Highly Efficient Key Exchange
Protocols with Optimal Tightness

Katriel Cohn-Gordon!, Cas Cremers?,
Kristian Gjgsteen®, Hakon Jacobsen*, Tibor Jager®*

! Independent Scholar, me@katriel.co.uk
2 CISPA Helmholtz Center for Information Security, cremers@cispa.saarland
3 NTNU - Norwegian University of Science and Technology,
Trondheim, Norway, kristian.gjosteen@ntnu.no
4 McMaster University, jacobseh@mcmaster.ca
5 Paderborn University, Paderborn, Germany, tibor.jager@upb.de

Abstract. In this paper we give nearly-tight reductions for modern im-
plicitly authenticated Diffie-Hellman protocols in the style of the Signal
and Noise protocols, which are extremely simple and efficient. Unlike
previous approaches, the combination of nearly-tight proofs and effi-
cient protocols enables the first real-world instantiations for which the
parameters can be chosen in a theoretically sound manner.

Our reductions have only a linear loss in the number of users, implying
that our protocols are more efficient than the state of the art when
instantiated with theoretically sound parameters. We also prove that
our security proofs are optimal: a linear loss in the number of users is
unavoidable for our protocols for a large and natural class of reductions.

1 Introduction

Key exchange protocols serve as a building block for almost all secure communi-
cation today. However, deploying a key exchange protocol requires implementors
to carefully choose concrete values for several parameters, such as group and key
sizes, which we here abstract into a single security parameter n. But how should
n be selected? An answer is to select it based on formal reductionist arguments in
the style of concrete security [7]. These arguments relate the security parameter
n of a protocol to the security parameter f(n) of an assumed-hard problem, such
that breaking the protocol with parameter n would lead to an attack on the hard
problem with parameter f(n). We say a protocol is deployed in a theoretically
sound way if n is chosen such that the underlying problem is “hard enough” with
parameter f(n).

Unfortunately, for most deployed protocols the parameters are actually not
chosen in a theoretically sound way. This means that the formal security argu-
ments are in reality vacuous since f(n) is too small for the underlying problem to

* Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement 802823, and the
Deutsche Forschungsgemeinschaft (DFG), project number 2659194009.

be hard. For example, existing security proofs for TLS [11, 22, 27] have a security
loss which is quadratic in the total number of sessions, but the parameters chosen
in practice does not account for this. If one aims for “128-bit security”, and
assumes 230 users and up to 23° sessions per user (very plausible for TLS), then a
theoretically sound choice of parameters would have to provide at least “248-bit
security”. In the particular case of the algebraic groups used for Diffie-Hellman
(DH) in TLS, this would require a group of order |G| ~ 2%% instead of the
common 128-bit-secure choice of |G| ~ 2256, But larger parameters typically leads
to worse performance so this is not done in practice. Thus, for TLS as actually
used, the proofs do not provide any meaningful security guarantees since they
relate the hardness of breaking TLS to a DH instance which is too easy to solve.

It would be desirable if protocols could be instantiated in a theoretically
sound way without sacrificing efficiency. This has led to the study of so-called
tight security, in which one aims to construct proofs such that the gap between n
and f(n) is as small as possible. While there have been several recent advances in
this field [3, 19], typically they trade tighter proofs for the use of more complex
primitives and constructions—which themselves require more or larger keys. This
leads to the perhaps counter-intuitive observation that the resulting protocols
have a tighter security proof, but are substantially less efficient in practice. For
example, the recent protocol of Gjgsteen and Jager [19] has a constant security
loss, meaning that an attack on their protocol leads to an attack on decisional
DH with essentially the same parameter. However, it is a signed DH protocol, and
thus must be instantiated with a tightly-secure signature scheme. The solution
used by Gjgsteen and Jager [19] requires a total of 17 exponentiations which
can negate the efficiency savings from using a smaller group. In some sense they
overshoot their target: they achieve tightness without reaching the actual goal of
efficient theoretically sound deployment in practice.

In this work we will instead aim between the two extremes of real-world
protocols on the one end having very non-tight proofs, and the more theoretical
protocols on the other having fully tight proofs, focusing instead on the actual
end-goal of achieving efficient theoretically sound deployments in practice. Our
constructions fall into the class of implicitly authenticated DH protocols, which
often are more efficient than signed DH variants, and can additionally offer
various forms of deniability. Implicitly authenticated key exchange protocols
have been studied extensively in the literature, and in the past few years have
also started to see deployments in the real world. Perhaps the most well-known
example is the Signal protocol [38], which encrypts messages for WhatsApp’s
1.5 billion users. Another example is the Noise protocol framework [36], whose
so-called IK pattern powers the new Linux kernel VPN Wireguard [16]. Similar
protocols in the literature include KEA+ [30] and UM [24].

We will give a security proof for a simple instance of this class, very close to
Signal’s basic design. In and of itself this isn’t particularly noteworthy. What is
noteworthy, however, is the tightness of the proof. Unlike any other proof for
a protocol as simple and efficient as ours, our proof only incurs a security loss
which is linear in the number of users p and constant in the number of sessions

per user £. This is in stark contrast to most other key exchange proofs that are
typically quadratic in at least one of these parameters, and most of the time
quadratic even in their product pf.

Our contributions. Our contributions revolve around three protocols which all
aim for high practical efficiency when instantiated with theoretically sound
parameters. The first protocol, which we call I, is a simple and clean implicitly
authenticated DH protocol very close to Signal, Noise-KK, KEA+ and UM, and
provides weak forward secrecy. In protocol IT users exchange a single group element
and perform four group exponentiations to establish a session key. Protocol II—
specified precisely in Section 4—aims for maximal efficiency under the strong
DH assumption.

The other two protocols, which can be seen as variants of protocol II, are
designed to avoid the strong DH assumption of II. The first protocol, which we
call Iryin, adapts the “twinning” technique of Cash et al. [13] to protocol I, and
needs four more exponentiations. The second, which we call Il¢qy,, additionally
adapts the “commitment” technique of Gjosteen and Jager [19], and only needs
two more exponentiations than protocol I1. On the other hand, it requires one
more round of communication. Both Il 1y, and 1o, are slightly more costly than
protocol II, but in return require only the standard CDH and DDH assumptions.

Common to all our protocols is that they are simple and conventional, with
no heavyweight cryptographic machinery. They exchange ephemeral keys and
derive a session key from the combination of static-ephemeral, ephemeral-static
and ephemeral-ephemeral DH values via a hash function H. In our proofs H will
be a random oracle.

Our first core contribution is thus to give new reductions for all these protocols
with a linear loss L = O(p) in the random oracle model. This is better than almost
all known AKE protocols. As we will see, even though the loss is not constant, our
protocols are so efficient that they perform better than both fully-tight protocols
as well as the most efficient non-tight AKEs®. In contrast to previous works, our
proofs enable theoretically sound deployment of conventional protocols while
maintaining high efficiency.

Our second core contribution is to show that the O(p) tightness loss is
essentially optimal for the protocols considered in this paper, at least for “simple”
reductions. A “simple” reduction runs a single copy of the adversary only once.
To the best of our knowledge, all known security reductions for AKE protocols
are either of this type or use the forking lemma (which of necessity leads to
a non-tight proof). Hence, to give a tighter security proof, one would have to
develop a completely new approach to prove security.

The lower-bound proof will be based on the meta-reduction techniques de-
scribed by Bader et al. [4]. However, these techniques are only able to handle
tight reductions from mon-interactive assumptions, while our first protocol is
based on the interactive strong DH assumption. Therefore we develop a new

5 When instantiated with theoretically sound parameters under reasonable assumptions
on p and ¢ in modern deployment settings.

variant of the approach, which makes it possible to also handle the strong DH
assumption.

Finally, we prove that our protocols can be enhanced to also provide explicit
entity authentication by adding key-confirmation messages, while still providing
tight security guarantees. To do so, we generalise a theorem of Yang [41] in two
ways: we apply it to n-message protocols for n > 2, and we give a tight reduction
to the multi-user versions of the underlying primitives.

To summarise:

1. We give three protocols with linear-loss security reductions, making them
faster than both fully-tight protocols and the most efficient non-tight ones
when instantiated in a theoretically sound manner for reasonable numbers of
users and sessions.

2. We prove optimality of linear loss for our protocols under “simple” reductions.

3. We tightly extend our protocols with key confirmation messages to provide
explicit entity authentication.

Related work. We briefly touch upon some other protocols with non-quadratic
security loss. KEA+ [30] achieves L = O(uf) under the Gap-DH assumption, and
where the reduction for pairing-friendly curves takes O(tlogt) time. However,
for non-pairing-friendly curves the reduction takes O(t?) time. Moreover, KEA+
also does not achieve weak forward secrecy in a modern model: only one side’s
long term key can be corrupted.

