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Abstract. In this work we present a collection of compilers that take
secret sharing schemes for an arbitrary access structure as input and
produce either leakage-resilient or non-malleable secret sharing schemes
for the same access structure. A leakage-resilient secret sharing scheme
hides the secret from an adversary, who has access to an unqualified set
of shares, even if the adversary additionally obtains some size-bounded
leakage from all other secret shares. A non-malleable secret sharing scheme
guarantees that a secret that is reconstructed from a set of tampered
shares is either equal to the original secret or completely unrelated.
To the best of our knowledge we present the first generic compiler for
leakage-resilient secret sharing for general access structures. In the case of
non-malleable secret sharing, we strengthen previous definitions, provide
separations between them, and construct a non-malleable secret sharing
scheme for general access structures that fulfills the strongest definition
with respect to independent share tampering functions. More precisely,
our scheme is secure against concurrent tampering: The adversary is
allowed to (non-adaptively) tamper the shares multiple times, and in
each tampering attempt can freely choose the qualified set of shares to be
used by the reconstruction algorithm to reconstruct the tampered secret.
This is a strong analogue of the multiple-tampering setting for split-state
non-malleable codes and extractors.
We show how to use leakage-resilient and non-malleable secret sharing
schemes to construct leakage-resilient and non-malleable threshold sig-
natures. Classical threshold signatures allow to distribute the secret key
of a signature scheme among a set of parties, such that certain qualified
subsets can sign messages. We construct threshold signature schemes that
remain secure even if an adversary leaks from or tampers with all secret
shares.



1 Introduction

In a secret sharing scheme, a dealer who holds a secret s chosen from a domain
M can compute a set of shares by evaluating a randomized function on s which
we write as Share(s) = (s1, . . . , sn).

A secret sharing comes with an access structure A, which is a family of
subsets of the indices 1, . . . , , n, such that if one is given a subset of the shares of s
corresponding to a set A ∈ A (a qualified set), then one can compute s efficiently,
whereas any subset of shares corresponding to a set not in A (an unqualified set)
contains no, or almost no information about the secret. An important special
case is threshold secret sharing, where the access structure contains all set of size
at least some threshold value.

Secret-sharing is one of the most basic and oldest primitives in cryptography,
introduced by Blakley and Shamir in the late seventies [6,22]. It allows to strike a
meaningful balance between availability and confidentiality of secret information.
Namely, we can store the n shares in n different servers and ensure that (i) as
long as a qualified set of servers is alive, the secret is available, and (ii) even if
an unqualified set of shares is stolen, the secret remains confidential.

After its introduction, several variants of secret sharing have been suggested
that address the problem of authenticity of the secret: we want to guarantee that
we reconstruct the original value, even if not all players are honest. One such
variant is robust secret sharing, where the dealer is honest but some unqualified
set of share holders are malicious and may return incorrect shares. It is required
that the secret is still correctly reconstructed from the set of all shares in such
a case. In verifiable secret sharing, the dealer may be dishonest as well, but
via interaction in the sharing phase we can enforce that a unique secret is still
determined and that this is the value that will be reconstructed later.

In all these older settings, the adversary is of the classic type that completely
corrupts a certain subset of the players in the protocol, either to steal information
or to corrupt data, whereas the players who are not corrupted are “completely
honest”. In many scenarios, however, this may not be the most realistic model of
attacks. Instead, it may make more sense to assume that the adversary will try
to attack all share holders, and will have some partial success in all or most of
the cases.

For the case of attacks against confidentiality, we can model this as leakage
resilient secret sharing, where the adversary is allowed to specify a leakage
function Leak and will be told the value Leak(s1, ..., sn). Then, under certain
restrictions on Leak, we want that the adversary learns essentially nothing
about s. Typically, so called local leakage is considered, where Leak(s1, ..., sn) =
(Leak1(s1), ..., Leakn(sn)) for local leakage functions Leaki with bounded output
size. This makes sense in a scenario where shares are stored in physically separated
locations. It is known that some secret sharing schemes are naturally leakage-
resilient against local leakage whereas others are not [5]. Boyle et al. [8] showed how
to construct (locally) leakage-resilient verifiable secret sharing for threshold access
structures. Goyal and Kumar [16] construct a specific type of leakage-resilient
2-out-of-n secret sharing as part of non-malleable secret sharing construction.
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To the best of our knowledge, it is not known how to construct leakage-resilient
schemes from regular secret sharing schemes in general.

The case of attacks that try to corrupt the secret has been considered only
recently, and for this purpose the notion of non-malleable secret sharing was
introduced by Goyal and Kumar [16]. In this model, the adversary specifies a
tampering function f which acts on the shares, and then the reconstruction algo-
rithm is applied to a qualified subset of f(s1, ..., sn). The demand, simplistically
speaking, is that either the original secret is reconstructed or it is destroyed, i.e.,
the reconstruction result is unrelated to the original secret. Note that since f is
allowed to touch all shares, we cannot avoid the case where an unrelated secret
is reconstructed, as f could always replace all shares by shares of a different
secret. In line with all previous works, we consider local tampering functions,
which individually tamper with each share. This is a sensible assumption if, for
example, each share is stored in a different server. Of course, such a tampering
is closely related to the earlier notion of non-malleable codes against split-state
tampering [14]. The main difference between non-malleable codes and secret
sharing schemes is that, in addition to non-malleability, we also insist that the
correctness and privacy properties of the secret sharing scheme are satisfied.
Interestingly, some non-malleable codes can also be seen as primitive versions
of general non-malleable secret sharing schemes. In fact, non-malleable codes in
the 2-split-state model (where each codeword is split into two halfs which are
tampered independently) are 2-out-of-2 non-malleable secret sharing schemes [2].

The first non-malleable secret sharing schemes were constructed in [16] for
threshold access structures, and, in a follow-up work [17], for general access
structures, where an adversary is allowed to independently tamper with each
share in a minimal reconstruction set. In the latter work, a general compiler was
given that builds a non-malleable secret sharing scheme from a regular secret
sharing scheme.

An application of non-malleable secret sharing to secure message transmission
was given in [16], but another very natural application, which does not seem to
have been considered before, is to threshold cryptography. Let us consider, for
instance, a threshold signature scheme. In such an application, the secret key is
secret-shared among n servers, who then collaborate to generate a signature such
that the signature itself is the only new information released.

Some threshold signature schemes have “bult-in” protection against tampering.
Namely, they establish a public commitment to each share of the secret key, and
when a server contributes to a new signature, it must prove in zero-knowledge that
it is behaving consistently with the commitment. If the commitment cannot be
tampered, this will imply that tampered shares cannot contribute to a signature.
However, in many protocols for signature generation, one can avoid zero-knowledge
proofs by optimistically generating a signature assuming that all players behave
correctly. The observation is that one can always verify the signature in the end
and take some alternative action if it fails. This will be very efficient if players
behave honestly almost always. Such a protocol is not secure if executed on
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tampered shares, and adding zero-knowledge proofs does not make sense in this
case.

It therefore seems natural to try to use a non-malleable secret sharing scheme
instead. This of course raises the question of how we can generate signatures
efficiently and securely – existing threshold signatures assume regular secret
sharing, and it is not clear how we can use existing non-malleable schemes
without resorting to generic multiparty computation.

However, suppose for a moment that we could solve this issue. Now, if the
shares have in fact been tampered with, this tampering will become clear once
it is found out that the signature does not verify, and one can then take action
(e.g., stop the system and restore the secret key from a back-up). The intuition is
that we have managed to make the tampering harmless, because non-malleability
implies that the faulty signature is generated from an unrelated secret.

Unfortunately, however, the original definition is unlikely to be sufficient to
prove this intuition for a realistic system. The problem is that a real-life system
will most likely have to serve many different signature requests that arrive in an
uncoordinated fashion over an asynchronous network like the Internet. Therefore,
once the first faulty signature has been detected and action has been taken,
we should assume that in the mean time several other signature requests have
already been served, possibly by different qualified sets of servers.

The standard definition of non-malleable secret sharing [16,17] is not sufficient
to prove security in this case because it only talks about one invocation of
the reconstruction algorithm. What we need is a stronger definition, namely
non-malleability with concurrent reconstruction. In this model, we consider an
experiment where, after the tamperings have been done, the reconstruction
algorithm is run (in parallel) on several qualified subsets. We require that all
the instances of the reconstruction return either the original secret or something
unrelated. It is not known how to construct secret sharing schemes with this
stronger property.

