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Abstract. We present Libra, the first zero-knowledge proof system that
has both optimal prover time and succinct proof size/verification time.
In particular, if C is the size of the circuit being proved (i) the prover
time is O(C) irrespective of the circuit type; (ii) the proof size and ver-
ification time are both O(dlogC) for d-depth log-space uniform circuits
(such as RAM programs). In addition Libra features an one-time trusted
setup that depends only on the size of the input to the circuit and not on
the circuit logic. Underlying Libra is a new linear-time algorithm for the
prover of the interactive proof protocol by Goldwasser, Kalai and Roth-
blum (also known as GKR protocol), as well as an efficient approach
to turn the GKR protocol to zero-knowledge using small masking poly-
nomials. Not only does Libra have excellent asymptotics, but it is also
efficient in practice. For example, our implementation shows that it takes
200 seconds to generate a proof for constructing a SHA2-based Merkle
tree root on 256 leaves, outperforming all existing zero-knowledge proof
systems. Proof size and verification time of Libra are also competitive.

1 Introduction

Zero-knowledge proofs (ZKP) are cryptographic protocols between two parties,
a prover and a verifier, in which the prover can convince the verifier about
the validity of a statement without leaking any extra information beyond the
fact that the statement is true. Since they were first introduced by Goldwasser et
al. [31], ZKP protocols have evolved from pure theoretical constructs to practical
implementations, achieving proof sizes of just hundreds of bytes and verification
times of several milliseconds, regardless of the size of the statement being proved.
Due to this successful transition to practice, ZKP protocols have found numerous
applications not only in the traditional computation delegation setting but most
importantly in providing privacy of transactions in deployed cryptocurrencies
(e.g., Zcash [9]) as well as in other blockchain research projects (e.g., Hawk [37]).

Despite such progress in practical implementations, ZKP protocols are still
notoriously hard to scale for large statements, due to a particularly high over-
head on generating the proof. For most systems, this is primarily because the
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prover has to perform a large number of cryptographic operations, such as expo-
nentiation in an elliptic curve group. And to make things worse the asymptotic
complexity of computing the proof is typically more than linear, e.g., O(C'log C)
or even O(C'log? C'), where C is the size of the statement.

Unfortunately, as of today we are yet to construct a ZKP system whose prover
time is optimal, i.e., linear in the size of the statement C (this is irrespective
of whether the ZKP system has per-statement trusted setup, one-time trusted
setup or no trusted setup at all). The only notable exception is the recent work
by Biinz et al. [16] that however suffers from linear verification time—for a
detailed comparison see Table 1. Therefore designing ZKP systems that enjoy
linear prover time as well as succinct! proof size and verification time is an open
problem, whose resolution can have significant practical implications.

Our contributions. In this paper we propose Libra, the first ZKP protocol with
linear prover time and succinct proof size and verification time in the size of
the arithmetic circuit representing the statement C, when the circuit is log-space
uniform. Libra is based on the doubly efficient interactive proof protocol proposed
by Goldwasser et al. in [30] (referred as GKR protocol in this paper), and the
verifiable polynomial delegation scheme proposed by Zhang et al. in [50]. As such
it comes with one-time trusted setup (and not per-statement trusted setup) that
depends only on the size of the input (witness) to the statement that is being
proved. Not only does Libra have excellent asymptotic performance but also its
prover outperforms in practice all other ZKP systems while verification time and
proof size are also very competitive—see Table 1. Our concrete contributions are:

— GKR with linear prover time. Libra features a new linear-time algorithm
to generate a GKR proof. Our new algorithm does not require any pattern
in the circuit and our result subsumes all existing improvements on the GKR
prover assuming special circuit structures, such as regular circuits in [43],
data-parallel circuits in [43,46], circuits with different sub-copies in [51]. See
related work for more details.

— Adding zero-knowledge. We propose an approach to turn Libra into zero-
knowledge efficiently. In particular, we show a way to mask the responses of
our linear-time prover with small random polynomials such that the zero-
knowledge variant of the protocol introduces minimal overhead on the verifi-
cation time compared to the original (unmasked) construction.

— Implementation and evaluation. We implement Libra. Our implementa-
tion takes an arithmetic circuit with various types of gates (fan-in 2 and
degree < 2, such as +, —, x, AND, XOR, etc.) and compiles it into a ZKP
protocol. We conduct thorough comparisons to all existing ZKP systems (see
Section 1.1). We plan to release our system as an open-source implementation.

1.1 Comparing to other ZKP Systems

Table 1 shows a detailed comparison between Libra and existing ZKP systems.
First of all, Libra is the best among all existing systems in terms of practical

! In ZKP literature, “succinct” is poly-logarithmic in the size of the statement C.



Table 1. Comparison of Libra to existing ZKP systems, where (G, P, V, |7|) denote the
trusted setup algorithm, the prover algorithm, the verification algorithm and the proof
size respectively. Also, C is the size of the log-space uniform circuit with depth d, and
n is the size of its input. The numbers are for a circuit computing the root of a Merkle
tree with 256 leaves (511 instances of SHA256).

libSNARK Ligero  |Bulletproofs Hyrax ‘ libSTARK ‘ Aurora Libra
[13] [6] [16] 48] (8] [11]
o(C) O(n)
G |per-statement no trusted setup one-time
trusted setup trusted setup
P| O(ClogC) |O(ClogC)| 0O(C) O(ClogC) [O(Clog? C)[O(Clog C) o(C)
v 0(1) o(C) O(C) |O(y/n +dlogC)| O(log® C) o(C) O(dlog C)
|| 0(1) 0(V/C) O(log C) |O(v/n +dlogC)| O(log? C) | O(log® C) | O(dlogC)
g 1027s NA 210s
P 360s 400s 13,000s 1,041s 2,022s 3199s 201s
V 0.002s 4s 900s 9.9s 0.044s 15.2s 0.71s
|w|| 0.13KB 1,500KB 5.5KB 185KB 395KB 174.3KB 51KB

prover time. In terms of asymptotics, Libra is the only system with linear prover
time and succinct verification and proof size for log-space uniform circuits. The
only other system with linear prover time is Bulletproofs [16] whose verification
time is linear, even for log-space uniform circuits. In the practical front, Bullet-
proofs prover time and verification time are high, due to the large number of
cryptographic operations required for every gate of the circuit.

The proof and verification of Libra are also competitive to other systems. In
asymptotic terms, our proof size is only larger than libSNARK [13] and Bullet-
proofs [16], and our verification is slower than libSNARK [13] and [ibSTARK [8].
Compared to Hyrax [48], which is also based on similar techniques with our
work, Libra improves the performance in all aspects (yet Hyrax does not have
any trusted setup). One can refer to Section 5 for a detailed description of our
experimental setting as well as a more detailed comparison.

Finally, among all systems, libSNARK [13] requires a trusted setup for every

statement, and Libra requires an one-time trusted setup that depends on the
input size.
Log-space uniform circuits. Though the prover time in Libra is optimal for all
circuits, the verification time is succinct only when the circuit is structured (log-
space uniform with logarithmic depth). This is the best that can be achieved for
all ZKP protocols without per-circuit setup, as the verifier must read the entire
circuit, which takes linear time in the worst case. We always refer to log-space
uniform circuits when we say our scheme is succinct in this paper, to differen-
tiate from schemes with linear verification time on all circuits (irrespective of
whether the circuits are log-space uniform or not). Schemes such as libSTARK [8],
zkVSQL [49] and Hyrax [48] also have such property.

In practice, with the help of auxiliary input and circuit squashing, most com-
putations can be expressed as log-space uniform circuits with low depth, such as
matrix multiplication, image scaling and Merkle hash tree in Section 5. Asymp-
totically, as shown in [8,13,51], all random memory access (RAM) programs can
be validated by circuits that are log-space uniform with log-depth in the running



time of the programs (but linear in the size of the programs) by RAM-to-circuit
reduction, which justifies the expressiveness of such circuits.

1.2 Our Techniques

Our main technical contributions are a GKR protocol with linear prover time
and an efficient approach to turn the GKR protocol into zero-knowledge. We
summarize the key ideas behind these two contributions. The detailed protocols
are presented in Section 3 and 4 respectively.

GKR with linear prover. Goldwasser et al. [30] showed an approach to model
the evaluation of a layered circuit as a sequence of summations on polynomials
defined by values in consecutive layers of the circuit. Using the famous sum-
check protocol (see Section 2.3), they developed a protocol (the GKR protocol)
allowing the verifier to validate the circuit evaluation in logarithmic time with a
logarithmic size proof. However, the polynomials in the protocol are multivariate
with 2s variables, where S is the number of gates in one layer of the circuit and
s = log S. Naively running the sumcheck protocol on these polynomials incurs
52 prover time, as there are at least 22° = S? monomials in a 2s-variate poly-
nomial. Later, Cormode et al. [23] observed that these polynomials are sparse,
containing only S nonzero monomials and improved the prover time to SlogS.