The first AKE protocols with L independent of p and ¢ were described by
Bader et al. [3] at TCC 2015. They describe two protocols, one with constant
security loss L = O(1) and another with loss L = O(k) linear in the security
parameter. Both protocols make use of rather heavy cryptographic building blocks,
such as tree-based signature schemes, Groth-Sahai proofs [20], and cryptographic
pairings, and are therefore not very efficient.

As already mentioned, Gjgsteen and Jager [19] recently described a more
practical protocol, which essentially is a three-message variant of “signed Diffie-
Hellman”. Even though their protocol uses a rather complex signature scheme
to achieve tightness (a single key exchange requires 17 exponentiations and
the exchange of in total 16 group elements/exponents), when instantiated with
theoretically sound parameters it turns out to be more efficient than even plain
signed DH with ECDSA, at least for large-scale deployments. Unlike [3], the
security analysis in [19] is in the random oracle model [8] since the paper aims at
maximal practical efficiency.

2 Background

In this section we recap some background and standard definitions. Let G be a
cyclic group of prime order p with generator g.

Diffie-Hellman Problems. The computational and decisional Diffie-Hellman prob-
lems are natural problems related to breaking the Diffie-Hellman protocol.

Definition 1. Consider the following experiment involving an adversary A. The

experiment samples T,y & Z,, and starts A(g*, g¥). The advantage of A in solving
the computational Diffie-Hellman problem is defined as

Advgl)'(A) = PrlA(g", ¢") = ¢"]

Definition 2. Consider the following experiment involving an adversary A. The
experiment samples x,y, 2 & Z, and tosses a coin b & {0,1}. If b =1 then it

sets Z := g*Y, while zfl; =0 then it sets Z = g*. We define the advantage of A
in solving the decisional Diffie-Hellman problem as

AdvEPH(A) = Pr [A(g7, g%, 2) = b] — 1/2]

Let DDH(g%, ¢¥, g%) be an oracle that returns 1 if and only if zy = z. The gap
Diffie-Hellman problem asks to solve the computational Diffie-Hellman problem,
given access to the oracle DDH(:,-,-). The strong Diffie-Hellman problem is
related to the gap Diffie-Hellman problem, except that the adversary now gets a
less capable oracle where the first input is fixed, i.e., stDH,(:,-) = DDH(g%, -, -).

Definition 3. Consider the following experiment involving an adversary A. The
experiment samples x,y & Zy, and starts AStPH(5) (g% g¥). The advantage of A
in solving the strong Diffie-Hellman problem is defined as

AdVER (A) = Pr [AP (g, g1) = 7]

One may wonder to which extent the number of oracle queries to the strong
DH oracle affects the concrete security of this assumption. That is, how does the
security of strong DH degrade with the number of queries to the stDH oracle?
We are not aware of any concrete attacks that exploit the oracle to solve the
CDH problem more efficiently than other algorithms for CDH. In particular, in
many elliptic curves with practical bilinear pairings it is reasonable to assume
hardness of CDH, even though the bilinear pairing is a much stronger tool than
a strong DH oracle.

A crucial technique in any tight proof using Diffie-Hellman problems is
rerandomisation [6], where a single Diffie-Hellman problem instance can be
turned into many, in such a way that an answer to any one of them can be turned
into an answer to the original instance. We will use this technique in our proofs.

The Strong Twin Diffie-Hellman Problem. The strong twin Diffie-Hellman prob-
lem was introduced by Cash, Kiltz, and Shoup [13] at EUROCRYPT 2008. It is
closely related to the standard computational Diffie-Hellman (CDH) problem,
except that it “twins” certain group elements, in order to enable an efficient
“trapdoor-DDH” test that makes it possible to simulate a strong-CDH oracle.
This makes it possible to show that the twin-DH problem is equivalent to the
standard CDH problem. Let twinDHg, 4, (Y, Zy, Z1) be an oracle which returns 1
if and only if DDH(g™,Y, Zy) = 1 and DDH(¢**,Y, Z;) = 1.

Definition 4. Consider the following experiment involving an adversary A. The
experiment samples xq, 11,y & Z,, and starts AMWINDHag 0y (50) (%0 gm1 g¥). The
advantage of A in solving the strong twin Diffie-Hellman problem is defined as

AdvEPH(A) 1= Pr [AMIMPHeo o0 () (o, go1 g¥) — (g7, g"1)
The following theorem was proven by Cash, Kiltz, and Shoup [13, Theorem 3].

Theorem 1. Let A be a strong twin DH adversary that makes at most Q) queries
to oracle O and runs in time t 4. Then one can construct a DH adversary B that
runs in time t 4 = tg such that

AVESP(A) < AdvED(B) + Q/p.

3 AKE Security Model

In this section we define our game-based key exchange security model. It is
based on the real-or-random (“RoR”) security definition of Abdalla, Fouque, and
Pointcheval [2], and incorporates the extension of Abdalla, Benhamouda, and
MacKenzie [1] to capture forward secrecy. The central feature of the RoR-model is
that the adversary can make many Test-queries, and that all queries are answered
with a “real” or “random” key based on the same random bit b.

We prefer to work in a RoR-model because it automatically lends itself to
tight composition with protocols that use the session keys of the key exchange
protocol. For security models where there is only a single Test-query, or where
each Test-query is answered based on an individual random bit [3, 19], such a
composition is not automatically tight.

Although we mainly consider key exchange protocols with implicit authen-
tication in this paper, we show in Section 8 how they can easily be upgraded
to also have explicit authentication by adding key-confirmation messages to the
protocol. The advantage of working in the RoR-model is that it allows us to do
this transformation tightly.

Ezecution Environment. We consider u parties 1,..., u. Each party ¢ is repre-
sented by a set of ¢ oracles, {71'1-1, ... Jrf}, where each oracle corresponds to a
session, i.e., a single execution of a protocol role, and where £ € N is the maximum
number of protocol sessions per party. Each oracle is equipped with a randomness
tape containing random bits, but is otherwise deterministic. Each oracle 7} has
access to the long-term key pair (sk;, pk;) of party i and to the public keys of all
other parties, and maintains a list of internal state variables that are described
in the following:

— Pid] (“peer id”) stores the identity of the intended communication partner.

— U$ € {(},accept, reject} indicates whether oracle 7§ has successfully com-
pleted the protocol execution and “accepted” the resulting key.

— k7 stores the session key computed by ;.

— sent] contains the list of messages sent by 77 in chronological order.
— recv; contains the list of messages received by 77 in chronological order.

— role] € {0, init, resp} indicates m$’s role during the protocol execution.

For each oracle 7} these variables are all initialized to the empty string 0. The
computed session key is assigned to the variable k; if and only if 7] reaches the
accept state, that is, we have ki # () <= W7 = accept.

Partnering. To define when two oracles are supposed to derive the same session
key we use a variant of matching conversations. In addition to agreement on their
message transcripts, they should also agree upon each other’s identities and have
compatible roles (one being the initiator the other the responder). We remark
that our protocol messages consist only of group elements and deterministic
functions of them. This means that they are not vulnerable to the “no-match”
attacks of Li and Schége [32].

Definition 5 (Origin-oracle). An oracle 7! is an origin-oracle for an oracle
5 if Q/Jt # 0, ¥§ = accept, and the messages sent by 7T§ equal the messages
received by w7, i.e., if sent§. = recv;.

Definition 6 (Partner oracles). We say that two oracles @ and 7§ are
partuers if (1) each is an origin-oracle for the other; (2) each one’s identity is
the other one’s peer identity, i.e., Pid; = j and Pid; = i; and (8) they do not

. s t
have the same role, i.e., role; # role;.

Attacker Model. The adversary A interacts with the oracles through queries. It is
assumed to have full control over the communication network, modeled by a Send
query which allows it to send arbitrary messages to any oracle. The adversary
is also granted a number of additional queries that model the fact that various
secrets might get lost or leaked. The queries are described in detail below.

— Send(i, s, j,m): This query allows A to send any message m of its choice to
oracle 7] on behalf of party P;. The oracle will respond according to the
protocol specification and depending on its internal state. For starting a role
there are additional actions:

[Initiator] If (Pid;, ¥7) = (0,0) and m = 0, then this means that A requests
77 to start the initiator role with peer P;. In this case, 7 will set Pid] := j
and role] := init.

[Responder] If (Pid, ¥7) = (0,0) and m # (), then this means that A requests
m; to start the responder role with peer P; with first message m. In this case,
7f will set Pid] := j and role] := resp.

— RevLTK(4): For ¢ < p, this query allows the adversary to learn the long-term
private key sk; of user i. After the query i is said to be corrupted, and all

oracles 7}, ... ,wf now respond with L to all queries.