1.1 Our Contributions
In this paper, we resolve all of the above open questions:
– We present a general compiler that transforms any secret sharing scheme into a

leakage-resilient one for the same access structure and preserves the efficiency
of the original scheme. The compiled scheme withstands bounded size local
leakage from all shares. The result extends to attacks that are strictly stronger
than previously considered: the adversary can be told complete information
on an unqualified set of shares and can in addition be given local leakage
from all the other shares, and still will not learn the secret. To the best of
our knowledge, this is the first result of its kind.
If the share length of the underlying secret sharing scheme is `, then the
compiler can yield a leakage-resilient scheme with shares of length O(`) and
leakage rate 1 − c for an arbitrarily small constant c > 0. Moreover, if we
allow a blow-up of the share length in the compiled scheme from ` to ω(`),
then we can achieve a leakage rate of 1− o(1).
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– We present another compiler that transforms any secret sharing scheme
realizing an access structure A where every qualified set T has size at least
3 into a scheme for the same access structure that is non-malleable with
concurrent reconstruction with respect to individual share tampering. More
precisely, the adversary chooses a polynomial (in the number of parties)
number of qualified sets T1, T2, . . . , where it may be the case that Ti = Tj
for some i and j, along with associated tampering functions f (1), f (2), . . . ,
where f (i) tampers each share independently. We may think of this setting
as a strong analogue of the multiple-tampering paradigm for non-malleable
codes and extractors: The adversary is allowed to (non-adaptively) tamper
the shares multiple times, and in each tampering attempt is further allowed
to freely choose the qualified set to be used by the reconstruction algorithm
in the tampering experiment.

– We present a compiler that turns any threshold signature scheme into one
that is secure against tampering, assuming the original scheme is secure in
the standard sense. In particular, the compiled scheme is secure even if faulty
signatures are constructed from several qualified sets after tampering. We
allow the adversary to either tamper with all shares of the secret key, or
to maliciously corrupt an unqualified subset of the signature servers. The
compiler adds two rounds to the signing protocol of the original scheme. The
computational complexity is essentially that of the original signature protocol
plus that of the reconstruction in a non-malleable secret sharing scheme. The
overhead is actually only necessary each time the system is initialized from
storage that may have been tampered, and therefore its cost amortizes over
all signatures generated while the system is on-line.

– We present a compiler that turns any threshold signature scheme into one
that is secure in the standard sense even if the adversary, additionally, obtains
size-bounded leakage from all secret key shares. The compiler follows the
same blueprint and is as efficient as our compiler for non-malleable threshold
signatures.

1.2 Independent Work

In the late stages of this work, it came to our knowledge that other independent,
concurrent works obtained results similar to ours. Srinivasan and Vasudevan [24]
give a compiler that transforms a secret sharing scheme for any access structure
into a leakage-resilient secret sharing scheme for the same access structure. Their
compiler is rate-preserving and has leakage rate approaching 1. In comparison, if
the underlying secret sharing scheme has constant rate, our leakage-resilient secret
sharing compiler achieves rate Ω(1/n) and leakage rate 1− c for an arbitrarily
small constant c > 0, and must have rate 0 if we require leakage rate 1− o(1).
They also construct leakage resilient schemes in a stronger leakage model, where
leakage functions may be chosen adaptively.

Srinivasan and Vasudevan use the results obtained to construct positive
rate non-malleable threshold secret sharing schemes against a single tampering
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that modifies each share independently for 4-monotone access structures4. In
comparison, the non-malleable secret sharing compiler that we obtain for a single
tampering works for all 3-monotone access structures but has rate Θ( 1

n logm ) in
the same setting, where m denotes the length of the secret and n denotes the
number of parties, and so converges to 0. Finally, they consider applications to
leakage-resilient secure multiparty computation.

Badrinarayanan and Srinivasan [3] construct non-malleable secret sharing
schemes with respect to independent share tampering, both against a single tam-
pering and against multiple tamperings. They are able to realize all 4-monotone
access structures. Moreover, they optimize the rates of their constructions to
obtain schemes with positive rate and a concretely efficient scheme. However,
their tampering model is weaker than ours: While in our model, named con-
current reconstruction, the adversary is allowed to (non-adaptively) tamper the
shares multiple times and in each tampering can choose a potentially different
reconstruction set for the tampering experiment, the model studied in [3] forces
the adversary to always choose the same reconstruction set for all tamperings.
Their schemes are not secure in the stronger concurrent reconstruction model, and
the authors explicitly mention the concurrent reconstruction model as a natural
strengthening of their tampering model. In contrast, our compiler transforms
any secret sharing scheme realizing a 3-monotone access structure into a (rate-0)
non-malleable secret sharing scheme secure against multiple tamperings in the
concurrent reconstruction model.

Kumar, Meka, and Sahai [20] also study leakage-resilient and non-malleable
secret sharing. They consider a stronger leakage model than ours, where each
leaked bit may depend on up to p shares which can be chosen adaptively by the
adversary. They give a compiler that transforms a standard secret sharing scheme
into a leakage-resilient one in the model just described, for p logarithmic in the
number of parties. It is also shown that noticeably improving the dependence
of the share length on p obtained there would lead to non-trivial progress on
important open questions related to communication complexity. Finally, they
consider the notion of leakage-resilient non-malleable secret sharing with respect
to independent share tampering. Here, the adversary has access to leakage from
the shares, which he can then make use of to choose tampering functions. They
construct schemes in this model for the case of a single tampering. For comparison,
our non-malleable secret sharing schemes cannot withstand leakage, but, as
already mentioned in the previous paragraph, allow the adversary to tamper the
shares multiple times, each time with a potentially different reconstruction set in
the associated tampering experiment.

1.3 Technical Overview

In this section, we give a high-level overview of the proof ideas and techniques
used to construct each one of our compilers.

4 An access structure A is said to be k-monotone if |T | ≥ k for all T ∈ A.
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All of our secret sharing scheme compilers are based on the same key idea: Let
s1, . . . , sn denote the shares obtained via the underlying secret sharing scheme.
We encode each share si using some (randomized) coding scheme (Enc,Dec) to
obtain two values Li and Ri. Then, the new compiled shares are obtained by, for
each i = 1, . . . , n, giving Li to the i-th party, and Ri to every other party. At the
end of this procedure, the i-th party has a compiled share, denoted Si, of the
form Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn).

Reconstruction of the underlying secret is possible from any qualified set
of parties, as they will learn the corresponding pairs (Li, Ri), and hence the
underlying share si. The different compilers arise by instantiating the idea above
with coding schemes satisfying different properties. One basic property that is
required from all coding schemes is that one half of the codeword (Li, Ri) reveals
almost nothing about si.

Leakage-Resilient Secret-Sharing Scheme In order to obtain a leakage-
resilient secret-sharing scheme via the idea above, we instantiate the coding
scheme (Enc,Dec) as follows: Let Ext be a strong seeded extractor. Roughly
speaking, a strong seeded extractor is a deterministic function that produces a
close-to-uniform output when given a sample from a source with high min-entropy
along with a short, independent, and uniform seed, even when the seed is known
to the distinguisher. Then, Enc(m) samples (L,R) from the preimage Ext−1(m)
close to uniformly at random. Here, L corresponds to the weak source, while R
corresponds to the uniform, independent seed. To recover m from a codeword c,
we simply set Dec(L,R) := Ext(L,R). This coding scheme is efficient if Ext is
itself efficient, and furthermore Ext supports efficient close-to-uniform preimage
sampling. More precisely, this means that, given m, there exists an efficient
algorithm that samples an element of Ext−1(m) close to uniformly at random.
The idea behind this coding scheme is the same as the one used by Cheraghchi
and Guruswami [11] in order to obtain split-state non-malleable codes from
non-malleable extractors (variations of these objects are defined in Section 2, but
are not important for this discussion).

We instantiate our compiler with linear strong seeded extractors coupled with
a careful choice of parameters in order to obtain a leakage-resilient scheme with
good leakage rate. A result of [9] ensures that we can efficiently sample close to
uniformly from the preimage of any linear strong seeded extractor, provided the
error of the extractor is small enough.

We now discuss why this construction is leakage-resilient. For simplicity,
assume that Li and Ri are independent and uniform for i = 1, . . . , n. This is not
true in practice, and a little more care is needed to show that leakage-resilience
holds in Section 4. However, it lets us present the main idea behind the proof in
a clearer way.

Suppose the adversary holds shares from a set of unqualified parties T . Without
loss of generality, let T = {1, . . . , t}. Furthermore, we also assume the adversary
learns some limited information about all shares, i.e., he learns Leaki(Si) for
some function Leaki and all i = 1, . . . , n. Note that the adversary knows the
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pairs (Li, Ri) for i = 1, . . . , t, and hence the shares s1, . . . , st obtained via the
underlying secret sharing scheme. Furthermore, he knows Ri (the seeds of the
extractor) for i = t+ 1, . . . , n. The goal of the adversary is now to obtain extra
knowledge about Lt+1,, . . . , Ln from the leaked information. Since, by hypothesis,
the leaked information about Li is only a small linear fraction of its length, and is
independent of Ri, we can condition Li on the output of Leaki(Si). As a result, Li
conditioned on Leaki(Si) is still independent of Ri, and still has high min-entropy.
This means that the output of Ext(Li, Ri) still looks close-to-uniform to the
adversary, even when Ri is given (recall that we use a strong extractor). It follows
that the leaked information gives almost no information about the shares outside
T , and hence we can use the statistical privacy of the underlying secret sharing
scheme to conclude the proof.

