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Abstract. A non-interactive zero-knowledge (NIZK) protocol allows a
prover to non-interactively convince a verifier of the truth of the statement
without leaking any other information. In this study, we explore shorter
NIZK proofs for all NP languages. Our primary interest is NIZK proofs
from falsifiable pairing/pairing-free group-based assumptions. Thus far,
NIZKs in the common reference string model (CRS-NIZKs) for NP based
on falsifiable pairing-based assumptions all require a proof size at least
as large as O(|C|κ), where C is a circuit computing the NP relation
and κ is the security parameter. This holds true even for the weaker
designated-verifier NIZKs (DV-NIZKs). Notably, constructing a (CRS,
DV)-NIZK with proof size achieving an additive-overhead O(|C|)+poly(κ),
rather than a multiplicative-overhead |C| ·poly(κ), based on any falsifiable
pairing-based assumptions is an open problem.
In this work, we present various techniques for constructing NIZKs with
compact proofs, i.e., proofs smaller than O(|C|) + poly(κ), and make
progress regarding the above situation. Our result is summarized below.
– We construct CRS-NIZK for all NP with proof size |C| + poly(κ)

from a (non-static) falsifiable Diffie-Hellman (DH) type assumption
over pairing groups. This is the first CRS-NIZK to achieve a compact
proof without relying on either lattice-based assumptions or non-
falsifiable assumptions. Moreover, a variant of our CRS-NIZK satisfies
universal composability (UC) in the erasure-free adaptive setting.
Although it is limited to NP relations in NC1, the proof size is
|w| · poly(κ) where w is the witness, and in particular, it matches
the state-of-the-art UC-NIZK proposed by Cohen, shelat, and Wichs
(CRYPTO’19) based on lattices.

– We construct (multi-theorem) DV-NIZKs for NP with proof size
|C|+poly(κ) from the computational DH assumption over pairing-free
groups. This is the first DV-NIZK that achieves a compact proof
from a standard DH type assumption. Moreover, if we further assume
the NP relation to be computable in NC1 and assume hardness of a
(non-static) falsifiable DH type assumption over pairing-free groups,
the proof size can be made as small as |w|+ poly(κ).

Another related but independent issue is that all (CRS, DV)-NIZKs
require the running time of the prover to be at least |C| · poly(κ). Consid-
ering that there exists NIZKs with efficient verifiers whose running time is



strictly smaller than |C|, it is an interesting problem whether we can con-
struct prover-efficient NIZKs. To this end, we construct prover-efficient
CRS-NIZKs for NP with compact proof through a generic construction
using laconic functional evaluation schemes (Quach, Wee, and Wichs
(FOCS’18)). This is the first NIZK in any model where the running time
of the prover is strictly smaller than the time it takes to compute the
circuit C computing the NP relation.
Finally, perhaps of an independent interest, we formalize the notion of
homomorphic equivocal commitments, which we use as building blocks to
obtain the first result, and show how to construct them from pairing-based
assumptions.

1 Introduction

1.1 Background

Zero-knowledge (ZK) protocols, introduced by Goldwasser, Micali, and Rackoff
[40], allow a prover to convince a verifier of the truth of a statement without
leaking any knowledge other than the fact that the statement is indeed true. A
practically useful and theoretically alluring feature for a ZK protocol to have is
non-interactiveness, where a prover simply outputs a single message (called a
proof) and convinces the verifier of the truth of the statement. Unfortunately,
it is known that non-interactive ZK (NIZK) for non-trivial languages do not
exist in the plain model where there is no trusted setup [39]. However, Blum,
Feldman, and Micali [11] showed how to construct a NIZK in a setting where the
prover and verifier have access to a shared common reference string (as known
as CRS-NIZK). Since then, NIZKs have been used as a ubiquitous building
block for cryptography ranging from the early chosen-ciphertext secure public
key encryption schemes [71,30,81], advanced signature schemes [22,78,6], and
multi-party computation [38].
Compact NIZK. One of the important research topics for NIZK is making the
proof size as small as possible. So far, CRS-NIZK for all of NP in the standard
model is known to exist from (doubly-enhanced) trapdoor permutation [31,7,37],
pairing [45,46,62,48,49,33], indistinguishability obfuscation (iO) [82,9,10,18], or
correlation intractable hash function [51,16,15]. Among these, CRS-NIZKs that
have proof size independent of the size of the circuit C computing the NP
relation are limited to those based on either a knowledge assumption [46,62,33]
or iO [82]. There also exist generic conversions from standard CRS-NIZKs to
CRS-NIZKs with proof size independent of |C|. However, they rely on fully
homomorphic encryption (FHE) [34,35] or homomorphic trapdoor functions
(HTDF) [23] whose existence is only implied from lattice-based assumptions.
Put differently, the classical CRS-NIZKs based on trapdoor permutations or
(falsifiable [68,36]) pairing-based assumptions all require a large proof size that is
polynomially related to the circuit size |C|. Notably, even the most well-known
Groth-Ostrovsky-Sahai NIZK (GOS-NIZK) [48] based on the decisional linear
or subgroup decision assumptions over pairing groups requires the proof size
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to be as large as O(|C|κ), where κ is the security parameter. In fact, the CRS-
NIZK with the shortest proof that does not rely on any of the above strong
tools is the NIZK of Groth [45] based on the security of Naccache-Stern public
key encryption scheme [67] which achieves proof size |C| · polylog(κ). Therefore,
it remains an interesting open problem to construct CRS-NIZKs with proof
size smaller than the current state-of-the-art while avoiding to rely on strong
tools such as knowledge assumptions, iO, FHE, and HTDF. Specifically, in this
paper, one of the primary interest is to obtain a CRS-NIZK with proof size
achieving an additive-overhead O(|C|) + poly(κ), rather than a multiplicative-
overhead |C| · poly(κ) (or |C| · polylog(κ)), based on any falsifiable pairing-based
assumptions. Hereafter, we call such NIZKs with proof size O(|C|) + poly(κ) as
NIZKs with compact proofs for simplicity.

Designated Verifier NIZKs and Compact Proofs. A relaxation of CRS-
NIZKs called the designated verifier NIZKs (DV-NIZKs) [73,27] retain most of
the useful properties of CRS-NIZKs and in some applications can be used as a
substitute for CRS-NIZKs. The main difference between CRS and DV-NIZKs
is that the latter limits the proof to only be verifiable by a designated party in
possession of a verification key; the proof can still be generated by anybody as
in CRS-NIZKs. Due to this extra secret information possessed by the verifier,
DV-NIZKs suffer from the so-called verifier rejection attack. Specifically, a prover
may learn partial information of the secret verification key and break soundness if
the verifier uses the same verification key for verifying multiple statements. In this
paper, our primary interest is multi-theorem DV-NIZKs (also known as reusable
or unbounded-soundness DV-NIZKs) where the verification key can be reused
for multiple statements without compromising soundness. Surprisingly, most
DV-NIZKs [73,27,84,21,64,20] (that are not a simple downgrade of CRS-NIZKs)
are known to either suffer from the verifier rejection attack or to be limited to
specific NP languages. It was not until recently that the first multi-theorem
DV-NIZK for all NP languages was (concurrently and independently) shown by
Couteau and Hofheinz [24], Katsumata et al. [53], and Quach et al. [75]. They
proposed a tweak to the classical Feige-Lapidot-Shamir (FLS) NIZK protocol [31]
and showed for the first time how to construct DV-NIZKs from the computational
Diffie-Hellman (CDH) assumption over pairing-free groups; an assumption which
is not yet known to imply CRS-NIZKs. However, one drawback of their DV-NIZK
is that the CRS size and proof size are huge, i.e., poly(κ, |C|). This is due to
the fact that the FLS NIZK, which they base their construction on, is highly
specific to the NP-complete Hamiltonicity problem. It is unclear if we can make
their scheme compact since all other (CRS-)NIZKs following the footsteps of FLS
NIZK such as [54,56,45] suffer from the same problem of having large CRS and
proof size. Therefore, it is unclear whether such a weak assumption as CDH over
pairing-free groups can be used to construct a DV-NIZK with compact proofs. In
fact, constructing DV-NIZKs with compact proof from any pairing/pairing-free
group assumptions remains open.

Prover-Efficient NIZKs. Continuing the line of NIZKs with compact proofs, it
is very natural and appealing to consider NIZKs that enjoy efficient provers, i.e.,
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the running time of the prover is small. We say the prover is efficient if its running
time is strictly smaller than the time it takes to compute C(x,w) for statement x
and witness w, where recall C was the circuit computing the NP relation. As an
example, we can imagine a case where a user (acting as a prover) is given some
sort of credential w as a witness by a trusted authority and is required to prove in
zero-knowledge the fact that it possesses a valid credential to make some action.
More concretely, in group signatures [6] a trusted authority will provide users
with a credential which allows them to sign anonymously on behalf of the group.
In such a case, it would be appealing if the user could generate a proof without
requiring to invest computational time-dependent of |C|, since if zero-knowledge
was not required, the prover could have simply output the credential w in the
clear and completely outsourced the computation of C(x,w) to the verifier. Since
the authority is providing a valid credential w to the user, in principle, the user
should never need to compute C(x,w) to check whether w is valid.

