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Abstract. We construct a broadcast and trace scheme (also known as
trace and revoke or broadcast, trace and revoke) with N users, where
the ciphertext size can be made as low as O(Nε), for any arbitrarily
small constant ε > 0. This improves on the prior best construction of
broadcast and trace under standard assumptions by Boneh and Waters
(CCS ‘06), which had ciphertext size O(N1/2). While that construction
relied on bilinear maps, ours uses a combination of the learning with
errors (LWE) assumption and bilinear maps.

Recall that, in both broadcast encryption and traitor-tracing schemes,
there is a collection of N users, each of which gets a different secret key
ski. In broadcast encryption, it is possible to create ciphertexts targeted
to a subset S ⊆ [N ] of the users such that only those users can decrypt it
correctly. In a traitor tracing scheme, if a subset of users gets together and
creates a decoder box D that is capable of decrypting ciphertexts, then
it is possible to trace at least one of the users responsible for creating
D. A broadcast and trace scheme intertwines the two properties, in a
way that results in more than just their union. In particular, it ensures
that if a decoder D is able to decrypt ciphertexts targeted toward a
set S of users, then it should be possible to trace one of the users in
the set S responsible for creating D, even if other users outside of S
also participated. As of recently, we have essentially optimal broadcast
encryption (Boneh, Gentry, Waters CRYPTO ‘05) under bilinear maps
and traitor tracing (Goyal, Koppula, Waters STOC ‘18) under LWE,
where the ciphertext size is at most poly-logarithmic in N . The main
contribution of our paper is to carefully combine LWE and bilinear-map
based components, and get them to interact with each other, to achieve
broadcast and trace.
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1 Introduction

Broadcast Encryption. In broadcast encryption, as introduced by Fiat and Naor
[FN94], a broadcaster can encrypt a message m to an arbitrary subset S ⊆ [N ]
of indexed users, which results in a ciphertext ct. The i-th user is given a secret
key ski and can decrypt the ciphertext ct iff i ∈ S. When designing broad-
cast encryption systems, a primary goal is to achieve short ciphertexts, ide-
ally independent of the number of users N . (In order to decrypt, one must
also know the description of S, but we count this separately from the cipher-
text size.) Almost all of the earliest proposed solutions were not collusion re-
sistant [FN94, Sti97, SVT98, GSW00, HS02, DF02, GST04], but in 2005 Boneh,
Gentry and Waters [BGW05] gave a collusion-resistant system from bilinear
maps with ciphertext size that is independent of N ; in particular, ciphertexts
consist of just three group elements.4

Traitor Tracing. A closely related primitive called traitor tracing was intro-
duced by Chor, Fiat and Naor [CFN94]. Here, a broadcaster encrypts messages
to the entire set of N users, where the i-th user is given a secret key ski that
always decrypts the broadcaster’s ciphertexts. If some subset T ⊆ [N ] of users
(“traitors”) gets together and pools their secret keys to produce a decoder algo-
rithm D that can decrypt the broadcaster’s ciphertexts, then there is a tracing
procedure that can identify at least one of the users in the set T .5 While earlier
tracing systems [CFN94,SW98,CFNP00,SSW01,PST06] were not collusion re-
sistant, Boneh, Sahai and Waters [BSW06] showed how to leverage bilinear maps

to provide collusion resistant systems with N
1
2 sized ciphertexts. Very recently,

Goyal, Koppula and Waters [GKW18] constructed a traitor tracing scheme with
essentially optimal ciphertext size, which only scales poly-logarithmically in the
number of users N , under the Learning with Errors (LWE) assumption.

Broadcast and Trace. The concepts of broadcast encryption and traitor tracing
are naturally intertwined to form a broadcast and trace system [NP00,NNL01]
(also known as a “trace and revoke” or “broadcast,trace and revoke” system).
Here we want the ability to broadcast to an arbitrary set of users and the ability
to trace any rogue decoding algorithm or box. However, the combination of
broadcast and tracing security is more than just the sum of the parts – the two
requirements interact with each other in a non-trivial way. In particular, the
tracing property now also incorporates the broadcast set S as follows. If some
subset T of users get together and construct a decoder algorithm D that can
decrypt ciphertexts targeted to a certain set S, then there is a tracing procedure
that can identify at least one of the users in T∩S that contributed to constructing

4 In a collusion-resistant system, there is no a-priori bound on the number of secret
keys the adversary can see. Our discussion and comparisons will be in the collusion
resistant setting.

5 For both broadcast and traitor tracing, we require that the encryption procedure is
public key. In traitor tracing, while some prior works also require that the tracing
procedure is public key, here we consider secret-key tracing.
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D, even if some other users outside of S also participated. At that point one
might take certain punitive actions against such a user and most likely remove
them from the broadcast set S used in future encryptions.

The requirement that the tracing procedure identifies a user in the set T ∩S
rather than just any user in T is important here. For example, consider a scenario
where a broadcast encryption scheme is used to encrypt messages to various
subgroups within a company, and one of the board members colludes with an
intern to publish a decoder that decrypts ciphertexts targeted to the set S of all
board members. In this case, we want to trace the responsible board member
and not just the intern. Alternately, even in setting involving a flat hierarchy
where with no distinctions between different types of users (e.g., broadcasting
cable TV), this requirement is important. Assume some user i publishes an illegal
decoder D online, and then gets identified and revoked from the broadcast set S,
causing D to stop working. But then a new traitor j colludes with i to publish
a new decoder D′ that is able to decrypt newly created ciphertexts for the new
broadcast set S. In this case, we need to identify the new traitor j (and not
just the old traitor i who is already known) so that we can also revoke j them
from the broadcast set, and eventually revoke all misbehaving users through this
process.

The requirement that the tracing procedure identifies a user in T ∩S and not
just T is also what makes the problem of achieving broadcast and trace more
technically challenging than just tackling the problems of broadcast encryption
and traitor tracing separately. Otherwise, one could trivially construct a broad-
cast and trace cryptosystem with a basic combination of a broadcast encryption
and a traitor tracing, by secret sharing the message across the two systems.

Historically, progress on broadcast and trace has followed progress on the
two problems separately. For example, soon after the construction of the first
broadcast with optimally succinct ciphertexts [BGW05] and the first traitor

tracing scheme with N
1
2 sized ciphertexts [BSW06], the work of Boneh and Wa-

ters [BW06] built upon these works to give a broadcast and trace system with

N
1
2 sized ciphertexts by carefully combining techniques from the two bilinear

map-based schemes. We also have essentially optimal constructions of broad-
cast and trace using (positional) witness encryption [GVW19], but we don’t

currently have any construction that beats the N
1
2 barrier under any standard

assumptions. Very recently, we finally reached the point where we have essen-
tially optimal ciphertext size in both broadcast and traitor tracing separately,
and therefore the time is ripe to revisit the problem of constructing an optimal
broadcast and trace system under standard assumptions. However, the optimal
broadcast scheme [BGW05] is based on bilinear maps and the optimal traitor
tracing scheme [GKW18] is based on LWE. 6 Can we still come up with a way to
combine these different techniques to get an optimal broadcast and trace scheme?
In particular, can we meaningfully combine bilinear-map and LWE based com-

6 There are actually no known collusion resistant broadcast encryption schemes from
LWE other than the trivial one with N -sized ciphertexts.
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ponents and get them to interact with each other to get something beyond just
the sum of the parts?

Our Results. In this work, we show how to combine bilinear-map and LWE based
techniques to construct broadcast and trace.

Theorem 1.1 (informal). Under the Decisional Bilinear Diffie-Hellman Ex-
ponent (DBDHE) assumption and the Learning with Errors (LWE) assumptions,
for any constant ε > 0, there exists a broadcast and trace scheme with cipher-
text size Õ(Nε)poly(λ), where N is the number of users and λ is the security
parameter.

As a tool in our construction, we rely on a black-box use of attribute-based
encryption (ABE) with succinct ciphertexts, whose size is essentially independent
of the attribute size (the attribute is assumed to be known by the decryption
procedure but is not counted in the ciphertext size). This can be seen as a
generalization of broadcast encryption, which is a special case of succinct ABE
where the attribute is S and keys ski are associated with policies that allow
decryption iff i ∈ S. Currently, we can instantiate such succinct ABE schemes for
NC1 circuits using bilinear maps [HLR10,ALDP11,AHL+12,YAHK14]. However
we note that: (1) while the best current construction of succinct ABE relies on
the DBDHE assumption, it is very conceivable that this could be improved to
milder bilinear assumptions in future work, and (2) while current constructions
only work for NC1 circuits, if we had a succinct ABE for even the slightly larger
class of TC1 circuits, we could leverage it to get essentially optimal broadcast
and trace with only a poly-logairthmic dependence on N . Therefore, we state
the following more general result of our work, which shows that future advances
in succinct ABE will also lead to advances in broadcast and trace:

Theorem 1.2 (informal). Assuming the existence of ABE with succinct ci-
phertexts for NC1 and the LWE assumption, for any constant ε > 0, there exists
a broadcast and trace scheme with ciphertext size Õ(Nε)poly(λ). Assuming the
existence of ABE with succinct ciphertexts for TC1 and the LWE assumption,
there exists a broadcast and trace scheme with ciphertext size poly(logN,λ).

