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Abstract. In this work we show that the sponge construction can be
used to construct quantum-secure pseudorandom functions. As our main
result we prove that random sponges are quantum indistinguishable from
random functions. In this setting the adversary is given superposition
access to the input-output behavior of the construction but not to the
internal function. Our proofs hold under the assumption that the in-
ternal function is a random function or permutation. We then use this
result to obtain a quantum-security version of a result by Andreeva,
Daemen, Mennink, and Van Assche (FSE’15) which shows that a sponge
that uses a secure PRP or PRF as internal function is a secure PRF.
This result also proves that the recent attacks against CBC-MAC in
the quantum-access model by Kaplan, Leurent, Leverrier, and Naya-
Plasencia (Crypto’16) and Santoli, and Schaffner (QIC’16) can be pre-
vented by introducing a state with a non-trivial inner part.
The proof of our main result is derived by analyzing the joint distribution
of any q input-output pairs. Our method analyzes the statistical behav-
ior of the considered construction in great detail. The used techniques
might prove useful in future analysis of different cryptographic primitives
considering quantum adversaries. Using Zhandry’s PRF/PRP switching
lemma we then obtain that quantum indistinguishability also holds if the
internal block function is a random permutation.

Keywords: Symmetric cryptography, keyed sponges, indistinguishabil-
ity, quantum security, message-authentication codes

1 Introduction

Originally introduced in the context of cryptographic hash functions, the sponge
construction [2] became one of the most widely used constructions in symmetric
cryptography. Consequently, sponges get used in keyed constructions, including
message authentication codes (MAC), stream ciphers, and authenticated en-
cryption (AE), see e.g. [5, 4, 7, 17, 20, 1, 13]. For all these applications it is
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either necessary or at least sufficient for security if a secretly keyed sponge is
indistinguishable from a random function. That this is indeed the case was al-
ready shown in the original security proof for the sponge construction [3] where
cryptographic sponges were shown to be indifferentiable from random functions.
This result is widely applicable and consequently was followed up with several
improved bounds for specific applications. Recent works [17, 1, 13] improved the
bound for the setting of indistinguishability of secretly keyed sponges.

While these results show the applicability of the sponge construction in to-
day’s computing environment, they leave open the question of its applicability in
a future post-quantum setting where adversaries have access to quantum com-
puters. Such an attacker can for example run Shor’s algorithm [22] to break
the security of constructions based on the RSA or discrete-logarithm problem.
While such constructions are hardly ever considered for practical symmetric
cryptography due to their slow operations, the impact of quantum adversaries
goes beyond Shor’s algorithm. Conventional security proofs, especially in ide-
alized models, might break down in the light of quantum attackers who are
allowed to ask queries in superposition [8]. Going even further, allowing adver-
saries superposition access to secretly keyed primitives, it was shown that several
well known MACs and encryption schemes, including CBC-MAC and the Even-
Mansour block cipher become insecure [16, 14, 21]. While these latter attacks are
not applicable in the post-quantum setting, they are indications that secret-key
cryptography does not trivially withstand quantum adversaries and that it is
necessary to study the security of symmetric cryptography in the post-quantum
setting.

In this work we do exactly this: We study the security of secretly keyed
sponges against quantum adversaries. Quantum security of sponges was also
analyzed in [11], although the authors there focused on different properties then
we.

Sponges. The sponge construction [2] is an eXtendable Output Function (XOF)
that maps arbitrary-length inputs to outputs of a length specified by an addi-
tional input. The construction operates on an (r + c)-bit state. The parameter
r is called the rate and the parameter c is called the capacity. The first r bits of
the state are called the outer part or outer state, the remaining c bits are called
the inner part or inner state. The sponge uses an internal function f mapping
(r+c)-bit strings to (r+c)-bit strings. To process a message consisting of several
r-bit blocks, the sponge alternates between mixing a new message block into the
outer state and applying f , as shown in Figure 1. When all message blocks are
processed (i.e. absorbed into the internal state) the sponge can be squeezed to
produce outputs by alternating between applying f and outputting the outer
state. We write Spongef for the sponge using f as internal function.

Sponges can be keyed in several ways. For example, the state can be initialized
with the key, referred to as root-keyed sponge in [1]. Another option is to just
apply the sponge on the concatenation of key and message. This was called the
keyed sponge in [4] and the outer-keyed sponge in [1]. The last and for us most
relevant concept is keying the sponge by replacing f with a keyed function fK .
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Fig. 1. A scheme illustrating the sponge construction.

For the special case of fK being a single-key Even-Mansour construction this was
called E-M keyed sponge construction in [10] and later the inner-keyed sponge
in [1]. We refer to the general case for any keyed function fK as keyed-internal-
function sponge.

Our results. As main result, we prove that the sponge construction using a
random function or permutation is quantumly indistinguishable from a random
function (see Theorems 8 and 16). This result can be used to obtain a quan-
tum version of Theorem 1 from [1] (see Theorem 12) which states that the
indistinguishability of keyed-internal-function sponges can be derived from the
quantum-PRF-security (or quantum-PRP-security in case of a block-cipher) of
the keyed internal function. Thereby we not only provide a proof for the secu-
rity of keyed-internal-function sponges in the post-quantum setting, but even
in the stronger quantum settings where the adversary gets full quantum-access
to the keyed-internal-function sponge, i.e we prove that keyed-internal-function
sponges are quantum PRFs.

Another implication of our result is that the quantum attacks against CBC-
MAC mentioned above can be prevented using a state with a non-trivial inner
part. The authors of the attack already noted3 that their attack does not work in
this case. More specifically, CBC-MAC can be viewed as full-width sponge (where
the state has no inner part, i.e., the capacity is 0). On the other hand, a CBC-
MAC where all message blocks are padded with 0c and the output is truncated
to the first r bits can be viewed as an keyed-internal-function sponge. Hence,
our result applies and shows that the quantum attacks by Kaplan, Leurent,
Leverrier, and Naya-Plasencia [14] and Santoli, and Schaffner [21] using Simon’s
algorithm are not applicable any longer. Even more, our result proves that this
little tweak of CBC-MAC indeed results in a quantum secure MAC.

In the full version of the paper [12] we show a direct proof of indistinguisha-
bility for f being a random permutation. In this proof we state and prove a
lemma that generalizes the average case polynomial method to allow for func-

3 See slide 16 (page 26) of their Crypto 2016 presentation available at https://who.

rocq.inria.fr/Gaetan.Leurent/files/Simon_CR16_slides.pdf.
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tions that are not necessarily polynomials but are close to one; this result is not
necessary to achieve the main goal of the paper but might be useful in other
works using similar techniques.

A limitation. The authors of [1] use their Theorem 1 to show security of inner-
keyed sponges using the PRP-security of single-key Even-Mansour. Their result
does not carry over to the quantum setting as Even-Mansour is vulnerable in
the quantum setting [16]. This does not lead an actual attack on inner-keyed
sponges in the quantum setting. The attack needs access to the full input to
the Even-Mansour cipher, which is never the case for inner-keyed sponges as
long as a non-trivial inner state is used. However, the attack on Even-Mansour
does render the modular proof strategy not applicable for inner-keyed sponges.
We also need to stress that our result so far does not cover the commonly used
approaches to secretly key SHA3 for this very reason.

Our approach. The main technical contribution of our work is a proof that
the probability for any given input-output behavior of Spongef is a polynomial
in the capacity of the sponge. This observation allows us then to apply the
average-case polynomial method of [24] (see Theorem 4 below).

In more detail, recall that the capacity of a Spongef is the size of the inner
state (there are 2c possible inner states for a sponge as in Figure 1). If the
capacity of a sponge increases, it becomes less and less likely that there are
collisions in the inner state. Hence for infinite capacity, the inner states are
unique and so the internal functions are called on unique inputs and therefore,
the sponge behaves like a random function. Our proof formalizes this intuition
by carefully analyzing the probabilities for q given input-output values of the
sponge in terms of the capacity. We show that these probabilities are in fact
polynomials in the inverse of the capacity of degree at most q times the length
of the input-output values. We refer to Lemma 9 for the formal statement.

By establishing the capacity as this crucial parameter, we fit directly into the
proof technique from [24] that uses approximating polynomials of low degree to
show closeness of distributions and in turn small quantum distinguishing advan-
tage. By the PRF/PRP switching lemma from [25], quantum indistinguishability
also holds for the case of f being a random permutation. In the appendix, we
provide an alternative proof for this case by generalizing the proof technique of
[24] to the case of permutations.