— RegisterLTK(z, pk;): For 7 > p, this query allows the adversary to register a
new party ¢ with public key pk;. We do not require that the adversary knows
the corresponding private key. After the query the pair (4, pk;) is distributed to
all other parties. Parties registered by RegisterLTK are corrupted by definition.

— RevSessKey (i, s): This query allows the adversary to learn the session key
derived by an oracle. That is, query RevSessKey(i,s) returns the contents
of kf. Recall that we have k7 # () if and only if ¥ = accept. After this query
w7 is said to be revealed.

Note that unlike, e.g., [10, 12], we do not allow the adversary to learn the
sessions’ ephemeral randomness.

Security experiment. To define the security of a key exchange protocol we want to
evaluate the attacker’s knowledge of the session keys. Formally, we have an AKE
security game, played between an adversary A and a challenger C, where the
adversary can issue the queries defined above. Additionally, it is given access to
a special Test query, which, depending on a secret bit b chosen by the challenger,
either returns real or random keys. The goal of the adversary is to guess b.

— Test(i,s): If ¥ # accept, return L. Else, return k;, where kg = ki and

ki & K is a random key. If a Test query is repeated in the case b = 1, the
same random key is returned. After the query, oracle 7 is said to be tested.

The adversary can issue many Test queries, to different oracles, but all are
answered using the same bit b.

The AKE security game, denoted Grr(p, £), is parameterized by the protocol IT
and two numbers p (the number of honest parties) and ¢ (the maximum number
of protocol executions per party), and is run as follows.

1. C begins by drawing a random bit b & {0,1}, then generates p long-term
key pairs {(ski, pk;) ‘ iel,... ,,u]}, and initializes the collection of oracles
{melie,...,ul,s€1,... .0}

2. C now runs A, providing all the public keys pki, ..., pk, as input. During its
execution, A may adaptively issue Send, RevLTK, RevSessKey, RegisterLTK
and Test queries any number of times and in arbitrary order. The only
requirement is that all tested oracles remain fresh throughout the game (see
Definition 7 below). Otherwise, the game aborts and outputs a random bit.

3. The game ends when A terminates with output ', representing its guess of b.
If not all test oracles are fresh, the security game outputs a random bit. If
all test oracles are fresh and ' = 13, it outputs 1. Otherwise, it outputs 0.

Definition 7 (Freshness). An oracle ¢ is fresh, written fresh(i, s), if:

(i) RevSessKey(i,s) has not been issued,
(i) no query Test(j,t) or RevSessKey(j,t) has been issued, where
of ™7, and
(#i) Pid; was:
(a) not corrupted before w$ accepted if ©f has an origin-oracle, and
(b) not corrupted at all if w5 has no origin-oracle.

1S a partner

Definition 8 (Winning events). We define the following three winning events
on game Gri(p,£).

(i) Event breakgouna occurs if there exist two partner oracles w$ and 7r§ with
ki # k; In other words, there are two partner oracles which compute different

session keys.

(i1) Event breakunique occurs if for some oracle w§ there exist distinct oracles 773—

and 7T§// such that w} is a partner oracle to both 71';- and 7T§l, In other words,

there exists an oracle with more than one partner oracle.

(iii) Let guessyy be the output of game Gr(u,). We define breakkg to be the
event guessgp = 1.

Definition 9 (AKE Security). An attacker A breaks the security of protocol
II, if at least one of breaksound, breakunique, o1 breakky occurs in Gri(u, £). The
advantage of the adversary A against AKE security of I1 is

Advi*F(A) = max {Pr [breaksound] ; P [breakunique] , | Pr [breakks] — 1/2|} .

We say that A (e, t, u, £)-breaks II if its running time is t and AdVﬁKE(A) >€eq.
The running time of A includes the running time of the security experiment (see
[19, Remark 1]).

Security properties. The core aspects of the security properties in our model are
captured by the breakky event, combined with the adversary’s capabilities and
the restrictions imposed on them through the freshness predicate.

The freshness clauses (i) and (ii) imply that we only exclude the reveal of
session keys for tested oracles as well as their partners. This encodes both (a) key
independence if the revealed key is different from the session key: knowing some
keys must not enable computing other keys, as well as (b) implicitly ensuring
agreement on the involved parties, since sessions that compute the same session
key but disagree on the parties would not be partnered, and reveal the Test
session’s key.

Our freshness clause (iii) encodes weak forward secrecy: the adversary can
learn the peer’s long-term key after the tested oracle accepted, but only if it has
been passive in the run of the oracle [26]. Another property captured by our
model is resistance to key-compromise impersonation attacks. Recall that KCI
attacks are those where the adversary uses a party A’s own private long-term
key to impersonate other users towards A. This is (implicitly) encoded by the
absence of any adversary restrictions on learning the private long-term key of
a test-oracle itself. Additionally, the breakynique event captures the resistance
to replay attacks. The breaksouna event ensures that two parties that execute
the protocol together in the absence of an attacker (or at least a passive one),
compute the same session key.

Some recent protocols also offer post-compromise security, in which the com-
munication partner 7r§ may be corrupted before 77 has accepted. However, in this

work we consider only stateless protocols, which cannot achieve this goal [14].

4 Protocol I1

Protocol II, defined in Fig. 1, uses a mix of static-ephemeral and ephemeral-
ephemeral Diffie-Hellman key exchanges to get a protocol that is extremely
efficient in terms of communications as well as computational effort required.
Specifically, the two protocol participants exchange ephemeral Diffie-Hellman
shares ¢" and ¢° for random r, s, and then compute a session key from three
Diffie-Hellman shared secrets (static-ephemeral, ephemeral-static, ephemeral-
ephemeral) as well as identities and a transcript. Note that this is very close to
the Noise-KK pattern [36].

Public parameters
g€G, p=|G|
Alice Bob
$ s
ska i =a<Zp sk :=b<Zp
pky =A<+ g° pkp =B+ g’
r& Zyp .
U+ g" Y >
s & Zyp
Vg°
) v k <+ H(ctxtHA‘“HU[’HU’)
k < H(ctxt||V*||B"||V") «
ctxt = A|| Bl|pk 4| pk 5 UV

Fig. 1. Protocol II. The session key is derived from the combination of the parties’
static-ephemeral, ephemeral-static, and ephemeral-ephemeral DH values.

Theorem 2. Consider the protocol 11 defined in Fig. 1 where H is modeled as
a random oracle. Let A be an adversary against the AKE security of I1. Then
there exist adversaries By, By and Bs against strong Diffie-Hellman such that

S S S €2
AdvYF(A) < p- AdvEDH(By) + AdvES (B2) + p - AdvED (Bs) + ’“‘7.

The strong Diffie-Hellman adversaries all run in essentially the same time as A,
and make at most as many queries to their strong DH-oracle as A makes to its
hash oracle H.

The proof of the theorem is structured as a sequence of games running varia-

tions on the security experiment, with the first game identical to the experiment.
We bound the difference in the probability of the event that the experiment

10

outputs 1 in each game. As a side effect, along the way we also get a bound on
breakynique- Then we argue that the probability that the experiment outputs 1 is
1/2 in the final game, which gives us a bound on breakkg. Since the scheme has
perfect correctness, the theorem follows.

To achieve this result in the final game, we shall have our oracles choose
session keys at random, without reference to secret keys or messages. Obviously,
we have to ensure consistency with what the adversary can learn. This means
that we have to make sure that partnered oracles both choose the same key
(Game 2); that keys the adversary should be able to compute on his own are
the same as chosen by the oracle (Game 2), and that corruptions of long-term
keys that enable the adversary to compute session keys on his own return results
consistent with previous RevSessKey-queries (Game 3 and 5).

The general technique we use is to have our oracles refrain from computing the
input to the key derivation hash oracle, but instead check to see if the adversary
somehow computes it. The idea is that computing the hash input is hard to
simulate in the strong Diffie-Hellman game, but checking if someone else has
computed the hash input is easy using the strong DH oracle provided.

We call an oracle honest (at some point) if the user it belongs to has not yet
been corrupted (at that point). There are five types of oracles that we will have
to deal with in separate ways, and the first four are essentially fresh oracles:

— (I) initiator oracles whose response message comes from a responder oracle,
which has the same ctxt (i.e., they agree on the message transcript and
participant identities and public keys) and which is honest when the response
is received;

— (II) other initiator oracles whose intended peer is honest until the oracle
accepts;

— (III) responder oracles whose initial message comes from an initiator, which
has the same ctxt up to the responder message (thus agreeing on the first
message and participant identities and public keys) and which is honest when
the response is received;

— (IV) other responder oracles whose intended peer is honest until the oracle

accepts; and

(V) oracles whose intended peer is corrupted.