As far as our knowledge goes, all NIZKs, regardless of CRS or DV, have a
prover with running time at least |C| · poly(κ) which is much larger than the time
it takes to simply compute the circuit C. We emphasize that solutions to the
counterpart notion of efficient verifiers are well known and studied. Specifically,
NIZKs with compact proofs with the additional property of having efficient
verifiers are known as ZK-succinct non-interactive arguments (ZK-SNARGs)
or ZK-succinct non-interactive arguments of knowledge (ZK-SNARKs).4 They
have been the subject of extensive research, e.g., [45,62,8,33,63,28,72,47], where
constructions are known to exist either in the random oracle model or based on
non-falsifiable assumptions. We also note that it would be impossible to construct
a NIZK where both the prover and the verifier are efficient since the circuit C
representing the NP relation must be computed by at least one of the parties
to check the validity of the witness w. Therefore, it is an interesting question of
whether there exists an opposite flavor of the current NIZKs where we have an
efficient prover instead of an efficient verifier.

1.2 Our Contribution

In this paper, we provide new constructions of CRS-NIZK and DV-NIZK with
compact proofs. The former is instantiated on a pairing group and the latter on
a paring-free group. The tools and techniques which we use for our CRS-NIZK
can be slightly modified to construct universally composable NIZK (UC-NIZK)
[48] with compact proofs over pairing groups. Finally, we provide a generic
construction of a CRS-NIZK with an efficient prover using as a building block
the recently proposed laconic functional evaluation (LFE) scheme of Quach, Wee,
and Wichs [76]. We summarize our results below and refer to Table 1, 2, and 3 for
a comparison between prior works. We note that we only include multi-theorem
NIZKs supporting all of NP based on falsifiable assumptions in the table.
4 We note that in ZK-SNARG/SNARK, it is conventional to require an efficient
verifier to have running time that is only poly-logarithmic dependent of |C|, rather
than being just strictly smaller than |C|.
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1. We construct CRS-NIZKs for NP with compact proof from a (non-static)
assumption over pairing groups, namely, the (n,m)-computational Diffie-
Hellman exponent and ratio (CDHER) assumption introduced by [53]. This
is the first CRS-NIZK to achieve a compact proof without relying on either
lattice-based assumptions, knowledge assumptions, or indistinguishability
obfuscation. The proof size has an additive-overhead |C|+poly(κ), rather than
a multiplicative-overhead |C| · poly(κ), where C is the circuit that computes
the NP relation (See Table 1). Moreover, if we assume the NP relation to
be computable in NC1, we can make the proof size as small as |w|+ poly(κ),
where w is the witness. This matches the proof size of the CRS-NIZK of
Gentry et al. [35] based on fully-homomorphic encryption.

2. We construct UC-NIZKs for NP relations in NC1 with compact proof from
the (n,m)-CDHER assumption. Although it is limited to NP relations in
NC1, it matches the smallest proof size among all the UC-NIZKs secure
against adaptive corruptions in the erasure-free setting (See Table 2). The
proof size is small as |w| · poly(κ), and in particular, matches the recent
UC-NIZK of Cohen, shelat, and Wichs [23] based on lattice-assumptions.
Here, note that for NC1 circuits, the dependence on the depth d they have
can be ignored, since asymptotically d is smaller than κ.

3. We construct (multi-theorem) DV-NIZKs for NP with compact proof from
the CDH assumption over pairing-free groups. This is the first DV-NIZK
that achieves a compact proof from a weak and static Diffie-Hellman type
assumption such as CDH. Specifically, similarly to the above CRS-NIZK, the
proof size of our DV-NIZK is |C|+ poly(κ), whereas all previous DV-NIZKs
had proof size poly(|C|, κ) (See Table 3). Moreover, if we further assume
the NP relation to be computable in NC1 and assume the hardness of the
parameterized `-computational Diffie-Hellman inversion (CDHI) assumption
over pairing-free groups [66,19], we can make the proof size as small as
|w|+ poly(κ).

4. Finally, we construct prover-efficient CRS-NIZKs for NP through a generic
construction using LFE schemes [76]. This is the first NIZK in any model
(e.g., CRS, DV) where the running time of the prover is strictly smaller than
the time it takes to compute the circuit C computing the NP relation. Using
any non-prover-efficient CRS-NIZK, we generically construct a CRS-NIZK
where the running time of the prover (and the proof size) is poly(κ, |x|, |w|, d),
independent of the circuit size |C|, by instantiating the LFE scheme by the
sub-exponential security of the learning with errors (LWE) assumption with
sub-exponential modulus-to-noise ratio, where x is the statement and d is the
depth of C. Moreover, if we use as building block a CRS-NIZK whose prover
running time is smaller than |C| · poly(κ) (e.g., [48]), the running time and
proof size can be made as small as Õ(|x|+ |w|) · poly(κ, d) by instantiating
the LFE scheme by the adaptive LWE assumption with sub-exponential
modulus-to-noise ratio introduced in [76].
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Along the way of obtaining our first and second results, we formalize a
new tool called homomorphic equivocal commitments (HEC)5, which may be of
independent interest. An HEC is a commitment with two additional properties
called equivocality and homomorphism. The equivocality enables one to generate
a commitment that can be opened to any message by using a master secret
key. The homomorphism for a circuit family C = {C : X → Z} informally
requires that one can commit to a message x ∈ X , where its commitment
com can be further publicly modified to a commitment comC on the message
C(x) ∈ Z for any circuit C ∈ C. Here, a decommitment for comC can be
computed by the knowledge of the message x, decommitment of com, and the
circuit C. To the knowledgeable readers, we note that HEC is a strictly weaker
primitive compared to homomorphic trapdoor functions [42]. Previously, an
HEC supporting the family of all polynomial-sized circuits were only (implicitly)
known from lattice-based assumptions [42]. Apart from their construction, known
(implicit) constructions of HEC only support linear functions [74] or group
operations on a pairing group [2]. In this paper, we provide the first instantiation
of HEC supporting NC1 based on any pairing-based assumptions, namely, the
(n,m)-CDHER assumption introduced in [53]. The construction is inspired by the
recent construction of compact homomorphic signatures of Katsumata et al. [53].
The proposed HEC enjoys a particular form of compactness which is especially
useful for generically converting CRS-NIZKs with non-compact proofs to CRS-
NIZKs with compact proofs. Concretely, for any polynomially-sized circuit C,
the evaluated commitment comC and its decommitment of our HEC are of size
poly(κ) independent of |C|, and one can verify the validity of the decommitment
in time poly(κ) independent of |C|. Somewhat surprisingly, we also construct
another instantiation of HEC supporting NC1 based on the CDH assumption
over pairing groups. Although this HEC does not enjoy compactness, and hence
cannot be used for our compact CRS-NIZK conversion, we believe it to be an
interesting primitive on its own since we achieve homomorphic computations in
NC1 from such a weak assumption as CDH.

1.3 Technical Overview

Our results can be broken up into three parts. The first two results concerning
CRS and UC-NIZKs with short proof are obtained through a generic conversion
from NIZKs with non-compact proofs to NIZKs with compact proofs using
homomorphic equivocal commitments (HEC); a primitive which we formalize
and provide instantiations in this work. The third result concerning DV-NIZKs
with short proof size based on pairing-free groups, that is, CDH and `-CDHI, are
obtained by extending the recent result of Katsumata et al. [53] which constructs
the first NIZKs in the preprocessing model (PP-NIZKs) with short proof size from
5 This primitive was already informally mentioned in [42] and we do not take credit
for proposing the concept of HEC. We note that Abe et al. [2] also introduced a
similar primitive with the name homomorphic trapdoor commitments.
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Table 1. Comparison of CRS-NIZKs for NP.

Reference CRS size Proof size Assumption (Misc.)

FLS [31] poly(κ, |C|) poly(κ, |C|) trapdoor permutation†

Groth [45] |C| · ktpm · polylog(κ)
+poly(κ)

|C| · ktpm · polylog(κ)
+poly(κ) trapdoor permutation†

Groth [45] |C| · polylog(κ) + poly(κ) |C| · polylog(κ) + poly(κ) Naccache-Stern PKE
GOS [48] poly(κ) O(|C|κ) DLIN/SD
CHK, Abusalah
[17,3] poly(κ, |C|) poly(κ, |C|) CDH

(pairing group)

GGIPSS [35] poly(κ) |w|+ poly(κ) FHE and CRS-NIZK
circular security

Sec. 3 poly(κ, |C|) |C|+ poly(κ) (n,m)-CDHER

Sec. 3 poly(κ, |C|, 2d) |w|+ poly(κ) (n,m)-CDHER
(limited to NC1 relation)

Sec. 5 poly(κ, |x|, |w|, d) poly(κ, |x|, |w|, d)
LFE and CRS-NIZK
(prover-efficient,
implied by sub-exp. LWE)

Sec. 5 (|x|+ |w|) · poly(κ, d) Õ(|x|+ |w|) · poly(κ, d)
LFE and CRS-NIZK‡

(prover-efficient,
implied by adaptive LWE)

In column “CRS size” and “Proof size”, κ is the security parameter, |x|, |w| is the statement and
witness size, |C| and d are the size and depth of the circuit computing the NP relation, and ktpm
is the length of the domain of the trapdoor permutation. In column “Assumption”, DLIN stands for
the decisional linear assumption, SD stands for the subgroup decision assumption, (n,m)-CDHER
stands for the (parameterized) computational DH exponent and ratio assumption, LFE stands for
laconic functional evaluation, and sub-exp. LWE stands for sub-exponentially secure learning with
errors (LWE).