Organization. Section 2 introduces the definition of quantum indistinguisha-
bility and other notions used throughout this work. In Section 3 we extend the
above informal discussion of the sponge construction with a more formal descrip-
tion. At the end of the section we show that Spongef is indistinguishable from
a random oracle in the conventional-access setting (in contrast to the quantum-
access model). In Section 4 we state the main result of our paper as well as
several derived results. In the full version [12] we also provide an example proof
valid for limited distinguishers but giving sufficient details to understand our
approach and verify correctness without all the particulars of the full proof. Sec-
tion 5 contains the proof of Lemma 9, the main technical result of this work.
The case of random permutations is covered in Section 6. We conclude the paper
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with Section 7 discussing some open problems related to the problem we analyze
and related work.

2 Preliminaries and Tools

In this section we introduce the definition of quantum indistinguishability and
other notions used throughout this work.

2.1 Quantum threat model

The quantum threat model we consider allows the adversary to query oracles in
superposition. Oracles are modeled as unitary operators Uh acting on compu-
tational basis states as follows

Uh|X,Y 〉 7→ |X,Y ⊕ h(X)〉. (1)

The adversary is considered to have access to a fault-tolerant (perfect) quantum
computer. We do not provide more details on quantum computing as we do not
directly require it here, but we refer to [19] instead.

2.2 Distributions

A distribution D on a set X is a function D : X → [0, 1] such that
∑
X∈X D(X) =

1. We denote sampling X from X according to D by X ← D. YX denotes the
set of functions {f : X → Y}. If D is a distribution on Y then DX denotes
a distribution on YX where the output for each input is chosen independently

according to D. By
$← X we denote sampling uniformly at random from the set

X .

2.3 Classical and Quantum Indistinguishability

By classical indistinguishability we mean a feature of two distributions that are
hard to distinguish if only polynomially many classical queries are allowed. The
mentioned polynomial is evaluated on the security parameter. Note however that
we have not yet specified it. For now though we leave it implicit, the security
parameter will be specified for the particular construction we are going to ana-
lyze. In the following we are going to use functions N → R that for big enough
argument are smaller than any inverse polynomial, they are called negligible
functions.

Definition 1 (Classical Indistinguishability). Two distributions D1 and D2 over
a set YX are computationally classically indistinguishable if no quantum algo-
rithm A can distinguish D1 from D2 using a polynomial number of classical
queries. That is, for all A, there is a negligible function ε such that∣∣∣∣ P

g←D1

[Ag(.) = 1]− P
g←D2

[Ag(.) = 1]

∣∣∣∣ ≤ ε. (2)
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We write Ag to denote that adversary A has classical oracle access to g. We
will use the following generalization of the above definition to specify our goal.

Definition 2 (Quantum Indistinguishability [24]). Two distributions D1 and D2

over a set YX are computationally quantumly indistinguishable if no quantum
algorithm A can distinguish D1 from D2 using a polynomial number of quantum
queries. That is, for all A, there is a negligible function ε such that∣∣∣∣ P

g←D1

[
A|g〉(.) = 1

]
− P

g←D2

[
A|g〉(.) = 1

]∣∣∣∣ ≤ ε. (3)

We write A|g〉 to denote that adversary A has quantum oracle access to g,
i.e. she can query g on a superposition of inputs.

In what follows the setting that we focus on is indistinguishability from a
random oracle. The first distribution is the one analyzed and the other is the
uniform distribution over the set of all functions from X to Y, i.e. YX . Sampling

a uniformly random function is denoted by
$← YX .

2.4 Main tools

In this section we describe the proof technique—based on approximating
polynomials—that proves useful when dealing with notions like quantum in-
distinguishability. In the following [q] := {1, 2, . . . , q}.
Theorem 3 (Theorem 3.1 in [26]). Let A be a quantum algorithm making q
quantum queries to an oracle h : X → Y. If we draw h from some distribution
D, then the quantity Ph←D[A|h〉() = 1] is a linear combination of the quantities
Ph←D[∀i ∈ [2q] : h(Xi) = Y i], where ∀i ∈ [2q] : (Xi, Y i) ∈ X × Y.

The intuition behind the above theorem is that with q queries the amplitudes
of the quantum state of the algorithm depend on at most q input-output pairs.
The probability of any outcome is a linear combination of squares of amplitudes,
that is why we have 2q input-output pairs in the probability function. Finally as
the probability of any measurement depends on just 2q input-output pairs the
same holds for the algorithm’s output probability. All the information about h
comes from the queries A made.

We use the above theorem together with statements about approximating
polynomials to connect the probability of some input-output behavior of a func-
tion from a given distribution with the probability of the adversary distinguishing
two distributions.

Theorem 4 (Theorem 7.3 in [24]). Fix q, and let Ft be a family of dis-
tributions on YX indexed by t ∈ Z+ ∪ {∞}. Suppose there is an integer d
such that for every 2q pairs ∀i ∈ [2q] : (Xi, Y i) ∈ X × Y, the function
p(1/t) = Ph←Ft

[
∀i ∈ [2q] : h(Xi) = Y i

]
is a polynomial of degree at most d

in 1/t. Then for any quantum algorithm A making at most q quantum queries,
the output distribution under Ft and F∞ are π2d3/3t-close∣∣∣∣ P

h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]∣∣∣∣ < π2d3

6t
. (4)
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This theorem is an average case version of the polynomial method often
used in complexity theory. If the polynomial approximating the ideal behavior
of h← F∞ is of low degree the distance between polynomials must be small.

3 The Sponge Construction

In this section we give a formal definition of sponges and recall a known result
about their indisitinguishability.

3.1 Definition of Sponges

While an informal explanation of sponges was given in the introduction, we now
give a more formal definition.

We define a sponge-compliant padding as:

Definition 5 (Definition 1 in [6]). A padding rule is sponge-compliant if it
never results in the empty string and if it satisfies the following criterion:

∀ν ≥ 0 ∀M,M′ ∈ {0, 1}∗ : M 6= M′ ⇒M‖pad(|M|) 6= M′‖pad(|M′|)‖0νr,
(5)

where ‖ denotes concatenation of bit strings.

A formal definition of the construction is provided as Algorithm 1. Note that
⊕ denotes the bitwise XOR, |P|r denotes the number of blocks of length r in P,
Pi is the i-th block of P and bZc` are the first ` bits of Z.

Algorithm 1: Spongef [pad, r]

Input : M ∈ {0, 1}∗, ` ≥ 0.
Output: Z ∈ {0, 1}`

1 P := M‖pad[r](|M|), and S := 0r+c.
2 for i = 0 to |P|r − 1 do // Absorbing phase

3 S = S ⊕ (Pi‖0c)
4 S = f(S)

5 Z := bScr // Squeezing phase

6 while |Z| < ` do
7 S = f(S)
8 Z = Z‖bScr
9 Output bZc`
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3.2 Classical indistinguishability of random Sponges

In the following we state the indistinguishability result in the classical domain.
We use the following notation for a set of arbitrary finite-length bit strings:

{0, 1}∗ :=
⋃
l≥0

{0, 1}l, (6)

we usually denote this set byM. Before we proceed let us define what we mean
by a random oracle.

Definition 6 (Random Oracle). A random oracle is sampled from a distribution
R on functions from M× N to M, where M := {0, 1}∗. We define h ← R as
follows:

– Choose g uniformly at random from {g :M→ {0, 1}∞}, where by {0, 1}∞
we denote the set of infinitely long bit-strings.

– For each (X, `) ∈ M× N set h(X, `) := bg(X)c`, that is output the first `
bits of the output of g.

Theorem 7 (Classical indistinguishability of Sponge). If f is a random trans-
formation or a random permutation then Spongef defined in Alg. 1 is classically
indistinguishable from a random oracle. Namely for all quantum algorithms A
making polynomially many classical queries there is a negligible function ε such
that ∣∣∣∣∣ P

f
$←SS

[
ASpongef (.) = 1

]
− P

h←R
[Ag(.) = 1]

∣∣∣∣∣ ≤ ε, (7)

where S = {0, 1}r+c, and R is defined according to Definition 6.

