respectively.
We fix a family H of 2(q + 1)-wise independent hash functions and average
the above inequality over a random choice of H € H from this family. We simply
write S for S[H| with H chosen like that. Furthermore, we observe that, for any
fixed x, the family {H * Oz |H € H,0 € {0,1}"} is a family of 2(¢ + 1)-wise
independent hash functions as well. Finally, we use that A (together with the
check V(z, H(x), z)) cannot distinguish a random function H*Oz in that family
from a fully random function H [Zhal2]. This gives us the following variation of
Lemma 1, which we state as our main technical theorem:

Theorem 2 (Measure-and-reprogram) Let X, be finite non-empty sets.
There exists a black-box polynomial-time two-stage quantum algorithm S with the
following property. Let A be an arbitrary oracle quantum algorithm that makes
q queries to a uniformly random H : X — Y and that outputs some x € X and
a (possibly quantum) output z. Then, the two-stage algorithm SA outputs some
x € X in the first stage and, upon a random © € ) as input to the second stage,
a (possibly quantum) output z, so that for any xo € X and any predicate!? V :

P@r [z=2, ANV (2,0,2) : (z,2) <SA,9>}
1
O(¢?)

where the 2 hides a term that is bounded by ﬁ when summed over all x,.

= P;{r[mzxo/\V(x,H(x),z):(x,z)(—AH},

12 We recall that in case z is a quantum state, V' is given by means of a measurement.



Remark 3 We do not spell out in detail what it means for a quantum algorithm
like S to be black-box; see e.g. [Unrl7] for a rigorous definition. What we obviously
need here is that S# has access to A’s initial state |¢o) and to ¢, and is given
black-box access to the unitaries A;. Furthermore, for later purposes, we need
the following composition property: if S is a black-box algorithm with access
to A, and K is a black-box algorithm with access to S#, then there exists a
black-box algorithm K¢ with access to A so that (K)A = K.

3 Security of the Fiat-Shamir Transformation

In this section, we show how to reduce security of the Fiat-Shamir transformation
to the security of the underlying >.-protocol: any dishonest prover attacking the
Fiat-Shamir transformation can be turned into a dishonest prover that succeeds
to break the underlying ¥-protocol with the same probability up to a polynomial
loss. This reduction is obtained by a straightforward application of Theorem 2.
Our security reduction holds very generically and is not strongly tight to the
considered notion of security, as long as the respective security definitions for
the ¥-protocol and the Fiat-Shamir transformation “match up”.

3.1 X-protocols

We recall the definition of a ¥-protocol.

Definition 4 (X-protocol) A X-protocol ¥ = (P,V) for a relation R C X xW
18 a three-round two-party interactive protocol of the form:

Prover P(z,w) Verifier V(z)
_a,
< cdc
= Accept iff V(z,a,¢,2) =1

Using our terminology and notation from above, P is a two-stage algorithm and
we can write

(a,z) + (P(z,w),c)

for the generation of the first message a in the first stage and the reply z in the
second stage once given the challenge c.

Remark 5 We allow the set of instances X, the set of witnesses VW and the
relation R to depend on a security parameter 1. Similarly, the interactive algo-
rithms P and V may depend on 7 (or have n as part of their input). However,
for ease of notation, we suppress these dependencies on 7 unless they are crucial.



Remark 6 We do not necessarily require a Y-protocol to be perfectly or statis-
tically correct. This allows us to include protocols that use rejection sampling,
where with a constant probability, the value z would leak too much informa-
tion on the witness w and so the prover sends L instead. On the other hand,
by default we consider the soundness/knowledge error to be negligible, i.e., a
dishonest prover succeeds only with negligible probability to make the verifier
accept if z is not a valid instance or the prover has no witness for it (depending
on the considered soundness notion). Negligible soundness/knowledge error can
always be achieved by parallel repetition (see e.g. [Dam10]).

3.2 The Fiat-Shamir transformation

The Fiat-Shamir transformation turns a Y-protocol ¥ into a non-interactive
proof system, denoted FS[X], by replacing the verifier’s random choice of ¢ € C
with ¢ := H(z,a), where H : X’ — C is a hash function with a domain X"’ that
contains all pairs ' = (z,a) with x € X and a produced by P. In other words,
upon input z and w, the honest FS-prover produces © = (a, z) by running the
two-stage Y-protocol prover P but using ¢ = H(z,a) as challenge (i.e., as input
to the second stage). In case ¥ is not statistically correct, the above process of
producing 7 = (a, z) is repeated sufficiently many times until V(z, a, H(z, a), 2)
is satisfied (or some bound is reached). In either case, we will write this as

7= (a,2) + PHs(z,w).