In our new approach, we divide the protocol into two separate sumchecks. In

each sumcheck, the polynomial only contains s variables, and can be expressed as
the product of two multilinear polynomials. Utilizing the sparsity of the circuit,
we develop new algorithms to scan through each gate of the circuit and compute
the closed-form of all these multilinear polynomials explicitly, which takes O(S)
time. With this new way of representation, the prover can deploy a dynamic
programming technique to generate the proofs in each sumcheck in O(S) time,
resulting in a total prover time of O(S).
Efficient zero-knowledge GKR. The original GKR protocol is not zero-
knowledge, since the messages in the proof can be viewed as weighed sums of
the values in the circuit and leak information. In [48,49], the authors proposed
to turn the GKR protocol into zero-knowledge by hiding the messages in ho-
momorphic commitments, which incurs a big overhead in the verification time.
In [22], Chiesa et al. proposed an alternative approach by masking the protocol
with random polynomials. However, the masking polynomials are as big as the
original ones and the prover time becomes exponential, making the approach
mainly of theoretical interest.

In our scheme, we first show that in order to make the sumcheck protocol
zero-knowledge, the prover can mask it with a “small” polynomial. In particular,
the masking polynomial only contains logarithmically many random coefficients.
The intuition is that though the original polynomial has O(2¢) or more terms
(¢ is the number of variables in the polynomial), the prover only sends O(¥)
messages in the sumcheck protocol. Therefore, it suffices to mask the original
polynomial with a random one with O(¢) coefficients to achieve zero-knowledge.
In particular, we set the masking polynomial as the sum of ¢ univariate random
polynomials with the same variable-degree. In Section 4.1, we show that the



entropy of this mask exactly counters the leakage of the sumcheck, proving that
it is sufficient and optimal.

Besides the sumcheck, the GKR protocol additionally leaks two evaluations
of the polynomial defined by values in each layer of the circuit. To make these
evaluations zero-knowledge, we mask the polynomial by a special low-degree
random polynomial. In particular, we show that after the mask, the verifier in
total learns 4 messages related to the evaluations of the masking polynomial and
we can prove zero-knowledge by making these messages linearly independent.
Therefore, the masking polynomial is of constant size: it consists of 2 variables
with variable degree 2.

1.3 Related Work

In recent years there has been significant progress in efficient ZKP protocols and
systems. In this section, we discuss related work in this area, with the focus on
those with sublinear proofs.

QAP-based. Following earlier work of Ishai [34], Groth [33] and Lipmaa [38],
Gennaro et al. [28] introduced quadratic arithmetic programs (QAPs), which
forms the basis of most recent implementations [10,14,19,24,27,42,47] including
libSNARK [13]. The proof size in these systems is constant, and the verifica-
tion time depends only on the input size. Both these properties are particularly
appealing and have led to real-world deployments, e.g., ZCash [9]. One of the
main bottlenecks, however, of QAP-based systems is the high overhead in the
prover running time and memory consumption, making it hard to scale to large
statements. In addition, a separate trusted setup for every statement is required.
IOPs. Based on “(MPC)-in-the-head” introduced in [21,29,35], Ames et al. [6]
proposed a ZKP scheme called Ligero. It only uses symmetric key operations and
the prover time is fast in practice. However, it generates proofs of size O(v/C),
which is several megabytes in practice for moderate-size circuits. In addition,
the verification time is quasi-linear to the size of the circuit. It is categorized as
interactive PCP, which is a special case of interactive oracle proofs (IOPs). IOP
generalizes the probabilistically checkable proofs (PCPs) where earlier works
of Kilian [36] and Micali [41] are built on. In the IOP model, Ben-Sasson et
al. built libstark [8], a zero-knowledge transparent argument of knowledge (zk-
STARK).libstark does not rely on trusted setup and executes in the RAM model
of computation. Their verification time is only linear to the description of the
RAM program, and succinct (logarithmic) in the time required for program ex-
ecution. Recently, Ben-Sasson et al. [11] proposed Aurora, a new ZKP system in
the IOP model with the proof size of O(log® C).

Discrete log. Before Bulletproof [16], earlier discrete-log based ZKP schemes
include the work of Groth [32], Bayer and Groth [7] and Bootle et al. [17].
Hash-based. Bootle et al. [18] proposed a ZKP scheme with linear prover time
and verification time. The verification only requires O(C) field additions. How-
ever, the proof size is O(v/C) and the constants are large.

Interactive proofs. The line of work that relates to our paper the most is
based on interactive proofs [31]. In the seminal work of [30], Goldwasser et al.



proposed an efficient interactive proof for layered arithmetic circuits. Later, Cor-
mode et al. [23] improved the prover complexity of the interactive proof in [30] to
O(C'log C) using multilinear extensions instead of low degree extensions. Several
follow-up works further reduce the prover time assuming special structures of the
circuit. For regular circuits where the wiring pattern can be described in constant
space and time, Thaler [43] introduced a protocol with O(C) prover time; for data
parallel circuits with many copies of small circuits with size C’, a O(C'log C")
protocol is presented in the same work, later improved to O(C + C’log C) by
Wahby et al. in [46]; for circuits with many non-connected but different copies,
Zhang et al. showed a protocol with O(C'log C”) prover time.

In [50], Zhang et al. extended the GKR protocol to an argument system us-
ing a protocol for verifiable polynomial delegation. Zhang et al. [51] and Wahby
et al. [48] make the argument system zero-knowledge by putting all the mes-
sages in the proof into homomorphic commitments, as proposed by Cramer and
Damgard in [25]. This approach introduces a high overhead on the verification
time compared to the plain argument system without zero-knowledge, as each
addition becomes a multiplication and each multiplication becomes an expo-
nentiation in the homomorphic commitments. The multiplicative overhead is
around two orders of magnitude in practice. Additionally, the scheme of [4§],
Hyrax, removes the trusted setup of the argument system by introducing a new
polynomial delegation, increasing the proof size and verification time to O(y/n).

2 Preliminaries

2.1 Notation

In this paper, we use A to denote the security parameter, and negl(A) to denote
the negligible function in A. “PPT” stands for probabilistic polynomial time. We
use f(), h() for polynomials, z,y, z for vectors of variables and g, u, v for vectors
of values. x; denotes the i-th variable in x. We use bold letters such as A to
represent arrays. For a multivariate polynomial f, its ”variable-degree” is the
maximum degree of f in any of its variables.

Assumptions. Our scheme uses bilinear pairing and relies on the ¢-Strong Bilin-
ear Diffie-Hellman (¢-SBDH) assumption and an extended version of the Power
Knowledge of Exponent (PKE) assumption [49,50]. We present bilinear pairing
and the assumptions formally in the full version of the paper.

2.2 Interactive Proofs and Zero-knowledge Arguments

Interactive proofs. An interactive proof allows a prover P to convince a verifier
V the validity of some statement. The interactive proof runs in several rounds,
allowing V to ask questions in each round based on P’s answers of previous
rounds. We phrase this in terms of P trying to convince V that f(z) = 1. The
proof system is interesting only when the running time of V is less than the time
of directly computing the function f. We give the formal definition of interactive
proofs in the full version.



Zero-knowledge arguments. An argument system for an NP relationship R is
a protocol between a computationally-bounded prover P and a verifier V. At the
end of the protocol, V is convinced by P that there exists a witness w such that
(z;w) € R for some input z. We focus on arguments of knowledge which have
the stronger property that if the prover convinces the verifier of the statement
validity, then the prover must know w. We use G to represent the generation
phase of the public key pk and the verification key vk. Formally, consider the
definition below, where we assume R is known to P and V.

Definition 1. Let R be an NP relation. A tuple of algorithm (G, P,V) is a zero-
knowledge argument of knowledge for R if the following holds.

— Correctness. For every (pk,vk) output by G(1*) and (z,w) € R,
(P(pk, w), V(VK) (z) = accept

— Soundness. For any PPT prover P, there exists a PPT extractor € such
that for every (pk,vk) output by G(1*) and any x, it holds that

Pr[(P(pk), V(vk))(x) = accept A (z,w) ¢ R|w + e(pk,z)] < negl(\)

— Zero knowledge. There exists a PPT simulator S such that for any PPT
adversary A, auziliary input z € {0,1}P°YXN) (z;w) € R, it holds that
Pr [(P(pk, w), A) = accept : (pk, vk) < G(1*); (z,w) + A(z, pk,vk)| =
Pr [(S(trap, z,pk), A) = accept : (pk, vk, trap) < S(1*); (z, w) + A(z, pk,vk)]

We say that (G, P,V) is a succinct argument system if the running time of V
and the total communication between P andV (proof size) are poly(A, |z, log|w]).

2.3 GKR Protocol

In [30], Goldwasser et al. proposed an efficient interactive proof protocol for
layered arithmetic circuits, which we use as a building block for our new zero-
knowledge argument and is referred as the GKR protocol. We present the de-
tailed protocol here.

Sumcheck Protocol. The sumcheck problem is a fundamental problem that
has various applications. The problem is to sum a polynomial f : F* — F on the
binary hypercube Zbl,bQ,...,bge{o,l} f(b1,ba,...,b¢). Directly computing the sum
requires exponential time in ¢, as there are 2¢ combinations of by, ..., b,. Lund
et al. [39] proposed a sumcheck protocol that allows a verifier V to delegate the
computation to a computationally unbounded prover P, who can convince V
that H is the correct sum. We provide a description of the sumcheck protocol
in Protocol 1. The proof size of the sumcheck protocol is O(df), where d is the



Protocol 1 (Sumcheck). The protocol proceeds in £ rounds.