Non-Malleable Secret-Sharing Scheme with Concurrent Reconstruc-
tion In order to obtain a non-malleable scheme, we use the same basic idea as
before, but with a few modifications. To begin, we require the following primitives:

– A secret sharing scheme (Share,Rec) for an access structure in which every
qualified set has size at least 3;

– A strong two-source non-malleable extractor nmExt secure against multiple
tamperings which supports efficient preimage sampling, in the sense that we
can sample uniformly from its preimages nmExt−1(z).

A non-malleable extractor is a stronger notion of an extractor introduced in [11].
More precisely, its output must still be close to uniform even conditioned on the
output of the extractor on a tampered version of the original input. Similarly
as before, such an extractor is said to be strong if the property above still holds
when the distinguisher is also given the value of one of the input sources. Since
their introduction, non-malleable extractors have received a lot of attention due
to their connection to split-state non-malleable codes [11,10,9,21]. We note that
constructions of such strong non-malleable extractors handling a sublinear (in the
input length) number of tamperings and supporting efficient preimage sampling
are known [9,18].

The coding scheme (Enc,Dec) is obtained from nmExt analogously to the
leakage-resilient scheme. Namely, Enc(m) samples (L,R) uniformly at random
from nmExt−1(m), and we set Dec(L′, R′) := nmExt(L′, R′).

To encode the shares (s1, . . . , sn) into (S1, . . . , Sn), we proceed as follows:

1. Sample P ← {0, 1}p;
2. Set (Li, Ri)← Enc(P ||si) for i = 1, . . . , n, where || denotes string concate-

nation;
3. Set Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn) for i = 1, . . . , n.

We will now briefly walk through the proof of statistical privacy and non-
malleability for a single reconstruction set. Statistical privacy follows from the
statistical privacy properties of the underlying secret sharing scheme and the

8



fact that (Enc,Dec) as defined above can be seen as a 2-out-of-2 secret sharing
scheme.

In order to show statistical privacy, fix an unqualified set of parties T , which we
may assume is T = {1, . . . , t}. First, the fact that a split-state non-malleable code
is also a 2-out-of-2 secret sharing scheme implies that we can replace the values
Rt+1, . . . , Rn in all shares by independent and uniformly random values. Second,
the pairs (L1, R1), . . . , (Lt, Rt) encode shares s1, . . . , st, respectively, belonging
to an unqualified set of the underlying secret sharing scheme. As a result, the
statistical privacy of that scheme implies we can replace these encodings by those
induced by a different secret.

In order to show non-malleability, fix a qualified set of parties T , with
t = |T | ≥ 3. For simplicity, assume again T = {1, . . . , t}. An adversary that wishes
to tamper the shares in T chooses tampering functions f1, . . . , ft, one per share.
Write a tampered share S′i = fi(Si) as S′i = (R′(i)1 , . . . , R

′(i)
i−1, L

′
i, R
′(i)
i+1, . . . , R

′(i)
n )

for i = 1, . . . , t. We now have the following reconstruction procedure, which may
output a special symbol ⊥ if it detects tampering:

1. For each i = 1, . . . , n, check that R′(j1)
i = R

′(j2)
i for all j1, j2 6= i. If this is

not the case, then output ⊥;
2. If the check holds, set R′1 = R

′(2)
1 and R′i = R

′(1)
i for i = 2, . . . , t. Then,

decode and parse P ′i ||s′i ← Dec(L′i, R′i) for i = 1, . . . , t;
3. If P ′i 6= P ′j for some i, j ≤ t, output ⊥. Else, output RecT (s′1, . . . , s′t).

Note that the consistency checks in Steps 1 and 3 correspond to properties that
must be satisfied if (S′1, . . . , S′t) is a valid set of shares. Roughly speaking, in
order to show non-malleability we must be able to simulate the reconstruction
of tampered shares without knowledge of the encoded secret m (except if the
adversary does not modify any share, in which case we may output m).

We prove non-malleability in two steps. First, we consider the following
intermediate tampering experiment on (S1, . . . , St):

– For each i = 1, . . . , n, check that R′(j1)
i = R

′(j2)
i for all j1, j2 6= i. If this is

not the case, then output ⊥;
– If the check holds, set R′1 = R

′(2)
1 and R′i = R

′(1)
i for i = 2, . . . , t. For each

i = 1, . . . , t, set outputi = same∗ if L′i = Li and R′i = Ri. Otherwise, set
outputi ← Dec(L′i, R′i);

– If outputi = same∗ for all i = 1, . . . , t, output same∗. Else, output (output1,
. . . , outputt).

This is an intermediate tampering experiment in the sense that it corresponds to a
stage of the reconstruction procedure on the tampered shares where the values of
the shares that remain the same have not yet been revealed. A key result we show
is that the output of the intermediate tampering experiment described above has
almost no correlation with the initial values P ||si for i = 1, . . . , n. In particular,
we can replace each such value by an independent and uniformly random one,
and hence by a set of uniform values independent of the secret m encoded by the
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shares s1, . . . , sn. We leverage a novel property of strong non-malleable extractors
(Lemmas 24 and 28) to prove this result, which may be of independent interest.

By the result just described, we now know how to simulate the intermediate
tampering experiment for any secret m without any knowledge of m itself.
However, to be able to simulate the behavior of the real reconstruction procedure
on the tampered shares, we must know what the simulator must output when
outputi = same∗ and outputj 6= same∗ for some i, j ≤ t. In the second step, we
show that the reconstruction procedure will output ⊥ (i.e., tampering is detected,
and hence the procedure is aborted) with high probability in this situation. This
is because, with high probability, the decoded prefixes will not match among
all parties in this case. As a result, we can simply have our simulator output ⊥
in such a case, and it will coincide with the output of the real reconstruction
procedure with high probability.

The argument above implies that our secret sharing scheme is non-malleable
against a single tampering of a reconstruction set. This result extends to the
concurrent reconstruction setting, where the adversary is allowed to tamper the
shares multiple times with different tampering functions and qualified sets. We
refer to the later sections for details on the proof for the general case.

Threshold Signature Scheme Secure Against Tampering Finally, our
threshold signature compiler starts from the assumption that the secret key is
to be secret-shared among a set of servers. We assume that we have protocols
for generating n signature shares as well as a protocol for computing the final
signature from these shares. Further, we assume that these protocols are secure
even if an adversary maliciously corrupts an unqualified subset of size t of the
n ≥ 2t+ 1 servers.

To construct the compiled protocol, we first apply our second compiler from
above, such that we now share the secret key using non-malleable secret sharing.
Recall that this scheme involves encoding the original share si to get a pair
(Li, Ri) where the i-th server holds Li and all other servers hold Ri. If now the
i-th server wants to generate a signature share, it requests Ri from all other
servers and waits until it gets back n − t responses. If all received Ri are the
same, it accepts the value and decodes (Li, Ri) to obtain key share si. Note that
since n ≥ 2t+ 1 and the server gets n− t responses, we ensure that it gets back
at least one honest response. At this point the server generates a signature share
as it would do in the original protocol.

A rough intuition on why this is secure follows: Recall that our model says
that the adversary can either tamper with the shares, or corrupt t of servers. If
he tampers, he is not allowed to corrupt anyone, and this means that the servers
are executing the non-malleable reconstruction protocol securely, and will either
get the correct original shares (and thus create correct signatures) or will get
something unrelated, in which case the output cannot compromise any secret
key share. In the other case, the adversary has chosen to corrupt a set of servers.
However, then we know that the shares we start from are correct. This means
that sending the required Ri’s in the clear to i-th server does not leak any extra
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information than it should. In fact, it merely enables the server to get his original
share. The checks we enforce ensure that an honest player get its correct original
share, and hence security follows from the threshold signature scheme we started
with.

1.4 Open Questions

Several exciting questions remain open. The first natural direction is to improve
the rates of our constructions. This can be achieved indirectly by coming up with
better explicit constructions of strong seeded extractors and strong seedless non-
malleable extractors. Another possibility is to improve the relationship between
the share length of the compiled scheme and the number of parties. All of our
constructions, as well as the constructions of Goyal and Kumar [16,17], have
share sizes which are at least linear in the number of parties, and it would be
interesting to see whether one can obtain a weaker dependence.

Our work introduces stronger definitions for non-malleable secret sharing
schemes. However, our new notions, as well as the previous ones, are fundamentally
non-adaptive in the sense that the tampering functions and reconstruction sets
have to be chosen without seeing any of the shares a priori. We believe it would be
more in the spirit of secret sharing if the tampering functions and reconstruction
sets could be chosen after seeing some unqualified set of shares. On a similar
note, a logical next step would be to define and attempt to construct continuous
non-malleable secret sharing schemes (in the spirit of [15]), where the adversary
is allowed to choose the tampering function and qualified set to be reconstructed
adaptively.