We may write as Vi (x, m) the FS-verifier’s check whether V (z,a, H(z,a), z) is
satisfied or not. In the security analysis, the hash function H is modeled by a
random oracle, i.e. by oracle access to a uniformly random H : X’ — C.

When considering an adversary A that tries to forge a proof for some in-
stance x € X, one can distinguish between an arbitrary but fized x, and an x
that is chosen by A and output along with a in case of X-protocols, respectively
along with 7 in case of the Fiat-Shamir transformation. If z is fixed then the
adversary is called static, otherwise it is called adaptive. For the typical security
definitions for ¥-protocols this distinction between a static and an adaptive A
makes no difference (see Lemmas 12 and 15 below), but for the Fiat-Shamir
transformation it (potentially) does.

3.3 The generic security reduction

Since an adaptive adversary is clearly not less powerful than a static adver-
sary, we restrict our attention for the moment to the adaptive case. Recall that
such an adaptive FS-adversary A outputs the instance x € X along with the
proof m = (a, z), and the figure of merit is the probability that z,a, z satisfies
V(z,a, H(z,a), z). Thus, we can simply apply Theorem 2, with (z, a) playing the
role of what is referred to as x in the theorem statement, to obtain the existence
of an adaptive Y-adversary S that produces (z,a) in a first stage, and upon



receiving a random challenge ¢ produces z, such that for any z, € X
Prlz=x, AV (z,a,c,2): (z,a,2) <S’4,c>]

> 1
O(q¢?)

PI’{r[x:xo AV(z,a,H(z,a),2) : (z,a,2) + A7],

where the approximate inequality hides a term that is bounded by % when
summed over all z, € X. Understanding that = is given to V along with the
first message a but also treating it as an output of SA, while V’s output v is its
decision to accept or not, we write this as

Prlz=12, A v = accept : (z,v) + (S, V)]

5 1
O(¢?)

PHr[:E:xo AVE(x, )« (z,7) AH} .

Summed over all z, € X, this in particular implies that

1
O(q?)

_ b
2q|C|

Pr[(SA,W = accept| > E’{r[Vgg(ac,w) :(z,m) + AT

Remark 7 We point out that the above arguments extend to a FS-adversary
A that, besides the instance = and the proof @ = (a,z), also produces some
local (possibly quantum) output satisfying some (quantum) predicate that may
depend on z,a, z. The resulting Y-adversary S* is then ensured to produce a
local output that satisfies the considered predicate as well, up to the given loss in
the probability. Indeed, we can simply include this local output in z and extend
the predicate V' accordingly.

In a very broad sense, the above means that for any FS-adversary A there
exists a Y-adversary S that “achieves the same thing’ up to a O(q?) loss in suc-
cess probability. Hence, for matching corresponding security definitions, security
of a X-protocol (against a dishonest prover) implies security of its Fiat-Shamir
transform.

We summarize here the above basic transformation from an adaptive FS-
adversary A to an adaptive X-adversary SA.

Theorem 8 There exists a black-box quantum polynomial-time two-stage quan-
tum algorithm S such that for any adaptive Fiat-Shamir adversary A, making q
queries to a uniformly random function H with appropriate domain and range,
and for any x, € X:

Pr[z=z, Av = accept : (z,v) « (S, V)]
1
O(¢?)

where the 2 hides a term that is bounded by #IC\ when summed over all z,.

2

I;’{r[xzaco AVE(z,7) : (z,7) AH} ,



Below, we apply the above general reduction to the respective standard defini-
tions for soundness and proof of knowledge. Each property comes in the variants
computational and statistical, for guarantees against computationally bounded
or unbounded adversaries respectively, and one may consider the static or the
adaptive case.

3.4 Preservation of soundness

Let ¥ = (P, V) be a E-protocol for a relation R, and let FS[X] be its Fiat-Shamir
transformation. We set £ := {z € X |Jw € W : R(z,w)}. It is understood that
P and V, as well as R and thus £, may depend on a security parameter n. We
note that in the following definition, we overload notation a bit by writing A for
both for the ordinary static and for the adaptive adversary (even though a given
A is usually either static or adaptive).

Definition 9 Y is (computationally/statistically) sound if there exists a
negligible function u(n) such that for any (quantum polynomial-time/unbounded)
adversary A and any n € N:

Pr (A, V(@) = accept] < ()
for all x ¢ L; respectively, in case of an adaptive A:
Priz & L A v =accept : (z,v) < (A, V)] < u(n).

FS[X] is (computationally/statistically) sound if there exists a negligi-
ble function u(n) and a constant e such that for any (quantum polynomial-
time/unbounded) adversary A and any n € N:

fI’{r [Vl%(x, T) T AH] < q¢°n(n)

for all © ¢ L; respectively, in case of an adaptive A:

P;Ir Vi@ m)Ae ¢ £ (z,m) « A"] < q°u(n).