Proof. The proof follows closely the proof of Theorem 2 of [2]. Even though we
give more power to the adversary giving her access to a quantum computer, the
queries are considered to be classical. All arguments in the proof of Bertoni and
others depend only on the queries made by the adversary and not her computing
power. For that reason we can use the result of [18], which states that a query-
based classical result easily translates to the quantum case if we do not change
the query model.

4 Random Sponges are quantumly indistinguishable from
random oracles

We want to show that the distribution corresponding to random sponges is
quantumly indistinguishable from a random oracle. We can define a family of
distributions indexed by the security parameter that intuitively gets closer to a
random oracle with increasing parameter. For that reason Theorem 4 is a perfect
theoretical tool to be used. The relevant tasks that remain are to identify the
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family of distributions that correspond to our figure of merit, to show that in
fact the most secure member of the family with t =∞ is a random oracle, and
to prove that the assumptions of Theorem 4 are fulfilled.

The security parameter in Sponge is the capacity; we parametrize the family
of random sponges by the size of the inner state space t = 2c. Intuitively speak-
ing, for c → ∞ each evaluation of the internal function is done with a different
inner state. In this case irrespective of the input, the output is a completely ran-
dom string, which is the definition of a random oracle (RO). Hence we conclude
that we identified a family of distributions that is well suited to be used with
Theorem 4. If we show that indeed for t = ∞ the member of the family is the
random oracle we have that:

F2c is quantumly indistinguishable from F∞

⇒ random sponge is quantumly indisitinguishable from RO. (8)

We are left with the task to prove the left-hand side of the above statement. The
assumption of Theorem 4 is that the probability of witnessing any input-output
behavior on q queries is a polynomial in 1/2c. At this point we stumble upon a
problem with the set of indices. If we want to use the statement about closeness
of polynomials we have to show that p is a polynomial for any inverse integer
and not only for 2−c. This difficulty brings us to the definition of the generalized
sponge construction SpGen. The only difference between SpGen and Sponge
is the space of inner states, we change it from {0, 1}c to any finite-size set C.
This modification solves the problem of defining distributions for any integer,
not only powers of 2. It remains to prove that p(|C|−1) is in fact a polynomial in
|C|−1, where by |C| we denote cardinality of the set. With that statement proven
we fulfill the assumptions of Theorem 4 and show quantum indistinguishability
of SpGen, which implies the same for Sponge.

In Algorithm 2 we present a generalization of Sponge. The set of inner states
is denoted by C and can be any finite set, to be specified by the user. The internal
function is generalized to any map ϕf : {0, 1}r×C → {0, 1}r×C. In the following
we denote the part of the entire state S in {0, 1}r by S̄ and call it the outer part
and the part in C by Ŝ, we will refer to it as the inner part of a state.

Let us now formally state the main claim of this paper. We are going to
focus on the internal function being modeled as a random function, in Section 6
though, we are going to cover the case of random permutations.

Theorem 8. SpGenϕf
for random ϕf is quantumly indistinguishable from a

random oracle. More concretely, for all quantum algorithms A making at most q
quantum queries to SpGen, such that the input length is at most m · r bits long
and the output length is at most z · r bits long,∣∣∣∣∣ P

ϕf
$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣ < π2

6
η3|C|−1, (9)

where η := 2q(m+z−2) and R is defined according to Definition 6. The domain
is defined as S = {0, 1}r × C for some non-empty finite set C.
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Algorithm 2: SpGenϕf
[pad, r, C]

Input : M ∈ {0, 1}∗, ` ≥ 0.
Output: Z ∈ {0, 1}`

1 P := pad(M)
2 S := (0r, IC) ∈ {0, 1}r × C. // IC-initial value

3 for i = 1 to |P|r do // Absorbing phase

4 S := (S̄ ⊕Pi, Ŝ)
5 S := ϕf (S)

6 Z := S̄ // Squeezing phase

7 while |Z| < ` do
8 S := ϕf (S)
9 Z := Z‖S̄

10 Output bZc`

Before we prove the above theorem we state the main technical lemma.

Lemma 9. For a fixed q and for every (M,Z) :=
(
(Mi,Zi)

)
i∈[2q]

, where ∀i ∈
[2q] : (Mi,Zi) ∈ {0, 1}∗ × {0, 1}∗, such that ∀i ∈ [2q] : |Mi|r ≤ m, |Zi|r ≤ z, it
holds that

(i) the probability function is a polynomial in |C|−1 of degree η

P
[
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
]

=

η∑
j=0

aj |C|−j =: p(|C|−1) (10)

(ii) and the coefficient

a0 =

2q∏
i=1

δ(M,Z, i)2−|Z
i|. (11)

All coefficients aj are real, and the degree of the polynomial equals η := 2q(m+z−
2). In the equation describing a0 we use δ(M,Z, i) to denote a Boolean function
that is 0 if Mi is input more than once and Zi is not the longest output of SpGen
on Mi or is inconsistent with other outputs (inputting the same message for the
second time should yield the same output) and is 1 otherwise.

The full proof is presented in Section 5.

Proof idea. Our goal is to explicitly evaluate
P
[
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
]
. We base all of our discussion on two facts:

SpGen has a structure that we know and it involves multiple evaluations of the
internal function ϕf . ϕf is a random function with well specified probability
of yielding some output on a given input. The main idea of our approach is
to extract terms like P[ϕf (S1) = S2] for some states S1, S2 from the overall
probability expression and evaluate them.
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Let us go through a more detailed plan of the proof. Fix (M,Z) and set
`i := |Zi|. In the first step we include all intermediate states in the probabilis-
tic event

(
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
)
. We write explicitly all inner states

and outer states not specified by the input-output pairs (M,Z). Next we rewrite
the full probability expression in the form

∑∏
P[ϕf (S1) = S2 | . . . ]. The sum

comes from the fact that there are many possible intermediate states that yield
the given input-output behavior. The product is the result of using Bayes’ rule
to isolate a single evaluation of ϕf in the probability. To correctly evaluate the
summands we need to analyze all states in P[ϕf (S1) = S2 | . . . ] from the per-
spective of uniqueness—we say a state is unique if it is input to ϕf just a single
time. Given a specific setup of unique states in all 2q evaluations of SpGen
we can easily evaluate the probabilities, as the only thing we need to know is
that ϕf is random. The final step of the proof is to calculate the number of
states in the sum. We sum over all values of states that fulfill the constraints
of
(
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
)

and ϕf being a function. The previous
analysis of uniqueness of states makes it easier to include the latter constraint;
non-unique states have predetermined outputs under ϕf decreasing the number
of possible states. After those steps we end up with an explicit expression for
P
[
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
]
, which allows us to show that p is a poly-

nomial of the claimed degree and its limit in t→∞, i.e. the coefficient a0 is the
probability of uniformly random outputs.

Proof of Theorem 8. Let us define a family Ft indexed by t ∈ N∪{∞}, t > 0. Ft is
a distribution on functions from M×N to M, where M := {0, 1}∗. The family
is additionally parametrized by the choice of r ∈ N and a sponge-compliant
padding function pad. We define h← Ft as follows:

– Choose ϕf uniformly at random from SS , where S := {0, 1}r × C and C is
any finite set of size t > 0.

– Use ϕf , C, the fixed r, and pad to construct SpGenϕf
[pad, r, C].

– For each (X, `) ∈M× N set h(X, `) := SpGenϕf
[pad, r, C](X, `).

To show that we defined Ft in the right way, let us analyze Eq. (8) from
the point of view of the newly defined distribution. On the one hand from our
definition it follows that

P
h←Ft

[
A|h〉() = 1

]
= P

h←Ft

[
A|SpGenϕf

〉() = 1
]

= P
ϕf

$←SS

[
A|SpGenϕf

〉() = 1
]
,

(12)

where the first equality follows from our definition of h and the second from the
fact that all randomness in Ft comes from choosing a random function ϕf . On
the other hand if we take t→∞ the internal function is going to be injective on
its inner part. Namely ϕ̂f—the internal function with its output restricted to the
inner part—is injective. That implies a different inner state in every evaluation
of ϕf in SpGen what in turn implies a random and independent outer part in
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every step of generating the output, formally

P
h←F∞

[
A|h〉() = 1

]
= P

h←R

[
A|h〉() = 1

]
. (13)

This intuition is formally captured by Statement (ii) of Lemma 9, where we
state that in the limit of |C| → ∞ the probability of getting particular outputs
of SpGen is the same as for a random oracle.