Our definition of leakage-resilient secret sharing schemes is also non-adaptive.
It would be interesting to construct schemes which remain leakage resilient even
if the adversary has access to an unqualified set of shares prior to choosing
the leakage functions. Moreover, we obtain leakage rate 1− c for an arbitrarily
small constant c > 0 while preserving the share length (up to a multiplicative
constant). However, our share length suffers a polynomial blow-up if we want
to achieve leakage rate 1− o(1). It would be interesting to give constructions of
leakage-resilient schemes (even in the non-adaptive setting) with an improved
tradeoff between leakage rate and share length.

1.5 Organization

The rest of the paper is organized as follows: We present notation, relevant
definitions, and known lemmas that we use throughout the paper in Section 2.
We present and study our compiler for non-malleable secret sharing in Section 3.
In Section 4, we present our compiler for leakage-resilient secret sharing. Finally,
in Section 5, we discuss our compiler for non-malleable and leakage-resilient
threshold signatures. Most detailed arguments have been deferred to the full
version of this work [1].
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2 Preliminaries

We denote the set {1, . . . , n} by [n]. Random variables are usually denoted by
uppercase letters such as X, Y , and Z. We denote sets by calligraphic letters
such as A and M. We may denote the probability that a random variable X
belongs to a set S by X(S). We use the notation z ← Z to denote that z is
sampled according to distribution Z. If instead we write, say, s← S, this means
that s is sampled uniformly at random from the set S. Given an n-tuple x and
a set S ⊆ [n] with S = {i1, . . . , is} and ij < ij+1 for j = 1, . . . , s− 1, we define
xS = (xi1 , . . . , xis). By an efficient algorithm, we mean an algorithm that runs
in time polynomial in the length of the input.

2.1 Statistical Distance and Min-Entropy

In this section, we introduce statistical distance and min-entropy, along with
related results.

Definition 1 (Statistical Distance) Let X and Y be two distributions over
a set S. The statistical distance between X and Y , denoted by ∆(X;Y ), is given
by

∆(X;Y ) := max
T⊆S

(|X(T )− Y (T )|) = 1
2
∑
s∈S
|X(s)− Y (s)| .

We say X is ε-close to Y , denoted X ≈ε Y , if ∆(X;Y ) ≤ ε, and we write
∆(X;Y |Z) as shorthand for ∆((X,Z); (Y,Z)).

The following known properties of the statistical distance are useful throughout
the paper.

Lemma 2 For any two random variables X and Y , and any randomized function
f , we have that

∆(f(X); f(Y )) ≤ ∆(X;Y ) .

Lemma 3 ([11]) Fix random variables X and Y such that

X ≈ε Y .

Let X ′ and Y ′ denote X and Y conditioned on an event E, respectively. If
X(E) = p (i.e., the probability of event E under X is p), then

X ′ ≈ε/p Y ′.

Definition 4 (Min-Entropy and Conditional Min-Entropy) Fix a distri-
bution X over X . The min-entropy of X, denoted by H∞(X), is given by

H∞(X) := − log
(

max
x∈X

X(x)
)
.
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Moreover, the conditional min-entropy of X given Z, denoted by H∞(X|Z), is
given by

H∞(X|Z) := − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Ez←Z denotes the expected value over Z.

The following property of the conditional min-entropy is also fundamental.

Lemma 5 ([13]) Let (X,Z) be some joint probability distribution. Then, if Z
is supported on at most 2` values, we have

H∞(X|Z) ≥ H∞(X)− ` .

2.2 Non-Malleable Codes and Extractors

In order to design our compilers, we will need to use some variants of extractors
and non-malleable codes. We present the relevant definitions and results in this
section.

Non-malleable codes are coding schemes with strong robustness guarantees
against adversarial errors. We begin by defining coding schemes.

Definition 6 (Coding Scheme) A tuple of functions (Enc,Dec) where Enc :
M→ C may be randomized but Dec : C →M∪ {⊥} is deterministic is said to
be a coding scheme if the correctness property

Pr(Dec(Enc(m)) = m) = 1

holds for every m ∈ M, where the probability is taken over the randomness of
the encoder Enc.

Definition 7 (Non-Malleable Code [14]) We say that a coding scheme (Enc :
M→ X × X , Dec : X × X → M∪ {⊥}) is ε-non-malleable in the split-state
model if for all functions F,G : X → X there exists a distribution SDF,G over
M∪ {same∗,⊥} such that

TamperF,G
m ≈ε SimF,G

m

for all m ∈M, where

TamperF,G
m =

{
(L,R)← Enc(m)
Output Dec(F (L), G(R))

}
,

and

SimF,G
m =


d← SDF,G

If d = same∗, output m
Else, output d

 .

Additionally, SDF,G should be efficiently samplable given oracle access to F (·)
and G(·).
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We will also require a few variants of randomness extractors. We begin with
the basic definition.

Definition 8 (Extractor) An efficient function Ext : X × {0, 1}d → Z is a
strong (k, ε)-extractor if for all X,W such that X is distributed over X and
H∞(X|W ) ≥ k we have

Ext(X,Ud),W,Ud ≈ε UZ ,W,Ud .

Moreover, we say Ext supports efficient preimage sampling if, given z ∈ Z, there
exists an efficient algorithm that samples an element of Ext−1(z) uniformly at
random.

We describe some known explicit constructions of linear strong extractors
that we will need to instantiate our leakage-resilient secret sharing compiler of
Section 4 in [1]. We will also need a stronger notion of an (independent-source)
extractor, for which the output still looks uniform even conditioned on the output
of the extractor on a tampered version of the original input.

Definition 9 (Strong Two-Source Non-Malleable Extractor) A function
nmExt : X 2 → Z is said to be a (k, ε, τ) strong two-source non-malleable extrac-
tor if the following property holds: For independent distributions X,Y over X and
W independent of Y such that H∞(X|W ),H∞(Y ) ≥ k, and for all tampering
functions (f1, g1), . . . , (fτ , gτ ) it holds that

nmExt(X,Y ),W, Y, {Dfi,gi(X,Y )}i∈[τ ] ≈ε UZ ,W, Y, {Dfi,gi(X,Y )}i∈[τ ] ,

where Df,g(X,Y ) is defined as

Df,g(X,Y ) :=
{

same∗, if f(X) = X and g(Y ) = Y ,
nmExt(f(X), g(Y )), otherwise.

The function nmExt is said to support efficient preimage sampling if, given
z ∈ Z, there is an efficient algorithm that samples an element of the preimage
nmExt−1(z) uniformly at random.

There exist explicit constructions of strong two-source non-malleable extrac-
tors with good parameters, supporting efficient preimage sampling, both against
single and multiple tamperings [9,21]. Although it is not stated in [9] that the
extractor found there is strong, it is known that this property holds [19]. A
statement and proof of this result appears in [18]. We will use the following two
explicit non-malleable extractors.

Lemma 10 ([21]) For any field F of cardinality 2N , there exists a constant
δ ∈ (0, 1) and a function nmExt : F2 → {0, 1}` such that nmExt is an efficient
((1 − δ)N, ε, 1) strong two-source non-malleable extractor with ` = Ω(N) and
ε = 2−Ω(N/ logN). Moreover, nmExt supports efficient preimage sampling and it
is a balanced function, i.e., the preimage sets nmExt−1(z) have the same size
for all z ∈ {0, 1}`.
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Lemma 11 ([9,18]) For any field F of cardinality 2N , there exists a constant
δ ∈ (0, 1) and a function nmExt : F2 → {0, 1}` such that nmExt is an efficient
(N − Nδ, ε, τ) strong two-source non-malleable extractor with ` = NΩ(1), τ =
NΩ(1), and ε = 2−NΩ(1) . Moreover, nmExt supports efficient preimage sampling
and it is a balanced function, i.e., the preimage sets nmExt−1(z) have the same
size for all z ∈ {0, 1}`.

The connection between non-malleable extractors with efficient preimage
sampling and split-state non-malleable codes is made clear by the following result.

Lemma 12 ([11]) Fix an explicit two-source (n, ε, 1)-non-malleable extractor
nmExt : F2 → {0, 1}` that supports efficient preimage sampling. The coding
scheme (NMEnc,NMDec) is defined as follows:

– NMEnc(m): Sample (L,R)← nmExt−1(m), and output (L,R);
– NMDec(L′, R′): Output nmExt(L′, R′).

Then, (NMEnc,NMDec) is an efficient split-state ε′-non-malleable code for
ε′ = ε(2` + 1).

Combining Li’s non-malleable extractor [21] and Lemma 12 immediately leads
to the following result, also found in [21].

Corollary 13 ([21]) For any field F of cardinality 2N , there exists an efficient
split-state ε-non-malleable code (NMEnc,NMDec) with NMEnc : {0, 1}` →
F2, NMDec : F2 → {0, 1}` ∪ {⊥}, ` = Θ(N/ logN), and ε = 2−Ω(N/ logN).