† If the domain of the permutation is not {0, 1}n, we further assume they are doubly enhanced [37].
‡ We additionally require a mild assumption that the prover run time is linear in the size of the circuit
computing the NP relation.

Table 2. Comparison of UC-NIZKs for NP.

Reference Security
(erasure-free) CRS size Proof size Assumption (Misc.)

GOS [48] adaptive (X) poly(κ) O(|C|κ) DLIN/SD

GGIPSS [35] adaptive (7) poly(κ) |w|+ poly(κ) FHE and UC-NIZK
(circular security)

CsW [23] adaptive (X) poly(κ, d) |w| · poly(κ, d) HTDF and UC-NIZK

Sec. 3 adaptive (X) poly(κ, |C|, 2d) |w| · poly(κ) (n,m)-CDHER
(limited to NC1 relation)

In column “CRS size” and “Proof size”, κ is the security parameter, |w| is the witness size,
|C| and d are the size and depth of circuit computing the NP relation. In column “Assump-
tion”, DLIN stands for the decisional linear assumption, SD stands for the subgroup decision
assumption, HTDF stands for homomorphic trapdoor functions, and (n,m)-CDHER stands for
the (parameterized) computational DH exponent and ratio assumption.

pairing-free groups. As explained later, PP-NIZK is a strictly weaker primitive
compared to DV-NIZK. Finally, the fourth result concerning prover-efficient
NIZK is obtained by a generic construction based on the recently developed
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Table 3. Comparison of DV-NIZKs for NP.

Reference CRS size Proof size Verification key size Assumption (Misc.)

CH, KNYY, QRW
[24,53,75] poly(κ, |C|) poly(κ, |C|) poly(κ, |C|) CDH

(pairing-free group)

Sec. 4 poly(κ) |C|+ poly(κ) poly(κ) CDH
(pairing-free group)

Sec. 4 2d · poly(κ) |w|+ poly(κ) poly(κ)
`-CDHI
(pairing-free group,
limited to NC1 relation)

In the columns concerning sizes, κ is the security parameter, |w| is the witness-size, |C| and d are the
size and depth of the circuit computing the NP relation. In column “Assumption”, `-CDHI stands
for the `-computational Diffie-Hellman inversion assumption.

laconic function evaluation scheme of Quach et al. [76]. In the following, we
explain these approaches in more detail.

Generic Construction of Compact (CRS, UC)-NIZK from HEC. Here,
we explain our construction of compact CRS-NIZK. Our starting point is the
recent result by Katsumata et al. [53], who constructed a designated prover NIZK
(DP-NIZK) with compact proof, where DP-NIZK is an analogue of DV-NIZK
where the prover requires secret information to generate proofs and anybody
can publicly verify the proofs. Since the construction of Katsumata et al. is an
instantiation of the generic conversion from homomorphic signature to DP-NIZK
proposed by Kim and Wu [57], we first briefly review Kim and Wu’s conversion.
Recall that in homomorphic signature, a signature σ on a message m ∈ {0, 1}`
generated by a secret key sk, can be homomorphically evaluated to a signature
σ on C(m) for a circuit C : {0, 1}` → {0, 1}. Anybody can verify the validity
of the signature by using a public verification key vk and the circuit C. As
for the security requirements, we need that given a verification key vk and a
signature σ on m, it is computationally hard to forge a signature σ∗ on z such
that z 6= C(m) (unforgeability) and an honestly evaluated signature σ on z
does not reveal information about m beyond the fact that it was derived from
a signature on m such that C(m) = z (context-hiding). Furthermore, as an
efficiency requirement, we need that the size of σ is independent of the size of
the circuit C. In Kim and Wu’s construction of DP-NIZK, the prover is given
a signature σ on a secret key k of a secret key encryption (SKE) scheme as
the secret proving key. When the designated prover proves that x is in some
language L that is specified by a relation R, it generates an encryption ct of the
witness w such that (x,w) ∈ R and homomorphically evaluates the signature
σ with respect to a circuit that computes fx,ct, where fx,ct is a function that
takes as input k′ and outputs whether (x, SKE.Dec(k′, ct)) ∈ R. The proof for
DP-NIZK is then set as ct and the homomorphically evaluated signature σ.
The verifier prepares the function fx,ct from ct and x, and simply checks σ is a
correct signature on 1 with respect to the evaluated function fx,ct. The soundness
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of the protocol follows from the unforgeability of the homomorphic signature
since fx,ct(k′) = 0 for any k′ when x is not in the language induced by the
relation R. Furthermore, the zero-knowledge property of the protocol follows
from the security of SKE and the context-hiding property of the homomorphic
signature. Katsumata et al. [53] gave a new homomorphic signature scheme with
short evaluated signature σ that supports the function class of NC1 circuits
based on a newly introduced (non-static) pairing-based assumption called the
(n,m)-computational Diffie-Hellman exponent and ratio (CDHER) assumption.
Plugging this homomorphic signature into the Kim-Wu conversion, they obtained
the first compact DP-NIZK for all NP based on any pairing-based assumptions.6

The aim of our work is to modify the Kim-Wu conversion and remove the
necessity of the prover keeping secret information to generate a proof so that
we can convert the compact DP-NIZK of Katsumata et al. into a compact CRS-
NIZK. The main reason why their construction cannot be used as a CRS-NIZK
is because the prover cannot generate the signature σ on the fly without knowing
the signing key sk of the homomorphic signature. To this end, our first idea is
to let the prover choose vk, sk, and k on its own. This would allow the prover
to generate a proof as in the designated prover setting since it can generate
the signature σ on k on its own by using the signing key sk. The proof for the
CRS-NIZK will then consist of the verification key vk and a proof of the DP-NIZK.
Unfortunately, there are multiple of problems with this naive approach. The first
problem is that the size of the verification key vk used in Katsumata et al. [53] is
polynomially dependent on the size of the circuit that computes the relation to be
proven, and thus, this ruins the compactness property of the original DP-NIZK
proof. The second problem is that we can no longer invoke the unforgeability of
the homomorphic signature to prove soundness since unforgeability holds against
adversaries who only has access to a verification key vk and a signature σ. Indeed,
in the specific case of Katsumata et al.’s homomorphic signature scheme, an
adversary will be able to completely break the soundness of the resulting scheme
if it is further given the signing key sk. Therefore, to resolve these problems, we
make use of the special structure that the homomorphic signature scheme of
Katsumata et al. has and abstract it to a primitive which we call homomorphic
equivocal commitments (HEC).

Our key observation is that in the Katsumata et al.’s homomorphic signature
scheme, the reverse direction of the signing procedure is possible without the
knowledge of the secret signing key sk if we are allowed to program part of the
verification key vk. Namely, the verification key vk can be divided into two parts
vk0 and vk1 where the size of vk1 is compact (i.e., independent of the size of the
circuit), and for a fixed vk0 and k, one can sample a signature σ and efficiently
compute the remaining part of the verification key vk1 without knowledge of
the secret signing key sk so that σ is a valid signature on k with respect to the

6 Note that anyNP relation can be converted to anNP relation in NC1 by expanding
the witness size as large as the circuit computing the original NP relation. Notably,
a homomorphic signature scheme supporting the function class of NC1 circuits is
sufficient for constructing DP-NIZK for all of NP.
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entire verification key vk = (vk0, vk1). We then modify our above idea using this
reverse direction of computation. Namely, we put the non-compact part of the
verification key vk0 in the common reference string. The prover first choose k, σ
on its own and then computes the remaining compact part of the verification key
vk1 from them so that σ is a valid signature on k with respect to the verification
key vk. Notably, the prover no longer requires knowledge of the secret signing
key sk, and thus, the prover can generate a proof publicly. The resulting proof
is the same as in the case for the above naive construction except that we now
only append vk1 to the underlying DP-NIZK proof, rather than vk0 and vk1. The
first problem of having a large proof size we encountered in our above attempt is
now resolved since we moved the non-compact part of the verification key vk0
to the common reference string and the proof now only contains the compact
vk1 and the compact proof of the underlying DP-NIZK. At first glance, the
second problem of losing soundness seems to be resolved as well, as the prover
is choosing the signature σ without knowledge of the underlying secret signing
key sk. However, we encounter a new problem. Namely, once again, we cannot
directly use the unforgeability of the homomorphic signature to prove soundness,
since this time the part of the verification key vk1 that the adversary appends to
the underlying DP-NIZK proof may be maliciously chosen in a way that deviates
from the security setting of the homomorphic signature. However, luckily, the
proof for unforgeability provided by Katsumata et al. can be adapted without
much change to the setting where vk1 follows an arbitrary distribution since
their proof does not depend on the specific distribution which vk1 is chosen
from. In this work, to capture this special security requirement as well as the
syntactic structure that we require for the homomorphic signature, we introduce
a new primitive that we call homomorphic equivocal commitment (HEC) and
instantiate it by mimicking the homomorphic signature scheme of Katsumata et
al. [53]. Roughly speaking, in our formulation, we regard vk1 as a commitment
of a message k with respect to a randomness σ.

While the above explanation conveys our main idea, we need some more
modification to obtain our final construction. In the above construction, an honest
prover outputs a “commitment” vk1 of a secret key k. However, a malicious prover
may choose the commitment that does not correspond to any secret key. In
this case, we can no longer argue soundness. To avoid the problem, we rely on
a non-compact NIZK to prove the well-formedness of the commitment. Since
the size of the circuit for checking the well-formedness is independent of the size
of the circuit for computing the relation to be proven, this does not harm the
compactness of the proof. We finally remark that the construction we explained
so far is still slightly different from the one we give in Sec. 3.2. There, we change
the scheme so that the prover provides the proof of knowledge of σ instead of
sending σ as part of the proof in the clear. While our scheme is secure without
this change, this makes it easier to extend our construction to the UC-secure
setting.