From the above discussion we get that∣∣∣∣ P
h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]∣∣∣∣ =∣∣∣∣∣ P
ϕf

$←SS

[
A|SpGenϕf

〉() = 1
]
− P

h←R

[
A|h〉() = 1

]∣∣∣∣∣ , (14)

which is the crucial equality for using Theorem 4 to prove our statement. The
last element of the proof is the assumption about p being a polynomial and that
is exactly the statement of Lemma 9.

Quantum indistinguishability of commonly used sponges with binary state
follows directly from the general result.

Corollary 10. If f is a random function or a random permutation, then
Spongef is quantumly indistinguishable from a random oracle.

Proof. For a random function we use Theorem 8 and for a random permutation
Theorem 16 and set C = {0, 1}c.

4.1 Application to keyed-internal-function sponges

We show that Theorem 8 implies that keyed-internal-function sponges are in-
distinguishable from a random oracle under quantum access if the used internal
function is a quantum-secure PRF (or if the internal function is a permutation,
a quantum-secure PRP). This means that in the case f is a quantum-secure
pseudorandom function or permutation the sponge construction is a quantum-
secure pseudorandom function. For keyed primitives, indistinguishability from a
random oracle/permutation is exactly what we call pseudorandomness.

We first formally define quantum-secure pseudorandom functions (PRF) and
pseudorandom permutations (PRP).

Definition 11 (Quantum-secure PRF/PRP). Say f : K × S → S is a keyed
function (permutation), then we say that f is a quantum-secure pseudorandom
function (permutation) if for every quantum algorithm running in polynomial
time, there is a negligible function εPR such that∣∣∣∣∣ P

K
$←K

[
A|fK〉(.) = 1

]
− P

g
$←SS

[
A|g〉(.) = 1

]∣∣∣∣∣ ≤ εPR(n), (15)

where n := blog |K|c and g is sampled uniformly from the set of functions (per-
mutations) from S to S. Below, we refer to εPR as advantage.
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Now we state and prove a quantum version of Theorem 1 of [1] which for-
malizes the above statement about quantum security of keyed-internal-function
sponges. Note that we state the theorem for the general sponge construction but
thanks to Corollary 10 it holds for the regular construction as well.

Theorem 12. If the internal function f used in SpGenf is a quantum-secure
PRF/PRP with advantage εPR, then the resulting keyed-internal-function sponge
is a quantum-secure PRF with advantage∣∣∣∣∣ P

K
$←K

[
A|SpGenfK

〉(.) = 1
]
− P

g←R

[
A|g〉(.) = 1

]∣∣∣∣∣ ≤ εPR +
π2

6
η3|C|−1, (16)

where η := 2q(m + z − 2), q is the number of queries A makes to its oracle, m
and z are as defined in the statement of Thm. 8, and R is defined according to
Definition 6.

Proof. We give the proof for f being a keyed function. The proof when f is a
keyed permutation is obtained by using Theorem 16 in place of Theorem 8 and
restricting the sets from which g and ϕf are drawn below to permutations.

We show that the advantage of any quantum adversary in distinguishing the
keyed-internal-function sponge from a random oracle is bound by its ability to
distinguish f from a random oracle (permutation, respectively) plus its ability to
distinguish a random sponge from a random oracle. In the following calculation
we use the triangle inequality and the result of Theorem 8.∣∣∣∣∣ P

K
$←K

[
A|SpGenfK

〉(.) = 1
]
− P

g←R

[
A|g〉(.) = 1

]∣∣∣∣∣
=

∣∣∣∣∣ P
K

$←K

[
A|SpGenfK

〉(.) = 1
]
− P

ϕf
$←SS

[
A|SpGenϕf

〉(.) = 1
]

+

P
ϕf

$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

g←R

[
A|g〉(.) = 1

]∣∣∣∣∣ (17)

≤
∣∣∣∣∣ P
K

$←K

[
A|SpGenfK

〉(.) = 1
]
− P

ϕf
$←SS

[
A|SpGenϕf

〉(.) = 1
]∣∣∣∣∣︸ ︷︷ ︸

≤

∣∣∣∣∣∣ P
K

$←K
[B|fK〉(.)=1]− P

ϕf
$←SS

[B|ϕf 〉(.)=1]

∣∣∣∣∣∣

+

∣∣∣∣∣ P
ϕf

$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

g←R

[
A|g〉(.) = 1

]∣∣∣∣∣︸ ︷︷ ︸
Quantum Indistinguishability, Thm. 8 or 16

≤ εPR +
π2

3
η3|C|−1, (18)

where B is an adversary that uses A as a subroutine, simulating A’s oracle using
its own oracle and the sponge construction. B outputs the same output as A.
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5 Proof of Lemma 9

In this section we give the complete proof of Lemma 9 for the general case
of q ≥ 1 queries the adversary makes and message lengths bounded by
some m, not fixed to 2 like in the previous section. In Subsection 5.1 we
expand the probability expression to encompass all intermediate states of(
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
)

and individual evaluations of ϕf . In Subsec-
tion 5.2 we introduce the concept of unique states to evaluate the probabilities
of P[ϕf (S1) = S2]. In Subsection 5.3 we define the algorithm that calculates the
cardinality of the set of intermediate states—and equivalently inner functions—
consistent with given characteristics. In Subsection 5.4 we conclude the proof and
provide the final expression for the probability of an input-output pair under a
random SpGenϕf

.

We omit the padding function of the sponge construction and assume that
the length of all Mi is a multiple of r. This is done without loss of generality
since we can just say that all the considered messages are in fact messages after
padding and we do not use any properties of the padding in the proof. Also we
focus on q evaluations of SpGen instead of 2q to improve readability.

5.1 Expansion of the probability function

In this section we expand the probability function to the point that
all intermediate states are accounted for. We consider the event(
∀i ∈ [q] : SpGenϕf

(Mi, `i) = Zi
)

and then include the states that appear
between consecutive evaluations of ϕf .

To keep track of the states we introduce the following notation. By the upper-
index we denote the number of evaluations of SpGen, going from 1 to q. The
lower index corresponds to the number of evaluations of ϕf in the i-th calculation
of SpGen. A state occurring during the calculation on Mi that is the input to
the j-th evaluation of ϕf is denoted by Sij⊕. The output of that evaluation is

Sij+1. States traversed in q evaluations of SpGen can be represented by an array

with q rows with |Mi|r + |Zi|r columns each. By array we mean a 2-dimensional
matrix with unequal length of rows.

We call an array like that with values assigned to every state a nabla con-
figuration ∇-c. ∇ symbolizes the triangle shape in which we put states between
evaluations of ϕf , each corner being an outer or inner part of the state. Now
we define ∇-c relative to input-output pairs (M,Z). The size of the array is
determined by the number of blocks in Mi and Zi.

Definition 13 (∇-c). The nabla configuration ∇-c for (M,Z) is an array of

triples

(
S̄ S̄⊕

Ŝ

)
∈ {0, 1}2r × C, where C is an arbitrary non-empty finite set.

The array ∇-c consists of q rows, for every i row i has ki columns and ki :=

14



|Mi|r+|Zi|r (|Mi|r denotes the number of r-bit blocks in Mi). Formally we have

∇-c :=

[(
S̄ij S̄

i
j⊕

Ŝij

)]
i∈[q]

j∈[ki]

. (19)

To refer to the element of ∇-c that lies in row i and column j we write ∇-cij. To
refer to parts of the triple that lies in row i and column j we write

Sij ∈ ∇-c⇔ ∇-cij =

(
S̄ S̄⊕

Ŝ

)
∧ Sij = (S̄, Ŝ)

Sij⊕ ∈ ∇-c⇔ ∇-cij =

(
S̄ S̄⊕

Ŝ

)
∧ Sij⊕ = (S̄⊕, Ŝ)

(20)

Let us define the number of evaluations of ϕf in ∇-c for (M,Z) as

κ :=

q∑
i=1

(ki − 1), (21)

note that | ∇-c | = κ+ q.
To make good use of the newly introduced concept of nabla configurations

∇-c we want to restrict the set of arrays we discuss. We want to put constraints
on the set of ∇-c to make explicit the requirement that states correspond to a
correct input-output behavior of SpGen. The set of ∇-c for (M,Z) is defined
as follows.