Overall, picking a smaller constant ε yields shorter ciphertexts, at the cost
of making both the secret keys bigger and the decryption time longer, with the
exact tradeoff depending on the parameters of the underlying ABE.

Our main technique is to use a bilinear-based succinct ABE scheme for NC1

and use it to evaluate an LWE-based scheme, which we carefully engineer to be
in NC1. This allows us to meaningfully combine the cryptographic properties
of both schemes and achieve more than just their union. We provide a detailed
technical overview below.

1.1 Technical Overview

We now give a technical overview of our result. We start by giving a high-level
description of the state of the art construction of traitor tracing based on the
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works of [BSW06,GKW18,CVW+18a]. Then we discuss our approach to incor-
porate broadcast and get a broadcast and trace system. Concretely, we describe
a 3-step construction of traitor tracing and then show how to augment each of
the steps to also accommodate broadcast. Finally, we discuss the complications
that arise in realizing the augmented steps and our solutions.

Traitor Tracing in Three Steps The following is a high-level description of
a 3-step approach to construct traitor-tracing based on the works of [BSW06,
GKW18,CVW+18a].

Step 1: Traitor Tracing from PLBE. The first step is to construct traitor tracing
from a conceptually simpler primitive called private linear broadcast encryption
(PLBE) [BSW06]. A PLBE scheme is initialized with a master public key pk, a
master secret key msk, and N user secret keys sk1, . . . , skN . There is a “public
encryption” procedure which encrypts a message m under pk and guarantees
that every user secret key ski will decrypt it correctly. There is also a “secret
encryption” procedure which encrypts a message m under msk with respect to
some index ind ∈ [N+1] and guarantees that a user secret key ski will decrypt m
correctly iff i ≥ ind. Moreover, one cannot distinguish a public encryption from a
secret encryption or a secret encryption with one index ind versus another index
ind′ unless one has a secret key ski that correctly decrypts in one case but not
the other. Lastly, a secret encryption with the index ind = N + 1 should hide
the message m even given all the secret keys. An important subtlety, discovered
by [GKW18], is that these indistinguishability properties must hold even if the
adversary is given a single arbitrary query to the secret encryption oracle, in
addition to getting the challenge ciphertext.

A PLBE scheme can directly be used as a traitor tracing scheme, where
the “secret encryption” procedure is used to implement the tracing algorithm.
Assume some subset of users get together and create a decoder D that can
correctly decrypt ciphertexts produced by the public encryption procedure. Then
D should also correctly decrypt ciphertexts produced by the secret encryption
procedure with index ind = 1 (since these are indistinguishable even given all
the user secret keys). On the other hand the decoder cannot correctly decrypt
ciphertexts produced by the secret encryption procedure with index ind = N +1
(since these are undecryptable even given all the user secret keys). Therefore
there must be at least one index ind∗ where the decoder’s probability of successful
decryption drops significantly between being given secret encryptions with index
ind∗ and ind∗ + 1. But this can only be the case if the decoder was created
with knowledge of skind∗ (since otherwise the two cases are indistinguishable).
Therefore, this allows the tracing algorithm to finger user ind∗ as a traitor.7

7 The above argument implicitly assumes that, if an adversary can create a decoder
D that can distinguish between certain types of ciphertexts, then the adversary
himself can also distinguish. As observed by [GKW18], this is more subtle than
it appears and not true in general. The issue arises from a discrepancy between
the decoder’s advantage, which is calculated only over the choice of the encryption
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Step 2: PLBE from ABE and mixed FE. The work of [GKW18] showed how to
construct PLBE from two simpler primitives. The first primitive is a (key-policy)
attribute-based encryption (ABE) [SW05] for circuits, which is already known
from LWE [GVW13]. The second primitive is a restricted form of functional en-
cryption for the comparison function, called mixed functional encryption (Mixed
FE).

In Mixed FE, private keys ski are associated with values i and the adversary
can collect an unrestricted number of such keys. There is a “secret encryption”
algorithm which requires the master secret key and is used to encrypt an index
ind. If a user with a secret key for input i decrypts a ciphertext encrypting an
index ind, the output is 1 if i ≥ ind and 0 otherwise. Security says that, given
an encryption of ind and many secret keys {ski}i∈T , the adversary does not
learn anything about ind beyond the decryptions. Security must hold even if the
attacker is also allowed to make 1 query to the secret encryption oracle, in addi-
tion to getting the challenge ciphertext. So far, the above can be thought of as a
secret-key FE scheme for the comparison functions with security for unbounded
number of keys and two ciphertexts, which can actually be constructed based
only on one-way functions via garbled circuits [GVW12, KMUW18]. The addi-
tional property that makes mixed FE different, is that it also requires a public
encryption algorithm, which only uses a public key and generates ciphertexts
ct that always decrypt to 1 under all private keys. Such an algorithm is a bit
unusual in that there is no further choice in the index. The security of the system
requires that an attacker who makes a single query to the “secret encryption” or-
acle cannot distinguish a public encryption versus a secret encryption or a secret
encryption with one index ind versus another index ind′ unless he has a secret
key ski that decrypts to 0 in one case and 1 in the other. The name “Mixed FE”
is derived from the fact that the scheme has both a public and secret encryption
procedure.

The semantics of mixed FE scheme are already very close a PLBE; in both
cases there is a “public encryption” and “secret encryption” algorithm and one
should not be able to distinguish different types of ciphertexts without having
a secret key that decrypts differently in one case versus the other. The one im-
portant difference is that, in PLBE, the ciphertext also incorporates a message
m, while in mixed FE there is no message. The work of [GKW18] showed how
to use ABE on top of a mixed FE to incorporate a message into the cipher-
text and get PLBE. Essentially, the PLBE scheme uses a mixed FE ciphertext
as an attribute and then encrypts the message m under this attribute via an
ABE scheme. In more detail, to implement public PLBE encryption (resp. se-
cret PLBE encryption for index ind), first create public mixed-FE ciphertext
(resp. secret mixed-FE ciphertext for the index ind) denoted ctmfe and then use

randomness after the keys have been fixed, and the advantage of the adversary, which
is calculated also over the choice of the keys and randomness simultaneously. To
make this step work, [GKW18] showed that one needs to start with a stronger form
of PLBE security, where the adversary also gets one query to the secret encryption
oracle.
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the ABE scheme to encrypt the message m under the attribute ctmfe. To create a
PLBE secret key ski for index i, first create a mixed-FE secret key skmfe,i for the
index i and then set ski to be an ABE secret key for the function fskmfe,i

which
takes as input ctmfe and decrypts it with skmfe,i. This incorporates the message
m into the PLBE scheme, while having the mixed FE dictate whether or not
the message is decryptable and preserving the mixed FE security properties.

Step 3: Constructing mixed FE. The work of [GKW18] gave a self-contained
albeit somewhat complex construction of mixed FE from the LWE assumption.
Later, the work of [CVW+18a] gave two simple and modular constructions of
mixed FE from previously studied primitives: one from lockable (AKA, compute-
and-compare) obfuscation [WZ17, GKW17] and one from (key-homomorphic)
private constrained PRFs (PCPRFs) [CC17, BTVW17, CVW18b]. Since either
of these can be instantiated under LWE, so can the final mixed FE and traitor-
tracing schemes.

We recall the PCPRF-based construction of mixed FE from [CVW+18a],
which we will later rely on for our results. A PCPRF consists of a pseudorandom
function (PRF) family FK(·) with a key K. The constrained property states that
given K, there is a way to generate a constrained key KP for some program P
such that FK(x) = FKP (x) if P (x) = 0. In addition, the constraints are private
in that, one cannot distinguish between seeing the constrained key KP , along
the evaluations of yi = FK(xi) on various inputs xi for which P (xi) = 1, versus
being given a “dummy key” that does not depend on P along with uniformly
random values yi.

Given a PCPRF for the comparison functions Pind(i) = 1 iff i ≥ ind, one can
construct a simple mixed FE scheme as follows. The master secret key is a PRF
key K and the secret key for an input i is the value y = FK(i). An encryption is
a PRF key K∗ and the decryption algorithm outputs 1 iff y 6= FK∗(x). A public
encryption consists of a “dummy key” K∗. A secret encryption of some index
ind consists of the constrained key K∗ = KPind

. It’s relatively easy to see that the
above gives a mixed FE scheme that is secure with q = 0 queries to the secret
encryption oracle. In particular, the only way to distinguish different types of
PRF keys is to have an evaluation on some i for which one is constrained and
the other is not.