2.3 Secret-Sharing Schemes

In this section, we introduce our definitions of leakage-resilient and non-malleable
secret sharing schemes. We begin by defining basic secret sharing concepts.

Definition 14 (Access Structure) We say A is an access structure for n
parties if A is a monotone class of subsets of [n], i.e., if A ∈ A and A ⊆ B,
then B ∈ A. We call sets T ∈ A authorized or qualified, and unauthorized or
unqualified otherwise.

Definition 15 (Secret Sharing Scheme [4]) LetM be a finite set of secrets,
where |M| ≥ 2. A (randomized) sharing function Share :M→ S1 × · · · × Sn is
an (n, ε)-Secret Sharing Scheme for secret spaceM realizing access structure A
if the following two properties hold :

1. Correctness. The secret can be reconstructed by any authorized set of
parties. That is, for any set T ∈ A, where T = {i1, . . . , it}, there exists a
deterministic reconstruction function RecT : ⊗i∈TSi → M such that for
every m ∈M,

Pr[RecT (Share(m)T ) = m] = 1 ,
where the probability is taken over the randomness of Share.
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2. Statistical Privacy. Any collusion of unauthorized parties should have
“almost” no information about the underlying secret. More formally, for all
unauthorized sets T /∈ A and for every pair of secrets a, b ∈M, we have

Share(a)T ≈ε Share(b)T .

Besides the usual secret sharing properties, we can additionally require that
the unauthorized parties do not learn anything about the underlying secret,
even if given some leakage from all the shares. This leads to the notion of
leakage-resilient secret sharing.
Definition 16 (Leakage-Resilient Secret-Sharing Scheme) A secret shar-
ing scheme (Share,Rec) realizing access structure A is said to be an (n, ε, ρ)-
leakage-resilient secret sharing scheme if the following property additionally
holds:
– Leakage-Resilient Statistical Privacy. For all unauthorized sets T /∈ A,

functions Leaki : Si → {0, 1}bρ log |Si|c for i = 1, . . . , n, and for every pair of
secrets a, b ∈M, we have

Share(a)T , {Leaki(Share(a)i)}i∈[n] ≈ε Share(b)T , {Leaki(Share(b)i)}i∈[n].

Alternatively, we can require some security against tampering attacks on the
shares produced by the secret sharing scheme: Either the secret reconstructed
from the tampered shares is the same as the original secret, or it is almost
independent of it. The notion of non-malleable secret sharing was first considered
in [16,17], but only with respect to tampering attacks on qualified sets belonging
to the minimal access structure.
Definition 17 (Non-Malleable Secret Sharing Scheme) Let (Share,Rec)
be an (n, ε)-secret sharing scheme for secret spaceM realizing access structure
A. Let F be some family of tampering functions. For each f ∈ F , m ∈M and
authorized set T ∈ A, define the tampering experiment

STamperf,T
m =


s← Share(m)
s̃← f(s)
m̃← Rec(s̃T )
Output m̃

 ,

which is a random variable over the randomness of the sharing function Share.
We say that (Share,Rec) is ε′-non-malleable with respect to F if for each f ∈ F
and authorized set T ∈ A, there exists a distribution SDf,T (corresponding to the
simulator) overM∪ {same∗,⊥} such that we have

STamperf,T
m ≈ε′ SSimf,T

m ,

for all m ∈M and authorized sets T ∈ A, where

SSimf,T
m =


m̃← SDf,T

If m̃ = same∗, output m
Else, output m̃

 .
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Additionally, SDf,T should be efficiently samplable given oracle access to f(·).

We also consider a stronger notion of non-malleable secret sharing, where the
adversary is allowed to tamper the shares multiple times, and in each tampering
attempt is free to choose the qualified set to be used by the reconstruction
algorithm in the tampering experiment.

Definition 18 (Non-Malleability with Concurrent Reconstruction) Let
(Share,Rec) be an (n, ε)-secret sharing scheme for secret spaceM realizing ac-
cess structure A. Let τ be a fixed constant. Let F be some family of tampering
functions. For m ∈ M, f = (f (1), . . . , f (τ)) ∈ Fτ , and T = (T1, . . . , Tτ ) ∈ Aτ ,
define the tampering experiment

SCRTamperf ,T
m =

(
STamperf(1),T1

m ,STamperf(2),T2
m , . . . ,STamperf(τ),Tτ

m

)
,

where each STamperf(i),Ti
m is defined as in Definition 17. We say that (Share,Rec)

is (ε′, τ)-concurrent-reconstruction-non-malleable with respect to F if for each
tuple f ∈ Fτ and tuple of authorized sets T ∈ Aτ , there exists a distribution
SDf ,T over (M∪ {⊥, same∗})τ such that

SCRTamperf ,T
m ≈ε′ SCRSimf ,T

m

for all m ∈M, where

SCRSimf ,T
m =


(m̃1, . . . , m̃τ )← SDf ,T

Output (m̃′1, . . . , m̃′τ ), where m̃′i = m if m̃i = same∗,
and m̃′i = m̃i otherwise

 .

Additionally, SDf ,T should be efficiently samplable given oracle access to f (i)(·)
for i = 1, . . . , τ .

In this work, we will focus on the case where each share is tampered indepen-
dently. With this in mind, we define the family of so-called t-split-state tampering
functions, which we denote by F split

t .

Definition 19 (t-Split-State Tampering Functions) The family of t-split-
state tampering functions over a domain X , denoted by Fsplit

t (the domain is
ommitted for brevity), consists of all functions f : X t → X t for which there exist
functions fi : X → X with i ∈ [t] such that f(x) = (f1(x1), . . . , ft(xt)), where
x = (x1, . . . , xt) and xi ∈ X for i ∈ [t].

We show separations between Definitions 17, 18, and the definition of non-
malleable secret sharing from [17] under split-state tampering in [1].

Observe that split-state tampering of non-malleable codes and extractors
as in Definitions 7 and 9 corresponds to considering the family of tampering
functions F split

2 .
The following result states that split-state non-malleable codes are 2-out-of-2

non-malleable secret sharing schemes.
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Lemma 20 ([2]) Suppose (NMEnc,NMDec) is an ε-non-malleable code in
the split-state model. Fix messages m and m′, and let (L,R)← NMEnc(m) and
(L′, R′)← NMEnc(m′). Then, we have

L ≈2ε L
′ and R ≈2ε R

′ .

3 Non-Malleable Secret-Sharing

3.1 Non-Malleable Secret-Sharing Scheme against Individual
Tamperings

Before proceeding to the more general case of non-malleability with concurrent
reconstruction, we describe our candidate secret sharing scheme and prove it is
non-malleable against a single tampering with respect to functions which tamper
the shares independently.

Theorem 21 Fix a number of parties n and an integer p. Furthermore, assume
we have access to the following primitives:

1. For ε1 ≥ 0, let (AShare,ARec) be an (n, ε1)-secret sharing scheme realizing
an access structure A such that |T | ≥ 3 holds whenever T ∈ A. Suppose the
corresponding shares lie in {0, 1}r and the secrets in some setM;

2. Let nmExt : {0, 1}N × {0, 1}N → {0, 1}` be the ((1 − δ)N, ε2, 1) strong
two-source non-malleable extractor from Lemma 10, where ` = r + p. Hence,
` ≤ Ω(N) and ε2 = 2−Ω(N/ logN).

Then, there exists an (n, ε1 + 4nε2(2` + 1))-secret sharing scheme realizing access
structure A that is n(2`+1(ε2 + 2−δN/2+1) + 2−p)-non-malleable w.r.t. Fsplit

n . The
resulting scheme (NMShare,NMRec) shares an element ofM into n shares,
where each share contains n elements of {0, 1}N . Finally, if the two primitives
are efficient and the access structure A supports efficient membership queries,
then the constructed scheme (NMShare,NMRec) is also efficient.

We describe our construction of the non-malleable secret sharing scheme
(NMShare,NMRec).

NMShare: Our sharing function takes as input a secret m ∈M and proceeds
as follows:
1. Share m using AShare to obtain s1, . . . , sn ← AShare(m);
2. Pick P ← {0, 1}p;
3. For each i ∈ [n], encode the share si to obtain

(Li, Ri)← nmExt−1(P ||si);

4. For each i ∈ [n], construct sharei = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);
5. Output (share1, . . . , sharen).

NMRec: Our reconstruction function takes as input shares {sharei : i ∈ T}
corresponding to an authorized set T ∈ A and proceeds as follows:
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1. Sort T so that T = {i1, . . . , it}, where t = |T |, and ij < ij+1;
2. For each j ∈ [t], parse the shares in T to obtain

(R(ij)
1 , . . . , R

(ij)
ij−1, Lij , R

(ij)
ij+1, . . . , R

(ij)
n )← shareij ;

3. For every ` ∈ [n], check that the R(ij)
` have the same value for all j such

that ij 6= `. If this is not the case, output ⊥;
4. For every j ∈ [t], decode and parse Pij ||sij ← nmExt(Lij , R

(ik)
ij

), where
ik is the smallest element of T − {ij};

5. If there exist j, j′ ∈ [t] such that Pij 6= Pij′ , output ⊥;
6. Else, reconstruct m← ARec(si1 , . . . , sit), and output m.