Definition 14 (∇-C(M,Z) ). The set of nabla configurations ∇-c for (M,Z) is

a set of arrays of size specified by (M,Z), ∇-C(M,Z) ⊂
(
{0, 1}2r × C

)κ+q
. We

define ∇-C(M,Z) by the following constraints

∀i ∈ [q] : Ŝi1 = IC ,

∀i ∈ [q] : S̄i1 = 0r,

∀i ∈ [q], 1 ≤ j ≤ |Mi|r : S̄ij⊕ = S̄ij ⊕M i
j ,

∀i ∈ [q], |Mi|r < j ≤ ki : S̄ij⊕ = S̄ij = Zij−|Mi|r .

(22)

The formal definition reads

∇-C(M,Z) := {∇-c for (M,Z) : ∇-c fulfills constraints (22)} . (23)

In the following we assume that rows of all ∇-c ∈ ∇-C(M,Z) are initially
sorted according to the following relation. We arrange (Mi,Zi) in non-decreasing
order in terms of length, so ∀i < j : ki ≤ kj , this also means that rows of ∇-c
are ordered in this way.

Having established the notation we move on to realizing the goal of this
section: rewriting the probability function in a suitable way for further analysis.
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In the following when we consider
(
ϕf (S

i
j⊕) = Sij+1

)
for some ∇-c we leave

implicit that Sij⊕, S
i
j+1 ∈ ∇-c. We have that

∀i ∈ [q] : SpGen(Mi) = Zi ⇔∀i ∈ [q] :
∨

∇-c∈∇-C(M,Z)

(
ϕf (S

i
1⊕) = Si2

)
∧
(
ϕf (S

i
2⊕) = Si3

)
∧ · · · ∧

(
ϕf (S

i
(ki−1)⊕) = Siki

)
(24)

⇔
∨

∇-c∈∇-C(M,Z)

q∧
i=1

ki−1∧
j=1

(
ϕf (S

i
j⊕) = Sij+1

)
. (25)

In the above equations we first include the intermediate states and then combine
all evaluations of ϕf . In the following we make use of the fact that the events we
take the disjunction of are disjoint and the logical disjunction turns into a sum
of the probability.

P
ϕf

$←SS

[
∀i ∈ [q] : SpGen(Mi) = Zi

]
= P

∨
∇-c

q∧
i=1

ki−1∧
j=1

(
ϕf (S

i
j⊕) = Sij+1

)
=

∑
∇-c∈∇-C(M,Z)

P

 q∧
i=1

ki−1∧
j=1

(
ϕf (S

i
j⊕) = Sij+1

) . (26)

To further extract an expression involving the probability of a single(
ϕf (S

i
j⊕) = Sij+1

)
we use Bayes’ rule. By a chain of conditions we want to ar-

rive at a function we can evaluate in the end. At this point we want to choose a
particular order of

(
ϕf (S

i
j⊕) = Sij+1

)
events. Let us define the order ≺ as

(i, j) ≺ (i′, j′)⇔ (j < j′) ∨ (j = j′ ∧ i < i′) . (27)

The above rule imposes an order that begins with the top-left corner of a ∇-c
and proceeds downwards to the end of the column to continue from the second
column from the left.

p(|C|−1) =
∑

∇-c∈∇-C(M,Z)

P

 q∧
i=1

ki−1∧
j=1

(
ϕf (S

i
j⊕) = Sij+1

)
=
∑
∇-c

P

(ϕf (S
q
(kq−1)⊕) = Sqkq

)
|

∧
(i,j)≺(q,kq−1)

(
ϕf (S

i
j⊕) = Sij+1

)
· P

 ∧
(i,j)≺(q,kq−1)

(
ϕf (S

i
j⊕) = Sij+1

)
=

∑
∇-c∈∇-C(M,Z)

(q,kq−1)∏
(i,j)=(1,1)

P

(ϕf (S
i
j⊕) = Sij+1

)
|

∧
(i′,j′)≺(i,j)

(
ϕf (S

i′

j′⊕) = Si
′

j′+1

) .
(28)
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In the case there is no state (q− 1, kq − 1) we just take the next state preceding
(q, kq − 1) in the order given by Equation (27).

Up to this point we have performed some transformations of the event(
∀i ∈ [q] : SpGenϕf

(Mi, `i) = Zi
)
, but we did not address the issue of correct-

ness. Is it correct to consider state values in evaluations of SpGen instead of
different ϕf—are we in fact discussing the probability over the random choice
of the internal function? The answer to this question is ”yes”, that is because of
the equivalence of every ∇-c with some set of ϕf . We can treat the input-output
pairs for ϕf assigned in ∇-c as values in the function table of ϕf . By picking a
single ∇-c we fix at most κ rows of this table. As we sample ϕf uniformly at
random we are interested in the fraction of functions that are consistent with
the input-output pairs (M,Z) among all functions. Note however, that we only
care about κ evaluations of ϕf and all the details of those future evaluations
are implicitly simplified in the fraction. This allows us to focus only on the part
of the function table corresponding to those few evaluations and that is exactly
∇-c. The summing over nabla configurations ∇-c corresponds to different values
of the function table that are still consistent with (M,Z).

The probability P
[(
ϕf (S

i
j⊕) = Sij+1

)
| ∧(i′,j′)≺(i,j)

(
ϕf (S

i′

j′⊕) = Si
′

j′+1

)]
equals either 1

2r·|C| or 1 or 0. If the internal function is queried on a ”fresh”

input, it outputs any value with uniform probability. If on the other hand it
is queried on the same input for the second time, it outputs the value it has
output before with probability 1. One might think that the proof is finished,
p(λ) =

∑
i wi(λ), where wi are monomials in λ of degree up to κ + q. There

is one problem with that reasoning, namely that the sum limits depend on the

variable λ. Up until now we have shown that p(λ) =
∑v(1/λ)
i=1 wi(λ), where v is

another polynomial. Even for v = id (the identity function) the degree of p is
different than the maximal degree of wi. This means that we have to analyze
the expression derived in Equation (28) in more detail. To this end, we add
more structure to ∇-C(M,Z) which will make it easier to count the number
of values that the intermediate states can assume, i.e. the number of nabla
configurations ∇-c in ∇-C(M,Z).

5.2 Unique and non-unique states

The goal of this section is to evaluate

P
[(
ϕf (S

i
j⊕) = Sij+1

)
| ∧(i′,j′)≺(i,j)

(
ϕf (S

i′

j′⊕) = Si
′

j′+1

)]
for any ∇-c and any

(M,Z). We approach this problem by recognizing which states in a particu-
lar ∇-c are fed to ϕf once and which are repeated. We define an algorithm that
includes the information about uniqueness of the intermediate states in ∇-c.
The notion of uniqueness is derived relative to the events we condition on in
Eq. (28), that is why we took special care of the order in which we use the chain
rule.

In this section we introduce two algorithms Prep and Flag-Assign. The
former is an auxiliary algorithm that prepares the array ∇-c for further analysis.
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The latter algorithm assigns flags to states in ∇-c. Flags signify if a state appears
once or more in the array. We use an algorithmic definition to explicitly show
every step of the procedure.

Algorithm 3 takes as input an array ∇-c and groups its elements according
to the value input to ϕf . An important detail is the sorting rule among states
with the same ”⊕”-state value; we use the order defined in Eq. 27. The output
of Algorithm 3 Prep(∇-c) is a vector (1-dimensional matrix), to access its l-th
element we write ∇-cl.

Algorithm 3: Prep

Input : ∇-c for (M,Z)

Output: ∇̃-c

1 ∇̃-c := ∇-c, append three work spaces to each element of ∇̃-c
2 foreach 1 ≤ i ≤ q, 1 ≤ j ≤ ki − 1 do

3 ∇̃-c
i

j =
(
∇-cij , index,⊕-state, image

)
:=
(
∇-cij , (i, j), S

i
j⊕, S

i
j+1

)
4 Sort ∇̃-c primarily according to the third entry and secondarily according to the

second entry (using the order defined in Equation (27)).