Note that at the time an initiator oracle starts, we cannot know if it will be of
type I or II. However, we will know what type it is when it is time to compute the
oracle’s session key. We also remark that types I and III correspond to case (iii)a
in the definition of freshness. Types II and IV correspond to case (iii)b.

In the following, let S; denote the event that the experiment in Game j
outputs 1.

Game 0. Our starting point Game 0 is the security experiment defining AKE
security. We have that
Pr [breakKE] = PI‘[SO] (1)

We begin with an administrative step to avoid pathologies where honest
players choose the same random nonces.

11

Game 1. In this game, we abort if two initiator oracles or two responder oracles
ever arrive at the same ctxt. The probability of this happening can be upper-
bounded by the probability of two oracles for the same peer choosing the same
random exponents, and we get that

Prisi] ~ Prisil] < 22 2)

We also note that the event in this game that corresponds to breakuynique
cannot happen in this game. It follows that
pul?
Pribreakunique] < 7 (3)

4.1 Preparing Oracles

Our goal in this game is to change every oracle so that it no longer computes the
input to the key derivation hash H, but instead checks if the adversary computes
this input and adapts accordingly. This is essential for later games, since it allows
us to replace every use of the secret key with queries to a strong DH oracle.

Game 2. In this game, we modify how our oracles determine their session keys.
Note that at the point in time where an initiator oracle determines its session
key, we know its type exactly.

A type III, IV or V responder oracle with ctxt = %||j’||pki||pkj||UHV7 secret
key b and random exponent s does the following to determine its session key k:
First, it checks to see if any oracle queries £|\§Hpkl||pkj||U||V||W1||W2||W3 have
been made satisfying

Wi = pk; Wy =U" Wy = U*. (4)

If any such query is found k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later, the
hash value is set to the chosen session key.

A type I initiator oracle will simply use the key from the corresponding
responder oracle.

A type Il or V initiator oracle with ctxt = %Hj||pkl||pk]||U||V, secret key a
and random exponent r does the following to determine its session key k: First,
it checks to see if any oracle queries 2||§||pkl\|pkj||U||V||W1HW2||W3 have been
made satisfying

W1 =Ve W2 = pk; W3 =V (5)

If any such query is found, k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later, the
hash value is set to the chosen session key.

The only potential change in this game is at which point in time the key
derivation hash oracle value is first defined, which is unobservable. It follows that

PI‘[SQ] = PI‘[Sl] (6)

12

4.2 Type IV Responder Oracles

Game 8. In this game type IV oracles choose their session key at random, but do
not modify the hash oracle unless the intended peer is corrupted. If the adversary
corrupts the intended peer i of a type IV oracle running as user j with secret
key b, random exponent s and chosen key k, then from that point in time, any
query of the form o

il 71kl ok IV V kS U U

to the key derivation hash oracle H will result in the hash value k.

Unless one of these queries happen before user i is corrupted, the only change
is at which point in time the key derivation hash oracle value is first defined,
which is unobservable. Let F' be the event that a query as above happens before
the corresponding long-term key is corrupted. Then

| Pr[S] — Pr[Ss]| < Pr[F].

Let F; be the same event as F', but with the intended peer being user i. We
then have that Pr[F] =), Pr[F;].

Next, consider the event F; which is that for some type IV oracle as above,
any query of the form

ill 1ok [k UV I[Wa || W | W Wy = pki =V* (7)

to the key derivation hash oracle H happens before user ¢ is corrupted. Then

We shall now bound the probability of the event E; by constructing an
adversary against strong Diffie-Hellman. This adversary will embed its DH
challenge in some user i’s public key and type IV oracle responses for oracles
whose intended peer is user ¢, and recover the solution to its DH challenge from
the hash query in event E;.

Strong Diffie-Hellman adversary By. The algorithm B; takes as input a DH
challenge (X,Y) = (¢%, ¢¥) and outputs a group element Z. It has access to a
strong Diffie-Hellman oracle stDH,.(-,).

Reduction By runs Game 2 with the following changes: it chooses 4 uniformly
at random and sets user i’s public key to pk; = X (and thus implicitly sets ’s
private key to the unknown value x). For type IV oracles whose intended peer is
user 4, By sets V=Y - g, with py random. If the adversary corrupts user ¢, the
reduction By aborts. (For other users, the reduction simply returns the secret
key, as in Game 2.)

We need to recognise hash queries of the form (4) and (5) that involve user i,
as well as queries of the form (7). For (4), where user ¢ acts in the responder role,
we know the oracle’s random exponent s, so we only need to recognise if Wy is U
raised to user i’s secret key, which can be done by checking if stDH, (U, W) = 1.

For (5), where user ¢ is the initiator, we know the oracle’s random exponent
r, so we only need to recognise if W7 is V raised to user i’s secret key, which can
be done by checking if stDH,(V, W) = 1.

13

Finally, for (7), we need to recognise if a group element Wi is V raised to
user i’s secret key, which can be done by checking if stDH,.(V,W;) = 1. When
we recognise a query of the form (7), since we know that V=Y - g®°, we output

Z=WiX P = VEX P = Yogrorgar — Yo,

In other words, our adversary B; succeeds whenever F; would happen in
Game 2. Furthermore, E; in Game 2 can only happen before user i is corrupted,
so whenever F; would happen in Game 2, B; would not have aborted.

We get that

1 1 1
AdvEPH(B)) > =N " Pr[E;] > =Y Pr[F)] = = Pr[F],
@,g(l)_ﬂz;[]_uz;[] m [F]
from which it follows that

| Pr[Ss] — Pr[Ss]| < Pr[F] < - Advg (By). (8)

4.3 Type I1I Responder Oracles

Game 4. In this game type III responder oracles choose their session key at
random, and do not modify the key derivation hash oracle.

Consider a type III responder oracle for user j with secret key b, random
exponent s and intended peer ¢, who has secret key a. Unless the adversary ever
makes a hash query of the form

iHi”szHPkg||U||V||W1||W2||W3 Wy =U?, 9)
this change is unobservable. Call this event F'. We thus have
| Pr(S] — Pr(S3]| < Pr[F]. (10)

We shall bound the probability of F' by constructing an adversary against
strong Diffie-Hellman. This adversary will embed its challenge in type I or II
initiator oracles’ message, as well as in type III responder oracles’ message. It
will recover the solution to its DH challenge from the hash query in event F.

Strong Diffie-Hellman adversary By. The algorithm Bs takes as input a DH
challenge (X,Y) = (¢%, ¢¥) and outputs a group element Z. It has access to a
strong DH-oracle stDH, (-, -).

Our reduction By runs Game 3 with the following changes: for type I and II
initiator oracles (we cannot distinguish these at this point in time), it computes
U = X - g, with pp random. For type III responder oracles, it computes
V=Y - g", with p; random. Note that in this game, the reduction knows all
static secret keys, so user corruption is handled exactly as in Game 3.

We need to recognise hash queries of the form (5) for type II initiator oracles,
as well as queries of the form (9) for type III oracles. Although we do not know the
oracle’s random exponents, we do know their secret keys. This means that we only

14

need to recognise if W3 is V raised to logg U = z + po. Of course, if W3 = V&+ro
then W3V ~P0 =V, which we can detect by checking if stDH, (V, W3V ~0) = 1.
If this is the case for a query of the form (9), then we output

=Wy -V P .XP=VT. X P = gyx+p1xg—wp1 —y®

as the solution to the DH challenge. In other words, Bs succeeds whenever F
would happen in Game 3, hence

| Pr[Sa] — Pr[Ss]| < Pr[F] < Adva"(Bs). (11)

Note that we do not stop the simulation in the case we detect a hash query
of the form (5) for a type II initiator oracle, because in this case the responder
message V does not contain the embedded DH challenge.

4.4 Type II Initiator Oracles

Game 5. In this game type II initiator oracles choose their session key at random,
but do not modify the hash oracle unless the intended peer is corrupted. If the
adversary corrupts the intended peer j of a type II oracle running as user 7 with
secret key a, random exponent r and chosen key k, then from that point in time,
any query of the form

ill 1ok 1ok | UIVIIVE [9k V"

to the key derivation hash oracle H will result in the hash value k.

Unless one of these queries happen before the user j is corrupted, the only
change is at which point in time the key derivation hash oracle value is first
defined, which is unobservable. Let F' be the event that a query as above happens
before the corresponding long-term key is corrupted. Then

| Pr[S5] — Pr[S4]| < Pr[F].

Let F; be the same event as F', but with the intended peer being user j. We
then have that Pr[F] =3, Pr[F}].