Correctness and Efficiency: Follows in a straightforward manner from the con-
struction.

Statistical Privacy: Fix two secrets a and b, and let T be an unauthorized set of
size t. Without loss of generality, we may assume that T = {1, 2, . . . , t}. Set

aST ← NMShare(a)T ,
bST ← NMShare(b)T .

Furthermore, let as1, . . . , asn and bs1, . . . , bsn be the shares obtained from
AShare(a) and AShare(b), respectively, in Step 1 of the NMShare proce-
dure.

Our goal is to show that the distributions of these two sets of shares, aST
and bST , are close in statistical distance. More precisely, we will show that

aST ≈ε1+4nε2(2`+1) bST

for all unauthorized sets T and secrets a, b.
We have aST = (aS1, . . . , aSt) and bST = (bS1, . . . , bSt), with

aSi = (aR1, . . . , aRi−1, aLi, aRi+1, . . . , aRn) ,
bSi = (bR1, . . . , bRi−1, bLi, bRi+1, . . . , bRn) .

As a result, we can write

aST = [(aLi, aRi)i≤t, aRt+1, . . . , aRn] ,
bST = [(bLi, bRi)i≤t, bRt+1, . . . , bRn] .

Our first claim is that we can replace aRt+1, . . . , aRn by encodings of independent,
uniformly random messages with small penalty in statistical distance by invoking
Lemma 20.

Lemma 22 Let R∗t+1, . . . , R
∗
n ∈ F be sampled as follows: For each j = t +

1, . . . , n, independently sample a uniformly random message m∗, encode and
parse (L∗, R∗)← nmExt−1(m∗), and set R∗j = R∗. Then,

(aLi, aRi)i≤t, aRt+1, . . . , aRn ≈2nε2(2`+1) (aLi, aRi)i≤t, R∗t+1, . . . , R
∗
n .
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Proof. The proof can be found in [1]. ut

Observe that, by the statistical privacy of the underlying secret sharing
scheme, we have

∆((aLi, aRi)i≤t; (bLi, bRi)i≤t)
≤ ∆((aLi, aRi)i≤t; (bLi, bRi)i≤t|P )
≤ ε1 , (1)

where P is the prefix used when encoding the shares with nmExt−1. This is
because T is an unauthorized set, and each (aLi, aRi) (resp. (bLi, bRi)) depends
on (aLj , aRj) (resp. (bLj , bRj)) for j 6= i only through the share asi or bsi it
encodes, when the prefix P is fixed. Combining Lemma 22 with (1) and a repeated
application of the triangle inequality yields

∆(aST ; bST )
= ∆([(aLi, aRi)i≤t, aRt+1, . . . , aRn]; [(bLi, bRi)i≤t, bRt+1, . . . , bRn])
≤ ∆([(aLi, aRi)i≤t, aRt+1, . . . , aRn]; [(aLi, aRi)i≤t, R∗t+1, . . . , R

∗
n])

+∆([(aLi, aRi)i≤t, R∗t+1, . . . , R
∗
n]; [(bLi, bRi)i≤t, R∗t+1, . . . , R

∗
n])

+∆([(bLi, bRi)i≤t, R∗t+1, . . . , R
∗
n]; [(bLi, bRi)i≤t, bRt+1, . . . , bRn])

≤ 2nε2(2` + 1) + ε1 + 2nε2(2` + 1)
= ε1 + 4nε2(2` + 1) ,

which concludes the proof of statistical privacy.

Statistical Non-Malleability: Let T be an authorized set of size t ≥ 3. Without
loss of generality, we may assume that T = {1, 2, . . . , t}. Let f1, . . . , ft be the
corresponding tampering functions. Let s1, . . . , sn ∈ {0, 1}k+p be arbitrary strings,
and let s = (s1, . . . , sn).

Definition 23 We define the following partial tampering experiment IntTampT,fs .

1. For each i ∈ [n], (Li, Ri)← nmExt−1(si).
2. For each i ∈ [n], let Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn).
3. For each j ∈ [t], let fj be a function that maps Sj to

R̃
(j)
1 , . . . , R̃

(j)
j−1, L̃j , R̃

(j)
j+1, . . . , R̃

(j)
n .

4. Check whether R̃(j1)
i = R̃

(j2)
i for all distinct i, j1, j2 where i ∈ [n], and

j1, j2 ∈ T . If any of them is not true, then IntTampT,fs = ⊥.
5. For each i ≥ 2, let R̃i = R̃

(1)
i , and let R̃1 = R̃

(2)
1 .

6. For each i ∈ [t], if Li = L̃i and Ri = R̃i, then outputi = same∗, else
outputi = nmExt(L̃i, R̃i).

7. IntTampT,fs = (output1, output2, . . . , outputt).
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We require the following auxiliary lemma.

Lemma 24 Let nmExt : {0, 1}N × {0, 1}N → {0, 1}` be a (k, ε, τ) strong non-
malleable two-source extractor. Also, let h1 : {0, 1}N → Z, h2 : {0, 1}N → Z,
and h3 : {0, 1}N → {0, 1} be functions for some set Z. For functions F,G :
{0, 1}N → {0, 1}N , let AF,G be an algorithm that takes as input x, y ∈ {0, 1}N ,
and does the following: If h1(x) 6= h2(y), or if h3(y) = 1, then output ⊥, else if
F (x) = x, and Gj(y) = y, output same∗, else output nmExt(F (x), G(y)). For
X,Y uniform and independent in {0, 1}N , we have that

∆ := ∆(nmExt(X,Y ) ; U` | Y, AF,G(X,Y )) ≤ ε+ 2−
N−k

2 +1 .

Proof. The proof can be found in [1]. ut

Lemma 24 can be used to prove the following key component of our non-
malleability proof.

Lemma 25 For any s, s′ ∈ {0, 1}n` we have that

IntTampT,fs ≈n2`+1γ IntTampT,fs′ ,

where γ = ε+ 2−δN/2+1.

Proof. We show that, for s = (s1, s2 . . . , sn), and s′ = (s′1, s2, . . . , sn), we have

IntTampT,fs ≈2`+1γ IntTampT,fs′ .

The general result then follows by a hybrid argument using an analogous reasoning.
For i = 2, . . . , n, let (Li, Ri) ← nmExt−1(si), and let L∗1, R∗1 be chosen

independently and uniformly at random from {0, 1}N . Fix L2, . . . , Ln, R2, . . . , Rn.
Assume that we run Steps 3 to 7 of the IntTampT,fs experiment described above,
with L1, R1 replaced by L∗1, R∗1. We replace Step 5 by the following:

– For each i 6= 2, let R̃i = R̃
(2)
i , and let R̃2 = R̃

(3)
2 ,

i.e., we ensure that R̃2, . . . , R̃n are not a function of L∗1. Notice that due to the
consistency check in Step 4, the output of the tampering experiment remains
the same. Then, recalling the variables we have fixed, it follows that L̃1 is
a deterministic functions of L∗1, and R̃1, . . . , R̃n, L̃2, . . . , L̃n are deterministic
functions of R∗1. Define

h1(L∗1) := (R̃(1)
2 , . . . , R̃(1)

n ),

h2(R∗1) := (R̃(3)
2 , R̃

(2)
3 , . . . , R̃(2)

n ),

F (L∗1) := L̃1,

G(R∗1) := R̃
(2)
1 .

Also, let h3(R∗1) = 1 if and only if any of the checks in Step 4 with j1, j2 6= 1 (i.e.,
the checks that are not dependent on L∗1) fail. We can now instantiate Lemma 24
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with h1, h2, h3, F,G and the strong two-source non-malleable extractor from
Lemma 10 to obtain

∆(nmExt(L∗1, R∗1);U` | AF,G(L∗1, R∗1), L2, . . . , Ln, R2, . . . , Rn, R
∗
1) ≤ γ . (2)

Let (L′1, R′1)← nmExt−1(s′1), and observe that Pr[U` = s] = 2−` for all s.
We now apply Lemma 3 to (2) by conditioning the right hand side of the

statistical distance term in (2) on U` = s1. Since the remaining random variables
on the right hand side are independent of U`, they are unaffected by this condi-
tioning. The corresponding conditioning on the left hand side of the statistical
distance term in (2) is nmExt(L∗1, R∗1) = s1. Under this fixing, the tuple

(L∗1, R∗1), (L2, R2), . . . , (Ln, Rn)

is jointly distributed exactly as (Li, Ri)i=1,...,n. Therefore, we can replace all
occurrences of L∗1 and R∗1 by L1 and R1, respectively, on the left hand side of the
statistical distance term in (2). Combining these observations with (2), Lemma 3,
and the fact that Pr[U` = s1] = 2−`, we conclude that

∆(AF,G(L1, R1), R1;AF,G(L∗1, R∗1), R∗1|L2, . . . , Ln, R2, . . . , Rn) ≤ 2`γ.