5 Output ∇̃-c

The main contribution of this subsection is Algorithm 4 which adds to each
∇-c information about the repetitions of the internal states. Running Prep
groups the state values. The next step is to assign specific flags to states that
are first (according to a specified rule) in each group. To each Sij⊕ we will assign
a flag, u for unique states, n for non-unique states, and f for states that appear
twice or more in total but from our perspective it is their first appearance.
The output of Algorithm 4 is Flag-Assign(∇-c) = ∇-cf (”nabla configuration
with flags”) and ∀i, j : ∇-cfij = (F∇-cij , S), where the first register is the whole
state between evaluations together with the assigned flag of ϕf and S is the
corresponding image. To refer to the l-th register of ∇-cij we write ∇-cij(l). Flag
f is important when discussing the relative position of unique flags (u or f) in
the array of ∇-cf. In the end of this section and in the beginning of the next
section we are not going to need this distinction but it will become important
when analyzing the final probability expression.

Let us define a simple function acting on elements of arrays ∇-cf output by
Flag-Assign. Flag : {u, f ,n} × {0, 1}2r × C → {u, f ,n},

Flag(∇-cfij) = Flag(

(
S̄ij

FS̄ij⊕
FŜij

)
, S) := F . (29)
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Algorithm 4: Flag-Assign

Input : ∇-c for (M,Z)
Output: ∇-cf

1 ∇-cf = ∅
2 ∇̃-c := Prep(∇-c)
3 Set counter l := 1

4 while l ≤ |∇̃-c| = κ+ q do
5 Set counter i := 1 // the number of states with the same value

6 while ∇̃-cl+i(3) = ∇̃-cl(3) do
7 i := i+ 1

8 if i = 1 then

9

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ uS̄⊕

uŜ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to ∇-cf

//

// (state with the same value and a flag, indices, image)

10 (i′, j′) := ∇̃-cl(2)

11 if i > 1 then

12

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ f S̄⊕

f Ŝ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to ∇-cf

13 for j = 1, 2, . . . , i− 1 do

14

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ nS̄⊕

nŜ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to ∇-cf

15 l := l + i

16 Make a 2-dimensional array out of ∇-cf according to the second entry in a
standard left-to-right order ((i, j) ≺l-r (i′, j′)⇔ (i < i′) ∨ (i = i′ ∧ j < j′)),
delete the second entry of ∇-cf // ∇-cf i

j =(state with a flag, image)

17 Output ∇-cf

Transition probabilities in Equation (28) depend on the flags we assigned to
states in ∇-c. We have that

Flag(∇-cfij) ∈ {u, f} ⇒P

ϕf (
(u∨ f )Sij⊕) = S |

∧
(i′,j′)≺(i,j)

(
ϕf (S

i′

j′⊕) = Si
′

j′+1

)
=

1

2r · |C| ,

Flag(∇-cfij) = n⇒P

ϕf (
nSij⊕) = S |

∧
(i′,j′)≺(i,j)

(
ϕf (S

i′

j′⊕) = Si
′

j′+1

)
=

{
1 if S = ∇-cfij(2)

0 otherwise
.

(30)
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5.3 Cardinality of ∇-C(M,Z)

In this section we evaluate the number of intermediate states that give(
∀i ∈ [q] : SpGenϕf

(Mi, `i) = Zi
)
. First we impose the constraint of ϕf being a

function. Then we want to calculate the product of probabilities in Eq. (28). It
depends on the number of unique states in ∇-c so we divide the set of possible
states into subsets with the same number of states with the flag u or f. The next
steps involve further divisions of ∇-C(M,Z).

In the process of calculating the conditional probabilities in Eq. (28) we in-
cluded in each state in∇-c the image it should have under ϕf . The set∇-C(M,Z)
does however contain states that would violate the constraint of ϕf being a func-
tion. The first step to calculate the cardinality of ∇-C(M,Z) is to exclude ∇-c
that do not fulfill this requirement. The set of states that should be taken into
consideration is defined below, we denote this set by p-∇-CF(M,Z) (p empha-
sizes the fact that ϕf is a proper function).

Definition 15 (p-∇-CF(M,Z)). The set of nabla configurations ∇-c for (M,Z)
with flags and a proper function ϕf is a set of arrays of size specified by (M,Z).

p-∇-CF(M,Z) ⊂
((
{u, f ,n} × {0, 1}2r × C

)
× ({0, 1}r × C)

)κ+q
, the set is de-

fined in two steps, first we define the set of ∇-cf that are output by Flag-Assign,

∇-CF(M,Z) := {∇-c : ∃∇-c0 ∈ ∇-C(M,Z),∇-c = Flag-Assign(∇-c0)} .
(31)

We define p-∇-CF(M,Z) by the following constraints on ∇-CF(M,Z):

∀Sij ∈ ∇-cf ∀j > 1 : Sij = ∇-cfij−1(2). (32)

The formal definition reads

p-∇-CF(M,Z) := {∇-cf ∈ ∇-CF(M,Z) : ∇-cf fulfills constraints (32)} . (33)

One may think about p-∇-CF(M,Z) as follows, first we consider∇-c: an array
of states. The collection of all those arrays—with the exception of those that do
not fulfill constraints (22)—is denoted by ∇-C(M,Z). On each ∇-c ∈ ∇-C(M,Z)
we run the algorithm Flag-Assign, getting a collection of ∇-cf—denoted by
∇-CF(M,Z). Now we discard all those ∇-cf that do no fulfill constraints (32).
The collection we are left with is denoted by p-∇-CF(M,Z). We have the fol-
lowing relations between sets:

∇-CF(M,Z)(1)
omitting the flags' ∇-C(M,Z) (34)

p-∇-CF(M,Z) ⊂ ∇-CF(M,Z) . (35)

Each p-∇-cf ∈ p-∇-CF(M,Z) has some number of unique states: with flag u
or f. Let us denote this number by ū. Eq. (30) implies that no matter in what
configurations the unique states are, the product of probabilities in Eq. (28) is the
same. Hence the first division of p-∇-CF(M,Z) is in terms of the total number of
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unique states. We denote the state with a fixed number ū by p-∇-CF(M,Z, ū),
we have that

p-∇-CF(M,Z) =

κ⋃
ū=1

p-∇-CF(M,Z, ū). (36)

The product in Eq. (28) for p-∇-cf ∈ p-∇-CF(M,Z, ū) evaluates to

(q,kq−1)∏
(i,j)=(1,1)

P

(ϕf (S
i
j⊕) = Sij+1

)
|

∧
(i′,j′)≺(i,j)

(
ϕf (S

i′

j′⊕) = Si
′

j′+1

) =

(
1

2r · |C|

)ū
,

(37)

where all states p-∇-cf are in p-∇-CF(M,Z, ū).
We have to work a bit more to calculate the total number of states. The

number of possibilities in which a single transition event can be realized de-
pends both on the input and the output. For that reason we need to specify
the configuration of flags in more detail, not just by the total number of unique
states. Let us denote a transition event from a unique state to a unique state
by
(
ϕf (

(u∨ f )S⊕) = (u∨ f )S
)

and similarly for other flags. The flag of the out-
put is defined by the XORed message block or the output block. Before we go
into details of the analysis of the structure of p-∇-CF(M,Z), we list the intu-
itive principles of counting the output states depending on the input and output
states:

(a)
(
ϕf (

(u∨ f )S⊕) = (u∨ f )S
)
—the only constraint is that the output cannot be

the same as any on the previous unique states, the number of possible output
values is at most 2r · |C| or |C| and can be smaller by at most κ (the bound
is 2r · |C| if the transition is in the absorbing phase and |C| if it is in the
squeezing phase),

(b)
(
ϕf (

(u∨ f )S⊕) = nS
)
—the output has to be in the set of outputs of states

with the flag f, the number of possible output values is at most κ,
(c)

(
ϕf (

nS⊕) = (u∨ f ∨n)S
)
—the output is defined by the image memorized in

the second entry of the state, the number of possible output values = 1.

The actual numbers in the above guidelines can be calculated precisely but they
depend on the actual case we deal with.