Remark 10 Note that for the soundness of FS[X], the adversary A’s success
probability may unavoidably grow with the number ¢ of oracle queries, but we
require that it grows only polynomially in gq.

Remark 11 In line with Section 2, the description of a quantum algorithm A
is understood to include the initial state |¢g). As such, when quantifying over all
A it is understood that this includes a quantification over all |¢g) as well. This
stays true when considering A to be quantum polynomial-time, which means
that the unitaries A; can be computed by polynomial-time quantum circuits,
and ¢ is polynomial in size, but does not put any restriction on |¢g).'® This is
in line with [Unrl12, Def. 1], which explicitly spells out this quantification.

13 In other words, A is then non-uniform quantum polynomial-time with quantum
advice.



We consider the following to be folklore knowledge; for completeness, we still
give a proof in Appendix A.

Lemma 12 If ¥ is computationally/statistically sound for static adversaries
then it is also computationally/statistically sound for adaptive adversaries.

The following is now an immediate application of Theorem 8 and the above
observation regarding static and adaptive security for X-protocols.

Corollary 13 Let ¥ be a X-protocol with superpolynomially sized challenge
space C. If ¥ is computationally/statistically sound against a static adversary
then FS[X] is computationally/statistically sound against an adaptive adversary.

Proof. Applying Theorem 8, we find that for any adaptive FS-adversary A,
polynomially bounded in the computational setting, there exists an adaptive
Y-protocol adversary S*, polynomially bounded if A is, so that

Pr[z ¢ £ A Vi (x, )« (z,7) AH}

= Z Pr[x:xo A VI%(%W) : (x,w) «— AH]

&L
<0 (| 32 Plemre o= acopt (00) 540 ) + )
=0(¢%) - (Pr[:c & L Nv = accept : (z,v) + (SA,V>]> " O|é7‘l)

< O() - pln) + Oéf)

where the last inequality holds for some negligible function u(n) if X is sound
against an adaptive adversary. The latter is ensured by the assumed soundness
against a static adversary and Lemma 12. This bound can obviously be written
as ¢’ (n) for another negligible function y’(n), showing the claimed soundness
of FS[X]. O

3.5 Preservation as a proof of knowledge

We now recall the definition of a proof of knowledge, sometimes also referred to
as (witness) extractability, tailored to the case of a negligible “knowledge error”.
Informally, the requirement is that if A succeeds in proving an instance x, then
by using A as a black-box only it is possible to extract a witness for x. In case of
an arbitrary but fixed x, this property is formalized in a rather straightforward
way; however, in case of an adaptive A, the formalization is somewhat subtle,
because one can then not refer to the x for which A manages to produce a proof.
We adopt the approach (though not the precise formalization) from [Unrl7],
which requires x to satisfy an arbitrary but fixed predicate.



Definition 14 ¥ is a (computational/statistical) proof of knowledge if
there exists a quantum polynomial-time black-box ‘knowledge extractor’ K, a poly-
nomial p(n), a constant d > 0, and a negligible function k(n) such that for any
(quantum polynomial-time/unbounded) adversary A, anyn € N and any xz € X:

‘ .

Pr|(z,w) € R:w + ICA(J:)] > -Pr(A4,V(z)) = accept]d —k(n);

~

p(n

respectively, in case of an adaptive A:

Prlz € X A (z,w) € R: (z,w) <—/C‘A}

> 1 Priz e X Av=accept : (z,v) + (AW — k(1)
p(n)
for any subset X C X.

FS[X] is a (computational/statistical) proof of knowledge if there ex-
ists a polynomial-time black-box ‘knowledge extractor’ £, a polynomial p(n), con-
stants d,e > 0, and a negligible function p(n), such that for any (quantum
polynomial-time/unbounded) algorithm A, anyn € N and any x € X:

1
q°p(n)

Pr[(z,w) € R: (z,w) + EA] > 'PHI" [V;{s(lﬂ,ﬂ) U AH]d —p(n)-;

respectively, in case of an adaptive A:
Prlz € X A (z,w) € R: (z,w) + SA]

J 1
~ ¢°p(n)

~f1’{r [:17 S X/\VFI%(I,W) :(x, ) FAH]d—N(U)

for any subset X C X, where q is the number of queries A makes.

Also here, for Y-protocols static security implies adaptive security.

Lemma 15 If ¥ is a computational/statistical proof of knowledge for static A
then it is also a computational/statistical proof of knowledge for adaptive A.

Again, the following is now an immediate application of Theorem 8 and the
above observation regarding static and adaptive security for ¥-protocols.