Next, consider the event F; which is that for some type II oracle as above,
any query of the form

il 11 pks | ok U VAW [We || W W = pkj = U° (12)

to the key derivation hash oracle H happens before user j is corrupted. Then
Pr[F;] < Pr[Ej].

We shall now bound the probability of the event E; by constructing an
adversary against strong Diffie-Hellman. This adversary will embed its DH
challenge in some user j’s public key and type II oracle messages for oracles
whose intended peer is user j, and recover the solution to its DH challenge from
the hash query in event F;.

15

Strong Diffie-Hellman adversary Bs. The algorithm Bs takes as input a DH
challenge (X,Y) = (¢%, ¢¥) and outputs a group element Z. It has access to a
strong DH-oracle stDH, (-, -).

Our reduction B3 runs Game 4 with the following changes: It chooses j
uniformly at random and sets user j’s public key to pk; = X (and thus implicitly
sets j’s private key to the unknown value b = x). For type I and II initiator
oracles whose intended peer is user j, B3 sets U =Y - g?°, with py random. If
the adversary corrupts user j, the reduction Bs aborts. (For other users, the
reduction simply returns the secret key, as in Game 4.)

We need to recognise hash queries of the form (4) and (5) that involve user
J, as well as queries of the form (12). For (4), where user j is the responder, we
know the oracle’s random exponent s, so we only need to recognise if W5 is U
raised to user j’s secret key, which can be done by checking if stDH,. (U, W) = 1.
For (5), where user j is the initiator, we know the oracle’s random exponent r,
so we only need to recognise if W7 is V raised to user j’s secret key, which can
be done by checking if stDH, (V, W7) = 1. Finally, for (12), we need to recognise
if a group element W5 is U raised to user j’s secret key, which can be done by
checking if stDH,, (U, W3) = 1.

When we recognise a query of the form (12), meaning that Wy = U* where
know that U =Y - ¢g?°, then we output

Z =WoX 0 =UsX P = YPghig=th = y®,

In other words, our adversary Bs succeeds whenever E; would happen in Game 4.
Furthermore, E; in Game 4 can only happen before user j is corrupted, so
whenever E; would happen in Game 4, Bs would not have aborted. We get that

1 1 1
AQVEY'(Ba) 2 > PrlB;] 2 3 PriFy] = - PriF)
j J

from which it follows that

| Pr(S5] — Pr[S4]| < Pr[F] < p- AdviL" (Bs). (13)

4.5 Summary

Note that in Game 5, every session key is chosen at random independent of every
key and sent message.

For type V oracles, the key derivation oracle is immediately programmed so
that the session key is available to the adversary. But type V oracles are never
fresh and therefore never subject to a Test query.

For type II and IV oracles, the key derivation hash oracle is programmed
to make the session key available to the adversary only after the intended peer
is corrupted. But if the intended peer is corrupted, a type II or IV oracle will
become non-fresh, hence no Test query can be made to it.

For type I and III oracles, the key derivation hash oracle will never make the
session key available to the adversary.

16

This means that for any oracle subject to a Test query, the session key is and
will remain independent of every key and sent message. Which means that the
adversary cannot distinguish the session key from a random key. It follows that

1
Pr[S5] = 3 (14)
Furthermore, (3) from Game 1 gives us Pr[breakynique] < 1162 /p. Because of
perfect correctness Pr[breaksound] = 0. It is now easy to see that Theorem 2
follows from the construction of By, Bs and Bs as well as equations (1), (2), (6),
(8), (11), (13) and (14).

5 Avoiding the Strong Diffie-Hellman Assumption

The proof of II relies on the strong Diffie-Hellman assumption, which is an
interactive assumption. A natural goal is to look for a protocol whose proof relies
on standard non-interactive assumptions. In this section we present two protocols
that solve this problem. Both can be seen as different modifications of II.

5.1 Protocol Iltyin

The first protocol, which we call IIy,, applies the twinning technique of [13] to
the different DH values in II. This requires some additional exponentiations over
protocol II, as well as the need to transmit one extra group element. The details
are given in Fig. 2: instead of sending a single Diffie-Hellman share, the protocol
initiator samples and sends two ephemeral shares, and both shares are used in
the key derivation. This duplication allows us to reduce to twin Diffie-Hellman.

Theorem 3. Consider the protocol Il defined in Fig. 2 where H is modeled
as a random oracle. Let A be an adversary against the AKE security of Tpwin-
Then there exists adversaries By, Bs and Bs against twin Diffie-Hellman such
that
' . . 02

AQVERE (A) < - AdvEPH(BL) + AdvESPH(Ba) + - AdvESPH (B5) + “7.
The adversaries all run in essentially the same time as A and make at most as
many queries to their twin DH oracle as A makes to its hash oracle H.

The proof is given in the full version. Note that by Theorem 1, we can tightly
replace the twin Diffie-Hellman terms in the theorem statement by ordinary
computational Diffie-Hellman terms.

5.2 Protocol Ilcom
The second protocol, which we call IIgom, again uses the twinning technique

of [13], but this time only applied to the static DH values in II. This provides tight

17

Public parameters
. g€ G, p=|G|
Alice Bob
ska = (a0, a1) & z2 sk = (bo, b1) & Z;
phy = (Ao, A1) = (90, 9") pkg = (Bo, B1) « (9", 9")
ro,m1 & 7
0,71 D
(Uo,Ur) (9", 9™) Yo, Us >
s & Zyp
Ve g
k + H(ctxt| Al ATl
k<« H(ctxt||V7O V™|) 14 U |UGHIUS U
By BV V)
ctxt = A||Bllpk 4|l pk | Uo | U1V

Fig. 2. Protocol Ilrwin. It is obtained from protocol II by applying the twinning trick
of [13] to the DH values.

Public parameters
. 9€G, p=|G|
Alice Bob
ska = (ao,a1) & Zg skp := (bo, b1) & Zz
Pk 4 i= (Ao, A1) < (9", 9"") pkp = (Bo, B1) + (¢, ¢"")
5
" Lp Ca
U<+ g" >
Ca + G(U) s
Cy 5 ZLp
< "(_ g,b
Cp + G(‘)
U - Verify G(U) = Ca
k< H(ctxt|AZ||As|| U | U |U*)
Verify G(V) = Cg . V
k H(ctxt|[Veo |V BRIBIIVY)
ctxt = A||B|lpk 4l pk 5 UV

Fig. 3. Protocol Ilcom. It is obtained from protocol IT by applying the twinning trick
of [13] to the static DH values and the commitment trick of [19] to the ephemeral DH
values.

18

implicit authentication. However, instead of also twinning the ephemeral DH
values we use a variant of the commitment trick of [19]. This reduces the number of
exponentiations compared to Ilryi,, but adds another round of communication.
Also, we need to rely on the Decision Diffie-Hellman assumption instead of
computational Diffie-Hellman. The details are given in Fig. 3. The proof of the
following theorem is given in the full version.

Theorem 4. Consider the protocol e, defined in Fig. 8 where H and G are
modeled as random oracles. Let A be an adversary against the AKE security of
Icom. Then there exists adversaries By and B3 against computational Diffie-
Hellman and an adversary By against Decision Diffie-Hellman such that

21+ 2t
L e +2)

AdviKE (A <up- Advé%H (By) + AdVEZH (B2) + p- AdVg?gH (Bs) P

Mrwin

The adversaries all run in essentially the same time t as A and make at most as
many queries to their twin DH oracle as A makes to its hash oracle H.

6 Efficiency Analysis

In this section we argue that our protocols are more efficient than other com-
parable” protocols in the literature when instantiated with theoretically sound
parameter choices. There are two reasons for this. First, the most efficient key
protocols do not have tight proofs. Hence, for theoretically sound deployment
they must use larger parameters to compensate for the proof’s security loss, which
directly translates into more expensive operations. The result is that although
some protocols require fewer operations than ours (typically group exponenti-
ations), the increase in computational cost per operation dominates whatever
advantage they might have over our protocols in terms of number of operations.

Second, the few known key exchange protocols which do have tight proofs,
require a large number of operations or heavy cryptographic machinery. Thus,
even though they can use small parameters, such as the P-256 elliptic curve, here
the sheer number of operations dominates their advantage over our protocols.

To illustrate the first point in more detail, here are some examples of very
efficient key exchange protocols having non-tight security proofs: UM [33],
KEA+ [30], HMQV [26], CMQV [39], TS1/2/3 [24], Kudla-Paterson [28], and
NAXOS [29]. Typically, these proofs have a tightness loss between L = O(uf)
and L = O(p?¢?) as illustrated for a few of the protocols in Table 1.