To properly treat the transition events we need to keep track of not only
the total number of unique states but also the number of truly unique u
states. We denote the latter by u and the set with those numbers fixed
by p-∇-CF(M,Z, ū, u). In the above paragraph we also noticed that we
should include in our considerations the number of unique states in differ-
ent phases of SpGen. The number of states with the flag u in the absorb-
ing phase is denoted by uabs. Note that we are addressing all q absorb-
ing phases so we take into account flags of all states with indices (i, j) ∈
{(i′, j′)}i′∈{1,...,q},j′∈{1,...,|Mi′ |r}. The number of states with the flag u in the
squeezing phase is denoted by usqu and we take into account states with in-
dices (i, j) ∈ {(i′, j′)}i′∈{1,...,q},j′∈{|Mi′ |r+1,...,ki′−1}. Similarly the total number
of unique states is denoted by ūabs and ūsqu.
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Next we fix particular placements of flags in the arrays p-∇-cf ∈
p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu). We no longer need to keep u and ū ex-
plicit as u = uabs + usqu and ū = ūabs + ūsqu. Let us define a placement P
for (M,Z) as an array of flags F ∈ {u, f ,n} with its dimensions determined by
(M,Z) in the same way as for nabla configurations ∇-c. The set of placements
P(M,Z, ūabs, uabs, ūsqu, usqu) is defined as the set of all placements P encoun-
tered in elements of p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu). We are going to write
Flag(P ij ) to determine the flag in the position (i, j) in placement P . For each
P we are able to calculate the size of p-∇-CF(M,Z, P ), we no longer add ūabs

and other parameters as they are already included in P . Before we define the
algorithm performing this calculation we need to bound the number of different
placements.

Let us assume for a moment that (M,Z) restrains only the size of p-∇-cf and
not the values of the states. If there were no constraints coming from the workings
of Flag-Assign then unique states would be distributed in all combinations of
picking ūabs elements among states in absorbing phases. Additionally, we also
want to take into account combinations of uabs elements among the ūabs flags. Let
us recapitulate: first we distribute ūabs flags (without specifying whether they
are u or f) and then assign them concrete values (u or f). The total number of
state-triples in the absorbing phases of p-∇-cf is µ :=

∑q
i=1|Mi|r. The number

of possibilities for the first step is
(

µ
ūabs

)
and the second step is

(
ūabs

uabs

)
. The

total number of possibilities of placing the unique flags in absorbing phases is(
µ
ūabs

)
·
(
ūabs

uabs

)
.

The problem of distributing unique states in squeezing phases is the same as
in absorbing phases. The total number of state-triples with flags in the squeezing

phases of p-∇-cf is ζ :=
∑q
i=1(|Zi|r − 1). The number of placements is

(
ζ

ūsqu

)
.

We also need to multiply this result by the number of placements of states with
flag u among all unique states.

The two calculations above bring us to the conclusion that our analysis
is sufficiently detailed; we have identified and taken into account all parts of(
∀i ∈ [q] : SpGenϕf

(Mi, `i) = Zi
)

that depend on |C|. In summary we divided
p-∇-CF(M,Z) into a small (relatively to |C|) number of subsets whose size we
can actually calculate. The last result assures that even though we do not for-
mally describe the structure of the last level of division of p-∇-CF(M,Z), the
number of possibilities of next divisions does not depend on |C|. So we have that

|P(M,Z, ūabs, uabs, ūsqu, usqu)| ≤
(

µ

ūabs

)(
ūabs

uabs

)
·
(

ζ

ūsqu

)(
ūsqu

usqu

)
(38)

≤
(

µ

µ/2

)2(
ζ

ζ/2

)2

≤
(

κ

κ/2

)4

≤ κ4κ. (39)

Our assumption is that κ is fixed so the number of placements is independent of
|C|. Note that we can compute |P(M,Z, ūabs, uabs, ūsqu, usqu)| for fixed parame-
ters and the above inequality just shows that irrespective of the exact value of
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the calculation the number of placements does not depend on |C| and is relatively
small.

Let us define a function that helps us accommodate for the fact that some
subsets of p-∇-CF(M,Z) are empty for some specific (M,Z):

δ(M,Z, P ) :=

{
1 if p-∇-CF(M,Z, P ) 6= ∅
0 otherwise

. (40)

In what follows we leave out the input to δ, as it can be inferred from context.
For example δ evaluates to 0 if the input includes ūabs = µ and the first block
of the input messages is not always different.

The last division we make is done be characterizing uniqueness of outer and
inner parts of states. This step is done to get the precise and correct result,
but the high level explanation and an approximation of the output of Calc is
already captured by principle (a). We have not captured this situation in detail
in our example proof because it becomes important only if longer outputs are
present. Here we explain the procedure of including the necessary details.

Main detail we add is assigning flags to outer and inner parts of states indi-
vidually. We introduce those flags only now to keep the proof as clear as possible;
technically to include the additional flags we modify the algorithm Flag-Assign
in such a way that it runs over a configuration ∇-c two additional times but act-
ing solely on outer states and inner states. Those two additional runs assign
the same flags as the original one but corresponding to just one of the parts of
S⊕ states. Rest of the discussion after applying Flag-Assign is unchanged and
depends only on flags of the full states.

When discussing placements note that a unique state (u or f) can consist
of a unique outer state and a unique inner state but also out of a non-unique
outer state and a unique inner state or vice versa. After we assign a particular
placement P ∈ P(M,Z, ūabs, uabs, ūsqu, usqu) there are still many possibilities
of arranging outer and inner states flags. There are exactly three possibilities

every unique state can be arranged in:

(
u ∨ f
u ∨ f

)
,

(
u ∨ f

n

)
, and

(
n

u ∨ f

)
, where

we symbolize a state S⊕ by a column vector with flags assigned to its outer state
in the first row and inner state in the second row. Hence, for every placement P
we have 3ūabs+ūsqu placements of the outer and inner states flags. We are going
to mark the fact that we have included those additional details into placements
by adding a star to the set of placements P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu).
We have that

|P∗(M,Z, ūabs, uabs, ūsqu, usqu)| ≤ κ4κ · 3ūabs+ūsqu . (41)

We also write Flag(P̄ ij ) and Flag(P̂ ij ) to access the flag of the outer and inner

part of P ij respectively.
Alg. 5 below shows the algorithm Calc that outputs the number of dif-

ferent p-∇-cf ∈ p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu) for some given placement
P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu). To capture the fact that the number of pos-
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Algorithm 5: Calc

Input : P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu)
Output: α ∈ N, cardinality of the set p-∇-CF(M,Z, P )

1 α := 1
2 for j = 1, . . . , ki − 2, i = 1, . . . , q do
3 if j < |Mi|r and Flag(P i

j ) ∈ {u, f} then // Absorbing phases

4 if Flag(P i
j+1) ∈ {u, f} then //

(
ϕf (

(u∨ f )S⊕) = (u∨ f )S
)

5 if Flag(P̄ i
j+1) ∈ {u, f} and Flag(P̂ i

j+1) ∈ {u, f} then

// P i
j+1 =

(
u ∨ f
u ∨ f

)
6 α = α ·

(
2r − Ūprev(P, i, j + 1)

)
·
(
|C| − Ûprev(P, i, j + 1)

)
7 if Flag(P̄ i

j+1) ∈ {u, f} and Flag(P̂ i
j+1) = n then

// P i
j+1 =

(
u ∨ f

n

)
8 α = α ·

(
2r − Ūprev(P, i, j + 1)

)
· Ûf

prev(P, i, j + 1)

9 if Flag(P̄ i
j+1) = n and Flag(P̂ i

j+1) ∈ {u, f} then

// P i
j+1 =

(
n

u ∨ f

)
10 α = α · Ūf

prev(P, i, j + 1) ·
(
|C| − Ûprev(P, i, j + 1)

)
11 if j ≥ |Mi|r and Flag(P i

j ) ∈ {u, f} then // Squeezing phases

12 if Flag(P i
j+1) ∈ {u, f} then //

(
ϕf (

(u∨ f )S⊕) = (u∨ f )S
)

13 if Flag(P̂ i
j+1) ∈ {u, f} then // P i

j+1 ∈ {
(

u ∨ f
u ∨ f

)
,

(
n

u ∨ f

)
}

14 α = α ·
(
|C| − Ûprev(P, i, j + 1)

)
15 if Flag(P̂ i

j+1) = n then // P i
j+1 =

(
u ∨ f

n

)
16 α = α · Ûf

prev(P, i, j + 1)

17 for i = 1, . . . , q, j = ki − 1 do
18 if Flag(P i

j ) ∈ {u, f} then
19 α = α · |C| · 2r|Zi|r−`i

20 α = α ·N-Possibilities(κ− ūabs − ūsqu, ūabs + ūsqu − uabs − usqu, P )
21 Output α · δ(M,Z, P )
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sible values a unique state can have depends on the number of unique states with
already assigned values we define the following sets. For unique outer states we
have

Ūprev(P, i, j) :=
∣∣∣{P i′j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̄ i

′

j′ ) ∈ {u, f}
}∣∣∣ , (42)

Ū
f
prev(P, i, j) :=

∣∣∣{P i′j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̄ i
′

j′ ) = f
}∣∣∣ . (43)

For unique inner states we have

Ûprev(P, i, j) :=
∣∣∣{P i′j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̂ i

′

j′ ) ∈ {u, f}
}∣∣∣ , (44)

Û
f

prev(P, i, j) :=
∣∣∣{P i′j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̂ i

′

j′ ) = f
}∣∣∣ . (45)

Note that all of the above quantities (42, 43, 44, 45) are bounded by

1 ≤ Ūprev(P, i, j), Ûprev(P, i, j), Ū
f
prev(P, i, j), Û

f

prev(P, i, j) ≤ ūabs + ūsqu ≤ κ.
(46)

In the algorithm we also use N-Possibilities is the number of possibilities
in which one can assign values to non-unique states in a nabla configuration.
N-Possibilities is bounded by κκ. More details on that are provided in the full
version [12].