— In the first round, P sends a univariate polynomial

.....

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 € F to P.
— In the i-th round, where 2 <1 <1 —1, P sends a univariate polynomial

i) < Zb fra,.oorica, @i biga, -, be)

i+1,--,00€{0,1}

V checks fi—1(ri—1) = fi(0) + fi(1), and sends a random challenge r; € F to P.
— In the £-th round, P sends a univariate polynomial

d
f@(me) éf f(’/‘l,Tz, . .,7”171,1‘@) s

V checks fo—1(re—1) = fe(0) + fe(1). The verifier generates a random challenge
r¢ € F. Given oracle access to an evaluation f(ri,7r2,...,7¢) of f, V will accept
if and only if fe(re) = f(ri,7r2,...,10). The instantiation of the oracle access
depends on the application of the sumcheck protocol.

variable-degree of f, as in each round, P sends a univariate polynomial of one
variable in f, which can be uniquely defined by d+ 1 points. The verifier time of
the protocol is O(df). The prover time depends on the degree and the sparsity of
f, and we will give the complexity later in our scheme. The sumcheck protocol
is complete and sound with € = %.

Definition 2 (Multi-linear Extension). Let V : {0,1}* — F be a function.
The multilinear extension of V is the unique polynomial V : F* — F such that
V(x1, o, .y xp) = V (21, 20,y .y y) for all zy,xa, ... 2 € {0, 1},

V can be expressed as:

. l

V(mla L2, "'vxl) = Zbe{o 1} Hz:l[((l B 1’1)(1 - bl) + mlbl) ’ V(b)]
where b; is i-th bit of b.

Multilinear extensions of arrays. Inspired by the close form equation of the
multilinear extension given above, we can view an array A = (ag, a1, ..,0n_1)
as a function A : {0,1}°8" — F such that Vi € [0,n — 1], A(i) = a;. Therefore,
in this paper, we abuse the use of multilinear extension on an array as the
multilinear extension A of A.

High Level Ideas of GKR. Let C be a layered arithmetic circuit with depth
d over a finite field F. Each gate in the i-th layer takes inputs from two gates in
the (i4 1)-th layer; layer 0 is the output layer and layer d is the input layer. The
protocol proceeds layer by layer. Upon receiving the claimed output from P, in
the first round, V and P run the sumcheck protocol to reduce the claim about
the output to a claim about the values in the layer above. In the i-th round,



both parties reduce a claim about layer i — 1 to a claim about layer ¢ through
the sumcheck protocol. Finally, the protocol terminates with a claim about the
input layer d, which can be checked directly by V, or is given as an oracle access.
If the check passes, V accepts the claimed output.

Notation. Before describing the GKR protocol, we introduce some additional
notations. We denote the number of gates in the i-th layer as S; and let s; =
[log S;]. (For simplicity, we assume S; is a power of 2, and we can pad the
layer with dummy gates otherwise.) We then define a function V; : {0,1}% — F
that takes a binary string b € {0,1}* and returns the output of gate b in layer
1, where b is called the gate label. With this definition, Vj corresponds to the
output of the circuit, and V; corresponds to the input layer. Finally, we define
two additional functions add;, mult; : {0,1}%-172% — {0,1}, referred as wiring
predicates in the literature. add; (mult;) takes one gate label z € {0,1}%-! in
layer ¢ — 1 and two gate labels z,y € {0,1}% in layer i, and outputs 1 if and
only if gate z is an addition (multiplication) gate that takes the output of gate
x,y as input. With these definitions, V; can be written as follows:

Vi(z) = Zm,yE{O,l}sH’l (addiy1(z,2,y)(Vit1(2) + Viga(y))
+multiyi(z,2,y)(Vigr (2) Vit (y)))

for any z € {0,1}*%.

In the equation above, V; is expressed as a summation, so }V can use the
sumcheck protocol to check that it is computed correctly. As the sumcheck pro-
tocol operates on polynomials defined on F, we rewrite the equation with their
multilinear extensions:

‘71(9) - Zx,yE{O,I}SHl fz(l?, y)
— Zf,y€{071}si+l (agldi-i-l(ga z, y)(f/zﬂ(x) + ‘71+1(y))
it (9,2,9) (Ve (2)Via () )

where g € F*i is a random vector.

Protocol. With Equation 2, the GKR protocol proceeds as follows. The prover
P first sends the claimed output of the circuit to V. From the claimed output, V
defines polynomial V, and computes Vo(g) for a random g € F*0. V and P then
invoke a sumcheck protocol on Equation 2 with ¢ = 0. As described in Section 2.3,
at the end of the sumcheck, V needs an oracle access to f;(u,v), where u,v are
randomly selected in F*i+1. To compute f;(u,v), V computes add;;1(u,v) and
mialtH_l(u, v) locally (they only depend on the wiring pattern of the circuit, but
not on the values), asks P to send Vi(u) and V;(v) and computes f;(u,v) to
complete the sumcheck protocol. In this way, V and P reduces a claim about the
output to two claims about values in layer 1.

Combining two claims: condensing to one claim. In [30], Goldwasser et
al. presented a protocol to reduce two claims V;(u) and V;(v) to one as following.



V defines a line v : F — F* such that y(0) = u,v(1) = v. V sends () to P.
Then P sends V a degree s; univariate polynomial h(xz) = Vi(y(z)). V checks
that h(0) = V;(u), h(1) = V;(v). Then V randomly chooses r € F and computes

a new claim h(r) = V;(y(r)) = Vi(w) on w = ~(r) € F%. V sends r,w to P. In
this way, the two claims are reduced to one claim f/l(w) Combining this protocol
with the sumcheck protocol on Equation 2, V and P can reduce a claim on layer
1 to one claim on layer 7 + 1, and eventually to a claim on the input.

Combining two claims: random linear combination. In [22], Chiesa et
al. proposed an alternative approach using random linear combinations. Upon
receiving the two claims V;(u) and V;(v), V selects oy, 3; € F randomly and

computes aiffi(u) + Blf/l(v) Based on Equation 2, this can be written as
a;Vi(u) + BiVi(v)
=a; > (addier(u, @, y)(Vier (@) + Viga () + multie (w, 2, 9) (Vi (2) Viea ()
z,y€{0,1}%i+1
+Bi Y (addipa (v, 2, ) (Via () + Vigr (1) + multie (v, 2,9) (Vigr (2) Viga ()
z,y€{0,1}%i+1

= > ((addig(u,m,y) + Biaddiri (v, 2,9)) (Vier () + Vit (y))

z,ye{0,1}%i+1
+ (emultir (u, m,y) + Bimultipr (v, 2, ) (Vig1 (2) Vie1 (1)) (3)

VY and P then execute the sumcheck protocol on Equation 3 instead of Equa-
tion 2. At the end of the sumcheck protocol, V still receives two claims about

Vi+1, computes their random linear combination and proceeds to an layer above
recursively. In our new ZKP scheme, we will mainly use the second approach.

Theorem 1. [45] [45] [23] [30]. Let C : F™ — F* be a depth-d layered arith-
metic circuit. The GKR protocol is an interactive proof for the function computed
by C with soundness O(dlog |C|/|F|). It uses O(dlog|C|) rounds of interaction
and running time of the prover P is O(|C|log|C|). Let the optimal computation
time for all add; and mult; be T, the running time of V is O(n+k+dlog |C|+T).
For log-space uniform circuits it is T = polylog |C/|.

2.4 Zero-Knowledge Verifiable Polynomial Delegation Scheme

Let F be a finite field, F be a family of ¢-variate polynomial over F, and d be
a variable-degree parameter. A zero-knowledge verifiable polynomial delegation
scheme (zkVPD) for f € F and t € F* consists of the following algorithms:

- (PP,VP) — KeyGen<1)\7 E, d)a

— com <« Commit(f,rs,pp),

— {accept, reject} «+ CheckComm(com, vp),

- (y7 ,/T) — Open(f7 ta T, pp)a

— {accept, reject} « Verify(com, t,y, 7, vp).

A zkVPD scheme satisfies correctness, soundness and zero knowledge. We give
the formal definitions in the full version.
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Algorithm 1 F « FunctionEvaluations(f, A,r1,...,7¢)

Input: Multilinear f on ¢ variables, initial bookkeeping table A, random 71,...,7¢;
Output: All function evaluations f(r1,...,7i—1,¢ bit1,...,bs);

1: fori=1,...,¢ do

2 for b € {0,1}*"* do // b is both a number and its binary representation.
3: fort=0,1,2 do

4 Let f(ri,...,ri—1,t,b) = A[b]- (1 —t) + A[b+ 27 - ¢

5 Al =AD]- (1 —r)+ADp+2 -1y

6: Let F contain all function evaluations f(.) computed at Step 4
7: return F

3 GKR Protocol with Linear Prover Time

In this section we present a new algorithm for the prover of the GKR protocol [30]
that runs in linear time for arbitrary layered circuits. Before that, we present
some necessary building blocks.