To get a mixed FE scheme with security for q = 1 queries to the secret
encryption oracle, which is needed for traitor tracing, we rely on a PCPRF
with an additional key homomorphic property saying that FK(x) + FK′(x) =
FK+K′(x). The construction is only slightly more complex. Now the master
secret key consists of 2λ PRF keys {Kj,b}j∈λ,b∈{0,1} and the secret key for an
input i consists of the values {yj,b = FKj,b(i)}j∈λ,b∈{0,1}. An encryption is a

PRF key K∗ and some “tag” value z ∈ {0, 1}λ and the decryption algorithm

outputs 1 iff
∑λ
j=1 yj,zj 6= FK∗(i). A public encryption consists of a random

z and a “dummy key” K∗. A secret encryption for some index ind consists
of a random z along with the constrained key K ′Pind

where K ′ =
∑λ
j=1Kj,zj .

The above gives a mixed FE scheme which is secure with q = 1 queries to the
secret encryption oracle. With overwhelming probability, the z value used in the
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challenge ciphertext differs from the one used by the oracle in answering the
encryption query in some position j, and therefore we can rely on the security
of the PRF FKj,zj in essentially the same way as was done in the q = 0 query
case.

Adding Broadcast to Traitor Tracing We now discuss how to “upgrade”
the above ideas to construct a broadcast and trace scheme.

Perhaps the first approach one would try is to combine broadcast and traitor-
tracing directly; e.g., secret-share the message and encrypt one share via a broad-
cast scheme and the other share via a traitor-tracing scheme. Indeed, we can use
the broadcast scheme to restrict the set S of users that can recover the first
share and therefore the encrypted message. Also, any decoder D that decrypts
the full ciphertext correctly must also necessarily decrypt the second share, and
therefore we can use the traitor-tracing scheme to trace at least one user i ∈ [N ]
that participated in constructing D. However, even if the decoder D can decrypt
ciphertexts targeted toward some restricted set S of users, the traitor tracing
procedure might find a user i /∈ S, which is not good enough for a broadcast
and trace scheme, as explained earlier. To fix this, we need to incorporate the
broadcast set S into the tracing procedure itself. We revisit the 3-step approach
outlined above and show how to upgrade it to get a broadcast and trace scheme.

Updated Step 1: Broadcast and Trace from AugBE. We previously saw how
traitor-tracing can be constructed from “private linear broadcast encryption”
(PLBE). The work of [BW06] showed that broadcast and trace can analogously
be constructed from an augmented version of PLBE, called “augmented broad-
cast encryption” (AugBE), which can be thought of as combining PLBE and
broadcast encryption. In particular, an AugBE scheme has a master public key
pk, a master secret key msk, and N user secret keys sk1, . . . , skN . There is a
“public encryption” procedure using pk, which encrypts a message m to a target
set S, and guarantees that a secret key ski will decrypt correctly iff i ∈ S. There
is also a “secret encryption” procedure using msk, which encrypts a message m
to a target set S with respect to some index ind ∈ [N + 1], and guarantees that
a secret key ski will decrypt correctly iff i ∈ S ∧ i ≥ ind. Moreover, one cannot
distinguish a public encryption from a secret encryption or a secret encryption
with one index ind versus another index ind′ (all with the same set S) unless
one has a secret key ski that correctly decrypts in one case but not the other.
A secret encryption with the index ind = N + 1 should hide the message even
given all the secret keys. As before, these indistinguishability properties must
hold even if the adversary is given a single query to the secret encryption oracle.
We want the ciphertext size to be small, much smaller than N . As in broadcast
encryption, the decryption algorithm is also given the set S separately, but we
do not count it as part of the ciphertext size.

The notion of AugBE already incorporates the broadcast encryption require-
ments directly in the definition. To see that it also allows us to trace a traitor
in the set S, one can adapt the previous argument that PLBE implies tracing.
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The tracing algorithm tests the decoder’s success probability on secret encryp-
tions with the fixed broadcast set S and all possible values of ind ∈ [N + 1]. As
before, the decoder must be successful when ind = 1 (since it is successful with
public encryptions and the two are indistinguishable) but cannot be successful
when ind = N +1 (since such encryptions hide the message by definition) and so
there must be some value ind∗ such that success probability drops significantly
between ind∗ and ind∗ + 1. But this means that the decoder can distinguish
between these two types of ciphertexts and, in order for that to happen, the
decoder must have been created using knowledge of skind∗ with ind∗ ∈ S. Thus
the tracing algorithm can finger the user ind∗ ∈ S as a traitor.

Updated Step 2: AugBE from Succinct ABE and BMFE. Recall that the work
of [GKW18] constructed of PLBE from ABE and mixed FE. As our first contri-
bution, we given an analogous result showing how to construct AugBE (the aug-
mented form of PLBE) from two simpler primitives: a (succinct) ABE scheme
and an augmented variant of mixed FE that we call “broadcast mixed FE”
(BMFE). At a high level, we incorporate the set S into the ABE to ensure that
only users i ∈ S can decrypt correctly. But we also incorporate the set S into
the mixed FE to ensure that the keys of users i /∈ S cannot help to distinguish
between ciphertexts with different values of the index ind. We now go into more
detail on how this is done.

A BMFE scheme can be thought of as an augmented form of mixed FE that
includes the set S. In particular, a BMFE has master public key pk, a master
secret key msk and allows us to create user secret keys ski for values i ∈ [N ].
There is a “public encryption” procedure using pk, which takes as input a set
S ⊆ [N ] and outputs a ciphertext ct that decrypts to 1 under all secret keys ski.
There is also a “secret encryption” procedure using msk, which takes as input a
set S and an index ind and outputs a ciphertext ct that decrypts to 1 under ski if
i /∈ S ∨ i ≥ ind and decrypts to 0 otherwise. The security of the system requires
that an attacker with q = 1 queries to the “secret encryption” oracle cannot
distinguish a public encryption versus a secret encryption or a secret encryption
with one index ind versus another index ind′ (all with the same set S) unless he
has a secret key ski that decrypts to 0 in one case and 1 in the other.

Note that the decryptability conditions of AugBE (i ∈ S ∧ i ≥ ind) and of
BMFE (i /∈ S ∨ i ≥ ind) differ from each other. However, these decryptability
conditions match up to ensure that the only way to distinguish between cipher-
texts with some index ind versus ones with index ind′ > ind is to have a key ski
for some i ∈ S ∩ [ind, ind′).

We can construct AugBE by combining together ABE with BMFE. In partic-
ular, the ABE scheme allows us to simultaneously add a message m to the BMFE
and also to ensure that only the users in S can decrypt correctly. In more detail,
the AugBE encryption consists of creating a BMFE ciphertext ctbmfe with some
set S and index ind and then using the ABE to encrypt the message m under
attribute a = (S, ctbmfe). The AugBE secret key ski is an ABE secret key for a
function fi,skbmfe,i

which has the BMFE secret key skbmfe,i inside it and checks
that i ∈ S and that ctbmfe decrypts to 1 under skbmfe,i. It is easy to see that
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the above construction ensures that the set S and the index ind correctly deter-
mine whether an AugBE ciphetext is decryptable while preserving the BMFE
indistinguishability properties.

Up until now we have completely ignored efficiency and, in particular, the
requirement that ciphertexts are small. To ensure this we need the following:

– Firstly, we need a succinct ABE where the ciphertext size is essentially in-
dependent of the attribute size, since the attribute includes the set S (the
decryption algorithm gets the attribute, but we don’t count it as part of
the ciphertext). Succinct ABE can be thought of as generalizing broadcast
encryption, where the latter is a special case of succinct ABE in which at-
tributes are sets S, and keys are associated with policies of the form fi(S) = 1
iff i ∈ S. Unfortunately, the current ABE systems from the LWE assump-
tion [GVW13, BGG+14] do not satisfy this form of succinctness, and we
do not know how to achieve even broadcast encryption from LWE. On
the positive side, we do have constructions of succinct ABE from bilinear
maps [HLR10, ALDP11, AHL+12, YAHK14]; however, these constructions
can only support policies for circuits in NC1, unlike the LWE-based ones
that can support circuits of arbitrary depth. Recall that, in our case, the
ABE policy checks that i ∈ S and that a BMFE ciphertext decrypts to 1.
The first part is in NC1 and therefore we need to ensure that the BMFE
decryption is in NC1.

– Secondly, we need a succinct BMFE scheme, where decryption is in NC1

and the ciphertext size is much smaller than N (the decryption procedure
gets S but we do not count it in the ciphertext size). We next show how to
construct this primitive under LWE.

Note that we are using a bilinear-based succinct ABE to evaluate the decryp-
tion of an LWE-based BMFE scheme, which will be in NC1. This allows us to
meaningfully combine the security properties of a bilinear-based scheme and an
LWE-based scheme to achieve more than just the union of their capabilities.

Updated Step 3: Constructing BMFE in NC1. Our goal now is to construct a suc-
cinct BMFE with decryption in NC1. Recall that BMFE is an augmented form
of mixed FE for which we have constructions from LWE [GKW18, CVW+18a].
We face two challenges:

– We need to incorporate the set S into mixed FE to get BMFE.
– We need to ensure that BMFE decryption is in NC1.