Corollary 16 Let ¥ be a X-protocol with superpolynomially sized C. If ¥ is a
computational /statistical proof of knowledge for static adversaries then FS[X] is
a computational/statistical proof of knowledge for adaptive adversaries.

Proof. First, we observe that by Lemma 15, we may assume ¥ to be a computa-
tional/statistical proof of knowledge for adaptive adversaries. Let K be the black-
box knowledge extractor. Let A be an (quantum polynomial-time/unbounded)
adaptive FS-adversary .A. We define a black-box knowledge extractor £ for FS[X]
as follows. £4 simply works by running K< A, where S# the adaptive Y-protocol



adversary obtained by invoking Theorem 8. For any subset X C X, invoking the
proof-of-knowledge property of ¥ and using Theorem 8, we see that

Pr[z € X A(z,w) € R: (z,w) <—8A]

=Pr[z € X A(z,w) € R: (z,w) elCSA]

ﬁ Pr[z € X Av = accept(z,v) + — (84, V)]d — x(n)
1 d
m (I;X Pr[z =z, A v = accept(z,v) (84, V)]) — &(n)
> L ( ZPr a:o/\VH(zﬂ):(xﬂ)%AH}1)dn(n)
(77 To€X e 2q|C|
1 d
ZW-E’}[%EX/\VI%(%,W):(x,7r)<—.AH} — p(n)
for some negligible function u(n). O

Remark 17 We point out that in [Unr17] Unruh considers a stronger notion of
extractability than our Definition 14, where it is required that, in some sense, the
extractor also recovers any local (possibly quantum) output of the adversary A.
In the light of Remark 7, we expect that our result also applies to this stronger
notion of extractability.

4 Application to Fiat-Shamir signatures

Any Fiat-Shamir non-interactive proof system can easily be transformed into a
public-key signature scheme.'® The signer simply proves knowledge of a witness
(the secret key) for a composite statement z* := x|/m, which includes the public
key = as well as the message m. The signature o then consists of a proof for x*.

Definition 18 A binary relation R with instance generator G is said to be hard
if for any quantum polynomial-time algorithm A we have

Pr{(z,w') € R: (z,w) + G,w' + A(z)] < u(n)

for some negligible function u(n), where G is such that it always outputs a pair

(x,w) € R.

Definition 19 A Fiat-Shamir signature scheme based on a X-protocol ¥ =
(P,V) for a hard relation R with instance generator G, denoted by Sig[¥] is
defined by the triple (Gen, Sign, Verify), with

4 In fact, that is how the Fiat-Shamir transform was originally conceived in [FS87].
Only later [BG93| adapted the idea to construct a non-interactive zero-knowledge
proof system.



— Gen: Pick (z,w) < G, set sk := (z,w) and pk := x.
— Sign® (sk,m): Return (m, o) where o + PHy(x||m,w).
— Verify (pk,m, ): Return VE (x|m, o).

Here (PEg, VEL) = FS[Z*], where ©* = (P*,V*) is the X-protocol obtained from
Y by setting P*(z||m) = P(z) and V*(z||m) = V(z) for any m.

Note that by definition of FS in Section 3.2, we use V2 (z||m, o) as shortcut for
V(z||lm,a, H(z||m,a), z).
We investigate the following standard security notions for signature schemes.

Definition 20 (sEUF—CMA/EUF—NMA) A signature scheme fulfills strong
existential unforgeability under chosen-message attack (SEUF—CMA) if for all
quantum polynomial-time algorithms A and for uniformly random H : X' — C
it holds that

Pr [VerifyH(pk7m7J) A (m,o) ¢ Sig—q : (pk, sk) « Gen, (m, o) «+ ATS8(pk)

s negligible. Here Sig is classical oracle which upon classical input m returns
Sign® (m, sk), and Sig—q is the list of all queries made to Sig.

Analogously, a signature scheme fulfills existential unforgeability under no-
message attack (EUF—NMA) if for all quantum polynomial-time algorithms A
and for uniformly random H : X' — C it holds that

Pr [VerifyH(pk,m,U) . (pk, sk) + Gen, (m, o) < A (pk)

s negligible.

The unforgeability (against no-message attacks) of a Fiat-Shamir signature
scheme is shown below to follow from the proof-of-knowledge property of the
underlying proof system (hence, as we now know, of the underlying >-protocol),
under the assumption that the relation is hard, i.e. it is infeasible to compute
sk from pk.

Theorem 21 Let X be YX-protocol for some hard relation R, with superpolyno-
mially sized challenge space C and the proof-of-knowledge property according to
Definition 14. Then, the Fiat-Shamir signature scheme Sig[X] fulfills EUF —NMA

security.