Letting (L′1, R′1)← nmExt−1(s′1), the same reasoning with s′1 in place of s1 and
(L′1, R′1) in place of (L1, R1) leads to

∆(AF,G(L∗1, R∗1), R∗1;AF,G(L′1, R′1), R′1|L2, . . . , Ln, R2, . . . , Rn) ≤ 2`γ.

Applying the triangle inequality yields

∆(AF,G(L1, R1), R1;AF,G(L′1, R′1), R′1|L2, . . . , Ln, R2, . . . , Rn) ≤ 2`+1γ, (3)

Observe that IntTampT,fs and IntTampT,fs′ are deterministic functions of the left
hand side and right hand side of (3), respectively. As a result, we conclude that

IntTampT,fs ≈2`+1γ IntTampT,fs′ ,

as desired. ut

We prove statistical non-malleability of our proposed construction with re-
course to Lemma 25.

Theorem 26 The secret sharing scheme (NMShare,NMRec) defined above
is ε-non-malleable with respect to Fsplitn for ε = n(2`+1γ + 2−p), where γ =
ε2 + 2−δN/2+1.

Proof. The proof can be found in [1]. ut

To conclude this section, we remark that we can instantiate Theorem 26 with
concrete parameters to obtain a compiler that transforms regular secret sharing
schemes into non-malleable ones. The blowup in the share length is logarithmic in
the original share length and at most quasilinear in the number of parties n. The
error for statistical privacy suffers an exponentially small additive blowup, while
the error for non-malleability is exponentially small. Concrete instantiations can
be found in [1].
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3.2 Non-Malleability with Concurrent Reconstruction

In this section, we show that the secret sharing scheme described in Section 3.1
also satisfies the stronger notion of non-malleability with concurrent reconstruc-
tion as in Definition 18. Recall that in the concurrent reconstruction setting, the
adversary is allowed to choose qualified sets T1, . . . , Tτ along with associated tam-
pering functions f (1), . . . , f (τ), and can observe the outcomes of the experiments
STamperf(i),Ti

m for i ∈ [τ ]. We have the following result.

Theorem 27 Fix a number of parties n and an integer p. Furthermore, assume
we have access to the following primitives:

1. For ε1 ≥ 0, let (AShare,ARec) be an (n, ε1)-secret sharing scheme realizing
an access structure A such that |T | ≥ 3 holds whenever T ∈ A. Suppose the
corresponding shares lie in {0, 1}r and the secrets in some setM;

2. Let nmExt : {0, 1}N × {0, 1}N → {0, 1}` be the (N −Nδ, ε2, τ) strong two-
source non-malleable extractor from Lemma 11, where ` = r + p. Hence,
τ = Nδ, ` ≤ NΩ(1), and ε2 = 2−NΩ(1) .

Then, there exists an (n, ε1 + 4nε2(2` + 1))-secret sharing scheme realizing access
structure A that is (ε, τ)-concurrent-reconstruction-non-malleable w.r.t. Fsplit

n ,
where

ε = n(2`+1(ε2 + 4τ2τ2−N
δ/4τ ) + τ · 2−p).

The resulting scheme (NMShare,NMRec) shares an element of M into n
shares, where each share contains n elements of {0, 1}N . Finally, if the two
primitives are efficient and the access structure A supports efficient membership
queries, then the constructed scheme (NMShare,NMRec) is also efficient.

The candidate scheme for Theorem 27 has been defined in Section 3.1, and
statistical privacy is already proved there. We now present the proof of non-
malleability, beginning with an auxiliary lemma which generalizes Lemma 24 to
the case of multiple tamperings.

Lemma 28 Let nmExt : {0, 1}N × {0, 1}N → {0, 1}` be an (N − Nδ, ε, τ)
strong non-malleable two-source extractor. Also, let h1j : {0, 1}N → Z, h2j :
{0, 1}N → Z, and h3j : {0, 1}N → {0, 1} for 1 ≤ j ≤ τ be functions mapping
to some set Z. For functions F1, . . . , Fτ , G1, . . . , Gτ : {0, 1}N → {0, 1}N , let
AFj ,Gj be an algorithm that takes as input x, y ∈ {0, 1}N and does the following:
If h1j(x) 6= h2j(y), or if h3j(y) = 1, then output ⊥, else if Fj(x) = x, and
Gj(y) = y, output same∗, else output nmExt(Fj(x), Gj(y)). For X,Y uniform
and independent in {0, 1}N , we have that

∆ := ∆(nmExt(X,Y ) ; U` | Y, AF1,G1(X,Y ), . . . ,AFτ ,Gτ (X,Y ))

≤ ε+ 4τ2τ2−N
δ/4τ .

Proof. The proof can be found in [1]. ut
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Given a tuple of qualified sets T = (T1, . . . , Tτ ) and a tuple of associated
tampering functions f = (f (1), . . . , f (τ)), we define the intermediate tampering
experiment for T as follows:

IntTampT,f
s := IntTampT1,f

(1)

s , . . . , IntTampTτ ,f
(τ)

s .

We may also denote the tampering function f associated to a reconstruction
set T ∈ T by f (T ). The following lemma is the main component of our proof of
non-malleability with concurrent reconstruction. Its proof follows similarly to
that of Lemma 25, but using Lemma 28 instead of Lemma 24.

Lemma 29 For any s, s′ ∈ {0, 1}n` we have that

IntTampT,f
s ≈n2`+1γ IntTampT,f

s′ ,

where γ = ε2 + 4τ2τ2−Nδ/4τ .

Proof. The proof can be found in [1]. ut

The following result states that statistical non-malleability holds for our
proposed construction. The proof is similar to that of Theorem 26.

Theorem 30 The secret sharing scheme (NMShare,NMRec) is (ε, τ) concur-
rent reconstruction non-malleable with respect to Fsplitn for ε = n(2`+1γ + τ2−p),
where γ = ε2 + 4τ2τ2−Nδ/4τ .

Proof. The proof can be found in [1]. ut

Similarly to Section 3.1, we can instantiate Theorem 27 with concrete param-
eters to obtain a compiler that transforms regular secret sharing schemes into
ones satisfying non-malleability with concurrent reconstruction. The blowup in
the share length is now polynomial in the original share length and the number
of parties n. As before, the error for statistical privacy suffers an exponentially
small additive blowup, while the error for non-malleability is exponentially small.
Concrete instantiations can be found in [1].

4 Leakage-Resilient Secret-Sharing Scheme

In this section, we give a construction of a compiler that turns any secret sharing
scheme into a leakage-resilient one. More precisely, we have the following result.

Theorem 31 Fix a number of parties n and ρ ∈ (0, 1). Furthermore, suppose
we have access to the following primitives:

1. For any ε1 ≥ 0, let (AShare,ARec) be any (n, ε1)-secret sharing scheme
which shares an element of the setM into n shares of length `, and
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2. Let Ext : {0, 1}N × {0, 1}d → {0, 1}` be a strong (k, ε2)-extractor such that

ρ ≤ N − k
(n− 1)d+N

. (4)

Moreover, assume that Ext supports close-to-uniform preimage sampling, i.e.,
there is an efficient algorithm S such that the output of S on input z, denoted
S(z), satisfies

S(z) ≈ε3 Dz (5)

for every z ∈ {0, 1}`, where Dz is uniformly distributed over Ext−1(z).

Then, there exists an (n, ε1 +2ε2 ·n ·2`n+2n ·ε3, ρ)-leakage resilient secret sharing
scheme realizing access structure A.

Remark 1. Note that, in general, the preimage sampling algorithm S considered
in Theorem 31 may fail to return an element of Ext−1(z). In such a case, we say
that S fails.

We describe our construction of the non-malleable secret sharing scheme
(LRShare,LRRec).

LRShare: Our sharing function takes as input a secret m ∈ M and proceeds
as follows:
1. Share m using AShare to obtain s1, . . . , sn ← AShare(m);
2. For each i ∈ [n], sample (Li, Ri)← S(si);
3. If S(si) fails for some i, set sharei = (⊥, si) for all i ∈ [n];
4. Else, for each i ∈ [n] construct sharei = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);
5. Output (share1, . . . , sharen).

LRRec: Our reconstruction function takes as input shares {sharei : i ∈ T}
corresponding to an authorized set T ∈ A and proceeds as follows:
1. Sort T so that T = {i1, . . . , it}, where t = |T |, and ij < ij+1;
2. If sharei contains⊥, then recover si1 , . . . , sit directly from sharei1 , . . . , shareit

and reconstruct m← ARec(si1 , . . . , sit);
3. Else, for each j ∈ [t] obtain Lj from sharej and Rj from sharek for

some k ∈ T \ {j}, and compute sj = Ext(Lj , Rj). Reconstruct m ←
ARec(si1 , . . . , sit);

4. Output m.

The proof of Theorem 31 has a similar structure to the proof of statistical
privacy in Section 3.1, but some additional care must be taken to deal with the
leakage. It can be found in [1]. We also study the tradeoff between share-length
and leakage rate we can achieve via the compiler using linear strong extractors
in [1].
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5 Threshold Signatures

(n, t)-Threshold signatures, introduced by Desmedt [12], allow to distribute the
secret key of a signature scheme among n players such that any subset of t players
can sign messages. Threshold signatures exist based on the RSA [23] and discrete
logarithm [7] problems.