Let’s start by showing how to augment mixed FE to get BMFE. Recall that
we previously outlined the [CVW+18a] construction of mixed FE from (key-
homomorphic) private constrained PRFs (PCPRFs) for comparison constraints:
Pind(i) = 1 iff i ≥ ind. We now outline how to upgrade this construction to get
a BMFE scheme. For simplicity, we describe how to get BMFE with security
against q = 0 queries to the secret encryption oracle; to get security for q = 1
queries, as is needed for broadcast and trace, we then employ the same trick as
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in the mixed FE case. The master secret key of the BMFE scheme now con-
sists of N PCPRF keys {Kj}j∈N . The secret key of user i consists of the values
{yi,j = FKj (i)}j 6=i for i, j ∈ [N ]. To create a “secret encryption” to a set S with
respect to an index ind, the encryptor computes a key K+ =

∑
j 6∈S Kj and then

constrains it on the program Pind to get K∗ = K+
Pind

. To create a “public encryp-
tion” to a set S, the encryptor chooses a dummy constrained key K∗. The de-
cryption procedure takes a ciphertext K∗ and outputs 1 iff FK∗(i) 6=

∑
j 6∈S yi,j .

We rely on the fact that, the only way to distinguish different types of BMFE
ciphertexts (i.e., PRF keys), is to have a complete set of values {FKj (i)}j 6∈S for
some i which is constrained in one case but not the other, which requires having
the BMFE key of some user i such that i ∈ S (as no secret key contain the value
FKi(i)), and where i is constrained in one case but not the other.

In our BMFE scheme, the decryption procedure is in NC1 if the underlying
PCPRF evaluation FK∗(i) with a constrained key K∗ is in NC1. If we go under
the hood, and look at the PCPRF construction of [CVW18b], the constrained
keys consist of logN tuples of square matrices {Dj,0,Dj,1}j∈[logN ] of dimension
poly(λ), and the evaluation on some input i = (b1, . . . , blogN ) computes a subset-

product
∏logN
j=1 Dj,bj followed by rounding. While the product of a constant

number of matrices and the rounding are in NC1, multiplying logN matrices is
only known to be in TC1, which is not good enough for us.

We solve this problem by “pre-processing” the key which makes it longer
but allows us to evaluate in NC1. In particular, we first group the logN matrix
tuples into c groups of (logN)/c tuples each. Next, we pre-compute all possible
2(logN)/c = N1/c subset-products within each group. This increases the key
size from 2 logN original matrices to c · N1/c pre-processed matrices, but now
the evaluation only needs to multiply together c of the pre-processed matrices;
as long as c is a constant (which can be arbitrarily large), this can be done
in NC1. In other words, for any constant ε > 0 there is a PCPRF with key
size O(Nε) (ignoring factors poly(λ) independent of ε) and evaluation in NC1.
This translates into a BMFE with ciphetext size O(Nε) and decryption in NC1.
Combining with succinct ABE for NC1, this in turn leads to an a AugBE scheme
and eventually a Broadcast and Trace scheme with ciphertext size O(Nε). Note
that if we instead had a succinct ABE for TC1 then we could avoid the pre-
processing step and that would lead to the ciphertext size only poly logN .

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We denote the set of
all positive integers upto n as [n] := {1, 2, . . . , n}. Throughout this paper, unless
specified, all polynomials we consider are positive polynomials. For any finite set
S, x ← S denotes a uniformly random element x from the set S. Similarly, for
any distribution D, x← D denotes an element x drawn from distribution D. The
distribution Dn is used to represent a distribution over vectors of n components,
where each component is drawn independently from the distribution D.
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2.1 Broadcast and Trace Systems

Here we recall the framework of broadcast and trace systems8 and describe its
security properties. In this work, we study broadcast and trace systems with
secret key tracing. A broadcast and trace scheme BT, for message spaces M =
{Mλ}λ∈N, consists of four polytime algorithms (Setup,Enc,Dec,Trace) with the
following syntax:

Setup(1λ, 1N ) → (pk, tk, {sk1, sk2, . . . , skN}). The setup algorithm takes as in-
put a security parameter λ and number of usersN . It outputs a public key pk,
tracing key tk, and secret keys for N users {sk1, sk2, . . . , skN} respectively.

Enc(pk, S,m) → ct. The encryption algorithm takes as input public key pk, a
set S ⊆ [N ] of users, a message m and outputs a ciphertext ct.

Dec(ski, S, ct)→ m or ⊥. The decryption algorithm takes as input a user secret
key, a set of users S ⊆ [N ], a ciphertext ct, and outputs either a message m
or special reject symbol ⊥.

TraceD(tk, SD,m0,m1, 1
1/ε)→ S∗. The tracing algorithm takes as input a trac-

ing key tk, a set of users SD, two messages m0, m1 and parameter ε < 1.
The algorithm has a black-box access to the decoder D and outputs a set of
indices S∗ ⊆ [N ].

Intuitively, the goal of the tracing algorithm is that when the decoder D can
distinguish between encryptions of messages m0 and m1 encrypted to the
set SD with probability more than ε, the tracing algorithm should output a
set S∗ which is a subset of traitors (i.e., keys used to build decoder D). Here
we consider the notion of secret key tracing, that is the algorithm takes as
input a private tracing key to carry out the tracing procedure.

Correctness. A broadcast and trace system is said to be correct if there exists a
negligible function negl(·) such that for every λ ∈ N, any number of users N ∈ N,
every subset of users S ⊆ [N ], every message m ∈ Mλ, every user i ∈ S, the
following holds

Pr

[
Dec(ski, S, ct) = m :

(pk, tk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← Enc(pk, S,m)

]
≥ 1− negl(λ).

where the probability is taken over the random coins used during setup and
encryption.

Security. Intuitively, the system is said to be secure if it is IND-CPA secure as
well as if no poly-time adversary can produce a decoder that can fool the tracing
algorithm. We formally define both of these properties below.

Definition 2.1 (Selective IND-CPA security). We say that a broadcast and
trace scheme is selective IND-CPA secure if for every stateful PPT adversary A,

8 Prior works [NP00,NNL01,BW06] referred to such systems as Trace and Revoke.
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there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr

A(ct) = b :

(1N , S∗)← A(1λ);
(pk, tk, {ski}i∈[N ])← Setup(1λ, 1N );

(m0,m1)← A(pk, {ski}i∈[N ]\S∗);
b← {0, 1}; ct← Enc(pk, S∗,mb)

 ≤ 1

2
+ negl(λ).

Next, we describe the secure tracing definition and experiment. Intuitively,
it states that if an adversary A outputs a decoding box D such that D can
distinguish between encryptions of messages m0 and m1 encrypted to the set
SD ⊆ [N ] with some non-negligible probability ε, then the tracing algorithm
Trace, given oracle access to D, outputs (with all but negligible probability)
a non-empty set of user indices such that all of them were corrupted by A.
Formally, it is described below.

Definition 2.2 (Selective Secure Tracing). Let BT = (Setup,Enc,Dec,Trace)
be a broadcast and trace scheme. For any non-negligible function ε(·) and stateful
PPT adversary A, consider the experiment Expt-BTA,ε(λ) defined as follows.

Experiment Expt-BTA,ε(λ)

– (1N , SD)← A(1λ).
– (pk, tk, (sk1, . . . , skN ))← Setup(1λ, 1N ).
– (D,m0,m1)← AO(·)(pk).
– S∗ ← TraceD(tk, SD,m0,m1, 1

1/ε(λ)).

Here, O(·) is an oracle that has keys {ski}i∈[N ] hardwired, takes as

input an index i ∈ [N ] and outputs ith key ski. Let S be the set of
indices queried by A.

Fig. 1. Experiment Expt-BT

Based on the above experiment, we now define the following (probabilistic)
events and the corresponding probabilities (which are a functions of λ, parame-
terized by A, ε):

– Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk, SD,mb)] ≥ 1/2+ε(λ)
Pr -G-DA,ε(λ) = Pr[Good-Decoder]

– Cor-Tr : |S∗| > 0, S∗ ⊆ S ∩ SD
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr]

– Fal-Tr : S∗ 6⊆ S ∩ SD
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr]

A broadcast and trace scheme BT is said to satisfy selective secure tracing prop-
erty if for every PPT adversary A, polynomial q(·) and non-negligible function
ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N
satisfying ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ), Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl2(λ).
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2.2 Augmented Broadcast Encryption

In this section, we define Augmented Broadcast Encryption (AugBE) and its
security properties. The notion of AugBE was introduced by Boneh and Wa-
ters [BW06] as a building block towards realizing broadcast and trace systems.
The original definition was described such that it could be used to build broad-
cast and trace scheme with public traceability. Here we relax the original defini-
tion since we only target secret key traceability. Specifically, the index encryption
algorithm will now be a secret key algorithm, instead of being a public key al-
gorithm. Below we describe the syntax.

Setup(1λ, 1N ) → (pk,msk, {sk1, . . . , skN}). The setup algorithm takes as input
security parameter λ and number of users N . It outputs a public key pk, a
master secret key msk and user secret keys {sk1, . . . , skN}, where ski is the
secret key for user i.