Proof. Let A be an adversary against EUF —NMA, issuing at most ¢ quantum
queries to H. We show that

Advgil;[FglNMA(A) := Pr |Verify (pk,m, o) : (pk, sk) < Gen, (m,0) AH(pk)}
is negligible.

Recall from Definition 19 of Fiat-Shamir signatures that the X-protocol ¥*
is the ¥-protocol ¥ where the prover and verifier ignore the message part m of



the instance z|m. A successful forgery (m,o) is such that Vi (z||m, o) accepts
the proof o. Therefore,

AdvESTNMA (1) = CE [I;Ir [V (zllm, o) : (m, o) eAH(w)H . (5)

Note that if ¥ is a proof of knowledge, so is X*. Our Corollary 16 assures
that if X* is a proof of knowledge, then also FS[Z*] is a proof of knowledge.

For fixed instance x, let X be the set of instance/message strings z’||m where
z' = z. We apply the knowledge extractor from Definition 14 to the adaptive
FS-attacker A () that has z hard-wired and outputs it along with a message
m and the proof/signature o: There exists a knowledge extractor £, constants
d,e and a polynomial p (all independent of z) such that

PI’{r [x’”m € X ANVE (2! |m, o) : (2||m, o) + .AH((E)]

G
< (Pr[2lm e X A (2/,w) € R: (2'||m,w) 5A]qep(77) + u(n)) /4

Finally, taking the expected value of (6) over the choice of the instance x
according to the hard-instance generator G, we obtain that the left hand side

equals AdvgiléE\' MA(.A). For the right-hand side, we can use the concavity of

(:)*/? (note that we can assume without loss of generality that d > 1) and apply
Jensen’s inequality to obtain

E [(Pr[z’”m € X A (¢, w) € R: (2'||m,w) « EXq p(n) + u(n))l/d}

G
1/d
< ( EGPr[x’Hm €X A (2/,w) € R: (2 |m,w) + EA]¢p(n) + u(n))
T4

Note that the expected probability is the success probability of the extractor
to produce a witness w matching the instance x. As long as the relation R is
hard according to Definition 18, this success probability is negligible, proving
our claim.

O

If we wish for unforgeability under chosen-message attack, zero-knowledge
is required as well. [Unr17] and [KLS18] contain partial results that formalize
this intuition, but they were unable to derive the extractability of the non-
interactive proof system. Instead, they modify the ¥-protocol to have a lossy
mode [AFLT12], i.e. a special key-generation procedure that produces key pairs
whose public keys are computationally indistinguishable from the real ones, but
under which it is impossible for any (even unbounded) quantum adversary to
answer correctly.

Our new result above completes these previous analyses, so that we can
now state precise conditions under which a 3-protocol gives rise to a (strongly)
unforgeable Fiat-Shamir signature scheme, without the need for lossy keys.



Theorem 22 Let ¥ be X-protocol for some hard relation R, with superpolynomi-
ally sized challenge space C and the proof-of-knowledge property according to Def-
inition 14. Assume further that ¥ is e-perfect (non-abort) honest-verifier zero-
knowledge (naHVZK), has « bits of min entropy and computationally unique
responses as defined in [KLS18]. Then, Sig[¥X] fulfills SEUF—CMA security.

Proof. By Theorem 3.3 of [KLS18|, we can use the naHVZK, min-entropy and
computationally-unique-response properties of ¥ to reduce an sEUF—CMA ad-
versary to an EUF—NMA adversary'®. The conclusion then follows immediately
from our Theorem 21 above. a

5 Extractable X-protocols from quantum computationally
unique responses

In the last section, we have seen that the proof-of-knowledge property of the
underlying Y-protocol is crucial for a Fiat-Shamir signature scheme to be un-
forgeable. In [Unr12], Unruh proved that special soundness (a witness can be con-
structed efficiently from two different accepting transcripts) and perfect unique
responses are sufficient conditions for a Y-protocol to achieve this property in the
context of quantum adversaries. The perfect-unique-responses property is used
to show that the final measurement of the ¥-protocol adversary that produces
the response is nondestructive conditioned on acceptance. This property ensures
that the extractor can measure the response, and then rewind “as if nothing had
happened”.

A natural question is therefore which other property except the arguably
quite strict condition of perfect unique responses is sufficient to imply extract-
ability together with special soundness. In [ARU14|, the authors show that
computationally unique responses is insufficient to replace perfect unique re-
sponses. A Y-protocol has computationally unique responses if the verification
relation V' is collision-resistant from responses to commitment-challenge pairs
in the sense that it is computationally hard to find two valid responses for the
same commitment-challenge pair.