The proof size of the resulting CRS-NIZK is |C| + poly(κ) since our HEC
only supports NC1 and thus we have to expand the witness to the concatenation
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of all values corresponding to each wire of the circuit verifying the relation to
make the verification of the relation be done in NC1. On the other hand, if the
relation can be verified in NC1 from the beginning, then the expansion is not
needed and the proof size is as small as |w|+ poly(κ).

Interestingly, our CRS-NIZK can also be seen as a variant of the UC-NIZK
recently proposed by Cohen, shelat, and Wichs [23]. The differences from their
scheme are (1) an HTDF is replaced with an HEC, (2) a witness is encrypted
by SKE of which key is committed by a HEC instead of the witness itself, and
(3) one-time signatures are omitted. If we are to construct a UC-NIZK in the
adaptive non-erasure setting as is done in [23], the modifications (2) and (3) are
no longer applicable, but (1) is still applicable. Based on this observation, we
obtain a UC-NIZK for NC1 in the adaptive non-erasure setting with a similar
proof size to that of [23] based on a HEC instead of a HTDF. A caveat of our
construction is that the scheme only supports NP languages verifiable in NC1

whereas their scheme supports all of NP (verifiable by a polynomial-size circuit).
On the other hand, our abstraction as HEC instead of HTDF enables us to
instantiate the scheme based on a pairing assumption instead of lattices. In
particular, it seems difficult to construct HTDF based on a pairing assumption.

Compact DV-NIZKs based on Pairing-Free Groups. Here, we explain
our constructions of compact DV-NIZKs. Actually, we give a generic compiler to
convert any non-compact DV-NIZK to a compact one additionally assuming the
existence of PKE and NC1-decryptable SKE with additive ciphertext overhead.
In this overview, we discuss a specific instantiation based on the CDH assumption
in pairing-free groups.

The starting point of our constructions is the recent construction of compact
NIZKs in the preprocessing model (PP-NIZKs) by Katsumata et al. [53] based
on inner-product functional encryptions (IPFE) [1].7 PP-NIZK is a relaxation of
(CRS, DV, DP)-NIZK where both the prover and the verifier are given proving and
verification keys, respectively, which should be hidden from each other. Katsumata
et al. first constructed a context-hiding homomorphic MAC for arithmetic circuits
by adding the context-hiding property to the non-context-hiding homomorphic
MAC of Catalano and Fiore [19] by using an IPFE. They then plugged the
context-hiding homomorphic MAC into the generic conversion by Kim and Wu
[57] to obtain PP-NIZKs.8 Recall that in the PP-NIZK construction of Kim
and Wu, a prover key consists of an SKE key k and a signature σ on k, and a
verification key consists of a verification key vk of a homomorphic MAC scheme.
The reason why their scheme is PP-NIZK and not DV-NIZK is that a prover

7 Actually, their construction is based on a variant of IPFE called IPFE on exponent
(expIPFE). We note that their construction works with standard IPFE. They used
the notion of expIPFE instead of IPFE for making it possible to instantiate the
scheme based on the DDH-based scheme by Agrawal, Libert, and Stehlé [4].

8 Kim and Wu [57] showed that if one uses their generic conversion on homomorphic
MACs instead of homomorphic signatures, it would result in PP-NIZKs instead of
DP-NIZKs.
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has to obtain a signature σ on k which should be generated by a trusted third
party who has the corresponding signing key sk.9 Similarly to the case of our
CRS-NIZK explained in the previous section, we observe the following fact. If
one can choose σ and vk in the reverse order, that is, if one can first choose the
signature σ, and then define vk so that σ is a valid signature on k, then we could
modify the scheme to be a DV-NIZK by letting the prover choose k and σ on its
own. Below, we observe that the homomorphic MAC of Katsumata et al. [53]
indeed has this property. To explain this, we first recall the structure of their
homomorphic MAC.

In their homomorphic MAC scheme, a verification key vk (which is also a
signing key) consists of s $← Z∗p, r $← Z`p and a decryption key of an IPFE
corresponding to the vector (s, ..., sD) ∈ ZDp where p is a sufficiently large
prime, ` is the message length, and D is the degree of the arithmetic circuits
supported by the homomorphic MAC scheme.10 A signature on k is defined to
be σ := (r− k) · s−1 mod p. From the form of σ, we can see that for any fixed
k and s, one can set σ and r in the reverse order, that is, one can first pick σ
and then set r := k + σ · s mod p.

Going back to the construction of NIZK, this structure enables us to get
close to DV-NIZK. Namely, a prover can now choose k and σ by itself, and it
no longer needs any proving key generated by a trusted third party. However,
there is an important problem still remaining on how the verifier gets to know
r = k + σ · s mod p, which is required for verification. Recall that r was part
of the private verification key of the PP-NIZK of Kim and Wu. If s is given to
a prover, then we cannot rely on unforgeability of the homomorphic MAC to
prove soundness, and if the prover sends k and σ in the clear, then we cannot
rely on the security of SKE to prove zero-knowledge. Therefore the prover has
to transmit r = k + σ · s mod p to the verifier without knowing s nor revealing
k and σ to the verifier. We observe that this task can be done by using IPFE.
Namely, we give a secret key corresponding to the vector (1, s) of IPFE to the
verifier as a part of his verification key, and a prover encrypts vectors (ki, σi) for
each i ∈ [`] where ki and σi are the i-th entry of k and σ, respectively, and sends
the ciphertexts as a part of the proof. Then a verifier can obtain r = k + σ · s
mod p by simply decrypting the IPFE ciphertexts with his decryption key.

Though the above idea seems to work at first glance, there is a problem
that was also addressed in [53]. Namely, since a standard security notion of
IPFE does not consider a malicious encryptor, an adversary may generate a
malformed ciphertext whose decryption result is perfectly under his control, which
breaks soundness. To prevent such an attack, Katsumata et al. [53] required a
property called an extractability for an IPFE, which means that one can extract
a corresponding message from any possibly malformed ciphertext if it does not
decrypt to ⊥. They then showed that the DDH-based IPFE scheme of Agrawal,
Libert, and Stehlé [4] can be used as an extractable IPFE. However, unfortunately,
9 In a homomorphic MAC, we can let sk := vk since both are kept private.

10 We remark that we cannot include the master secret key of IPFE in vk since the
context-hiding property should hold even against the verifier who sees vk.
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we will not be able to simply plug in the extractable IPFE of Agrawal et al.
into our DV-NIZK. This is because the IPFE of Agrawal et al. embeds the
message into the exponent of a group element, and forces one to compute the
discrete logarithm to decrypt. Therefore, unless we can be sure that the exponent
will be small, the IPFE of Agrawal et al. is difficult to use. Here, the reason
why the PP-NIZK of Katsumata et al. [53] did not face any issue with this
somewhat awkward decryption algorithm was because the verification algorithm
only consisted of checking whether the decryption result is equal to a certain
value, which could be tested in the exponent, using the verification key (s, r).
However, in our case, the verifier must first decrypt r using the IPFE secret
key corresponding to the vector (1, s) to recover r, and only then it can run the
internal verification algorithm of [53] using the pair (s, r). Notably, the verifier
would have to solve the discrete logarithm for a random value in Zp to recover
the piece r of the verification key used in the PP-NIZK of Katsumata et al.
However, obviously, there is no way to compute this efficiently. Therefore, in this
work, we must take a different approach. Concretely, instead of relying on the
extractability of IPFE, we require a prover to provide a proof that he has honestly
generated ciphertexts by using another (non-compact) DV-NIZK. Here, since the
validity check of IPFE ciphertexts can be done with computational complexity
independent of the size of the language the prover really wants to prove, we can
use a non-compact DV-NIZK for this part while keeping the whole proof size
compact. In summary, we can convert the PP-NIZK of [53] to a DV-NIZK by
adding ` IPFE ciphertexts along with their validity proof whose sizes are poly(κ).
Since the proof size of the PP-NIZK of [53] is |C|+ poly(κ), the proof size of the
resulting DV-NIZK is also |C|+ poly(κ). Moreover, we note that single-key secure
IPFE suffices for the above construction of DV-NIZK. Since single-key secure
functional encryption for all polynomial-sized functions exist under the existence
of PKE [41] and DV-NIZK for all of NP exists under the CDH assumption on a
pairing-free group [24,53,75], we can instantiate the above DV-NIZK based on
the CDH assumption on a pairing-free group.11 Finally, we note that by using
the idea of the compact homomorphic MAC based on the `-CDHI assumption by
Catalano and Fiore [19], we can further reduce the proof size to be |w|+ poly(κ)
in the case when the language to be proven is computable in NC1.