Enc(pk, S,m) → ct. The encryption algorithm takes as input public key pk, a
set of users S ⊆ [N ], and a message m. It outputs a ciphertext ct.

Enc-index(msk, S,m, ind) → ct. The index encryption algorithm takes as input
master secret key msk, a set of users S ⊆ [N ], a message m, and an index
ind ∈ [N + 1]. It outputs a ciphertext ct.

Dec(ski, S, ct)→ m or ⊥. The decryption algorithm takes as input a secret key
for ith user ski, a set of users S ⊆ [N ], a ciphertext ct, and outputs a message
m or ⊥.

Correctness. An AugBE system is said to be correct if there exists a negligible
function negl1(·), negl2(·) such that for every λ ∈ N, any number of users N ∈ N,
every subset of users S ⊆ [N ], any index ind ∈ [N + 1], every message m ∈Mλ,
every user i ∈ S, the following holds

Pr

[
Dec(ski, S, ct) = m :

(pk,msk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← Enc(pk, S,m)

]
≥ 1− negl1(λ),

i ≥ ind⇒ Pr

[
Dec(ski, S, ct) = m :

(pk,msk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← Enc-index(msk, S,m, ind)

]
≥ 1− negl2(λ).

where the probabilities are taken over the random coins used during setup and
encryption.

Security. Below we describe the security properties required from an AugBE
scheme. The definitions are modelled after the bounded-ciphertext-query PLBE
definitions [GKW18].

Definition 2.3 (q-query Selective Normal Hiding Security). Let q(·) be
any fixed polynomial. An AugBE scheme is said to satisfy q-query selective nor-
mal hiding security if for every stateful PPT adversary A, there exists a negligible
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function negl(·) such that for every λ ∈ N, the following holds:

Pr

[
AEnc-index(msk,·,·,1)(ctb) = b :

(1N , S∗)← A(1λ);(
pk,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

m← AEnc-index(msk,·,·,1) (pk, {ski}i∈[N ]

)
b← {0, 1}; ct0 ← Enc(pk, S∗,m)
ct1 ← Enc-index(msk, S∗,m, 1)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, 1) oracle. Note that
here A is only allowed to query for ciphertexts corresponding to index 1.

Definition 2.4 (q-query Selective Index Hiding Security). Let q(·) be any
fixed polynomial. An AugBE scheme is said to satisfy q-query selective index
hiding security if for every (admissible) stateful PPT adversary A, there exists
a negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

[
AO(·),Enc-index(msk,·,·,·)(ct) = b :

(1N , ind ∈ [N ], S∗)← A(1λ)(
pk,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

m← AO(·),Enc-index(msk,·,·,·) (pk)
b← {0, 1}; ct← Enc-index(msk, S∗,m, ind + b)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, ·) oracle. Here
O(·) is an oracle that has keys {ski}i∈[N ] hardwired, takes as input an index

i ∈ [N ] and outputs ski. Let the set of keys queried by the adversary be S. The
adversary is admissible if and only if the challenge index ind it chooses satisfies
ind /∈ (S∗ ∩ S).

Definition 2.5 (q-bounded Selective Message Hiding Security). Let q(·)
be any fixed polynomial. An AugBE scheme is said to satisfy q-query selective
message hiding security if for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

[
AEnc-index(msk,·,·,·)(ct) = b :

(1N , S∗)← A(1λ);
(
pk,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

(m0,m1)← AEnc-index(msk,·,·,·) (pk, {ski}i∈[N ]

)
b← {0, 1}; ct← Enc-index(msk, S∗,mb, N + 1)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, ·) oracle.

We refer for the full version of the paper for a construction of a broadcast
and trace system from an AugBE scheme. The formal theorem is provided later.
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2.3 Key-Policy Attribute Based Encryption with Short Ciphertexts

In this work we require a key-policy attribute based encryption (KP-ABE)
scheme with short ciphertexts for obtaining our final result. Here we recall the
definition of KP-ABE with short ciphertexts, and state the prior results with
explicit succinctness guarantees.

A KP-ABE scheme ABE, for set of attribute spaces X = {Xκ}κ, predicate
classes C = {Cκ}κ and message spaces M = {Mκ}κ, consists of four polytime
algorithms (Setup,Enc,KeyGen,Dec) with the following syntax:

Setup(1λ, 1κ) → (pp,msk). The setup algorithm takes as input the security
parameter λ and a functionality index κ, and outputs the public parameters
pp and master secret key msk.

Enc(pp, x,m)→ ct. The encryption algorithm takes as input public parameters
pp, an attribute x ∈ Xκ and a message m ∈Mκ. It outputs a ciphertext ct.

KeyGen(msk, C) → skC . The key generation algorithm takes as input master
secret key msk and a predicate C ∈ Cκ. It outputs a secret key skC .

Dec(skC , ct, x)→ m or ⊥. The decryption algorithm takes as input a secret key
skC , a ciphertext ct and an attribute x. It outputs either a message m ∈Mκ

or a special symbol ⊥.

We point out that in our syntax the decryption algorithm takes the attribute
x as explicit input. This is done so to simplify stating the succinctness require-
ment. Below we describe the correctness and security requirements, and later
state the results achieving the requisite notion.

Correctness. A key-policy attribute based encryption scheme is said to be correct
if there exists negligible functions negl(·) such that for all λ, κ ∈ N, for all x ∈ Xκ,
C ∈ Cκ, m ∈Mκ, such that C(x) = 1 the following holds

Pr

Dec(skC , ct, x) = m :
(pp,msk)← Setup(1λ, 1κ);
skC ← KeyGen(msk, C);

ct← Enc(pp, x,m)

 ≥ 1− negl(λ)

where negl(·) is a negligible function, and the probabilities are taken over the
random coins used during setup, key generation, and encryption procedures.

Security. The standard notion of security for a KP-ABE scheme is that of IND-
CPA security. It is formally defined as follows.

Definition 2.6. A key-policy attribute based encryption scheme ABE = (Setup,
Enc,KeyGen,Dec) is said to be selectively secure if for every stateful PPT adver-
sary A, there exists a negligible function negl(·), such that for every λ ∈ N the
following holds:∣∣∣∣∣∣∣∣Pr

AKeyGen(msk,·)(ct) = b :

(1κ, x)← A(1λ);
(pp,msk)← Setup(1λ, 1κ)

(m0,m1)← AKeyGen(msk,·)(pp)
b← {0, 1}; ct← Enc(pp, x,mb)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ)
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where every predicate query C, made by adversary A to the KeyGen(msk, ·) ora-
cle, must satisfy the condition that C(x) = 0.

Below we state the result proved in [AHL+12] about a KP-ABE scheme with
short ciphertexts from assumptions over bilinear maps. Concretely, they relied
on the n-DBDHE assumption studied in [BGW05,BBG05]. Below we state the
formal theorem.

Theorem 2.7 ( [AHL+12, Theorem 4, Paraphrased]). Assuming
κ-DBDHE assumption holds, there exists a selectively-secure (Definition 2.6)
KP-ABE scheme for non-monotonic access structures with length κ attributes
(/number of parties). Additionally, the size of public parameters, secret keys,
ciphertexts grow with λ and κ as follows — |pp| = O(κ ·λ), |skC | = O(κ ·λ · |C|),
and |ct| = O(λ).

We point out that the size of the ciphertext does not depend on the length of
the attributes, that is the KP-ABE scheme has short ciphertexts.

2.4 Key-Homomorphic Private Constrained PRFs

In this section, we recall the notion of almost-key-homomorphic private con-
strained PRFs (PCPRFs) from [CVW+18a]. As in [CVW+18a], we also work
with PCPRFs that satisfy simulation-based security given one constrained key
and many input queries. The existence of a simulator will be useful for the
purpose of this paper. Below we describe the syntax and definition of PCPRFs.

A constrained PRF consists of five PPT algorithms (PPGen, SKGen, Constrain,
Eval, Constrain.Eval) along with a domain family {Dλ}λ∈N, a range family
{Rλ}λ∈N, and a constraint family C = {Cλ = {C : Dλ → {0, 1}}}λ∈N.

PPGen(1λ) → PP. The public parameter generation algorithm takes the secu-
rity parameter λ and generates the public parameters PP.

SKGen(1λ,PP) → SK. The secret key generation algorithm takes the security
parameter λ, and the public parameters PP, and generates a secret key SK.

Eval(SK, x) → y. The evaluation algorithm takes SK, an input x ∈ Dλ, and
deterministically outputs y ∈ Rλ. We will also use the alternative notation
y = FSK(x).

Constrain(1λ,PP,SK, C) → CKC . The constraining algorithm takes SK, a con-
straint C ∈ Cλ, outputs the constrained key CKC .

Constrain.Eval(CKC , x)→ y. The constrained evaluation algorithm takes a con-
strained key CKC , an input x, outputs y = FCKC (x).