Suppose we now want to compare the efficiency of the protocols I, Iyin,
Mcom and HMQV, aiming for around 110-bits of security. Following Gjgsteen
and Jager [19], let us imagine two different scenarios: a small-to-medium-scale
setting with p = 216 users and ¢ = 2'6 sessions per user, and a large-scale setting
with g = 232 users and £ = 232 sessions per user. To instantiate the protocols in
a theoretically sound manner we need to select a group large enough so that the

" Comparing protocols is complex, and we return to this at the end of this section.

19

Table 1. The number of group exponentiations in our protocols compared to other
protocols in the literature. All protocols are one-round except Ilcom, which has two
rounds of communication. All security proofs are in the random oracle model. The
security loss is in terms of the number of users (u), the number of protocol instances
per user (¢), and reduction’s running time (t).

Protocol #Exponentiations Assumption Security loss O(-)
HMQV [26] 2.5 CDH 202
NAXOS [29] 3 Gap-DH w22

UM [33] 3 Gap-DH u2e?
Kudla-Paterson [28] 3 Gap-DH e

KEA+ [30] 3 Gap-DH Al

I (Fig. 1) 4 Strong-DH 1

IItwin (Fig. 2) 8/7 CDH I

Icom (Fig. 3) 6 DDH I8

GJ [19] 17 DDH 1

 Only when using pairing-friendly curves; otherwise L = O(uft).

Table 2. OpenSSL Benchmark Results for NIST Curves [19, Table 1].

Curve Exp. / Sec. Time / Exp.
NIST P-256 476.9 2.1 ms
NIST P-384 179.7 5.6 ms
NIST P-521 62.0 16.1 ms

underlying DH-assumptions are still hard even when accounting for the security
loss. For simplicity, we only consider selecting among elliptic curve groups based
on the NIST curves P-256, P-384, and P-521, and assume that the CDH, DDH,
and Gap-DH problems are equally hard in each group.

HMQV. Supposing HMQV has a tightness loss of L ~ p2¢?, this translates
into a loss of 264 in the small-to-medium-scale setting, and a loss of 2128 in
the large-scale setting. To compensate we have to increase the group size by
a factor of L? ~ 2'28 and L? = 2256, respectively. With a target of 110-bit
security, this means that we have to instantiate HMQV with curve P-384
and P-521, respectively.

I, IIrwins oom. Our protocols’ security proofs have a tightness loss of L = p,
which translates into 2'6 in the small-to-medium-scale setting and 232 in
the large-scale setting. In the first setting P-256 is still sufficient for 110-bit
security, but in the later setting P-384 must be used instead.

We can now compare these instantiations by multiplying the number of
exponentiations required with the cost of an exponentiation in the relevant group.

20

For the latter values we use the OpenSSL benchmark numbers from Gjgsteen
and Jager [19] (reproduced in Table 2). Calculating the numbers we get:

HMQV IT Irwin IMcom

S-M 25 x56=14 4x21=84 8§x21=168 6x21=12.6
L 25x161=403 4x56=224 8x56=448 6x5.6=33.6

Observe that II is more efficient than HMQV in both the small-to-medium-
scale setting as well as in the large-scale setting despite needing more exponen-
tiations. This is because it can soundly use smaller curves than HMQV due to
the relative tightness of its reduction. Protocol Iy, is about as efficient as
HMQYV in both settings, while Ilcon, lies somewhere in between II and Iy,
but since it requires one extra round of communication a direct comparison is
more difficult. Of course, the main reason to prefer Iy, and [Icey over 1T is
the reliance on the weaker CDH and DDH assumptions rather than strong DH.
A complicating factor in comparing with HMQYV is the difference in security
properties and security models (see the end of this section).

To illustrate the second point mentioned above—that our protocols are also
more efficient than protocols with fully tight proofs—we also compute the numbers
for the recent protocol of Gjgsteen and Jager (GJ) which is currently the most
efficient key exchange protocol with a fully tight proof. Since GJ can use P-256
independent of the number of users and sessions its cost is 17 x 2.1 = 35.7 in both
the small-to-medium scale setting as well as the large-scale setting. Nevertheless,
we observe that the large number of exponentiations in GJ dominates its tightness
advantage in realistic settings.

Thus, absent a fully tight proof, our protocols hit a proverbial “sweet spot”
between security loss and computational complexity: they can be instantiated
soundly on relatively small curves using only a few exponentiations.

Communication complexity. For completeness we also briefly mention communi-
cation complexity. Since in most implicitly-authenticated DH-based protocols
each user only sends one or two group elements, there is in practice little differ-
ence between II, IlTyin, and Ilcem, and protocols like HMQV when it comes to
communication cost. Especially if elliptic curve groups are used.

This is in contrast to the fully tight signature-based GJ protocol, which in
total needs to exchange two group elements for the Diffie-Hellman key exchange,
two signatures (each consisting of a random 256-bit exponent, two group elements,
and four 256-bit exponents), and one hash value. Altogether, this gives a total
of ~ 545 bytes communicated when instantiated for a security level of, say, 128
bits [19, Section 5]. In comparison, II, Iy, and cey, would only need to
exchange around 160 to 224 bytes for the same security level. This assumes curve
P-384 and includes the addition of two 256-bit key-confirmation messages to
provide explicit entity authentication in order to make the comparison with the
GJ protocol fair.

21

On the (im)possibility of fairly comparing protocols. Our protocols are the first
implicitly authenticated key exchange protocols that were designed to provide
efficient deployment in a theoretically sound manner. This implies that we must
compare their efficiency with other protocols with slightly different goals. In
Table 1 we included protocols with closely related goals and similar structure,
but not aiming for exactly the same target.

One example of such a different goal is that NAXOS was designed to be
proven in the eCK model, which also allows the reveal of the randomness of
the tested session, similar to HMQV. Our protocols, like TLS 1.3, currently do
not offer this property. We conjecture that the NAXOS transformation could be
directly applied to our protocols to obtain eCK-secure protocols without adding
exponentiations, but it is currently unclear if this could be done with a tight
proof, and hence we leave this to future work.

7 Optimality of our Security Proofs

In this section we will show that the tightness loss of L = O(u) in Theorem 2,
Theorem 3 and Theorem 4 is essentially optimal—at least for “simple” reductions.
Basically, a “simple” reduction runs a single copy of the adversary only once. To
the best of our knowledge, all known security reductions for AKE protocols are
either of this type or use the forking lemma. For example, the original reduction
for HMQV uses the forking lemma and thus is very non-tight, but does not fall
under our lower bound. In contrast, the HMQV reduction by Barthe et al. [5]
is simple and thus our lower bound applies. Hence, in order to give a tighter
security proof, one would have to develop a completely new approach to prove
security for such protocols.

Tightness bounds for different cryptographic primitives were given in [4, 15,
17, 18, 21, 23, 25, 31, 35, 37, 40], for instance. Bader et al. [4] describe a generic
framework that makes it possible to derive tightness lower bounds for many
different primitives. However, these techniques are only able to consider tight
reductions from non-interactive assumptions, while our first protocol is based on
the interactive strong Diffie-Hellman assumption. Morgan and Pass [34] showed
how to additionally capture bounded-round interactive assumptions, but the
strong Diffie-Hellman assumption does not bound the number of possible oracle
queries, so we cannot use their approach directly.

Therefore we develop a new variant of the approach of Bader et al. [4],
which makes it possible to capture interactive assumptions with an unbounded
number of oracle queries, such as strong Diffie-Hellman assumption. For clarity
and simplicity, we formulate this specifically for the class of assumptions and
protocols that we consider, but we discuss possible extensions below.

Considered class of protocols. In the following we consider protocols where public
keys are group elements of the form pk = ¢g* and the corresponding secret key is
sk = x. We denote the class of all protocols with this property with IIpy. Note
that this class contains, in particular, NAXOS [29], KEA+ [30], and HMQV [26].

22

Remark 1. One can generalize our results to unique and verifiable secret keys,
which essentially requires that for each value pk there exists only one unique
matching secret key sk, and that there exists an efficiently computable relation R
such that R(pk, sk) = 1 if and only if (pk, sk) is a valid key pair. Following Bader
et al. [4], one can generalize this further to so-called efficiently re-randomizable
keys. We are not aware of concrete examples of protocols that would require this
generality, and thus omit it here. All protocols considered in the present paper
and the vast majority of high-efficiency protocols in the literature have keys of
the form (pk, sk) = (g%, z), so we leave such extensions for future work.

Why does GJ18 not contradict our lower bound? As mentioned in Remark 1, our
bound applies to protocols with unique and verifiable secret keys. In contrast, the
protocol of Gjgsteen and Jager [19] constructs a tightly-secure digital signature
scheme based on OR-proofs, where secret keys are not unique. As explained
in [19, Section 1.1], these non-unique secret keys seem inherently necessary to
achieve fully-tight security.