Generic Construction of Prover-Efficient NIZK from LFE. To achieve
prover-efficient NIZKs, we use laconic function evaluation (LFE) recently intro-
duced by Quach, Wee, and Wichs [76]. LFE schemes are defined for a class of
circuits C. We can generate a short digest of circuit C ∈ C from a CRS and the
circuit C. Anybody can then generate a ciphertext ct of a message m from the
CRS, the digest, and m. Finally, anybody can decrypt the ciphertext to C(m)
using the ciphertext ct and the circuit C. Here, the security of LFE imposes that

11 One may wonder why we only need CDH though [53] assumed DDH. Recall that the
DDH in their construction comes from the necessity of an extractable expIPFE. We
show that this can be replaced with any IPFE and DV-NIZK both of which exist
under the CDH assumption based on the same idea as explained above.
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the ciphertext ct leaks no additional information other than the value C(m). The
attractive feature of LFE is that the size of the CRS, digest, ciphertext ct, and
the running time of the encryption algorithm are all strictly smaller than the
size of the circuits in C.

Our design idea is to impose the computation of the circuit C computing the
NP-relation on the verifier by using LFE. Specifically, we put a digest of C (and
a CRS of LFE) in the CRS of our NIZK. The prover then computes an LFE
ciphertext of message (x,w) where x is a statement and w is its witness using the
digest of C. A verifier can check the validity of the statement by decrypting the
ciphertext with C. By the security of LFE, the verifier obtains nothing beyond
C(x,w), hence, zero-knowledge of our NIZK follows naturally. Furthermore, by
the efficiency property of LFE, the running time of the prover is smaller than the
size of C. However, this basic idea is not yet sufficient. This is because a cheating
prover may not honestly compute an LFE ciphertext of the message (x,w) and
may possibly break soundness of our NIZK. To overcome this issue, a prover
must generate not only an LFE ciphertext of (x,w) but also a NIZK proof to
prove that the prover honestly generated the LFE ciphertext of (x,w) with the
CRS of LFE and the digest of C. We point out that this additional NIZK proof
does not harm prover efficiency since the additional statement which the prover
must prove is independent of the size of the circuit C owing to the feature of
LFE. In particular, we can check the validity of the ciphertext by computing the
encryption circuit of LFE whose size is independent of the size of C.

Using any non-prover-efficient NIZK for NP as building block and instantiat-
ing the LFE scheme by the sub-exponential security of LWE assumption with
sub-exponential modulus-to-noise ratio, we obtain a prover-efficient CRS-NIZK
for NP whose prover running time is poly(κ, |x|, |w|, d), where d is the depth of
the circuit C computing the NP relation. In particular, the prover running time
is independent of |C|. In fact, we can further reduce the prover running time to be
as small as Õ(|x|+ |w|) · poly(κ, d) where the dependence of the statement x and
witness w size is only quasi-linear if we further use the following two assumptions
(1) the prover running time of the underlying NIZK is linear in the size of the
circuit that computes the NP relation, that is, |C| · poly(κ) (2) a natural variant
of the above LWE assumption introduced by Quach et al. [76], called the adaptive
LWE assumption. Note that the assumption we make on the underlying NIZK
is not that strong, and in particular, we can use the NIZK of Groth, Ostrovsky,
and Sahai [48].

1.4 Related Works

Other than CRS and DV-NIZKs, which have been the main interest of this
paper, there are other variants of NIZKs. One is PP-NIZK and the other is
DP-NIZK as we briefly mentioned in Sec. 1.3. Similarly to DV-NIZKs, due to
the extra secret information shared by the prover and/or verifier, the soundness
(resp. zero-knowledge) property of (PP, DP)-NIZKs may be compromised after
verifying (resp. proving) multiple statements. In fact most of the PP or DP-NIZKs
[29,55,59,26,25,50] are known only to be secure for bounded statements. The
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first multi-theorem PP and DP-NIZKs (that are not a trivial downgrade of CRS-
NIZKs) where given by Kim and Wu [57] who proposed a generic construction of
them via homomorphic MACs and homomorphic signatures, respectively. Since
homomorphic signatures were implied by lattice-based assumptions [42], this
implied the first DP-NIZKs based on lattices. Subsequently, Katsumata et al. [53]
constructed a homomorphic signature based on the CDHER assumption and a
homomorphic MAC based on the DDH assumption over pairing-free groups, and
thus constructed DP and PP-NIZKs relative to those assumptions. One attractive
feature of the NIZKs of Kim and Wu [57] and Katsumata et al. [53] is that the
proof size are compact: the DP-NIZK of [57] has proof size |w|+ poly(κ, d) and
the (PP, DP)-NIZK of [53] have proof size |C|+ poly(κ), where d is the depth of
the circuit C computing the NP relation.

2 Homomorphic Equivocal Commitment

2.1 Definition
We introduce a new primitive which we call homomorphic equivocal commitment
(HEC), which can be seen as a relaxed variant of HTDF defined by Gorbunov et al.
[42]. A HEC scheme with message space X , randomness space R, and a random-
ness distribution DR over R for a circuit class C = {C : X → Z} consists of PPT
algorithms (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify).
HEC.Setup(1κ): The setup algorithm takes as input the security parameter 1κ

and outputs a public parameter pp, an evaluation key ek, and a master secret
key msk.

HEC.Commit(pp,x;R): The commit algorithm takes as input a public parameter
pp and a message x ∈ X along with a randomness R ∈ R, and outputs a
commitment com. When we omit R to denote HEC.Commit(pp,x), we mean
that R is chosen according to the distribution DR.

HEC.Open(msk, (x, R),x′): The open algorithm takes as input a master secret
key msk, a message x ∈ X , a randomness R ∈ R, and a fake message x′ ∈ X ,
and outputs a fake randomness R′ ∈ R.

HEC.Evalin(ek, C,x, R) : The inner evaluation algorithm takes as input an evalu-
ation key ek, a circuit C ∈ C, a message x ∈ X , and a randomness R ∈ R,
and outputs a proof π.

HEC.Evalout(ek, C, com): The outer evaluation algorithm is a deterministic al-
gorithm that takes as input an evaluation key ek, a circuit C ∈ C, and a
commitment com, and outputs an evaluated commitment comeval.

HEC.Verify(pp, comeval, z, π): The verification algorithm takes as input a public
parameter pp, an evaluated commitment comeval, a message z ∈ Z, and a
proof π, and outputs > if the proof is valid and ⊥ otherwise.

Evaluation Correctness. For all κ ∈ Z, (pp, ek,msk) $← HEC.Setup(1κ), x ∈
X , R ∈ R, com := HEC.Commit(pp,x;R), C ∈ C, π $← HEC.Evalin(msk, C,x, R),
and comeval := HEC.Evalout(ek, C, com), we have

Pr[HEC.Verify(pp, comeval, C(x), π) = >] = 1.
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Distributional Equivalence of Open. We have

{(pp, ek,msk,x, R, com)} stat
≈ {(pp, ek,msk,x, R′, com′)}

where (pp, ek,msk) $← HEC.Setup(1κ), (x,x) ∈ X 2 are arbitrary random variables
that may depend on (pp, ek,msk), R $← DR, com := HEC.Commit(pp,x;R),
R

$← DR, com′ := HEC.Commit(pp,x;R), and R′ $← HEC.Open(msk, (x, R),x).
Computational Binding for Evaluated Commitment. For all PPT ad-
versary A,

Pr

HEC.Verify(pp, comeval, z
∗, π∗) = >
z∗ 6= C(x)

∣∣∣∣∣∣∣∣
(pp, ek,msk) $← HEC.Setup(1κ),

(x, R, C, z∗, π∗) $← A(pp, ek),
com := HEC.Commit(pp,x;R)

comeval := HEC.Evalout(ek, C, com)

 ≤ negl(κ).

Efficient Committing. There exists a polynomial poly such that for all
(pp, ek,msk) $← HEC.Setup(1κ), x ∈ X , R ∈ R, the running time of com :=
HEC.Commit(pp,x;R) is bounded by |x| · poly(κ).
Efficient Verification (optional). There exists a polynomial poly such that
for all (pp, ek,msk) $← HEC.Setup(1κ), x ∈ X ,R ∈ R, com := HEC.Commit(pp,x;R),
C ∈ C, π $← HEC.Evalin(ek, C,x, R), comeval := HEC.Evalout(ek, C, com), and
z ∈ Z, we have |π| ≤ poly(κ) and |comeval| ≤ poly(κ) and the running time of
HEC.Verify(pp, comeval, z, π) is at most poly(κ). We remark that poly does not
depend on C.

Context-Hiding (optional). There exists a PPT simulator HEC.ProofSim
such that for all κ ∈ N, (pp, ek,msk) $← HEC.Setup(1κ), x ∈ X , C ∈ C, R ∈ R,
and com := HEC.Commit(pp,x;R), we have

{π $← HEC.Evalin(ek, C,x, R))} stat
≈ {π′ $← HEC.ProofSim(msk, com, C, C(x)))}

where the probability is only over the randomness used by the algorithms
HEC.Evalin and HEC.ProofSim.

Remark 2.1. We can generically convert any HEC scheme to a context-hiding
one by using any statistical CRS-NIZK scheme. Namely, instead of directly using
π as an output of the inner evaluation algorithm, it outputs a NIZK proof for
the statement that there exists π that passes the verification.

Remark 2.2. The following properties immediately follow from the distributional
equivalence of open.
Equivocality. We have

Pr[HEC.Commit(pp,x;R) 6= HEC.Commit(pp,x;R)] = negl(κ)
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where (pp, ek,msk) $← HEC.Setup(1κ), (x,x) ∈ X 2 are arbitrary random variables
that may depend on (pp, ek,msk), R $← DR, and R

$← HEC.Open(msk, (x, R),x).
Hiding. We have

{pp, ek, com $← HEC.Commit(pp,x)} stat
≈ {pp, ek, com′ $← HEC.Commit(pp,x′)},

where (pp, ek,msk) $← HEC.Setup(1κ) and (x,x′) ∈ X 2 are arbitrary random vari-
ables that may depend on (pp, ek,msk). We say that a scheme is computationally
hiding if the above two distributions are computationally indistinguishable.