Definition 2.8 (Key-homomorphic private constrained PRF). A con-
strained PRF (PPGen, SKGen, Constrain, Eval, Constrain.Eval) is a family of
almost-key-homomorphic private constrained PRF for C if it satisfies the fol-
lowing properties:
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Functionality preservation for C(x) = 0. For any constraint C ∈ Cλ, any
input x ∈ Dλ s.t. C(x) = 0,

Pr[Eval(SK, x) = Constrain.Eval(CKC , x)] ≥ 1− negl(λ),

where the probability is taken over the randomness used in algorithms PPGen,
SKGen and Constrain.

Pseudorandomness and constraint-hiding. There exists a polynomial time
algorithm Sim such that for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds:

Pr

AEval(SK,·)(PP,CKC) = 1 :
C ← A(1λ);PP← PPGen(1λ)

SK← SKGen(1λ,PP)
CKC ← Constrain(1λ,PP,SK, C)


−Pr

[
AO(·)(PP,CKC) = 1 :

C ← A(1λ);
(PP,CKC)← Sim(1λ, 1|C|)

]
≤ 1

2
+ negl(λ).

where the oracle O(·) is defined as follows. On each query x made by the
adversary, if C(x) = 0 then it responds with y = Constrain.Eval(CKC , x),
otherwise it responds with y ← Rλ.

Distribution requirement on the secret keys. The space of keys Kλ is a
group for all λ ∈ N. Let + denote the group operation over Kλ. We addi-
tionally require that for PP ← PPGen(1λ), for SK1,SK2,SK

′ sampled from
SKGen(1λ,PP) with uniform and independent randomness, SK1+SK2, SK1+
(−SK2), and SK′ are identically distributed.

Almost-key-homomorphism. Let B ∈ N, and suppose Rλ is endowed with a
norm ‖ · ‖ and a group operation + (by abuse of notation; whether we are
considering addition over Rλ or over Kλ will be clear from the context) for all
λ ∈ N . A constrained PRF (PPGen, SKGen, Constrain, Eval, Constrain.Eval)
with domain Dλ and range Rλ is called B-almost-key-homomorphic if for
PP← PPGen(1λ), SK1,SK2 ← SKGen(1λ,PP), and any input x ∈ Dλ:

‖Eval(SK1, x) + Eval(SK2, x)− Eval(SK1 + SK2, x)‖ ≤ B.

To instantiate the definition above, we will use PCPRFs from LWE [CC17,
CVW18b], which happen to satisfy 1-almost-key homomorphism. We defer a
more detailed exposition of the parameters and the efficiency of those PCPRFs
to Section 6.1.

3 Broadcast Mixed FE for Comparison

The notion of mixed functional encryption was introduced in [GKW18] towards
building efficient collusion-resistant Traitor Tracing systems. In this work, we
adapt the notion of Mixed FE to additionally provide broadcast capability. We
call this new primitive to Broadcast Mixed FE. This new notion is a central
component of our approach to building Broadcast and Trace schemes. Let us first
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recall the notion of Mixed FE scheme for comparisons. In such a scheme, both the
secrets keys as well as ciphertexts are associated with a message string (say all
natural numbers for instance) with the comparison predicate being implemented.
In a Mixed FE system, there are two modes of encryption — secret-key and
public-key. In the public-key (or normal) encryption mode, the algorithm takes
as input only the public parameters and outputs a encryption of ‘one’ (i.e.,
inherently it encrypts a “canonical” always-accepting function ‘≥ 1’). Whereas
in the secret-key mode, it takes as input the master secret key and a string x,
and encrypts x. Now the functional secret keys are associated with a unique
string as well. The decryption algorithm in a Mixed FE system works similar to
that in standard FE, that is decrypting an encryption of message x using secret
key for string i outputs 1 iff ‘i ≥ x’ (i.e., decryption evaluates the comparison
function).

Here we extend this to provide a broadcast functionality as well. This means
that now in both the public-key and secret-key modes, the encryption algorithms
also take as input a set S ⊆ [N ]. And, now the decryption functionality is altered
as follows — decrypting an encryption of message x for set S using secret key
for string i outputs 1 iff ‘i /∈ S∨ i ≥ x’. In other words, the decryption algorithm
evaluates the comparison function only if i ∈ S, so that users outside of the
broadcast set S cannot infer any information about x from their secret key.
Next, we formally describe it.

A broadcast mixed functional encryption scheme BMFE consists of four poly-
time algorithms (Setup, Enc, SK-Enc, Dec) with the following syntax:

Setup(1λ, 1N ) → (pp,msk, {sk1, . . . , skN}). The setup algorithm takes as input
the security parameter λ and number of users N , and outputs the public
parameters pp, the master secret key msk and N user keys {ski}i∈[N ].

Enc(pp, S) → ct. The normal encryption algorithm takes as input public pa-
rameters pp and a set S ⊆ [N ], and outputs a ciphertext ct.

SK-Enc(msk, S, j) → ct. The secret key encryption algorithm takes as input
master secret key msk, set S ⊆ [N ], and an index j ∈ [N + 1]. It outputs a
ciphertext ct.

Dec(ski, S, ct) → {0, 1}. The decryption algorithm takes as input a secret key
ski, set S ⊆ [N ] and a ciphertext ct, and it outputs a single bit.

Correctness. A broadcast mixed functional encryption scheme is said to be cor-
rect if there exists negligible functions negl1(·), negl2(·), negl3(·) such that for all
λ,N ∈ N, for every set S ⊆ [N ], and for all user indices i ∈ [N ] and j ∈ [N + 1],
the following holds

Pr

[
Dec(ski, S, ct) = 1 :

(pp,msk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← Enc(pp, S)

]
≥ 1− negl1(λ),

(i ∈ S ∧ i < j)⇒ Pr

[
Dec(ski, S, ct) = 0 :

(pp,msk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← SK-Enc(msk, S, j)

]
≥ 1− negl2(λ).

19



where the probabilities are taken over the random coins used during setup and
encryption.

Security. The security notions are derived from the mixed FE security notions
of function indistinguishability and accept indistinguishability as follows. Infor-
mally, the idea is that no PPT adversary should be able to distinguish between
a normal ciphertext and a secret-key ciphertext encrypting index 1. Addition-
ally, it should be hard to distinguish between two secret-key ciphertexts unless
the adversary can trivially distinguish between using the keys given to it. As in
prior works, we are only interested in broadcast mixed FE schemes that guar-
antee security against adversaries which make a bounded number of secret key
encryption queries. Below we formally define it.

Definition 3.1 (q-query Selective Index Indistinguishability). Let q(·) be
any fixed polynomial. A broadcast mixed functional encryption scheme BMFE =
(Setup,Enc,SK-Enc,Dec) is said to satisfy q-query selective index indistinguisha-
bility security if for every stateful PPT adversary A, there exists a negligible
function negl(·), such that for every λ ∈ N the following holds:

Pr

[
ASK-Enc(msk,·,·)(pp, ct,Keys) = b :

(1N , ind ∈ [N ], S∗)← A(1λ)(
pp,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

b← {0, 1}; ct← SK-Enc(msk, S∗, ind + b)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to SK-Enc(msk, ·, ·) oracle. And, Keys is
the following set of secret keys — Keys = {ski}i∈[N ]\{ind} if ind ∈ S∗, otherwise
Keys = {ski}i∈[N ].

Definition 3.2 (q-query Selective Mode Indistinguishability). Let q(·) be
any fixed polynomial. A broadcast mixed functional encryption scheme BMFE =
(Setup,Enc,SK-Enc,Dec) is said to satisfy q-query selective mode indistinguisha-
bility security if for every stateful PPT adversary A, there exists a negligible
function negl(·), such that for every λ ∈ N the following holds:

Pr

[
ASK-Enc(msk,·,1)(pp, ctb, {ski}i∈[N ]) = b :

(1N , S∗)← A(1λ);(
pp,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

b← {0, 1}; ct0 ← Enc(pp, S∗)
ct1 ← SK-Enc(msk, S∗, 1)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to SK-Enc(msk, ·, 1) oracle.

4 Building Augmented BE from Broadcast Mixed FE
and Key-Policy ABE with Short Ciphertexts

In this section we provide our construction for augmented BE from broadcast
mixed FE and KP-ABE with short ciphertexts.
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Let ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) be a key-policy at-
tribute based encryption scheme for set of attribute spaces {Xκ}κ, predicate
classes {Cκ}κ and message spaces {Mκ}κ, and BMFE = (BMFE.Setup,BMFE.Enc,
BMFE.SK-Enc,BMFE.Dec) be a broadcast mixed functional encryption scheme
for comparison with ciphertexts of length ` = `(λ,N). Also, let κ = κ(λ,N)
be the lexicographically smallest functionality index such that every string of
length ` can be uniquely represented in attribute class Xκ (i.e., {0, 1}` ⊆ Xκ).
We will suppose that for all i ∈ [N ] and bmfe.sk generated by BMFE.Setup, Cκ
contains the circuit Ci,bmfe.sk defined as:

Ci,bmfe.sk(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.sk, S, bmfe.ct) = 1),

which composes a BMFE decryption with testing membership in S ⊆ [N ].
Below we describe our construction.