In [Unr16], Unruh introduced the notion of collapsingness, a quantum gen-
eralization of the collision-resistance property for hash functions. It is straight-
forward to generalize this notion to apply to binary relations instead of just
functions.

Definition 23 (generalized from [Unrl6]) Let R : X x Y — {0,1} be a
relation with | X| and |Y'| superpolynomial in the security parameter n, and define
the following two games for polynomial-time two-stage adversaries A = (A1, As),

Game 1 :
(8, X,Y)«— A1, 7+ R(X)Y), X « M(X),Y < M(Y), b+ A(S, X,Y)
Game 2 :
(S, X))« Ay, r«+ R(X,Y), Y« M(Y), b+ Ay(S, X,Y).

15 See also Theorem 25 in [Unr17] for a different proof technique.



Here, X andY are registers of dimension | X| and |Y|, respectively, M denotes a
measurement in the computational basis, and applying R to quantum registers is
done by computing the relation coherently and measuring it. R is called collapsing
from X to Y, if an adversary cannot distinguish the two experiments if the
relation holds, i.e. if for all adversaries A it holds that

= = — = = < .
A, Czrr‘ne 1 [T b 1] A, CELIr‘ne 2 [T b 1] - negl(n) (7)

Note that this definition is equivalent to Definition 23 in [Unrl6] for functions,
ie. if R(z,y) =1 if and only if f(x) = y for some function f.

Via the relation that is computed by the second stage of the verifier, the
collapsingness property can be naturally defined for -protocols.

Definition 24 (Quantum computationally unique responses) A -
protocol has quantum computationally unique responses, if the verification
predicate V(x,-,-,-) : Y x C x Z — {0,1} seen as a relation between ) x C
and Z is collapsing from Z to Y x C, where Y, C and Z are the commitment,
challenge and response spaces of the protocol, respectively.

Intuitively, for fixed commitment-challenge pairs, no adversary should be able
to determine whether a superposition over successful responses z has been mea-
sured or not. As in the case of hash functions (where collapsingness is a natural
stronger quantum requirement than collision-resistance), quantum computation-
ally unique responses is a natural stronger quantum requirement than computa-
tionally unique responses.

The following is a generalization of Theorem 9 in [Unrl2| where the as-
sumption of perfect unique responses is replaced by the above quantum com-
putational version. Additionally, we relax the special soundness requirement to
t-soundness, which requires that for any first message a, for uniformly random
chosen challenges ¢y, ..., ¢, and for any responses z1, ..., 2 with V(z,a;, ¢;, 2;)
for all i € {1,...,t}, a witness w for x can be efficiently computed except with
negligible probability (over the choices of the ¢;).

Theorem 25 (Generalization of Theorem 9 from [Unrl2]) Let IT be a
Y-protocol with t-soundness for some constant t and with quantum computa-
tionally unique responses. Then II is a computational proof of knowledge as in

Definition 14.

The proof follows very much the proof of Theorem 9 in [Unrl2], up to some
small extensions; thus, we only give a proof sketch here.

Proof (sketch). We consider the following extractor K. It runs A to the point
where it outputs a. Then, it chooses a random challenge ¢; and sends it to A, and
obtains a response z; by measuring A’s corresponding register. C then rewinds
A (on the measured state!) and chooses and sends to A a fresh random challenge
cg, resulting in a response zs, etc., up to obtaining response z;. If V(x, a;, ¢;, 2;)



for all ¢ € {1,...,t} then K can compute w except with negligible probability
by the t-soundness property; otherwise, it aborts.

It remains to analyze the probability, denoted by F' below, that V(z, a;, ¢;, 2;)
for all 4. If the X-protocol has perfect unique responses then measuring the re-
sponse z is equivalent to measuring whether the response satisfies the verification
predicate V' (with respect to z, a, ¢). Lemma 29 in Appendix B, which generalizes
Lemma 7 in [Unr12], allows us then to control the probability F' by means of the
probability V' that A succeeds in convincing the verifier in an ordinary run (this
holds for an arbitrary but fixed a, and on average over a by means of Jensen’s
inequality). If the ¥-protocol has quantum computationally unique responses in-
stead, then measuring the response z is computationally indistinguishable from
measuring whether the response satisfies the verification predicate, and so there
can only be a negligible loss in the success probability of X compared to above.

O

We expect the above theorem to be very useful in practice, for the follow-
ing reason. Usually, X-protocols deployed in Fiat-Shamir signature schemes have
computationally unique responses to ensure strong unforgeability via Theorem
22 or similar reductions. On the other hand, only very artificial separations be-
tween the notions of collision resistance and collapsingness for hash functions are
known (e.g. the one presented in [Zhal7]). It is therefore plausible that many 3-
protocols deployed in strongly unforgeable Fiat-Shamir signature schemes have
quantum computationally unique responses as well. In the next section we take
a look at a couple of examples that form the basis of some signature schemes
submitted to the NIST competition for the standardization of post-quantum
cryptographic schemes.