Simple reductions from (strong) Diffie-Hellman. Intuitively, a simple reduction
R = R® from (strong) CDH takes as input a CDH instance (g%, g¥) and may
query an oracle O that, on input Y, Z, returns 1 if and only if Y* = Z (cf.
Definition 3). More formally:

Definition 10. A simple reduction R interacts with an adversary A as follows.

1. R receives as input a CDH instance (g*, g¥).

2. It generates p public keys and starts A(pky,...,pk,). R provides A with
access to all queries provided in the security model described in Section 3.

3. R outputs a value h.

We say that R is a (tr,€r, €4)-reduction, if it runs in time at most tg and for
any adversary A with e 4 = AdvyE(A) holds that

Pr[h = g¢"¥] > er.

We say that R = RC is a reduction from the strong CDH problem if it makes at
least one query to its oracle O, and a reduction from the CDH problem if not.

Remark 2. The formalization in this section very specifically considers the compu-
tational problems CDH and sCDH, as concrete examples of reasonable hardness
assumptions that a typical security proof for the protocols considered in this
work may be based on. We will later discuss how our results can be extended to
other interactive and non-interactive problems.

Theorem 5. Let IT be an AKE protocol such that IT € IIpy. Let |K| denote the
size of the key space of I1. For any simple (tr,er, 1 — 1/|K|)-reduction R® from
(strong) CDH to breaking II in the sense of Definition 9 there exists an algorithm

MO the meta-reduction, that solves the (strong) CDH problem in time t and
with success probability epq such that ta =~ p-tr and

1
€MZ€R—;-

23

Remark 3. Note that the lower bound epq > eg — 1/ implies that the success
probability ez cannot significantly exceed 1/u, as otherwise there exists an
efficient algorithm M for a computationally hard problem. Note also that this
implies that the reduction cannot be tight, as it “loses” a factor of at least 1/p,
even if the running time of R is not significantly larger than that of the adversary.

In the sequel we write [u1 \ i] as a shorthand for [1...i— 1,9+ 1...pu].

Proof. We describe a meta-reduction M that uses R as a subroutine to solve the
(strong) CDH problem. Following Hofheinz et al. [21] and Bader et al. [4], we will
first describe a hypothetical inefficient adversary A. Then we explain how this
adversary is efficiently simulated by M. Finally, we bound the success probability
of M, which yields the claim.

Hypothetical adversary. The hypothetical adversary A proceeds as follows.

1. Given p public keys pk, = g™, ..., pk, = g*», A samples a uniformly random

index j* & [u]. Then it queries RevLTK() for all i € [\ j*] to obtain all
secret keys except for skj-.

2. Next, A computes sk;« = x;+ from pk,. = g*, e.g., by exhaustive search.®

3. Then A picks an arbitrary oracle, say i for s = (5* + 1) mod pu, and executes
the protocol with 7!, impersonating user j*. That is, A proceeds exactly as
in the protocol specification, but on behalf of user j*. Note that A it is able
to compute all messages and the resulting session key on behalf of user j*,
because it “knows” sk ;.

4. Finally, A asks Test(s, 1). Note that this is a valid Test-query, as A has never
asked any RevSessKey-query or RevLTK(j*) to the peer j* of oracle ml. If the
experiment returns the “real” key, then A outputs “1”. Otherwise it outputs
“0”.

Note that A wins the security experiment with optimal success probability
1 —1/|K|, where |K| is the size of the key space. The loss of 1/|K]| is due to the
fact that the random key chosen by the Test-query may be equal to the actual
session key.

Description of the meta-reduction. Meta-reduction M interacts with reduction
R by simulating the hypothetical adversary A as follows.

1. M receives as input a CDH instance (g%, g¥). It starts R on input (g%, g¥).

2. Whenever R issues a query to oracle O, M forwards it to its own oracle.
Note that both oracles are equivalent, because M has simply forwarded the
CDH instance.

3. When R outputs public keys pk; = ¢**,...,pk, = g"» to A, M makes a
snapshot of the current state stz of R.

4. For j € [1...u], M now proceeds as follows.

8 Note that we are considering an inefficient adversary here. As usual for meta-
reductions, we will later describe how A can be simulated efficiently.

24

(a) It lets A query RevLTK(é) for all i € [u\ j], in order to obtain all secret
keys except for sk;. Note that the reduction may or may not respond to
all RevLTK (%) queries. For instance, R may abort for certain queries.

(b) Then it resets R to state stg.

5. Now M proceeds to simulate the hypothetical adversary. That is:

(a) Tt picks a uniformly random index j* < [1...u] and queries RevLTK(7)
for all i € [\ 7*].

(b) Then it executes the protocol with 7}, impersonating user j*. Note that
this works only if M was able to obtain sk;« in Step (4).

(c) Finally, M lets A ask Test(s,1). If the experiment returns the “real” key,
then A outputs “1”. Otherwise it outputs “0”.

6. If R outputs some value h throughout the experiment, then M outputs the
same value.

Note that M provides a perfect simulation of the hypothetical adversary, provided
that it “learns” sk;« in the loop in Step (4).

Analysis of the meta-reduction. M essentially runs reduction R at most y times.
Apart from that, it performs only minor additional operations, such that we have
tM ~ U tR.

In order to analyse the success probability of M, let us say that bad occurs, if

J* is the only index for which R did not abort in Step (4) of the meta-reduction.

Note that in this case M learns all secret keys, except for skj-, in which is the

only case where the simulation of A in Step (5.b) fails. Since we may assume

without loss of generality that the reduction R works for at least one index
j € [u] and we chose j* < [u] uniformly random, we have

1

Pr[bad] < —.

I

Let win(R,.A) denote the event that R outputs h = ¢*¥ when interacting
with A, and win(R, M) the corresponding event with M. Since M simulates .4
perfectly unless bad occurs, we have

|Pr [win(R,.A)] — Pr [win(R, M)]| < Pr [bad].

Furthermore, note that by definition we have ex = Pr[win(R,.A)] and ey =
Pr [win(R, M)]. Hence we get |eg — exq| < 1/p, which in turn yields the lower
bound ep > eg — 1/ 1.

Generalizations. The tightness lower bound proven above makes several very
specific assumptions about the considered protocols, hardness assumptions, and
security models. The main purpose of this is to keep the formalization and proof
focused on the type of protocols that we are considering in this paper. However,
a natural question is to which extent the results also apply to more general
protocols, models, and assumptions, and whether and how the tightness bound
can be evaded by tweaking the considered setting.

25

First of all, we consider only protocols where long-term secrets are of the form
(pk, sk) = (¢®,x). As already briefly discussed above, one can generalize this to
other protocols, as long as the simulation of the hypothetical adversary by the
meta-reduction is able to recover properly distributed secret keys. In particular,
one can generalize to arbitrary efficiently re-randomizable long-term keys, as
defined by Bader et al. [4]. Note that current AKE protocols with tight security
proofs [3, 19] do not have efficiently rerandomizable keys, and therefore do not
contradict our result.

In order to obtain a tighter security proof one may try to make different
complexity assumptions. These can be either non-interactive (i.e., the reduction
does not have access to an oracle @, such as e.g. DDH), or stronger interactive
assumptions. Let us first consider non-interactive assumptions. A very general
class of such assumptions was defined abstractly in Bader et al. [4], and it is
easy to verify that our proof works exactly the same way with such an abstract
non-interactive assumption instead of CDH.

Some stronger assumptions may yield tight security proofs, but not all of
them do. Consider for instance the gap Diffie-Hellman assumption, which is
identical to strong Diffie-Hellman, except that the first input to the provided
DDH-oracle is not fixed, but can be arbitrary. It is easy to verify that our proof
also works for this assumption, in exactly the same way. More generally, our
proof works immediately for any assumption for which the “winning condition”
of the reduction is independent of the sequence of oracle queries issued by the
reduction. An example of an interactive assumptions where this does not hold is
the trivial interactive assumption that the protocol is secure (which, of course,
immediately yields a tight security proof).

Finally, we note that our impossibility result holds also for many weaker or
stronger AKE security models. We only require that the model allows for active
attacks and provides a RevLTK query. Thus, the result immediately applies also
to weaker models that, e.g., do not provide a RevSessKey-query or only a single
Test-query, and trivially also for stronger models, such as eCK-style ephemeral
key reveals [10, 12]. It remains an interesting open question whether stronger
impossibility results (e.g., with quadratic lower bound) can be proven for such
eCK-style definitions.

8 Adding Explicit Entity Authentication

In this section we describe how explicit entity authentication (EA) [9] can be
added to our protocols by doing an additional key-confirmation step. Recall that
EA is the aliveness property that fresh oracles are guaranteed to have a partner
once they accept. Our construction is a generic compiler which transforms an
arbitrary AKE protocol II, secure according to Definition 9, into one that also
provides EA. The details of the compiler are given in Fig. 4.