Setup(1λ, 1N ) →
(
pk,msk, {ski}i∈[N ]

)
. The setup algorithm runs ABE.Setup

and BMFE.Setup to generate ABE and broadcast mixed FE public param-
eters and master secret key as (abe.pp, abe.msk) ← ABE.Setup(1λ, 1κ) and
(bmfe.pp, bmfe.msk, {bmfe.ski}i∈[N ])← BMFE.Setup(1λ, 1N ).

Now let Ci,bmfe.ski : {0, 1}` × [N ]→ {0, 1} denote the following circuit:

Ci,bmfe.ski(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.ski, S, bmfe.ct) = 1).

That is, it corresponds to BMFE decryption circuit with key bmfe.ski hard-
wired along with a set membership check for index i. Next, it computes N
ABE secret keys abe.ski as

∀ i ∈ [N ], abe.ski ← ABE.KeyGen(abe.msk, Ci,bmfe.ski)

Finally, it sets pk = (abe.pp, bmfe.pp), msk = (abe.msk, bmfe.msk) and ski =
abe.ski for i ∈ [N ].

Enc(pk, S,m) → ct. Let pp = (abe.pp, bmfe.pp). The encryption algorithm
first computes ctattr ← BMFE.Enc(bmfe.pp, S). Next, it encrypts message
m as ct ← ABE.Enc(abe.pp, attr = (ctattr, S),m), and outputs ciphertext
(ct, ctattr).

Enc-index(msk, S,m, ind) → ct. Let msk = (abe.msk, bmfe.msk). The index-
encryption algorithm first computes ctattr ← BMFE.SK-Enc(bmfe.msk, S, ind).
Next, it encrypts message m as ct ← ABE.Enc(abe.pp, attr = (ctattr, S),m),
and outputs ciphertext (ct, ctattr).

Dec(sk, S, (ct, ctattr)) → m or ⊥ . The decryption algorithm runs ABE.Dec on
ct using key sk as y = ABE.Dec(sk, ct, (ctattr, S)), and sets y as the output of
decryption.

We now state the correctness and security of the above construction. Their
proofs are included in the full version of the paper..
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Theorem 4.1. Suppose ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec)
is a correct attribute based encryption for set of attribute spaces {Xκ}κ, pred-
icate classes {Cκ}κ and message spaces {Mκ}κ, and BMFE = (BMFE.Setup,
BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) is a correct broadcast mixed functional
encryption scheme for comparison, then the above construction satisfies cor-
rectness.

Theorem 4.2. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a
selectively-secure attribute based encryption for set of attribute spaces {Xκ}κ,
predicate classes {Cκ}κ and message spaces {Mκ}κ satisfying Definition 2.6,
and BMFE = (BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) is a broad-
cast mixed functional encryption scheme satisfying 1-query selective mode indis-
tinguishability (Definition 3.2) and 1-query selective index indistinguishability
(Definition 3.1) properties, then the above construction is a secure augmented
broadcast encryption scheme, for messages spaces {Mκ}κ, satisfying 1-query
selective normal, index and message hiding security properties as per Defini-
tions 2.3 to 2.5. Additionally, the size of ciphertexts in the AugBE system is
`+ ˜̀, where ` = `(λ,N) and ˜̀= ˜̀(λ, κ) are the sizes of broadcast mixed FE and
ABE ciphertexts, respectively.

5 Building Broadcast Mixed FE for Comparison from
PCPRFs

In this section we present our construction of a broadcast mixed FE for compari-
son with 1-query security based on almost-key-homomorphic private constrained
PRFs.

In the following, if we let N ∈ N (which is the number of users), we will
consider N+1 tuples of PCPRF keys indexed by {0, . . . , N}. This can be viewed
as adding a dummy user “0” who is never authorized to decrypt, so that no sums
are empty (and in particular our scheme makes sense even if the set S ⊆ [N ]
is [N ]). As a result, in this whole section, whenever we consider a sum, unless
specified otherwise, the set of indices live in {0, . . . , N}; for instance, for S ⊆ [N ],
j /∈ S will stand for j ∈ {0, . . . , N} \ S.

Let PCPRF = (PPGen, SKGen, Constrain, Eval, Constrain.Eval) along with a
family of constraints C be a PCPRF (Definition 2.8) satisfying B-almost-key
homomorphism. For all j ∈ Dλ, let Cj : i 7→ [i ≥ j] be a circuit that outputs 1
if i ≥ j and 0 otherwise. We will suppose that for all j ∈ Dλ, Cj ∈ Cλ, that is
Cj are valid constraints for the PCPRF. Let |Cλ| = poly(λ) be a common size
for such circuits.

We define our broadcast mixed FE scheme as follows:

Setup(1λ, 1N ) → (pp,msk, {sk1, . . . , skN}): The setup algorithm first samples
PP ← PPGen(1λ,Fλ). It then generates for all 0 ≤ i ≤ N , t ∈ [λ] and
b ∈ {0, 1}: SKi,t,b ← SKGen(1λ,PP).
It then sets pp = PP, msk = {SKi,t,b}0≤i≤N,t∈[λ],b∈{0,1}, and for all i ∈ [N ]:
ski = {i, Eval(SKj,t,b, i)}j 6=i,t∈[λ],b∈{0,1} .
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Enc(pp, S) → ct. The normal encryption algorithm first picks a random tag
z ← {0, 1}λ. It then runs the PCPRF simulator: CK ← Sim(1λ, 1|Cλ|), and
sets ct = (z,CK).

SK-Enc(msk, S, j)→ ct. The secret key encryption algorithm first samples z←
{0, 1}λ. It computes:

SKS,z =
∑

i/∈S,t∈[λ]

SKi,t,zt ,

(where the sum denotes the group operation over PCPRF keys). Note that
this sum is never empty (as i /∈ S stands here for i ∈ {0, . . . , N} \ S, so
that it always contains the secret keys SK0,t,b for all t ∈ [λ], b ∈ {0, 1}). The
algorithm computes the constrained key

CKS,z,j ← Constrain(1λ,PP,SKS,z, Cj),

where Cj is defined above. It finally sets ct = (z,CKS,z,j).

Dec(ski, S, ct)→ {0, 1}. The decryption algorithm parses ct as (z,CK). If i /∈ S
where i is the secret key index, the decryption algorithm outputs 1.

Otherwise, it computes Constrain.Eval(CK, i), and outputs:

{
0 if ‖Constrain.Eval(CK, i)−

∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i)‖ ≤ (N + 1) · λ ·B

1 otherwise.

We now state the correctness and security of the above construction. The
proofs are included in the full version of the paper.

Theorem 5.1. Suppose PCPRF = (PPGen, SKGen, Constrain, Eval,
Constrain.Eval) along with a constraint family C and range Rλ is a PCPRF (Def-
inition 2.8) satisfying B-almost-key homomorphism for a norm ‖ · ‖. Suppose
furthermore that Prx←Rλ [ ‖x‖ ≤ (N + 1)λB ] ≤ negl(λ), that is, random ele-
ments in the range of the PCPRF have large norm. Then the above construction
satisfies correctness.

Theorem 5.2. If PCPRF = (PPGen, SKGen, Constrain, Eval, Constrain.Eval)
along with a constraint family C is a PCPRF (Definition 2.8) satisfying B-
almost-key homomorphism, then the above construction is a secure BMFE for
comparison satisfying 1-query selective index indistinguishability and 1-query se-
lective mode indistinguishability, as per Definitions 3.1 and 3.2.

6 Efficiency

In this section we analyze the efficiency of our different constructions, in order
to evaluate the efficiency of our broadcast and trace scheme.
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6.1 Efficient PCPRF for Comparison Constraints

We first focus on the PCPRF used in Section 5. Looking ahead, it will be crucial
that the resulting BMFE has short ciphertext and efficient decryption. More
precisely, we will require to have the BMFE to have decryption in NC1 while
having as short ciphertexts as possible.

Looking at our construction in Section 5, we first need to analyze the com-
plexity of evaluating a PCPRF constrained evaluation for comparison constraints
(which is performed during BMFE decryption, and therefore required be in
NC1), as well as the size of the constrained keys (which are the BMFE ci-
phertexts). We do so by analyzing and tailoring the PCPRFs from the literature
( [CC17,CVW18b]) for our needs.

Almost-key-homomorphic PCPRFs from LWE. For our constructions, we will
focus on constructions of PCPRFs from LWE supporting (polynomial length)
branching program constraints [CC17,CVW18b], where the range is Rλ = Zm×mp

where p is the output modulus of the PRF, and m = poly(n) where n is the lattice
dimension in the underlying learning with errors assumption. They additionally
satisfy 1-almost-key-homomorphism with the infinity norm ‖ · ‖∞ [CVW+18a].
For more details on the parameters, we refer the reader t the relevant sections
of [CC17,CVW18b].