Thanks to the additional details we get the precise form of the expression p.

5.4 Final expression

In the previous subsections we formalized algorithms that help us analyze the
expression in Eq. (28). First we introduced Flag-Assign that analyzes∇-c from
the perspective of having the same input to ϕf multiple times. Then we defined
Calc that counts the arrays of states that fulfill a given set of constraints, the
number and arrangement of unique states. The final part of the proof of Lemma 9
is to use those algorithms to show that p(|C|−1) is of the claimed form. We start
by formally writing down the expression in terms of divisions of p-∇-CF(M,Z)
we introduced and the outputs of Calc. Next we identify crucial elements of the
sum that lead to the claim of the lemma, showing the maximal degree of |C|−1

in the expression p(λ).
In the previous sections we showed that

p(|C|−1) =
∑

∇-c∈∇-C(M,Z)

(q,kq−1)∏
(i,j)=(1,1)

P

(ϕf (S
i
j⊕) = Sij+1

) ∣∣∣∣∣∣
∧

(i′,j′)≺(i,j)

(
ϕf (S

i′

j′⊕) = Si
′

j′+1

) (47)

=
∑

p-∇-cf∈p-∇-CF(M,Z)︸ ︷︷ ︸
Eq. (49),(50)
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(q,kq−1)∏
(i,j)=(1,1)

P

(ϕf (S
i
j⊕) = Sij+1

) ∣∣∣∣∣∣
∧

(i′,j′)≺(i,j)

(
ϕf (S

i′

j′⊕) = Si
′

j′+1

)
︸ ︷︷ ︸

Eq. (37)

, (48)

where the second equality comes from the fact that constraints (32) exclude
those ∇-c that have probability 0. Let us also make the division of p-∇-CF(M,Z)
explicit

p-∇-CF(M,Z) =

µ⋃
ūabs=1

µ⋃
uabs=0

ζ⋃
ūsqu=0

ζ⋃
usqu=0

⋃
P∈P∗(M,Z,ūabs,uabs,ūsqu,usqu)

p-∇-CF(M,Z, P ). (49)

Next we use Eq. (37) and the fact that for P ∈ P(M,Z, ūabs, uabs, ūsqu, usqu) we
have

|p-∇-CF(M,Z, P )| = Calc(P ) (50)

to expand p(|C|−1) to

p(|C|−1) =
∑

ūabs,uabs,ūsqu,usqu,P

Calc(P )

(
1

2r · |C|

)ūabs+ūsqu

(51)

To calculate a0 and the maximal degree of p let us focus on p(|C|−1) for all
unique (with the flag u in both outer and inner part) sates:

q∏
i=1

|Mi|r−1∏
j=1

(2r − jq − i) (|C| − jq − i)

q∏
i=1

ki−2∏
j=|Mi|r

(|C| − jq − i)
q∏
i=1

(
2r|Z

i|r−`i |C|
)

(2r|C|)−κ . (52)

In the above expression if we take all messages of maximal length m and outputs
of maximal length z we get a polynomial of degree κ − q = q(m + z − 2). This
is necessarily the maximal degree as every evaluation of ϕf increases the degree
by one, except for the last but this cannot be changed, the last column does not
matter at all for the overall probability. Hence the maximal degree of p is as
claimed

η := q(m+ z − 2). (53)

In the case all states are unique, i.e. |C| → ∞, p(|C|−1) evaluates to ∼ 2−
∑

i `i .
This expression corresponds to the output probability of a random oracle, exactly
how expected of a sponge with all different inner states. If we only take the terms
2r|C| and |C| and the probability we arrive at 2−

∑
i `i . This result is only one

of the terms in a0 but note that all other terms will correspond to different
placements and will include δ(M,Z, P ) with different inputs, being non-zero for
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different (M,Z). Hence for any given input-output pairs (M,Z) for |C| → ∞ the
probability function approaches the probability of a random oracle outputting
Z on M. To get the power of |C| equal to zero we need to have the same number
of unique states (probability terms decreasing the degree by one) as pairs of
unique states (increasing the degree by one). Configurations that satisfy those
conditions come from inputs and outputs that are either fully unique or exactly
the same as at least one other input or output, respectively. One special case
occurs if the output is just a single block long then messages can differ by just
the last block and still have different outputs.

In our proof we have focused on the case of ϕf being a random transforma-
tion. In Section 6 we provide the details that should be considered to show that
Theorem 8 holds also for random permutations.

6 Internal Permutations

In this section we prove the main result but for the internal function ϕf being a
random permutation. We use Zhandry’s PRF/PRP switching lemma from [25].
In the full version of the paper [12], we also give a direct proof, resulting in a
slightly worse bound.

Theorem 16. SpGenϕf
for a random permutation ϕf is quantumly indistin-

guishable from a random oracle. More concretely, for all quantum algorithms A
making at most q quantum queries to SpGen, such that the input length is at
most m · r bits long and the output length is at most z · r bits long,

∣∣∣∣∣ P
ϕf

$←T (S)

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣ < π2

3
η3|C|−1, (54)

where the set of permutations is denoted by T (S) := {ϕf : S → S |
ϕf is a bijection}. The domain is defined as S = {0, 1}r×C for some non-empty
finite set C.

Proof. It was proven in [25] that a random permutation can be distinguished
from a random function with probability at most π2q2/6|C| for any adversary
making at most q quantum queries. We can use this result in a reduction from
distinguishing SpGen using a random permutation from SpGen using a random
function to distinguishing of a random permutation from a random function.
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Using this result together with Theorem 8 gives us the resulting bound as follows∣∣∣∣∣ P
ϕf

$←T (S)

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣
≤
∣∣∣∣∣ P
ϕf

$←T (S)

[
A|SpGenϕf

〉(.) = 1
]
− P

ϕf
$←SS

[
A|SpGenϕf

〉(.) = 1
]∣∣∣∣∣

+

∣∣∣∣∣ P
ϕf

$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣
(55)

≤
∣∣∣∣∣ P
ϕf

$←T (S)

[
B|ϕf 〉(.) = 1

]
− P
φ

$←SS

[
B|ϕf 〉(.) = 1

]∣∣∣∣∣+
π2

6
η3|C|−1 (56)

≤ π2

3
η3|C|−1. (57)

7 Open Question

One of the most desirable security notions for hash functions is indifferentiabil-
ity from a random oracle which is defined with respect to a possible simulator
that fools a distinguisher into believing that it interacts with the internal func-
tion instead of a simulation of it. Proving indifferentiability is more challenging
than indistinguishability. It is not clear whether the natural translation of the
classical notion of indidfferentiability to the quantum setting is achievable. Only
recently, two articles [9, 27] opened the discussion, but so far, the results remain
inconclusive.

In our work, we provide a quantum security guarantee more suitable for keyed
primitives where an attacker does not have access to the internal building block.
On the one hand, we increase the trust that hash functions based on the sponge
construction are quantum safe and on the other hand, we formally prove that
it is a quantum secure pseudorandom function when used with a keyed internal
function—like it is used in the hash-based signatures scheme SPHINCS+ [23] in
the instantiation using the Haraka hash function [15].
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