Specifically, protocol IIT begins by running protocol II to obtain a session
key k. This key, which we henceforth call the intermediate key for protocol II7,
is then used to derive two additional keys: k, and k,,. The first key becomes the

26

Alice Bob

ko II kn
ka||km ¢ PRF(km, ctxt) ka||km < PRF(km, ctxt)
to < MAC.Tag(km, 0||ctxt) t1 < MAC.Tag(km, 1||ctxt)
to R
t1
accept iff accept iff
MAC.Vrfy(km, 1|[ctxt, t1) =1 MAC.Vrfy(km, O||ctxt, to) = 1

ctxt = A||B||Transcriptn

Fig. 4. Generic compiler from an AKE protocol IT with implicit authentication to a
protocol IIT with explicit entity authentication.

final session key of protocol IIT, while k,, is used to compute a key-confirmation
message, i.e., a MAC, for each party. The EA property of II'" reduces to the AKE
security of the initial protocol II, the multi-user PRF security of the function used
to derive k, and ky,, as well as the multi-user strong UF-CMA (mu-SUF-CMA)
security of the MAC scheme (see the full version for the formal definitions).

Theorem 6. Let II be an AKE protocol, let IIT be the protocol derived from 11
as defined in Fig. 4, and let A be an adversary against the EA security of protocol
IIt. Then there exists adversaries By, Ba, D, and F, such that

Advifs (A) < AdvYE(B1) + 2 - AdviF®(B2) + Advpsr s (D) + Adviiaen: A (F),

where pl is the number of sessions created by A. The adversaries By, By, D,
and F all run in essentially the same time as A.

Our result is basically a restatement of the theorem proved by Yang [41], but
with two minor differences: (1) our result is stated for arbitrary protocols and
not only two-message protocols, and (2) since we use the AKE-RoR model the
proof is tighter and slightly simpler.

9 Conclusion

We showed that it is possible to achieve highly efficient AKE protocols that
can be instantiated with theoretically sound parameters. Specifically, we gave
protocol constructions that have only a linear tightness loss in the number of
users, while using only a handful of exponentiations. Our constructions are
at least as efficient as the best known AKE protocols in this setting. Perhaps
surprisingly, our constructions only use standard building blocks as used by
widely deployed protocols and are very similar to protocols like Noise-KK, and
offer similar security guarantees.

27

While our proofs have a linear loss we have showed that this is actually
unavoidable: any reduction from a protocol in our class to a wide class of
hardness assumptions must lose a factor of at least . Thus, our reductions are
optimal in this regard. Additionally, we proved that adding a key confirmation
step tightly provides explicit authentication.

Taken together, these results demonstrate for the first time that AKE protocols
can be instantiated in a theoretically sound way in real-world deployments without
sacrificing performance.

Bibliography

[1] Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE
password-authenticated key exchange protocol. In: 2015 IEEE Symposium
on Security and Privacy. pp. 571-587. IEEE Computer Society Press (May
2015)

[2] Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated
key exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005.
LNCS, vol. 3386, pp. 65-84. Springer, Heidelberg (Jan 2005)

[3] Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenti-
cated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I.
LNCS, vol. 9014, pp. 629-658. Springer, Heidelberg (Mar 2015)

[4] Bader, C., Jager, T., Li, Y., Schige, S.: On the impossibility of tight crypto-
graphic reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 273-304. Springer, Heidelberg (May 2016)

[5] Barthe, G., Crespo, J.M., Lakhnech, Y., Schmidt, B.: Mind the gap: Modular
machine-checked proofs of one-round key exchange protocols. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
689-718. Springer, Heidelberg (Apr 2015)

[6] Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user
setting: Security proofs and improvements. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 259-274. Springer, Heidelberg (May
2000)

[7] Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment
of symmetric encryption. In: 38th FOCS. pp. 394-403. IEEE Computer
Society Press (Oct 1997)

[8] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93. pp. 62-73. ACM Press (Nov
1993)

[9] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
Stinson, D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232-249. Springer,
Heidelberg (Aug 1994)

[10] Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong
security: An efficient and generic construction in the standard model. In:
Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 477-494. Springer, Heidelberg
(Mar / Apr 2015)

28

[11]

[12]

[13]

Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y., Zanella
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 235-255.
Springer, Heidelberg (Aug 2014)

Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use
for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 453-474. Springer, Heidelberg (May 2001)

Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and ap-
plications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
127-145. Springer, Heidelberg (Apr 2008)

Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security.
In: IEEE 29th Computer Security Foundations Symposium, CSF 2016,
Lisbon, Portugal, June 27 - July 1, 2016. pp. 164-178. IEEE Computer
Society (2016), https://doi.org/10.1109/CSF.2016.19

Coron, J.S.: Optimal security proofs for PSS and other signature schemes.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272-287.
Springer, Heidelberg (Apr / May 2002)

Donenfeld, J.A.: WireGuard: Next generation kernel network tunnel. In:
NDSS 2017. The Internet Society (Feb / Mar 2017)

Fleischhacker, N., Jager, T., Schroder, D.: On tight security proofs for
Schnorr signatures. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014,
Part I. LNCS, vol. 8873, pp. 512-531. Springer, Heidelberg (Dec 2014)
Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions
for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 93-107. Springer, Heidelberg (Aug 2008)

Gjosteen, K., Jager, T.: Practical and tightly-secure digital signatures
and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95-125. Springer, Heidelberg
(Aug 2018)

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415-432. Springer, Heidelberg (Apr 2008)

Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security
reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 66-83. Springer, Heidelberg (May 2012)

Jager, T., Kohlar, F., Schéige, S., Schwenk, J.: On the security of TLS-DHE in
the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 273-293. Springer, Heidelberg (Aug 2012)

Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authen-
ticated encryption with corruptions: Reductions are lossy. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 409-441. Springer,
Heidelberg (Nov 2017)

Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authen-
ticated key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS
04. LNCS, vol. 3089, pp. 220-232. Springer, Heidelberg (Jun 2004)

29

https://doi.org/10.1109/CSF.2016.19

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited.
In: Pointcheval, D.; Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 537-553. Springer, Heidelberg (Apr 2012)

Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer,
Heidelberg (Aug 2005)

Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol:
A systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 429-448. Springer, Heidelberg (Aug 2013)
Kudla, C., Paterson, K.G.: Modular security proofs for key agreement
protocols. In: Roy, B.K. (ed.) ASTACRYPT 2005. LNCS, vol. 3788, pp.
549-565. Springer, Heidelberg (Dec 2005)

LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated
key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS,
vol. 4784, pp. 1-16. Springer, Heidelberg (Nov 2007)

Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key ex-
change protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 378-394. Springer, Heidelberg (Apr 2006)
Lewko, A.B., Waters, B.: Why proving HIBE systems secure is difficult. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
58-76. Springer, Heidelberg (May 2014)

Li, Y., Schage, S.: No-match attacks and robust partnering definitions:
Defining trivial attacks for security protocols is not trivial. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1343-1360.
ACM Press (Oct / Nov 2017)

Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement
protocol in the NIST SP 800-56A standard. In: Abe, M., Gligor, V. (eds.)
ASTACCS 08. pp. 261-270. ACM Press (Mar 2008)

Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel,
A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 507-536.
Springer, Heidelberg (Nov 2018)

Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B.K. (ed.) ASTACRYPT 2005. LNCS, vol. 3788,
pp. 1-20. Springer, Heidelberg (Dec 2005)

Perrin, T.: Noise protocol framework (2018), http://noiseprotocol.org
Seurin, Y.: On the exact security of Schnorr-type signatures in the random
oracle model. In: Pointcheval, D.; Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 554-571. Springer, Heidelberg (Apr 2012)

Signal Messenger: Technical information (2018), https://signal.org/docs
Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Des. Codes Cryptography 46(3), 329-342 (2008)
Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of
reductions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part I. LNCS, vol. 10820, pp. 61-90. Springer, Heidelberg (Apr / May 2018)
Yang, Z.: Modelling simultaneous mutual authentication for authenticated
key exchange. In: FPS. Lecture Notes in Computer Science, vol. 8352, pp.
46-62. Springer (2013)

30

http://noiseprotocol.org
https://signal.org/docs

	Introduction
	Background
	AKE Security Model
	Protocol Pi
	Preparing Oracles
	Type IV Responder Oracles
	Type III Responder Oracles
	Type II Initiator Oracles
	Summary

	Avoiding the Strong Diffie-Hellman Assumption
	Protocol Pi-Twin
	Protocol Pi-Com

	Efficiency Analysis
	Optimality of our Security Proofs
	Adding Explicit Entity Authentication
	Conclusion
	References