6 Application to NIST submissions

In the previous sections we gave sufficient conditions for a Fiat-Shamir signa-
ture scheme to be existentially unforgeable in the QROM. Several schemes of the
Fiat-Shamir kind have made it into the second round of the NIST post-quantum
standardization process. In this section we outline how our result might be ap-
plied to some of these schemes, and under which additional assumptions. We
leave the problems of applying our techniques to the actual (highly optimized)
signature schemes and of working out the concrete security bounds for future
work.

6.1 Picnic

In order to obtain QROM-security, Picnic uses the Unruh transform [Unrl5]
instead of the Fiat-Shamir transformation, incurring a 1.6x loss in efficiency
(according to [CDG™17|) compared to Fish, which is the same scheme under
plain Fiat-Shamir.

The underlying sigma-protocol for these schemes is ZKB++ [CDGT17], an
optimized version of ZKBoo [GMO16], which uses an arbitrary one-way function



¢, a commitment scheme COM and a multi-party computation protocol to prove
knowledge of a secret key. Roughly, a prover runs the multi-party protocol ‘in its
head’ (i.e. simulates the three agents from the protocol, see [[KOS07]) to compute
pk := ¢(sk). Only a prover who knows the secret key can produce the correct
view of all three agents, but the public key suffices to verify the correctness of
two of the views. In the first round, the prover uses COM to commit to all three
views separately, and sends these commitments to the verifier. The verifier replies
with a random challenge i € {1,2,3}, to which the prover in turn responds by
opening the i-th and ¢+ 1-th commitment.

ZKBoo does not specify a concrete commitment scheme for COM. A natural
option is to commit by hashing the input together with some random bits.

Corollary 26 Sig[ZKBoo] is strongly existentially unforgeable in the QROM
when COM is instantiated with a hash function H.

Proof. If we treat H as a quantum-accessible random oracle, then H is collapsing
by [Unr16]. Since the response of the prover in the third round consists only of
openings to the commitments ¢;, ¢y, i.e. preimages of ¢; and ¢;y under H,
and since collapsingness is closed under concurrent composition [Fehl18], the
collapsingness of H implies that ZKBoo has quantum computational unique
responses. ZKBoo further has 3-soundness, and thus the claim follows using
Theorems 25 and 22. a

ZKB++ improves on ZKBoo by introducing optimizations specific to the sig-
nature context, which complicate the analysis of the overall scheme. We therefore
leave the adaption of Corollary 26 to ZKB++ and Fish for future work.

6.2 Lattice-based Fiat-Shamir signature schemes —
CRYSTALS-Dilithium and qTesla

In [Lyu09] and [Lyul2], Lyubashevsky developed a Fiat-Shamir signature scheme
based on (ring) lattice assumptions. In the following, we explain the lattice
case and mention ring-based lattice terms in parentheses. The underlying sigma
protocol, which forms the basis of the NIST submissions CRYSTALS-Dilithium
and qTesla, can be roughly described as follows. The instance is given by a
key pair ((A,T),S), with T = AS. Here, A and S are matrices of appropriate
dimensions over a finite field (polynomials of appropriate degree), and S is small.
For the first message to the verifier, the prover selects a random short vector
(small polynomial) y, and sends over Ay. The second message, from the verifier
to the prover, is a random vector (polynomial) ¢ with entries (coefficients) in
{=1,0,1} and a small Hamming weight. The third message, i.e. the response of
the prover, is z = Sc¢ + y, which is short (small) as well. The prover actually
sends z only with a particular probability, which is chosen so as to make the
distribution of (sent) z independent of S. Otherwise, it aborts and tries again.
Verification is done by checking whether z is indeed short (small), and whether
Az — Ay = Tec. Let us denote this protocol by LatticeX. In the following we



restrict our attention to the lattice case, but we expect that one can do a similar
analysis for the ring-based schemes.

The security of the scheme is, in the lattice case, based on the SHORT INTE-
GER SOLUTION (SIS) problem, which essentially guarantees that it is hard to
find an integral solution to a linear system that has a small norm. The computa-
tionally unique responses property for the simple 3-protocol described above, in
fact, follows directly from SIS: If one can find a vector ¢ and two short vectors
xi, = 1,2 such that Axy = ¢ = Axy, then the difference x = 21 — x¢ is a short
solution to the linear system Ax = 0.