3.1 Linear-time sumcheck for a multilinear function [43]

In [43], Thaler proposed a linear-time algorithm for the prover of the sumcheck
protocol on a multilinear function f on ¢ variables (the algorithm runs in O(2¢)
time). We review this algorithm here. Recall that in the i-th round of the sum-
check protocol the prover sends the verifier the univariate polynomial on x;

g Tlyee ey Ti1,Tiy0i01,...,b
bit1,..,be.€10,1} f( 1 s Ig—1,54g, Vi41, 3 5)7

where r1,...,7;_1 are random values chosen by the verifier in previous rounds.
Since f is multilinear, it suffices for the prover to send two evaluations of the
polynomial at points ¢t = 0 and ¢ = 1, namely the evaluations

Zbi+17...,bg,e{0,l} FOry e omim1,0,big1, - be) (4)
and
me,...,bz,e{o,l} FOray i1, Lbigr, .o be). (5)
To compute the above sums the prover maintains a bookkeeping table A for
f. This table, at round i, has 2¢~"*! entries storing the values f(r1,...,7_1,

bi,biy1,...,be) for all b;,... by € {0,1} and is initialized with evaluations of f
on the hypercube. For every entry of A, the prover subsequently computes, as in
Step 4 of Algorithm 1 FunctionEvaluations? two values f(71,...,7-1,0,b;11,--.,bp)
and f(r1,...,7i-1,1,bi+1,...,bs) . Once these function evaluations are in place,
the prover can easily sum over them and compute the required sumcheck mes-
sages as reguired by Relations 4 and 5. This is done in Algorithm 2.
Complexity analysis. Both Algorithms 1 and 2 run in O(2%) time: The first
iteration takes O(2°), the second O(2°~!) and so on. Therefore the bound holds.

2 To be compatible with other protocols later, we use three values ¢t = 0,1,2 in our
evaluations instead of just two.
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Algorithm 2 {ay,...,as} + SumCheck(f, A, r1,...,77)

Input: Multilinear f on ¢ variables, initial bookkeeping table A, random 71,...,7¢;
Output: ¢ sumcheck messages for }° o ¢ f(z). Each message a; consists of 3 ele-

ments (aio, a1, ai2);

1: F <+ FunctionEvaluations(f, A, r1,...,7¢)

2: fori=1,...,4 do

3: for t € {0,1,2} do

4: ait = Zbe{oyl}f,i flry, ... ric1, t,0)  // All evaluations needed are in F.
5

: return {a1,...,ac};

3.2 Linear-time sumcheck for products of multilinear functions [43]

The linear-time sumcheck in the previous section can be generalized to a product
of two multilinear functions. Let now f and g be two multilinear functions on ¢
variables each, we describe a linear-time algorithm to compute the messages of
the prover for the sumcheck on the product f - g, as proposed in [43]. Note that
we cannot use Algorithm 2 here since f - ¢ is not multilinear. However, similarly
with the single-function case, the prover must now send, at round 4, the following
evaluations at points t =0,t=1and t =2

Zbiﬁ,...,bz,e{o,l} f(Th e >ri717t7bi+17 e 7bf) : 9(7”17 .. wriflatu bi+17 .. -abf)

The above can be easily computed by computing evaluations for functions f
and g separately using Algorithm 1 and the combining the results using our new
Algorithm 3 SumCheckProduct. We now have the following lemma:

Lemma 1. Algorithm SumCheckProduct runs in time O(2%)

3.3 Linear-time sumcheck for GKR functions

Let us now consider the sumcheck problem on a particular class of functions that
are relevant for the GKR protocol (that is why we call them GKR functions).
In particular we want to compute the sumcheck

Zz,ye{o,l}é fi(g,z,y) f2(x) f5(y) , (6)

for a fixed point g € F*, where fa(z), f3(z) : F — F are multilinear extensions of
arrays Ay,, Ay, of size 2¢. and function f; : F3 — F is the multilinear extension

Algorithm 3 {as,...,as} + SumCheckProduct(f, Ays,g,Aq,71,...,7¢)

Input: Multilinear f and g, initial bookkeeping tables A; and Ay, random 7y, ..., re;
Output: ¢ sumcheck messages for > o 1y¢ f(z)g(z). Each message a; consists of 3

elements (aio, a1, ai2);
1: F < FunctionEvaluations(f, A, r1,...,7¢)
: G < FunctionEvaluations(g, Ag,71,...,7¢)
:fori=1,...,¢ do
for t € {0,1,2} do
it = ZbE{O,I}Z*i f(?"l, .o ,Tifl,t, b) . g(rl, ey 7‘2'71,15, b) // All
evaluations needed are in F and G.

>

return {a1,...,a¢};
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of a sparse array with O(2%) (out of 23 possible) nonzero elements. It is not

hard to see that the sumcheck polynomials in GKR given by Equations 2 and 3
satisfy these properties.

We note here that applying Algorithm 1 FunctionEvaluations for this particu-
lar class of polynomials would lead to quadratic prover time. This is because f;
has 2%¢ variables to sum on yielding O(2%¢) complexity. However, one could take
advantage of the sparsity of fi: the prover can store only the O(2¢) non-zero
values of the bookkeeping table A. This is exactly the approach used in many
prior work [23,46,51]. However, with this approach, the number of nonzero values
that must be considered in Step 2 is always at most 2, since it is not guaranteed
that this number will reduce to half (i.e., to 2¢7%) after every update in Step 5
because it is sparse. Therefore, the overall complexity becomes O(Z - 2¢).

In this section we effectively reduce this bound to O(2¢). Our protocol divides
the sumcheck into two phases: the first £ rounds bounding the variables of x to a
random point u, and the last ¢ rounds bounding the variables of y to a random
point v. The central idea lies in rewriting Equation 6 as follows

2 erony N@BONL@W =3 L R@Y L Ay fs()
=2 ocronye 2@)hg(@),

where hg(x) = Zye{&l}@ fl (ga L, y)f?)(y)

Phase one. With the formula above, in the first ¢ rounds, the prover and the
verifier are running exactly a sumcheck on a product of two multilinear functions
f2 - hg, since functions fy and hy can be viewed as functions only in z—y can be
considered constant (it is always summed on the hypercube). To compute the
sumcheck messages for the first £ rounds, given their bookkeeping tables, we can
call

SumCheckProduct(hgy(z), An,, fo(x), Ag,, u1,. .., up)

in Algorithm 3. By Lemma 1 this will take O(2¢) time. We now show how to
initialize the bookkeeping tables in linear time.

Initializing the bookkeeping tables:

Initializing the bookkeeping table for fy in O(2°) time is trivial, since f, is a
multilinear extension of an array and therefore the evaluations on the hyper-
cube are known. Initializing the bookkeeping table for i, in O(2%) time is more
challenging but we can leverage the sparsity of f;. Consider the following lemma.

Lemma 2. Let N, be the set of (z,y) € {0,1}** such that fi(z,x,y) is non-
zero. Then for all x € {0,1}*, it is hy(x) = Y aen, 1(9:2) - [i(z 2,y) - f3(y),
where 1(g,2) = [Ti_, (1 = g:) (1 — ) + g:2:))-

Proof. As f; is a multilinear extension, as shown in [43], we have f1(g,z,y) =
> .eqoaye 1(9,2)f1(z,2,y), where I is the multilinear extension of the identity

13



Algorithm 4 Ay, < Initialize_PhaseOne(f1, f3, Ay,, )

Input: Multilinear fi and f3, initial bookkeeping tables Ay, , random g = g1, ..., g¢;
Output: Bookkeeping table Ay ;

1: procedure G < Precompute(g) // G is an array of size 2°.
2: Set G[0] =1
fori=0,...,/—1do
for b € {0,1}" do
G[b,0] = G[b] - (1 — gi+1)
GIlb, 1] = G[b] - gi+1
: Vo € {0,1}", set Ap,[z] =0
8: for every (z,z,y) such that fi(z,z,y) is non-zero do
9 Anglr] = Any[2] + Gl - fi(z,2,y) - Apsy]

10: return Ahg;

N

polynomial, i.e., I(w,z) = 1 iff w = z for all w,z € {0, 1}*. Therefore, we have

hg(x) = ZyE{O,l}e Ji(g,2,9) f3(y) = Zz,ye{o’l}e 1(g,2) f1(z,2,9) f3(y)
N Z(ZQ)EMT I(g,2) - fi(z,z,y) - f3(y)

Moreover, I(w, z) = Hle((l —w;)(1—2;)+w;2;)) is the unique polynomial that
evaluates to 1 iff w = z for all w,z € {0,1}*. As the multilinear extension is
unique, we have (g, z) = Hle((l —0:))(1 — 2) + gizi)). O

Lemma 3. The bookkeeping table Ay, can be initialized in time O(2°).

Proof. As fi is sparse, 3°, <o 1y [Na| = O(2%). From Lemma 2, given the eval-

uations of I(g,z) for all z € {0, 1}, the prover can iterate all (z,y) € N, for all
x to compute Ay, . The full algorithm is presented in Algorithm 4.

Procedure Precompute(g) is to evaluate G[z] = I(g,2) = Hle((l —gi)(1—
z;) + giz;)) for z € {0,1}¢. By the closed-form of I(g, z), the procedure iterates
each bit of z, and multiples 1 — g; for z; = 0 and multiples g; for z; = 1. In this
way, the size of G doubles in each iteration, and the total complexity is O(2).