Definition 32 (Threshold Signature Scheme [23]) An (n, t)-threshold sig-
natures scheme is defined by a tuple of algorithms (TGen,TSign,TRec,TVerify).
The key generation algorithm TGen takes the security parameter 1λ as input and
outputs a verification key vk and secret keys sk1, . . . , skn. The (possibly interac-
tive) signing algorithm TSign takes a secret key ski and a message m ∈M as
input and after potentially interacting with the other parties it outputs a signature
share σi. The reconstruction algorithm TRec takes the verification key vk, any t
signature shares, and outputs a signature σ. The verification algorithm TVerify
takes a signature σ, a message m, and a verification key vk as input and outputs
a bit b ∈ {0, 1}. We call a threshold signature scheme secure if the following holds:

1. Correctness. Any authorized set of parties can generate a valid signature.
That is, for any set T = {i1, . . . , it} of size at least t and for any m ∈M, it
holds that

Pr[TVerify(vk,TRec(vk, σi1 , . . . , σit),m) = 1] = 1 ,

where σi ← TSign(ski,m) and (vk, sk1, . . . , skn)← TGen(1λ).
2. Unforgeability. No collusion of unauthorized parties can forge a signature.

More formally, we consider a probabilistic polynomial time adversary A, who
can corrupt up to t − 1 parties to learn their secret keys. The adversary
may, on behalf of the corrupt parties, engage in a polynomial number of
(possibly interactive) signature share generations with the honest parties for
messages of its choice. Let Q be the set of messages that the adversary signs
in this fashion. We require that the probability of A outputting a valid message
signature pair (m∗, σ∗) with m∗ 6∈ Q is negligible in λ.

In this work we extend the notion of threshold signatures in two directions.
We propose non-malleable as well as leakage-resilient threshold signatures. These
two separate notions require that a threshold signature scheme remains secure
even if tampering or leakage on the secret keys of each player occurs. Throughout
this section we assume a asynchronous communication network with eventual
delivery. In such a network each message can be delayed arbitrarily, but it is
guaranteed that any sent message eventually arrives at its destination. We also
assume that any pair of parties is connected by a secure point-to-point channel.

5.1 Non-Malleable Threshold Signatures
A non-malleable threshold signature scheme requires that even an adversary,
who obtains a polynomial number of signature shares under tampered keys for
messages of its choice, may not produce a valid forgery. We model this security
guarantee as follows:
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Definition 33 (Non-Malleable Threshold Signature Scheme) Let

S = (NMTGen,NMTSign,NMTRec,NMTVerify)

be a secure threshold signature scheme according to Definition 32. Let F be some
family of tampering functions. For each f ∈ F , and any probabilistic polynomial
time adversary A, define the tampering experiment

SigTamperf
λ =



(vk, sk1, . . . , skn)← NMTGen(1λ)

(s̃k1, . . . , s̃kn)← f(sk1, . . . , skn)
(i1, . . . , it−1)← A(1λ)

(m∗, σ∗)← AÕ(vk, s̃ki1 , . . . , s̃kit−1)
Output (m∗, σ∗)


,

where the oracle Õ(·) = (NMTSign(s̃k1, ·), . . . ,NMTSign(s̃kn, ·)) allows the
adversary to obtain a polynomial number of (honestly generated) signature shares
generation for messages of its choice. Let Q be the set of messages that A queries
to Õ. We say S is non-malleable w.r.t. F if for all f ∈ F

Pr[NMTVerify(vk,TRec(vk, σ∗,m∗) = 1 ∧ m∗ 6∈ Q] ≤ negl(λ) .

Our construction follows the same blueprint as our non-malleable secret
sharing schemes.

Theorem 34 For any number of parties n ≥ 2t+ 1 and threshold t, if we have
the following primitives :

1. A non-interactive5 secure (n, t)-threshold signatures scheme (TGen,TSign,
TRec,TVerify).

2. A coding scheme (NMEnc,NMDec) that is ε-non-malleable w.r.t Fsplit
2 ,

where ε ≤ negl(λ).

then there exists a non-malleable threshold signature scheme w.r.t. Fsplitn .

We construct a non-malleable threshold signature scheme S = (NMTGen,
NMTSign,NMTRec,NMTVerify) as follows.

NMTGen: Our key generation function takes the security parameter 1λ as its
input and proceeds as follows:
1. (vk, sk′1, . . . , sk′n)← TGen(1λ)
2. For each i ∈ [n], encode the key sk′i to obtain (Li, Ri)← NMEnc(sk′i);
3. For each i ∈ [n], construct ski = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);
4. Output (vk, sk1, . . . , skn).

5 We call a threshold signature scheme non-interactive if every party can generate a
signature share without interacting with the other parties. Many existing schemes
are of this form, see for example [23,7]
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NMTSign: Party i with secret ski = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn) con-
structs its signature share as follows:
1. Request Ri from all other parties and wait for the first n− t responses

(R1
i , . . . , R

n−t
i ).

2. Check whether R1
i = · · · = Rn−ti and output ⊥ if not.

3. Reconstruct the secret key sk′ ← NMDec(Li, R1
i ) and output ⊥ if

sk′ = ⊥.
4. Compute signature share σi ← TSign(sk′i,m).
5. Output σi.

NMTRec: Given verification key vk and signature shares σi1 , . . . , σit , we con-
struct a signature as follows:
1. σ ← TRec(vk, σi1 , . . . , σit).
2. Output σ.

NMTVerify: Given verification key vk, signature σ, and message m, we do the
following:
1. b← TVerify(vk, σ,m).
2. Output b.

Notice that the way NMTSign is formulated now, a single tampered share
can make the protocol output ⊥. If this is undesirable, the two first steps in
NMTSign: can be replaced by

1. Request Ri from all other parties and collect responses R1
i , R

2
i , . . ..

2. If and when a subset of the responses of size n− t are all identical to some
Ri, use this Ri in the following steps.

In an asynchronous network with eventual delivery, all n − t honest parties
will eventually get the request for Ri and send their value. Therefore party i
eventually receive all these n− t shares (and possibly some corrupted shares too).
Therefore, if there is no tampering, then party i will eventually receive n − t
copies of the correct share. In all cases party i will hear from at least one honest
party as in the original scheme, so security follows along the lines of the security
for the original scheme. We present the analysis for the original scheme in [1],
which yields Theorem 34.

5.2 Leakage-Resilient Threshold Signatures

In a leakage-resilient threshold signature scheme, the adversary may obtain an
unqualified subset of secret keys and a bounded amount of leakage from all other
secret keys. Even given this information, we require that the adversary may not
be able to output a valid forgery.

Definition 35 (Leakage-Resilient Threshold Signature Scheme) Let S =
(LTGen,LTSign,LTRec,LTVerify) be a tuple of probabilistic polynomial time
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algorithms. Let F be a family of leakage functions. For each f ∈ F , and any
probabilistic polynomial time adversary A, define the following experiment

SigLeakf
λ =



(vk, sk1, . . . , skn)← LTGen(1λ)
(i1, . . . , it−1)← A(1λ)
(`1, . . . , `n)← f(sk1, . . . , skn)
(m∗, σ∗)← AO(vk, (ski1 , . . . , skit−1), (`1, . . . , `n))
Output (m∗, σ∗)


,

where the oracle O(·) allows the adversary, on behalf of the corrupted parties, to
engage in a polynomial number of (possibly interactive) signature shares generation
for messages of its choice. Let Q be the set of messages that A queries to O. We
say S is leakage-resilient w.r.t. F if for all f ∈ F

Pr[NMTVerify(vk,TRec(vk, σ∗,m∗) = 1 ∧ m∗ 6∈ Q] ≤ negl(λ) .

Building upon our previous results, we construct a leakage-resilient threshold
signature scheme.

Theorem 36 For any number of parties n ≥ 2t+ 1 and threshold t, if we have
the following primitives :

1. A non-interactive secure (n, t)-threshold signatures scheme (TGen,TSign,
TRec,TVerify).

2. A two-source (n− `− log 1/ε, 2ε)-extractor nmExt with efficient preimage
sampling from the space X = {0, 1}n, where ε ≤ negl(λ).

then the construction from Theorem 34, where we replace each call to NMEnc
with nmExt−1 and each call to NMDec with nmExt, is a leakage-resilient
threshold signature scheme w.r.t. Fsplit`,n , where Fsplit`,n is the set of leakage functions
that tamper with each share independently and the output of each tampering
function is bounded in size by ` bits.

Proof. The proof can be found in [1]. ut
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