Remark 2.3. If we require neither efficient verification nor context-hiding, then
there is a trivial construction of HEC based on any equivocal commitment. Namely,
we can just set comeval := C‖com and π := (x, R). The verification algorithm can
verify them by checking if com is a commitment of x with randomness R and
z = C(x) holds. On the other hand, if we require either of efficient verification or
context hiding, then there does not seem to be such a trivial solution.12 This is
reminiscent of the similar situation for fully homomorphic encryption where a
scheme without compactness nor function privacy is trivial to construct but a
scheme with either of them is non-trivial [34].

2.2 Constructions of HEC

Here, we show that we can construct an HEC scheme based on a non-static
falsifiable pairing assumption called the (n,m)-computational Diffie-Hellman
exponent ratio (CDHER) assumption [53].

(n,m)-Computational Diffie-Hellman Exponent and Ratio Assumption.
Let BGGen be a PPT algorithm that on input 1κ returns a description G =
(G,GT , p, g, e(·, ·)) of symmetric pairing groups where G and GT are cyclic groups
of prime order p, g is the generator of G, and e : G×G→ GT is an efficiently
computable (non-degenerate) bilinear map.

Definition 2.1 ((n,m)-Computational Diffie-Hellman Exponent and Ra-
tio Assumption). [53] Let BGGen be a group generator and n := n(κ) =
poly(κ), m := m(κ) = poly(κ). We say that the (n,m)-decisional Diffie-Hellman
exponent and ratio (CDHER) assumption holds with respect to BGGen, if for all
PPT adversaries A, we have

Pr
[
A(G, Ψ)→ e(g, g)sa

m+1
]

= negl(κ)

12 As remarked in Remark 2.1, we can convert the trivial construction to a context-
hiding one additionally assuming a statistical CRS-NIZK for all of NP. Though
this is less interesting than schemes with efficient verification, we do not consider
it a “trivial solution” since the existence of a statistical CRS-NIZK is an additional
assumption to an equivocal commitment.
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where G = (G,GT , p, g, e(·, ·))
$← BGGen(1λ), s, a, b1, . . . , bn, c1, . . . cn

$← Z∗p, and

Φ :=



{
ga

j
}
j∈[m]

, {gci}i∈[n] ,
{
ga

j/bi

}
i∈[n],j∈[2m]
j 6=m+1

,
{
ga

m+1ci′/bici

}
i,i′∈[n],i6=i′

,

{gaci}i∈[n] ,
{
ga

j/bici

}
i∈[n],j∈[2m+1]

,
{
ga

jci′/bi

}
i,i′∈[n],j∈[m]

,

gs,
{
gsbi

}
i∈[n] ,

{
gsa

m+1bi/bi′ci′
}
i,i′∈[n],i6=i′

,
{
gsa

jbi/bi′
}
i,i′∈[n],j∈[m]

i 6=i′

 .

Katsumata et al. showed that the CDHER assumption holds on the generic
group model introduced by Shoup [83].
Construction of HEC based on CDHER Assumption. We show the fol-
lowing theorem.

Theorem 2.1. If the (n,m)-CDHER assumption holds on a pairing group for
all n = poly(κ) and m = poly(κ), then there exists an HEC scheme that supports
NC1 that satisfies evaluation correctness, distributional equivalence of open,
computational binding for evaluated commitments, efficient committing, efficient
verification, and context-hiding.

The construction is obtained by a tweak to the homomorphic signature scheme
by Katsumata et al. [53] as explained in Sec. 1.3. The full description of the
construction and its security proof can be found in the full version.

In the full version, we also show that we can construct a context-hiding HEC
scheme without efficient verification based on the weaker CDH assumption on a
pairing group. Though this is not useful for constructing compact NIZKs as is
done in Sec. 3, this can be used for constructing (non-compact) context-hiding
homomorphic signature scheme as shown in the full version.

3 Compact CRS-NIZK from HEC

Here, we give a construction of a compact CRS-NIZK scheme based on any non-
compact CRS-NIZK scheme and HEC with efficient verification. If we instantiate
the construction with the HEC given in Sec. 2.2, then the proof size of the
resulting CRS-NIZK scheme is |C|+ poly(κ). Moreover, if the relation supported
by the scheme is verifiable in NC1, then the proof size is |w|+ poly(κ).

3.1 Extractable CRS-NIZK

First, we define extractability for CRS-NIZK, which is needed for our construction
of compact CRS-NIZK scheme. We note that the extractability defined here
is a mild property, and we can convert any CRS-NIZK scheme to the one
with extractability if we additionally assume the existence of PKE as shown in
Lemma 3.1.

An extractable CRS-NIZK is a CRS-NIZK with an additional deterministic
algorithm Extract which takes as input a randomness rSetup used in Setup and a
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proof π, and outputs a witness w that satisfies the following.

Extractability. For all PPT adversary A, we have

Pr

Verify(crs, x, π) = >
(x,w) /∈ R

∣∣∣∣∣∣∣
crs $← Setup(1κ)
(x, π) $← A(crs)

w
$← Extract(rSetup, π)

 ≤ negl(κ).

where rSetup is the randomness used in Setup to generate crs.
The following lemma is easy to prove. The proof can be found in the full

version.

Lemma 3.1. If there exist CRS-NIZK for all of NP and a CPA-secure PKE
scheme, then there exists CRS-NIZK for all of NP with extractability.

3.2 Construction of Compact CRS-NIZK

Before describing the construction, we prepare some building blocks and notations.

– Let L be an NP language defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Let
n(κ) and m(κ) be any fixed polynomials. Let C be a circuit that computes
the relation R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R.

– Let ΠSKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) be a symmetric key encryption
(SKE) scheme with ciphertext space CT and key space {0, 1}`.

In the following, for x ∈ {0, 1}n and ct ∈ CT , we define the function

fx,ct(K) := C(x, SKE.Dec(K, ct)).

– LetΠHEC = (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify)
be a HEC scheme with the message space that contains {0, 1}` and random-
ness space R on which a distribution DR is defined. We need the HEC scheme
to support a function class containing {fx,ct}x∈{0,1}n,ct∈CT .

– Let ΠCRSNIZK = (Setup,Prove,Verify) be an extractable CRS-NIZK for the
language corresponding to the relation R̃ defined below:
((pp, com, comeval), (K,R, πHEC)) ∈ R̃ if and only if the followings are satisfied:
1. K ∈ {0, 1}`,
2. HEC.Commit(pp,K;R) = com,
3. HEC.Verify(pp, comeval, 1, πHEC) = >.
We note that extractable CRS-NIZK for all of NP exists assuming (non-
extractable) CRS-NIZK for all of NP and CPA secure PKE as shown in
Lemma 3.1.

The CRS-NIZK Π ′CRSNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

Setup′(1κ): This algorithm generates crs $← Setup(1κ) and (pp, ek,msk), $← HEC.Setup(1κ).
It outputs a common reference string crs′ = (crs, pp, ek).
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Prove′(crs′, x, w): This algorithm aborts if R(x,w) = 0. Otherwise it parses
(crs, pp, ek) ← crs′, picks K $← SKE.KeyGen(1κ) and R

$← DR, computes
ct $← SKE.Enc(K,w), generates com := HEC.Commit(pp,K;R), πHEC

$←
HEC.Evalin(ek, fx,ct,K,R), comeval := HEC.Evalout(ek, fx,ct, com), and πNIZK

$←
Prove(crs, (pp, com, comeval), (K,R, πHEC)), and outputs a proof π′ := (ct, com, πNIZK).

Verify′(crs′, x, π′): This algorithm parses (crs, pp, ek)← crs′ and (ct, com, πNIZK)←
π′, computes comeval := HEC.Evalout(ek, fx,ct, com), and outputs> if Verify(crs, (pp,
com, comeval), πNIZK) = >, and outputs ⊥ otherwise.

Correctness. Suppose that (ct, com, πNIZK) is an honestly generated proof on
(x,w) ∈ R. Then we have ct $← SKE.Enc(K,w) and com = HEC.Commit(pp,K;R)
with some K and R. By the correctness of ΠSKE, we have fx,ct(K) = 1, and by the
correctness of ΠHEC, we have HEC.Verify(pp, comeval, 1, πHEC) = > where we gener-
ate comeval := HEC.Evalout(ek, fx,ct, com) and πHEC

$← HEC.Evalin(ek, fx,ct,K,R).
Since we have ((pp, com, comeval), (K,R, πHEC)) ∈ R̃, if we generate πNIZK

$←
Prove(crs, (pp, com, comeval), (K,R, πHEC)), then we have Verify(crs, (pp, com, comeval),
πNIZK) = > by the correctness of ΠCRSNIZK.
Security. The security of NIZK′ is stated as follows. The proofs can be found in
the full version.

Theorem 3.1 (Soundness.). If ΠCRSNIZK satisfies extractability and HEC sat-
isfies computational binding for evaluated commitment, then Π ′CRSNIZK satisfies
computational soundness.