Step 8-9 computes hy(z) using Lemma 2. When f; is represented as a map
of (z,2,%), f1(2,,y) for non-zero values, the complexity of these steps is O(2).
In the GKR protocol, this is exactly the representation of a gate, where z,z,y
are labels of the gate, its left input and its right input, and fi(z,z,y) =1. O

With the bookkeeping tables, the prover runs SumCheckProduct(hy(z), Ap,,
f2(z), Ay, ui, ..., up) in Algorithm 3 and the complexity for phase one is O(2¢).
Phase two. At this point, all variables in x have been bounded to random
numbers u. In the second phase, the equation to sum on becomes

D ety 1w 9) P20 f3(0)

Note here that fo(u) is merely a single value which we already computed in phase
one. Both f1(g,u,y) and f3(y) are polynomials on y with ¢ variables. Similar to
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Algorithm 5 Ay <« Initialize_PhaseTwo(f1, g, u)

Input: Multilinear fi, random g = g1,...,g¢ and u = w1, ..., us;
Output: Bookkeeping table Ay, ;

: G + Precompute(g)

: U <« Precompute(u)

: Yy € {0,1}%, set Ap[y] =0

: for every (z,z,y) such that fi(z,z,y) is non-zero do

Aplyl =Anlyl+ Glz] - Ulz] - f1(z,2,9)

6: return Ay, ;

Uik Wi

phase one, to compute the messages for the last ¢ rounds we can call

SumCheCkPrOdUCt(fl(gaua y)7Af17f3(y) : fQ(u)a Afa : fQ(U), s ULy e 7'04) .

Note here that A ¢, is the bookkeeping table for fi(g,u,y), not the original sparse
function f1(g,z,y).

Initializing the bookkeeping table for fy:
It now remains to initialize the bookkeeping table for f; (g, u,y) efficiently. Sim-
ilar to phase one, we have the following lemma:

Lemma 4. Let N, be the set of (z,x) € {0,1}2* such that f1(z,x,y) is non-zero.
Then for all y € {0, 1}, it is fi(g.w,y) = 3. yen, 1(9.2) - (u,2) - fo(2,2,).

Proof. This immediately follows from the fact that f; is a multilinear extension.
We have fi(g,u,y) = Zz,ye{o,l}‘i I(g,2) - I(u,x) - fi(z,z,y), where the closed
from of I is given in Lemma 2. O

Lemma 5. The bookkeeping table Ay, can be initialized in time O(2°).

Proof. Similar to Algorithm 4, he prover again iterates all non-zero indices of f;
to compute it using Lemma 4.The full algorithm is presented in Algorithm 5. O
3.4 Putting everything together

The sumcheck protocol in GKR given by Equation 2 can be decomposed into
several instances that have the form of Equation 6 presented in the previous
section. The term

Zw pe(01}7+1 malt;1(g, 2, y) (Vi (2) Vi ()

is exactly the same as Equation 6. The term nyye{o_’l}sﬁl add; 1 (g9,2,9) (\ZH (x)+

Vit1(y)) can be viewed as:

Zz,y6{0,1}5i+1 add;+1(g, , y) Vit (z) + Z@yem’lr#l addiy1(9, 2, y)Vit1(y)
The first sum can be computed using the same protocol in Section 3.3 without

f3(y), and the second sum can be computed without f(z). The complexity for
both cases remains linear. Due to linearity of the sumcheck protocol, the prover

15



can execute these 3 instances simultaneously in every round, and sum up the
individual messages and send them to the veriifer.

Combining two claims. After the sumcheck in the GKR protocol is completed,
as described in Section 2.3, the prover and the verifier need to combine the two
claims about f/iﬂ received at the end of the sumcheck protocol to one to avoid
the exponential blow-up. There are two ways to combine the two claims and we
show how to do each of them in linear time.

The second approach using random linear combinations is rather straight
forward. After the output layers, P and V execute sumcheck protocol on Equa-
tion 3 instead of Equations 2, which still satisfies the properties of Equation 6.
One could view it as 6 instances of Equation 6 and the prover time is still lin-
ear. Moreover, there is a better way to further improve the efficiency. Taking
Dz yefoayin (imultipr (u, 2, y) + Bimultiyi (v, ,y))Vig1 (2)Vigi (y) as an ex-
ample, in Algorithm 4, the prover runs Precompute twice on u and v to generate
two arrays (Gy and Gs), and sets G[b] = «;G1[b] + 8;Gz[b] for all b. The rest of
the algorithms remains the same. This only incurs a small overhead in practice
in our implementation, compared to the original algorithm on Equation 6.

Though with the approach above we already have a linear prover GKR, pro-
tocol, the technique to condense two points to one proposed in the original GKR
protocol [30] may still be interesting in some scenarios (e.g., in our implemen-
tation, we use this approach in the last layer and only make one query to the
multi-linear extension of the input, which is more efficient practice). We present
an algorithm to reduce the prover time of this approach to linear in the full
version of the paper.

4 Zero Knowledge Argument Protocols

In this section, we present the construction of our new zero-knowledge argument
system. In [50], Zhang et al. proposed to combine the GKR protocol with a ver-
ifiable polynomial delegation protocol, resulting in an argument system. Later,
in [48,49], the construction was extended to zero-knowledge, by sending all the
messages in the GKR protocol in homomorphic commitments and performing
all the checks by zero-knowledge equality and product testing. This incurs a high
overhead for the verifier compared to the plain version without zero-knowledge,
as each multiplication becomes an exponentiation and each equality check be-
comes a X-protocol, which is around 100x slower in practice.

In this paper, we follow the same blueprint of combining GKR and VPD
to obtain an argument system, but instead show how to extend it to be zero-
knowledge efficiently. In particular, the prover masks the GKR protocol with
special random polynomials so that the verifier runs a “randomized” GKR that
leaks no extra information and her overhead is small. A similar approach was
used by Chiesa et al. in [22]. In the following, we present the zero-knowledge
version of each building block, followed by the whole zero-knowledge argument.
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4.1 Zero Knowledge Sumcheck

As a core step of the GKR protocol, P and V execute a sumcheck protocol
on Equation 2, during which P sends V evaluations of the polynomial at several
random points chosen by V. These evaluations leak information about the values
in the circuit, as they can be viewed as weighted sums of these values.

To make the sumcheck protocol zero-knowledge, we take the approach pro-
posed by Chiesa et al. in [22], which is masking the polynomial in the sumcheck
protocol by a random polynomial. In this approach, to prove

H=>Y"
@1,@9, w0 €{0,1} f($1,$2, 71‘@)7

the prover generates a random polynomial g with the same variables and individ-
ual degrees of f. She commits to the polynomial g, and sends the verifier a claim

G = ZIIM’.”MHOJ} g(z1,22,...,2¢). The verifier picks a random number p,
and execute a sumcheck protocol with the prover on
H+PG:Z (f(@1,22,...,20) + pg(z1, T2, . . ., 20)).

z1,x2,...,x0€{0,1}
At the last round of this sumcheck, the prover opens the commitment of g at
g(r1,...,re), and the verifier computes f(r1,...,r;) by subtracting pg(r1,...,7s)
from the last message, and compares it with the oracle access of f. It is shown
that as long as the commitment and opening of g are zero-knowledge, the pro-
tocol is zero-knowledge. Intuitively, this is because all the coefficients of f are
masked by those of g. The soundness still holds because of the random linear
combination of f and g.

Unfortunately, the masking polynomial g is as big as f, and opening it to a
random point later is expensive. In [22], the prover sends a PCP oracle of ¢, and
executes a zero-knowledge sumcheck to open it to a random point, which incurs
an exponential complexity for the prover. Even replacing it with the zkVPD
protocol in [49], the prover time is slow in practice.

In this paper, we show that it suffices to mask f with a small polynomial
to achieve zero-knowledge. In particular, we set g(z1,...,2¢) = ao + g1(x1) +
g2(x2) + ... + ge(ze), where g;(z;) = a;12; + a; 277 + ...+ a; gz¢ is a random
univariate polynomial of degree d (d is the variable degree of f). Note here that
the size of g is only O(d¥), while the size of f is exponential in £.

The intuition of our improvement is that the prover sends O(df) messages
in total to the verifier during the sumcheck protocol, thus a polynomial g with
O(df) random coefficients is sufficient to mask all the messages and achieve
zero-knowledge. We present the full protocol in Construction 1.

The completeness of the protocol holds obviously. The soundness follows the
soundness of the sumcheck protocol and the random linear combination in step
2 and 3, as proven in [22]. We give a proof of zero knowledge in the full version.