Another way to formulate the computationally unique responses property
for the above ¥-protocol is as follows. Let S C Fg be the set of short vectors.
Let fa: S — FJ" be the restriction to S of the linear map given by the matrix
A € F7*". The X-protocol above has computationally unique responses if and
only if f4 is collision resistant. As pointed out at the end of Section 5, the known
examples that separate the collision resistance and collapsingness properties are
fairly artificial. Hence it is a natural to assume that f4 is collapsing as well.

Assumption 27 For m,n and q polynomial in the security parameter n, the
Junction family fa keyed by a uniformly random matriz A € F**™ is collapsing.

Under Assumption 27, LatticeX has quantum computational unique responses,
and hence gives rise to an unforgeable Fiat-Shamir signature scheme.

Corollary 28 Under Assumption 27, Sig|[LatticeX| is strongly existentially un-
forgeable in the QROM.

As mentioned at the end of the introduction, in their concurrent and indepen-
dent work [LZ19], Lie and Zhandry show that f4 satisfies their notion of weak-
collapsingness (assuming hardness of LWE), which roughly says that there is
some non-negligible probability that the adversary does mot notice a measure-
ment. Weak-collapsingness implies a similarly weakened variant of our property
‘quantum computational responses’, which is still sufficient to let the proof of
Theorem 25 go through, albeit with a worse but still non-negligible success prob-
ability for the knowledge-extractor.
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A  Proof of Lemma 12 and 15

Proof (of Lemma 12). Let A be an adaptive X-protocol adversary, producing
x and a in the first stage, and 2z in the second stage. We then consider the
following algorithms. A;,;; runs the first stage of A (using the same initial state),
outputting = and a. Let |¢; o) be the corresponding internal state at this point.
Furthermore, for any possible z and a, A, , is the following static X-protocol
adversary. Its initial state is |1, o)|a) and in the first stage it simply outputs a,
and in the second stage, after having received the verifier’s challenge, it runs the
second stage of A. We then see that

Pr[z & £ A v =accept : (z,v) + (A, V)]

= Z Pr(z =z, A v =accept : (z,v) + (A, V)]
oL

Z ZPr[,Aim-t = (%0,a)] Pr[(As, a, V(2o)) = accept] .

To¢L a

Since Pr[(Aqs,.q,V(2o)) = accept] is bounded by a negligible function, given
that A, , is a (quantum polynomial-time/unbounded) static adversary, the claim
follows. O

Proof (of Lemma 15). Let A be an adaptive X-protocol adversary, producing x
and a in the first stage, and z in the second stage. We construct a black-box
knowledge extractor K,q that works for any such A. In a first step, ICfd runs the
first stage of A using the black-box access to A (and having access to the initial
state of A). Below, we call this first stage of A as A;y;;. This produces z and
a, and we write |1, o) for the corresponding internal state. Then, it runs Kz *,
where C,,, is the knowledge extractor guaranteed to exist for static adversaries,
and A™® is the static adversary that works as follows. It’s initial state is [ty o) |a)
and in the first stage it simply outputs a, and in the second stage it runs the
second stage of A on the state |1, ,). Note that having obtained = and a and
the state |1, ,) as first step of KA, KA can then be executed with black box
access to (the second stage of) A. For any subset X C X, we now see that

Prlz € X A (z,w) € R: (z,w) + KJy]

= 3 D Prldi = (2. 0)|Pr (. w) € Rew e K

zeX a
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1 .
> Z ZPI’[Ainit = (z,a)] o Pr[(A™ V(z)) = accept]d — k(1)

d
77( Z ZPr init = (x a)}Pr[(Ax @ V(x)) = accept]) — k(n)

zeX a

%Pr[x € X ANv=1:(x,v) + (Aw’a7V(m)>]d —x(n),

where the first inequality is because of the static proof-of-knowledge property,
and the second is Jensen’s inequality, noting that we may assume without loss
of generality that d > 1. O

B Generalization of Lemma 7 from [Unrl12]

Lemma 29 Let Py,..., P, be projections and |1)) a state vector, and set
1
V= Z (Y| Py) = ZIIPWJ > and  F:= p S AP, Py D))
i il"'it
Then F > V2t—1,

The case t = 2 was proven in [Unrl2, Lemma 7]. We show here how to extend
the proof to t = 3; the general case works along the same lines.

Proof (of the case t = 3). For convenience, set A := %ZZ P; and |¢i,) =
P P;P;|¢). Then, using convexity of the function z +— 2° to argue the first
inequality, we get

VO =((WIAR)® = (W1A%) = — 3 (WP PPy

ijklm
1 1
= v ij%:m<¢ijk|¢mék'> = n Xk: <n2 %: wzjk|> <n2 Z [Vmer) )
TEIA Tl < e s
] 1]

where the last inequality is Claim 2 in the proof of Lemma 7 in [Unrl2]. O
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