Theorem 3.2 (Zero-knowledge.). If ΠCRSNIZK satisfies zero-knowledge, HEC
is computationally hiding,13 and SKE is CPA secure, then Π ′CRSNIZK satisfies
zero-knowledge.

3.3 Instantiations

Here, we discuss that by appropriately instantiating ΠCRSNIZK, we can achieve
compact proof size. In particular, we consider instantiating the HEC scheme
with our construction in Sec. 2.2. Since our HEC scheme only supports NC1

circuits, we have to ensure that fx,ct is computable in NC1. For ensuring this,
we use the fact that any efficiently verifiable relation can be verified in NC1 at
the cost of making the witness size as large as the size of a circuit that verifies
the relation (e.g., [32]). This is done by considering all values corresponding
to all gates when computing the circuit on input (x,w) to be the new witness.
In addition, we use an SKE scheme whose decryption circuit is in NC1 with
additive ciphertext overhead (i.e., the ciphertext length is the message length
plus poly(κ)) and the key size ` = κ, which exists under the CDH assumption [53].
Then fx,ct is computable in NC1 for every x and ct. In this case, we have that
|ct| ≤ |C|+ poly(κ). In order to bound the length of the proof π′, we also bound
13 Recall that the computational hiding (or even statistical hiding) follows from the

distributional equivalence of open.
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|com| and |πNIZK|. By the efficient committing property of HEC, |com| and the
size of the circuit computing HEC.Commit is bounded by |K| · poly(κ) ≤ poly(κ).
Furthermore, by the efficient verification property of HEC, the size of the circuit
computing HEC.Verify is bounded by poly(κ). Therefore, the size of the circuit
computing R̃ is bounded by poly(κ), which implies that |πNIZK| is bounded by
poly(κ) as well (even if ΠCRSNIZK is non-compact). To sum up, we have that the
proof size of ΠCRSNIZK is |C|+ poly(κ). Moreover, if we only consider a relation
computable in NC1 in the first place, then we need not expand the witness, and
the proof size can be further reduced to be |w|+ poly(κ). Finally, we remark that
(non-compact) CRS-NIZK for all of NP exists under the CDH assumption on a
pairing group [17,3], which in particular holds under the CDHER assumption. In
summary, we obtain the following corollary.

Corollary 3.1. If the CDHER assumption holds on a pairing group, then there
exists CRS-NIZK for all of NP with proof size |C|+ poly(κ). Moreover, if the
corresponding relation is computable in NC1, then the proof size is |w|+ poly(κ).

Variant with Sublinear Proof Size. Katsumata et al. [53] showed that their
DP-NIZK achieves sublinear proof size i.e., |w| + |C|/ log κ + poly(κ) if C is
a leveled circuit [12] whose gates are divided into L levels, and all incoming
wires to a gate of level i+ 1 come from gates of level i. Exactly the same idea
can be applied to our CRS-NIZK to achieve sublinear proof size. More detailed
explanation can be found in the full version. Namely, we obtain the following
corollary:

Corollary 3.2. If the CDHER assumption holds on a pairing group, then there
exists CRS-NIZK for all NP languages whose corresponding relation is computable
by a leveled circuit with proof size |w|+ |C|/ log κ+ poly(κ).

Variant with UC-Security. We can modify the above scheme to satisfy the UC
security in the non-erasure adaptive setting. Namely, we can show the following
theorem. The proof can be found in the full version.

Theorem 3.3. If the DLIN assumption and the CDHER assumption hold in a
bilinear group, then for any relation R that is computable in NC1, there exists a
UC-secure NIZK scheme for R tolerating an adaptive, malicious adversary.

4 Compact DV-NIZK

4.1 Preliminaries

Here, we recall some lemmas which are implicit or explicit in [53].

Lemma 4.1. (Implicit in [53]) Let C be a boolean circuit that computes a relation
R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we have C(x,w) = 1
if and only if (x,w) ∈ R, and p be an integer larger than |C|. Then there exists
a deterministic algorithm ExpC,x and an arithmetic circuit C̃ on Zp with degree
at most 3 such that we have
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– |ExpC,x(w)| = |C(x, ·)| for all w ∈ {0, 1}m.
– If C(x,w) = 1, then we have C̃(x,ExpC,x(w)) = 1 mod p.
– For any x ∈ {0, 1}n, if there does not exist w ∈ {0, 1}m such that C(x,w) = 1,
then there does not exist w′ ∈ {0, 1}|C(x,·)| such that C̃(x,w′) = 1 mod p

Lemma 4.2. ([53]) There exists a deterministic polynomial-time algorithm
Coefficient that satisfies the following: for any p ∈ N, arithmetic circuit f over Zp
of degree D, x = (x1, ..., x`) ∈ Z`p and σ = (σ1, ..., σ`) ∈ Z`p, Coefficient(1D, p, f,x,σ)
outputs (c1, ..., cD) ∈ ZDp such that

f(σ1Z + x1, ..., σ`Z + x`) = f(x1, ..., x`) +
D∑
j=1

cjZ
j mod p. (1)

where Z is an indeterminate.

4.2 Construction

Here, we give a generic construction of compact DV-NIZK. Namely, we construct
DV-NIZK with the proof size |C|+ poly(κ) from any (non-compact) DV-NIZK,
SKE scheme whose decryption circuit is inNC1 with additive ciphertext overhead,
and PKE scheme. First, we prepare notations and the building blocks.

– Let L be an NP language defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Let
n(κ) and m(κ) be any fixed polynomials. Let C be a circuit that computes
the relation R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R. Let ExpC,x and C̃ be as defined
in Lemma 4.1.

– Let ΠIPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) be an adaptively
single-key secure IPFE scheme with a prime modulus p > |C|. Such an IPFE
scheme can be constructed from any PKE scheme [41].

– Let ΠSKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) be a CPA-secure symmetric
key encryption scheme over a ciphertext space CT and a key space {0, 1}`
with additive ciphertext overhead (i.e., the ciphertext size is the message size
plus poly(κ)) whose decryption algorithm is computed in NC1. Especially,
the decryption circuit can be expressed by an arithmetic circuit over Zp of
degree poly(κ). We note that such an SKE scheme exists under the CDH
assumption [53].

– For x ∈ {0, 1}n and ct ∈ CT , we define the function fx,ct(K) := C̃(x, SKE.Dec(K, ct)).
Let D be the maximal degree of fx,ct (as a multivariate polynomial). Since C̃’s
degree is at most 3 and SKE.Dec(·, ct)’s degree is poly(κ), we have D = poly(κ)
(which especially does not depend on |C|).

– Let ΠDVNIZK = (Setup,Prove,Verify) be DV-NIZK for the language corre-
sponding to the relation R̃ defined below:(

(ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE),
(
{(Ki, σi, Ri)}i∈[`], (c1, ..., cD, R

′)
) )
∈ R̃

if and only if the following conditions are satisfied:
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1. For all i ∈ [`], Ki ∈ {0, 1},
2. For all i ∈ [`], IPFE.Enc(ppIPFE, (Ki, σi);Ri) = ctiIPFE,
3. IPFE.Enc(pp′IPFE, (c1, ..., cD);R′) = ct′IPFE.

The DV-NIZK Π ′DVNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

Setup′(1κ): This algorithm picks s $← Z∗p and generates (crs, kV) $← Setup(1κ),
(ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12), (pp′IPFE,msk′IPFE) $← IPFE.Setup(1κ, 1D),
skIPFE

$← IPFE.KeyGen(mskIPFE, (1, s)), and sk′IPFE
$← IPFE.KeyGen(msk′IPFE,

(s, ..., sD)). It outputs a common reference string crs′ := (crs, ppIPFE, pp′IPFE)
and a verifier key k′V := (kV, s, skIPFE, sk′IPFE).

Prove′(crs′, x, w): This algorithm aborts if (x,w) /∈ R. Otherwise it parses
(crs, ppIPFE, pp′IPFE) ← crs′, picks K $← SKE.KeyGen(1κ) and σi

$← Zp for
i ∈ [`], and generates ctSKE

$← SKE.Enc(K,ExpC,x(w)) and (c1, ..., cD) ←
Coefficient(1D, p, fx,ctSKE ,K = (K1, ...,K`), (σ1, ..., σ`)). Then it generates
ctiIPFE := IPFE.Enc(ppIPFE, (Ki, σi);Ri) for i ∈ [`] (where Ri is the randomness
used by the encryption algorithm), ct′IPFE := IPFE.Enc(pp′IPFE, (c1, ..., cD);R′)
(where R′ is the randomness used by the encryption algorithm), and π $←
Prove(crs, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), ({(Ki, σi, Ri)}i∈[`], (c1, ..., cD, R

′)))
and outputs a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE).

Verify′(crs′, k′V, x, π′): This algorithm parses (crs, ppIPFE, pp′IPFE)← crs′, (kV, s, skIPFE,

sk′IPFE)← k′V, and (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE)← π′, computes ri
$← IPFE.Dec(

ppIPFE, ctiIPFE, skIPFE) for i ∈ [`] and t $← IPFE.Dec(pp′IPFE, ct′IPFE, sk′IPFE), and
outputs > if we have Verify(crs, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) = >
and

fx,ctSKE(r1, ..., r`) = 1 + t mod p,

and outputs ⊥ otherwise.