Again, we will be most interested in both the size of the constrained keys
and the complexity of computing a constrained evaluation. In the constructions
of [CC17, CVW18b], if we consider branching programs of constant width and
length h ∈ N, then constrained keys consist of a set of 2h matrices in Zm×mq and
a single matrix in Zn×mq , where m = poly(n) and n and q are respectively the
lattice dimension and modulus of the underlying learning with errors assumption.
In other words, the constrained keys are of the form:

CK = (A, {Di,b}i∈[h],b∈{0,1}),

where A ∈ Zn×mq and Di,b ∈ Zm×mq for all i ∈ [h], b ∈ {0, 1}, and where
m = poly(n), and q is exponential in h (for correctness). Constrained evaluation
is performed by multiplying elements in the constrained key, namely the matrix
A, and a subset of h matrices determined by the input to the evaluation. For an
input x ∈ {0, 1}`, we have:

Constrain.Eval(CK, x) =

A ·
∏
i∈[h]

Di,x(i mod `)


p

, 9

where, for q > p ≥ 2, b·ep : Zq 7→ Zp rounds element in Zq to Zp, that is, bxep =
bx · p/qe where b·e denotes the usual rounding to the nearest integer; and b·ep
9 Later, we will need the index-to-input map ι of the branching program to be inde-

pendent of the program; we consider here ι : i 7→ (i mod `) for simplicity. This is
without loss of generality up to a blow-up in the branching program length by a
factor `.
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extends over matrices by applying the rounding pointwise. In particular, for m =
poly(n) and q ≤ 2poly(n), such a computation can be implemented by a circuit of
depth O(log h · log n) (by computing the h matrix products using a binary tree).
Actually, as both matrix multiplication and rounding (which is computable using
integer multiplication, division and rounding) can be performed in TC0 in this
regime (e.g. [RT92]), constrained evaluation can be performed in TC1.

Theorem 6.1 (PCPRFs from LWE [CC17, CVW18b]). Assuming the
hardness of LWE (with appropriate parameters), there exists PCPRFs satisfy-
ing 1-almost-key-homomorphism supporting branching program constraints. Ad-
ditionally for any class of branching program constraints of width O(1) and length
h ≤ poly(n), the constrained keys have size O(h · poly(n) · log q), and constrained
evaluation can be computed in TC1, where n and q are respectively the lattice
dimension and modulus of the underlying LWE assumption.

Pre-processing the constrained evaluation. As noted earlier, we will crucially need
to be able to compute constrained evaluations in NC1. We note here that in the
constructions of [CC17,CVW18b] of PCPRFs for branching program constraints
(with index-to-input map independent of the program), we can improve the
complexity of computing a constrained evaluation by pre-process the constrained
keys. Recall that constrained keys contains matrices {Db

i}i∈[h],b∈{0,1}, where h ∈
N is the length of the branching program. Let 0 < ε < 1 be a fixed constant, such
that 1/ε ∈ N, and that εh ∈ N (this is without loss of generality up to padding
the branching program with a constant number ≤ 1/ε of dummy levels). To
pre-process the constrained keys, we pre-compute all the products of blocks of
εh matrices.10 In other words, for all y ∈ {0, 1}εh and all j ∈ {0, . . . , 1/ε − 1},
the pre-processing phase computes:

Mj,y =

εh∏
i=1

Djεh+i , yi mod `
.

For x ∈ {0, 1}`, j ∈ {0, . . . , 1/ε− 1}, let y(j) = (xjεh+1 mod `, . . . , x(j+1)εh mod `)
be the j-th block of εh consecutive coordinates of x, ranging from jεh+1 mod `
to (j+1)εh mod `. Then, given those 2εh ·1/ε matrices {Mj,y}0≤j<1/ε, y∈{0,1}εh ,

and the original matrix A, one can compute for all x ∈ {0, 1}`:

Constrain.Eval(CK, x) = bA ·
1/ε−1∏
j=0

Mj,y(j)ep.

In other words, given the pre-processed constrained key, constrained evaluation
can be performed by multiplying the appropriate (1/ε) pre-computed block prod-
ucts together with A (and rounding). In particular, this only requires a constant
number of matrix muliplications (as opposed to h originally). This is at the cost
of using a pre-processed constrained key consisting of 2εh× 1/ε matrices (which
can seen as pre-processed constrained keys).

10 We rely here on the fact that the index-to-input ι is independent of the branching
program.
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Efficient construction for comparison constraints. We note now that the BMFE
of Section 5 does not need to support general constraints, but only comparison
functions. Recall that for a parameter N ∈ N and for ind ∈ [N ], the function
Pind, on input i ∈ [N ], outputs 1 if i ≥ ind and 0 otherwise.

However, naively invoking Barrington theorem [Bar86] to obtain a generic
branching program computing Pind, only yields a branching program of length
log2(N), which makes the pre-processing described above output super -
polynomially many matrices. Instead, we directly build a branching program
for comparison constraints, with constant width and length O(logN), which
will be good enough for our purposes.

Lemma 6.2. Let N ∈ N be an integer. Then for all ind ∈ [N ], there exists a
(non-permutation) branching program of width 3 and length logN+2 computing
Pind (defined as Pind(i) = 1 if i ≥ ind and 0 otherwise), with index-to-input map
ι is independent of ind.

We exhibit such a branching program in the full version of the paper. Note
that this particular branching program is not a permutation branching program,
which excludes the PCPRF of [CC17]. Fortunately [CVW18b] does support gen-
eral (non-permutation) branching program constraints. Now, for 0 < ε < 1 being
a fixed constant, pre-processing the constrained keys results in Nε matrices of
size poly(n) log q (where n and q are respectively the lattice dimension and the
modulus of the underlying LWE assumption), while now multiplying 1/ε matri-
ces can be performed using a circuit of depth O(log(1/ε) log(n)). The following
Lemma follows by the fact that rounding can be computed in TC0 ( [RT92]).

Lemma 6.3. Let N ∈ N be an integer and 0 < ε < 1 be a constant. Assum-
ing the hardness of LWE (with appropriate parameters), there exists a PCPRF
for comparison constraints (as defined above) satisfying 1-almost-key homomor-
phism. Furthermore, for Cλ = {Pind}ind∈[N ] (defined above), that is if the con-
straints compare integers in [N ], then the constrained keys have size Nε ·poly(n)
(where n is the lattice dimension in the underlying LWE assumption) and con-
strained evaluation is in NC1.

6.2 Wrapping-up

Efficiency and parameters of the BMFE. We are here most interested in the
size of a BMFE ciphertext and its decryption complexity. First, adding polyno-
mially many poly(n)-bit numbers, and comparing poly(n)-bit numbers can be
done in TC0, and therefore in NC1. Therefore, combined with Lemma 6.3, we
obtain that BMFE decryption from Section 5 can be evaluated in NC1, as sum-
ming PCPRF evaluations, taking their infinity norm and comparing them to the
threshold are in NC1as well.

Alternatively, we can directly use the PCPRFs of [CVW18b] (without pre-
processing the constrained keys). Combined our branching program for compar-
ison (Lemma 6.2), this gives a BMFE with ciphertext size logN · poly(λ) with
decryption in TC1.
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Lemma 6.4. Suppose N = poly(λ), and let ε be a constant such that 0 <
ε < 1. Assuming the hardness of LWE with (sufficiently large) quasi-polynomial
modulus-to-noise ratio, there exists:

– a BMFE for comparison with ciphertext size Nε · poly(λ) and decryption in
NC1;

– a BMFE for comparison with ciphertext size log(N) · poly(λ) and decryption
in TC1.

For the parameters of the LWE assumption, we can take those of [CVW18b,
Remark 7.2] for branching programs of width w = 3 and length h = logN + 2,
with the additional requirement that p ≥ C ·Nλ for some fixed constant C > 1
(e.g. C = 1.1), which we use to argue correctness of the BMFE. In particular, for
N = poly(λ), this corresponds to assuming the hardness of LWE with a quasi-
polynomial modulus to noise ratio. Looking ahead, this will be parameters of
the LWE assumption of our final broadcast and trace scheme.

Efficiency of the broadcast and trace. The final broadcast and trace system di-
rectly inherits the ciphertext size from the augmented BE. Using the construction
from Section 4, the resulting augmented BE scheme inherits its ciphertext size
from its underlying ABE, assuming the ABE support the class of predicates
Ci,bmfe.ski(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.ski, S, bmfe.ct) = 1) defined
by the BMFE decryption procedure.

In conclusion, assuming the ABE has succinct ciphertexts of size indepen-
dent of their attribute, then our broadcast and trace system has ciphertext size
dominated by the size of the BMFE ciphertexts. Overall, Combining Lemma 6.4,
and Theorem 2.7, we get the desired result:

Theorem 6.5. Let N = poly(λ), and let ε be a constant such that 0 < ε < 1. As-
suming the hardness of LWE with (sufficiently large) quasi-polynomial modulus-
to-noise ratio, and:

– assuming that the N -DBDHE assumption holds, there exists a broadcast and
trace scheme with ciphertext size Nε · poly(λ).

– assuming the existence of an ABE for TC1 predicates with ciphertext size
polylogarithmic in its attribute length, there exists a broadcast and trace
scheme with ciphertext size poly(logN,λ).
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