Theorem 2 (Zero knowledge). For every verifier V* and every {-variate
polynomial f : F* — F with variable degree d, there exists a simulator S such
that given access to H = thx%“_,me{ml} flay,xa, ... xp), S is able to simulate
the partial view of V* in step 1-4 of Construction 1.
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Construction 1. We assume the existence of a zkVPD protocol defined in Section 2.4.
For simplicity, we omit the randomness vy and public parameters pp,vp without any

ambiguity. To prove the claim H = > f(x1, @2, ..., x0):
z1,22,...,20€{0,1}

1. P selects a polynomial g(z1,...,xe) = ao + gi1(z1) + g2(x2) + ... + gi(xe), where
gi(zi) = @iz + ai,gx? +...+ ai,dx‘ii and all a; js are uniformly random. P sends
H = > fz1,29,...,20), G = > g(z1,x2,...,2¢) and
z1,22,...,x9€{0,1} L1,L2,..., z,€{0,1}
com, = Commit(g) to V.
2.V uniformly selects p € F*, computes H + pG and sends p to P.
3. P and V run the sumcheck protocol on

H+pG: Z (f(x1,ﬂ?g,...7l'[)+pg(l‘17l‘2,...,l‘£))

z1,22,...,20€{0,1}

4. At the last round of the sumcheck protocol, V obtains a claim he(re) =
flri,re,...,me) + pg(ri,re,...,7m0). P and V opens the commitment of g at
r = (r1,...,re) by (g(r),m) + Open(g,r), Verify(comgy, g(r),r, 7). If Verify out-
puts reject, V aborts.

5.V computes he(re) — pg(ri,...,m¢) and compares it with the oracle access of

f(rlz"wri)‘

4.2 Zero knowledge GKR

To achieve zero-knowledge, we replace the sumcheck protocol in GKR with the
zero-knowledge version described in the previous section. However, the protocol
still leaks additional information. In particular, at the end of the zero-knowledge
sumcheck, V queries the oracle to evaluate the polynomial on a random point.
When executed on Equation 2, this reveals two evaluations of the polynomial Vi
defined by the values in the i-th layer of the circuit: V;(u) and V;(v).

To prevent this leakage, Chiesa et al. [22] proposed to replace the multi-linear
extension V; with a low degree extension, such that learning V;(u) and V;(v) does
not leak any information about V;. Define a low degree extension of V; as

Vi(x) € Vi2) + Zi(2) Y Ri(z,w), (7)
where Z(z) = T[], zi(1 — z), Le, Z(z) = 0 for all z € {0,1}%. R;(z,w) is a
random low-degree polynomial and A is the security parameter. With this low
degree extension, Equation 2 becomes

we{0,1}*

Vig) = ZI yef0.1) malti1(g, 2, y) (Vi1 (2) Vi () (8)
+addiy1(9,%,y) (Vier (2) + Vi (v) + Zi9) Zwe{o,l}* Ri(g, w)
= Zm’ye{oyl}siﬂ’we{o’l}k(—r(ovw) ~multiyi(g,2,y) (Vier (@) Vit (y)) (9)

+addit1(g,2,y)(Vigr (2) + Vier (1) + 1((2,3),0) Zi(9) Ri(g, w))
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where I(a,b) is an identity polynomial I(a,b) = 0 iff @ = b. The first equation
holds because V; agrees with V; on the Boolean hyper-cube {0,1}%, as Z;(z) = 0
for binary inputs. The second equation holds because the mask in V; is in the
form of a “sum” and can be moved into the sumcheck equation.

When executing the zero-knowledge sumcheck protocol on Equation 8, at the
end of the protocol, V receives Vi 1 (u) and Vi1 (v) for random points u, v € Fsi+!
chosen by V. They no longer leak information about V; 1, as they are masked by
Zi+1(2) Xpeqoay Riv1(z,w) for z =w and z = v. V computes multit1(g, u,v)
and add, 41 (g, u,v) as before, computes Z;(g), 1(0,¢), I((u,v),0) where ¢ € F* is
a random point chosen by V for variable w, opens R;(g,w) at ¢ with P through a
polynomial commitment, and checks that together with Vi1 (u), Vig1(v) received
from P they are consistent with the last message of the sumcheck.) then uses
Vi1 (), Vig1(v) to proceed to the next round.

Unfortunately, similar to the zero-knowledge sumcheck, the masking polyno-
mial R; is very large in [22]. Opening R; at a random point takes exponential
time for P either using a PCP oracle as in [22] or potentially using a zkVPD, as
R has s; + 2s;41 + A variables.

In this section, we show that we can set R; to be a small polynomial to
achieve zero-knowledge. In particular, R; has only two variables with variable
degree 2. This is because in the (i — 1)-th round, V receives two evaluations of
Vi, Vi(u) and Vj(v), which are masked by 3>, Ri(u,w) and 3, R;(v,w); in the
i-th sumcheck, V opens R; at R;(u,c) and R;(v,c). It suffices to make these
four evaluations linearly independent, assuming the commitment and opening of
R; are using a zkVPD. Therefore, we set the low-degree term in Equation 7 as
Zi(2) X peqo1y Ri(z1,w), i.e. R; only takes two variables, the first variable z; of
z and an extra variable w € {0, 1} instead of {0,1}*, with variable degree 2.

The full protocol is presented in Construction 2. Here we use superscriptions
(e.g., V) to denote random numbers or vectors for the i-th layer of the circuit.

Construction 2. 1. On a layered arithmetic circuit C with d layers and
input in, the prover P sends the output of the circuit out to the verifier
V.

2. P randomly selects polynomials Ry(z1,w),..., Rg(z1,w) : F2 — F with
variable degree 2. P commits to these polynomials by sending com; <—
Commit(R;) to V fori € [1,d].

3.V defines Vo(z) = Vo(2), where Vo(z) is the multilinear extension of
out. Vo(z) can be viewed as a special case with Ry(z1,w) being the 0
polynomial. V evaluates it at a random point Vo(g(o)) and sends g to

P.
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4. P and V execute the zero knowledge sumcheck protocol presented in
Construction 1 on

Vog) = > malti (g, z,y)(Vi(2)Vi(y))
z,y€{0,1}*1

+ addy (g, z, y) (Vi (z) + Vi(y))

If ugl) = v%l), P aborts. At the end of the protocol, V receives Vi (u™)
and Vi (v). V computes mult, (g0, u™ v add; (¢, v, vM) and
checks that

m&ltl (9(0), u(l), @(1))"/1 (u(l))Vl (u(l))+ac~id1 (9(0), u(l)’ v(l))(Vl (u(l))—i—Vl (v(l))

equals to the last message of the sumcheck (evaluation oracle).
5. Forlayert=1,...,d—1:
(a) V randomly selects o'V, 3% € F and sends them to P.
(b) Let Mult;1(z,y) = aDmult (u®, z,y) + BOmult; . (vD, )
and
Add; 1 (x,y) = aDadd; 1 (uD, z,y) + BDadd; 1 (v, 2,y). P and
V run the zero knowledge sumcheck on the equation

> (1(0,w) - Multiyr (2,9)(Vigr (2)Vigr (v))
z,y€{0,1}%i+1
we{0,1}

+ Addi 1 (2, y) (Vi () + Viga (v))
+1((2,9),0)(o) Zi(u ) Ri(u? w) + 5O Z,(0O) Ry, w)))
If ugiﬂ) = vi”l), P aborts.
(c) At the end of the zero-knowledge sumcheck protocol, P sends V

Vipr (u) and Vi (00FD).
(d) V computes

aip1 = aDmult; (w0 D) L8O myit; o (0@ D) D)
and
biat = aDaddssr (w, ul*D, p0+0) 480 gy 1 (60, uliD), (1)

locally. V computes Zi(u®), Z;(v®), 1(0, @), I((u+D), v(+1) 0)
locally.

(e) P andV open R; at two points Ri(ugl), ) and Ri(v§1)7 ) using
Open and Verify.
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(f) V computes the following as the evaluation oracle and uses it to
complete the last step of the zero-knowledge sumcheck.

1(0, C(i))(azurl(Vi+1(U(Hl))vﬁl(”(i“)))*‘
bi+1(‘./i+1(u(i+1)) + VQ‘H(U(HI))))JF
I((@D,004),0)(@D 2 (u®) Ry(ul”, ) + B0 Z,(0D) Ry (v}, )

If all checks in the zero knowledge sumcheck and Verify passes, V
uses Viy1 (w0t and Viy1 (v+D) to proceed to the (i+1)-th layer.
Otherwise, V outputs reject and aborts. )

6. At the input layer d, V has two claims Vy(u'¥) and Vy(v(®). V opens Ry
at 4 points Rd(qu),O), Rd(ugd), 1), Rd(vgd),O), Rd(vgd), 1) and checks
that Vy(u®) = Va(u®) + Zy(u®) Rd(u(ld),w) and Vy(v@) =

we{0,1}
Vi D) + Zg(v @) Rd(vgd),w), given oracle access to two evalu-
we{0,1}
ates of Vy at u'® and v(D . If the check passes, output accept; otherwise,
output reject.

Theorem 3. Construction 2 is an interactive proof protocol, for a function f
defined by a layered arithmetic circuit C such that f(in,out) = 1 iff C(in) = out.
In addition, for every wverifier V* and every layered circuit C, there exists a
simulator S such that given oracle access to out, S is able to simulate the partial
view of V* in step 1-5 of Construction 2.

The completeness follows from the construction explained above and the com-
pleteness of the zero knowledge sumcheck. The soundness follows the soundness
of the GKR protocol with low degree extensions, as proven in [30] and [22]. We
defer the proof of zero knowledge to the full version.