Correctness. Suppose that (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE) is an honestly gener-
ated proof on (x,w) ∈ R. Then it is clear that we have Verify(crs, (ppIPFE, {ctiIPFE}i∈[`],
pp′IPFE, ct′IPFE), π) = > by the way of generating the proof and the correctness of
ΠDVNIZK. By the way of generating ({ctiIPFE}i∈[`], ct′IPFE) and correctness of ΠIPFE,
we have ri = Ki + σis mod p for i ∈ [`] and t =

∑
j∈[D] cjs

j where ri and t are
generated as in the verification. Since we have fx,ctSKE(K1 + σ1Z, ...,K` + σ`Z) =
1+
∑
j∈[D] cjZ

j for an indeterminate Z by the correctness ofΠSKE and Lemma 4.2,
we have fx,ctSKE(r1, ..., r`) = 1 + t by substituting s for Z.
Proof Size. First, we remark that the relation R̃ can be verified by a circuit whose
size is a fixed polynomial in (κ, `, log p,D) that does not depend on |C|. Moreover,
we have |ExpC,x(w)| = |C(x, ·)| ≤ |C| for all w ∈ {0, 1}m by Lemma 4.1. Then we
have |π| = poly(κ, `, log p,D), |ctSKE| = |C(x, ·)|+poly(κ), |ctiIPFE| = poly(κ, log p),
and |ct′IPFE| = poly(κ, log p,D). By setting ` = κ and p = 2O(κ) and remarking
that D = poly(κ), we have |π′| = |C(x, ·)|+ poly(κ) ≤ |C|+ poly(κ).
Security. The security of our scheme Π ′DVNIZK is stated as follows. The proofs
are similar to the security proof for PP-NIZK by Katsumata et al. [53], and thus
given in the full version.
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Theorem 4.1 (Soundness.). If ΠDVNIZK satisfies statistical (resp. computa-
tional) soundness and p = κω(1), then Π ′DVNIZK satisfies statistical (resp. compu-
tational) soundness.

Theorem 4.2 (Zero-knowledge). If SKE is CPA secure, ΠIPFE is adaptively
single-key secure, and ΠDVNIZK satisfies zero-knowledge, then Π ′DVNIZK satisfies
zero-knowledge.

Instantiation. The above construction can be instantiated based on the CDH
assumption on a pairing-free group since

– An adaptively single-key secure IPFE scheme exists under any PKE scheme
[41], and there exists a PKE scheme based on the CDH assumption.

– An SKE scheme whose decryption circuit is in NC1 with additive ciphertext
overhead exists under the CDH assumption [53].

– DV-NIZK for all of NP exists under the CDH assumption [24,53,75]

Therefore we obtain the following corollary.

Corollary 4.1. If the CDH assumption holds on a pairing-free group, then there
exists DV-NIZK for all of NP with proof size |C|+ poly(κ).

Variant with Sublinear Proof Size. Similarly to the case of CRS-NIZK as
discussed in Sec. 3.3, we can make the proof size of the above DV-NIZK sublinear
in |C| if C is a leveled circuit. More detailed explanation can be found in the full
version. Namely, we obtain the following corollary:

Corollary 4.2. If the CDH assumption holds on a pairing-free group, then there
exists DV-NIZK for all NP languages whose corresponding relation is computable
by a leveled circuit with proof size |w|+ |C|/ log κ+ poly(κ).

Variant with Shorter Proof Size for NC1 Relations.We can further reduce
the proof size to |w| + poly(κ) if the relation to prove is computable in NC1

and we additionally assume `-computational Diffie-Hellman inversion (CDHI)
assumption [66,19].

Theorem 4.3. If the `-CDHI assumption holds for all ` = poly(κ), then there
exists DV-NIZK for all relations for all NP languages whose corresponding
relation is computable in NC1 with proof size |w|+ poly(κ).

The construction and security proofs can be found in the full version.

5 CRS-NIZK with Efficient Prover From Laconic
Function Evaluation

In this section, we present a NIZK proof system where a prover is efficient, that is,
the running time of a prover is smaller than the size of circuit that computes the
relation. We use laconic function evaluation to achieve our NIZK proof system.

Before describing the construction, we prepare some building blocks and
notations.
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– Let L be an NP language defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Let
n(κ) and m(κ) be any fixed polynomials. Let C be a circuit that computes
the relation R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R

– Let LFE = (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec) be a LFE scheme
whose function class C is the class of all circuits with params = (1k, 1d)
consisting of the input size k and the depth d of the circuits and contains
{C} that computes the relation R for NP-complete language.

– Let ΠCRSNIZK = (Setup,Prove,Verify) be a CRS-NIZK for the language corre-
sponding to the relation R̃ defined below:

((x, lfe.crs, digestC , lfe.ct), (w, r)) ∈ R̃ ⇐⇒ LFE.Enc(lfe.crs, digestC , (x,w); r) = lfe.ct .

The CRS-NIZK Π ′CRSNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

Setup′(1κ): This algorithm generates crs $← Setup(1κ) and lfe.crs $← LFE.crsGen(1κ,
params). It generates digestC := LFE.Compress(lfe.crs, C). It outputs a com-
mon reference string crs′ = (crs, lfe.crs, digestC).

Prove′(crs′, x, w): This algorithm aborts if R(x,w) = 0. Otherwise it parses
(crs, lfe.crs, digestC)← crs′, generates lfe.ct := LFE.Enc(lfe.crs, digestC , (x,w); r)
where r is the randomness for LFE.Enc and πNIZK

$← Prove(crs, (x, lfe.crs, digestC ,
lfe.ct), (w, r)). It outputs a proof π′ := (lfe.ct, πNIZK).

Verify′(crs′, x, π′): This algorithm parses (crs, lfe.crs, digestC)← crs′, (lfe.ct, πNIZK)←
π′, and computes t := Verify(crs, (x, lfe.crs, digestC , lfe.ct), πNIZK). If t = ⊥ or
0 $← LFE.Dec(lfe.crs, C, lfe.ct), then outputs ⊥. Otherwise, outputs >.

Completeness. By the completeness of ΠCRSNIZK, the proof πNIZK in an honestly
generated proof π′ passes the verification of ΠCRSNIZK. That is, it holds that
Verify(crs, (x, lfe.crs, digestC , lfe.ct), πNIZK) = >. By the correctness of LFE, it
holds that 1 = C(x,w) $← LFE.Dec(lfe.crs, C, lfe.ct) with probability 1. Thus, the
completeness follows.

Prover Efficiency. First, we remark that the relation R̃ can be verified by a
circuit whose size is |LFE.Enc| since the relation is about the validity of LFE
ciphertexts. The running time of Prove′ is the sum of those of LFE.Enc and Prove.
We defer concrete efficiency analysis until Sec. 5.1 since the running time depends
on instantiations of LFE.Enc and Prove.

Security. The security of the scheme is stated as follows. See the full version for
the proofs.

Theorem 5.1 (Soundness). Π ′CRSNIZK is computationally/statistically sound
if ΠCRSNIZK is computationally/statistically sound, respectively.

Theorem 5.2 (Zero-Knowledge). Π ′CRSNIZK is computational zero-knowledge
if ΠCRSNIZK is zero-knowledge and LFE is adaptively secure.
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5.1 Instantiations

We can consider two cases since there are two instantiations of adaptively secure
LFE.

1. (Under sub-exponential security of the LWE assumption with sub-exponential
modulus-to-noise ratio): By the result of [76], it holds that |lfe.crs| = poly(κ, |x|,
|w|, d), |digestC | = poly(κ), |lfe.ct| = poly(κ, |x|, |w|, d), and the running time
of LFE.Enc is poly(κ, |x|, |w|, d) where d is the depth of C since the input
length of C is |x| + |w|. In this case, we use a NIZK whose prover run-
ning time is poly(C̃, κ) where C̃ is a circuit that computes the relation R̃,
which holds for any NIZK. In this case, C̃ just runs LFE.Enc, so it takes
|LFE.Enc|+poly(|LFE.Enc|, κ) time to generate πNIZK. Thus, the running time
of the prover is poly(κ, |x|, |w|, d).

2. (Under the adaptive LWE assumption with sub-exponential modulus-to-noise
ratio): By the result of [76], it holds that |lfe.crs| = (|x| + |w|) · poly(κ, d),
|digestC | = poly(κ), |lfe.ct| = Õ(|x|+ |w|) · poly(κ, d), and the running time
of LFE.Enc is Õ(|x| + |w|) · poly(κ, d) where d is the depth of C since the
input length of C is |x| + |w|. In this case, we use a NIZK whose prover
running time is |C̃| · poly(κ). An example of such a NIZK is the NIZK by
Groth et al. [48]. By using the efficiency of Groth et al. NIZK, it takes
|LFE.Enc|+ |LFE.Enc| ·poly(κ) time to generate πNIZK. Thus, the running time
of the prover is Õ(|x|+ |w|) · poly(κ, d) · poly(κ) = Õ(|x|+ |w|) · poly(κ, d).

Therefore, we obtain the following two corollaries.

Corollary 5.1. If a CRS-NIZK scheme for all of NP exists and the sub-
exponentially secure LWE assumption with sub-exponential modulus-to-noise
ratio holds, then there exists a CRS-NIZK scheme for all of NP whose prover
running time is poly(κ, |x|, |w|, d).

Corollary 5.2. If the DLIN assumption in a bilinear group and the adaptive
LWE assumption with sub-exponential modulus-to-noise ratio hold, then there
exists a CRS-NIZK scheme for all of NP whose prover running time is Õ(|x|+
|w|)poly(κ, d).
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