4.3 Zero knowledge VPD

In this section, we present the instantiations of the zk VPD protocol, as described
in Section 2.4. For every intermediate layer i, we use the same zkVPD protocol
as proposed by Zhang et al. in [49] to commit and open the masking polynomials
gi(2), Ri(21,w). In fact, as we show in the previous sections, these polynomials
are very small (g; is the sum of univariate polynomials and R; has 2 variables with
variable degree 2), the zkVPD protocols become very simple. The complexity of
KeyGen, Commit, Open, Verify and proof size are all O(s;) for g; and are all O(1)
for R;. We omit the full protocols due to space limit.

For the zkVPD used for the input layer, we design a customized protocol
based on the zkVPD protocol in [49]. Recall that at the end of the GKR protocol,
P sends two evaluations of Vy(z) = Vy(2) + Za(2) > wefo1y Ralz,w) at 2z = u(d)
and z = v(9, In our zero knowledge proof protocol, which will be presented in
Section 4.4, P commits to Vd(z) using the zkVPD at the beginning, and opens
it to the two points selected by V.
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The protocol in [49] works for any polynomial with ¢ variables and any vari-
able degree, and is particularly efficient for multilinear polynomials. We modify
the protocol for our zero-knowledge proof scheme and preserve the efficiency.
Note that though Vd(z) is a low degree extension of the input, it can be decom-
posed to the sum of V;(z), a multilinear polynomial, and Zg(z) > wefo1} Ralz1,w).
Moreover, Zg(u(®) and Zg4(v?) can be computed directly by V. Therefore, in
our construction, P commits to Vy(z) and > wefo,1} fla(z1, w) separately, and

later opens the sum together given Zy(u(®) and Z4z(v(?), which is naturally
supported because of the homomorphic property of the commitment. Another
optimization is that unlike other layers of the circuit, Rq(z1,w) itself is not
opened at two points (V does not receive Ry(u(®, (@) and Ryq(v@, ¢(®) in Con-
struction 2). Therefore, it suffices to set Vy(z) = Vy(2) + Za(z)Rq4(z1), where
Ry is a univariate linear polynomial. We will give the full protocol in the full
version.

4.4 Putting Everything Together

In this section, we present our zero knowledge argument scheme. At a high level,
similar to [48-50], V can use the GKR protocol to verify the correct evaluation of
a circuit C on input x and a witness w, given an oracle access to the evaluation of
a polynomial defined by x,w on a random point. We instantiate the oracle using
the zkVPD protocol. Formally, we present the construction in Construction 3,
which combines our zero knowledge GKR and zkVPD protocols. Similar to the
protocols in [48,49], Step 6 and 7 are to check that P indeed uses x as the input
to the circuit.

Theorem 4. For an input size n and a finite field F, Construction 3 is a zero
knowledge argument for the relation

R={(C,z;w): C €CpAlx|+|w] <nAC(z;w) =1},

as defined in Definition 1, under the ¢-SBDH and the extended PKE assump-
tions. Moreover, for every (C,z;w) € R, the running time of P is O(|C|) field
operations and O(n) multiplications in the base group of the bilinear map. The
running time of V is O(|z| 4+ d - log|C|) if C is log-space uniform with d layers.
P and V interact O(dlog|C|) rounds and the total communication (proof size)
is O(dlog|C|). In case d is polylog(|C|), the protocol is a succinct argument.

Proof Sketch. The correctness and the soundness follow from those of the two
building blocks, zero knowledge GKR and zkVPD.

To prove zero knowledge, consider a simulator S that calls the simulator
Sckr of zero knowledge GKR given in Section 4.2 as a subroutine, which sim-
ulates the partial view up to the input layer. At the input layer, the major
challenge is that S committed to (a randomly chosen) Vd* at the beginning of
the protocol, before knowing the points u(®, v(9) to evaluate on. If S opens the
commitment honestly, with high probability the evaluations are not consistent
with the last message of the GKR (sumcheck in layer d — 1) and a malicious V*
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Construction 3. Let A be the security parameter, F be a prime field, n be an
upper bound on input size, and S be an upper bound on circuit size. We use
VPD1,VPD3,VPDs3 to denote the zkVPD protocols for input layer, masking polyno-
mials g; and R; described in Construction 2.

- G(1*n,S): run (ppy,vp;) <  VPDi.KeyGen(1*,logn), (pp,y,vpy)
VPD,.KeyGen(1*,log S), (pps,vps) < VPD3.KeyGen(1*). Output pk =
(PP1; PP2, PP3) and vk = (vpy,vp,, vp3).

— (P(pk,w),V(vk))(z): Let C be a layered arithmetic circuit over F with d layers,
input © and witness w such that |z| + |w| < n, |C| < S and C(z;w) = 1. Without
loss of generality, assume |w|/|z| =2" —1 for some m € N.

1. P selects a random bivariate polynomial R4 with variable degree 2 and com-
mits to the input of C' by sending comg VPD1.Commit(Vd,7"\/,7'37 pp;) to
V), where Vy is the multilinear extension of array (z;w) and Vy=Vy+ Ry

2. V runs VPD1.CheckComm(comg, vp,). If it outputs reject, V aborts and out-
puts reject.

3. P and V execute Step 1-5 of the zero knowledge GKR protocol in Construc-
tion 2, with the zkVPDs instantiated with VPD2 and VPDs. If Construction 2
rejects, V outputs reject and aborts. Otherwise, by the end of this step, V
recewes two claims of Vy at u'® and v'?P.

4. P runs (y1,m) VPD1.Open(V,rv,rR,u<d),ppl), (y2,m2)
VPD1.Open(V, rv,rR,v<d), pp,) and sends yi,m1,y2, T2 to V.

5.V runs Verify(comg,uw'D, y1,m1,vp,) and Verify(comg,v¥,ya, ma,vp,) and
output reject if either check fails. Otherwise, V checks Vd(u(d>) = y1 and
Vd(v(d)) = ya, and rejects if either fails.

6. V computes the multilinear extension of input x at a random point r, € F°8 ||
and sends ry to P.

7. P pads vy to rl, € Floglzl 5 gloglwl 4ith log|w| 0s and sends V (Yo, Ts)
VPD;.0pen(Vy, v, TR, T, ppy). V checks Verify(comg, 1, Yo, Tz, vp,) and y.
equals the evaluation of the multilinear extension on x. V outputs reject if the
checks fail. Otherwise, V outputs accept.

can distinguish the ideal world from the real world. In our proof, we resolve this
issue by using the simulator Sy pp of our zkVPD protocol. Given the trapdoor
trap used in KeyGen, Sy pp is able to open the commitment to any value in zero
knowledge, and in particular it opens to those messages that are consistent with
the GKR protocol in our scheme, which completes the construction of S.

The complexity of our zero knowledge argument scheme follows from our

new GKR protocol with linear prover time, and the complexity of the zkVPD
protocol for the input layer analyzed in Section 4.3. The masking polynomials
gi, R; and their commitments and openings introduce no asymptotic overhead
and are efficient in practice.
Removing interactions. Our construction can be made non-interactive in the
random oracle model using Fiat-Shamir heuristic [26]. Though GKR protocol
is not constant round, recent results [12,20] show that applying Fiat-Shamir
only incurs a polynomial soundness loss in the number of rounds in GKR. In
our implementation, the GKR, protocol is on a 254-bit prime field matching the
bilinear group used in the zkVPD. The non-interactive version of our system
provides a security level of 100+ bits.
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5 Implementation and Evaluation

Software. We fully implement Libra, our new zero knowledge proof system in
C++. There are around 3000 lines of code for the zkGKR protocol, 1000 lines
for the zkVPD protocol and 700 lines for circuit generators. Our system provides
an interface to take a generic layered arithmetic circuit and turn it into a zero
knowledge proof. We implement a new class for large integers named u512, and
use it together with the GMP [2] library for large numbers and field arithmetic.
We use the ate-pairing [1] library on a 254-bit elliptic curve for the bilinear map
used in zkVPD. We plan to open-source our system.
Hardware. We run all of the experiments on Amazon EC2 c5.9xlarge instances
with 70GB of RAM and Intel Xeon platinum 8124m CPU with 3GHz virtual core.
Our current implementation is not parallelized and we only use a single CPU
core in the experiments. We report the average running time of 10 executions.
In the implementation, we developed a concrete optimization to support var-
ious types of gates with no extra overhead, instead of only addition and multi-
plication. It may be of independent interest and is presented in the full version.

5.1 Improvements on GKR protocols

In this section, we compare the performace of our new GKR protocol with linear
prover time with all variants of GKR in the literature on different circuits.
Methodology and benchmarks. For fair comparisons, we re-implement all of
these variants in C++ with the same libraries. The variants include: (1) O(C') for
regular circuits, proposed in [43], where the two inputs of a gate can be described
by two mapping functions with constant size in constant time. See [43] for the
formal definition of regular circuits. (2) O(C'+C"log C") for data-parallel circuits
with a small copy of size C’, proposed in [46]. (3) O(C'log C") for circuits with
non-connected different copies of size C’, proposed in [51]. (4) O(C'logC) for
arbitrary circuits, proposed in [23].

We compare our GKR protocol to these variants on the benchmarks below:

— Matrix multiplication: P proves to V that it knows two matrices whose
product equals a public matrix. The representation of this function with an
arithmetic circuit is highly regular®. We evaluate on different dimensions from
4 x 4 to 256 x 256 and the elements in the matrices are 32-bit integers.

— Image scaling: It computes a low-resolution image by scaling from a high-
resolution image. We use the classic Lanczos re-sampling [44] method. It com-
putes each pixel of the output as the convolution of the input with a sliding
window and a kernel function defined as: k(z) = sinc(x)/sinc(az),if —a <
x < a;k(z) = 0,otherwise, where a is the scaling parameter and sinc(z) =
sin(x)/x. This function is data parallel, where each sub-circuit computes the
same function to generate one pixel of the output image. We evaluate by fix-
ing the window size as 16 x 16 and increase the image size from 112x112 to
1072x1072. The pixels are 8-bit integers for greyscale images.

We use the circuit representation of matrix multiplication with O(n®) gates for fair
comparisons, not the special protocol proposed in [43].
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Matrix Matrix size 4x4 16x16 | 64x64 | 256x256

multiplication [43] 0.0003s | 0.006s | 0.390s 29.0s
Ours 0.0004s | 0.014s | 0.788s 50.0s

F#pixels 112x112{176x176|560x560|1072x1072
Image scaling [46] 0.445s | 0.779s | 7.54s 29.2s
Ours 0.337s | 1.25s | 19.8s 79.2s

Image scaling with #pixels 112x112|176x176(560x560|1072x1072
different parameters [50] 5.45s | 21.8s 348s 1441s
Ours 0.329s | 1.22s 19.3s 77.2s

#gates per layer| 28 212 216 220

Random circuit [23] 0.008s | 0.179s | 3.79s 83.1s
Ours 0.002s | 0.039s | 0.635s 10.8s

Table 2. Prover time of our linear GKR and previous GKR variants.

— Image scaling of different parameters: It is the same computation as
above with different scaling parameters in the kernel function for different
pixels. The circuit of this function consists of different sub-copies. We evaluate
it with the same image sizes as above.

— Random circuit: It is randomly generated layered circuit. We randomly
sample the type of each gate, input value and the wiring patterns. We fix the
depth as 3 and increase the number of gates per layer from 28 to 22°.

To be consistent with the next section, all the protocols are executed on a 254-bit
prime field. This does not affect the comparison at all, as all the protocols are in
the same field. In Table 2, we report the prover time of the protocols. The proof
size and the verification time of all the variants are similar.

Results. As shown in Table 2, the performance of our GKR protocol is compa-
rable to those special protocols for structured circuits, and much better than the
state-of-the-art on generic circuits. For example, for matrix multiplication, our
protocol is slower by 1.3 — 2.4x, because the protocol in [43] writes the wiring
of matrix multiplication explicitly and does not need to compute add and mult.
For image scaling, our protocol is slower by 2.5 — 4x. This gap would become
even smaller when the size of each sub-copy is larger. Here we use a small 16 x 16
block, while the number of copies is 49—4489.

For image scaling with different parameters and generic random circuits, our
protocol has a speedup of 4 — 8, and the speedup will increase with the scale
of the circuits, as indicated by the complexity.

Besides the speedup on complicated circuits, a significant advantage of our
new GKR protocol is on the prover interface of the system. In prior work such
as [46,51], as the protocols are particularly efficient for structured circuits, the
circuits must be represented as small copies and the numbers of each copy. Even
worse, the structure is explored per layer of the circuit, making the numbers of
each copy potentially different in different layers. (E.g., 6 gates may be considered
3 copies with 2 gates and 2 copies with 3 gates in two different layers for efficiency
purposes.) This constraint makes the interface of these systems hard to use and
generalize. Our result gives a unified solution for arbitrary circuits, and it is the
main reason that our prover can take the description of any layered arithmetic
circuit potentially generated by other tools like Verilog.
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5.2 Comparing to Other ZKP Schemes

In this section, we show the performance of Libra as a whole and compare it with
several state-of-the-art zero knowledge proof systems.

Methodology. We compare with the following systems: libSNARK [13], Ligero
[6], libSTARK [8], Hyrax [48], Bulletproofs [16] and Aurora [11]. See Section 1 for
more explanations of these systems and their asymptotic.

— libSNARK: We use jsnark [4] to write the circuits (rank one constraint system
(R1CS)), which compiles them to ZKP using the libSNARK backend [5].

— Ligero: As the system is not open-source, we use the same number reported
in [6] on computing hashes.

— libSTARK: After communications with the authors of [8], we obtain numbers
for proving the same number of hashes in the 3rd benchmark below from the
authors. The experiments are executed on a server with 512GB of DDR3 RAM
(1.6GHz) and 16 cores (2 threads per core) at speed of 3.2GHz.

— Hyrax: We use the open-source implementation of the system at [3].

— Bulletproofs: We use the system re-implemented by [48] at [3].

— Aurora: As a recently accepted paper, the system is not available and we
extrapolate its performance using the numbers reported in the paper [11] for
circuits with 219 — 220 R1CS constrains.

Benchmarks. We evaluate the systems on three benchmarks: matrix multi-
plication, image scaling and Merkle Tree [40], which are used in [48]. Matrix
multiplication and image scaling are the same as explained in Section 5.1. In the
third benchmark, P proves to V that it knows the value of the leaves of a Merkle
tree [40] that computes to a public root value [15]. We use SHA-256 for the
hash function. We implement it with a flat circuit where each sub-computation
is one instance of the hash function. The consistency of the input and output of
corresponding hashes are then checked by the circuit. There are 2M — 1 SHA256
invocations for a Merkle tree with M leaves. We increase the number of leaves
from 16 to 256. We use the SHA-256 implemented by jsnark [4] in R1CS format
to run libSNARK and estimate Aurora, and we use the SHA-256 arithmetic cir-
cuit implemented by Hyrax to run Hyrax, Bulletproofs and Libra. We only show
the performance of Ligero and libSTARK on the third benchmark.

We report the prover time, proof size and verification time in Figure 1.
Prover time. As shown in Figure 1(a)(b)(c), the prover in Libra is the fastest
among all systems in all three benchmarks we tested. Ligero is one of the best
existing ZKP systems on prover time as it is purely based on symmetric key
operations. Comparing to Ligero, the prover time of Libra is 1.15x faster on a
Merkle tree with 2 leaves and 2x faster with 256 leaves. Comparing to other
systems, Libra improves the prover time by 3.4 —8.9x vs. Hyrax, 7.1 — 16.1x vs.
Aurora, 10.1 — 12.4x vs. libSTARK and 65 — 166 x vs. Bulletproof.

Libra is also faster than libSNARK on general circuits by 5 — 10x, as shown
in Figure 1(a) and 1(b). The performance of Libra is comparable to libSNARK
on Merkle trees in Figure 1(c). This is because (1) most values in the circuit of
SHA256 are binary, which is friendly to the prover of libSNARK as the time of
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Fig. 1. Comparisons of prover time, proof size and verification time between Libra and
existing zero knowledge proof systems.

exponentiation is proportional to the bit-length of the values; (2) The R1CS of
SHA256 is highly optimized by jsnark [4] and real world products like Zcash [9].
There are only 26,000 constrains in one hash. In the arithmetic circuit used by
Libra, there are 60,000 gates with 38,000 of them being multiplication gates.
Even so, Libra is still as fast as libSNARK on a Merkle tree with 2 leaves and
2x faster with 256 leaves. We plan to further optimize the implementation of
SHA256 as an arithmetic circuit in the future.

The gap between Libra and other systems will become bigger as the size of
the circuit grows, as the prover time in these systems (other than Bulletproof)
scales quasi-linearly with the circuit size. The evaluations justify that the prover
time in Libra is both optimal asymptotically, and efficient in practice.
Verification time. Figure 1(d)(e)(f) show the verification time. Our verifier is
much slower than libSNARK and libSTARK, which runs in 1.8ms and 28-44ms
respectively in all the benchmarks.

Other than these two systems, the verification time of Libra is faster, as
it grows sub-linearly with the circuit size. In particular, our verification time
ranges from 0.08 — 1.15s in the benchmarks we consider. In Figure 1(f), the
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verification time of Libra is 8 x slower than Aurora when M = 2, and 15x faster
when M = 256. Libra is 2.5x slower than Ligero with M = 2 and 4x faster
with M = 256. Comparing to Hyrax and Bulletproof, our verification is 1.2 — 9x
and 27 —900x faster respectively. Again, the gap increases with the scale of the
circuits as our verification is succinct.

Proof size. We report the proof size in Figure 1(g)(h)(i). Our proof size is much
bigger than libSNARK, which is 128 bytes for all circuits, and Bulletproof, which
ranges in 2 —5.5KBs. The proof size in Libra is in the range of 30-60KBs, except
for the matrix multiplications where it reduces to 5 — 9KBs. This is better than
Aurora, Hyrax and libSTARK, which also have poly-logarithmic proof size to the
circuit. Finally, the proof size in Ligero is O(v/C) and grows to several MBs.
Setup time. Among all the systems, only Libra and libSNARK require trusted
setup. Thanks to the optimization described in the beginning of this section, it
only takes 202s to generate the public parameters in our largest instance with
n = 224, Libra only needs to perform this setup once and it can be used for all
benchmarks and all circuits with no more inputs. libSNARK requires a per-circuit
setup. For example, it takes 1027s for the Merkle tree with 256 leaves, and takes
210s for 64 x 64 matrix multiplications.
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