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Abstract. The Fiat-Shamir transformation is a useful approach to build-
ing non-interactive arguments (of knowledge) in the random oracle model.
Unfortunately, existing proof techniques are incapable of proving the se-
curity of Fiat-Shamir in the quantum setting. The problem stems from
(1) the difficulty of quantum rewinding, and (2) the inability of current
techniques to adaptively program random oracles in the quantum setting.

In this work, we show how to overcome the limitations above in many
settings. In particular, we give mild conditions under which Fiat-Shamir
is secure in the quantum setting. As an application, we show that ex-
isting lattice signatures based on Fiat-Shamir are secure without any
modifications.

1 Introduction

The Fiat-Shamir transformation is an approach to remove interaction in a pro-
tocol by using a hash function, by setting one party’s messages to be hashes of
the communication transcript. The transformation has many important applica-
tions, from removing interaction from proofs to constructing efficient signatures.

With the growing threat of quantum computers, there is great need for so-
called “post quantum” cryptosystems, those secure against quantum attack. In
the case of signatures, the most efficient constructions [DKL+18] use the Fiat-
Shamir transformation [FS87]. Fiat-Shamir is a general tool to remove interac-
tion from interactive protocols using a hash function.

Classically, the security of the transform is proved in the classical random
oracle model (ROM) [BR93, PS96]. Here, the hash function is replaced with a
truly random function that can only be evaluated by query access. As argued by
Boneh et al. [BDF+11], the correct way to model random oracles in the quantum
setting is to allow quantum queries to the random oracle. While many techniques
have been developed to prove security in the quantum ROM [BDF+11, Zha12,
BZ13, Unr17, TU15, Unr15, KLS18, Zha18], to date the post-quantum security
of general Fiat-Shamir remains unresolved.

In fact, there has been some compelling justification for this state of affiars.
Dagdelen, Fischlin, and Gagliardoni [DFG13] demonstrate that there cannot be a
reduction with certain natural features (discussed below) which capture many of
the existing techniques. What’s more, Ambainis, Rosmanis, and Unruh [ARU14]
show that many classical results about Fiat-Shamir that rely on rewinding are



simply false in the quantum setting. In particular, they show that special sound-
ness is insufficient to prove the security of Fiat-Shamir in the quantum ROM.

As a result, authors have proposed various ways to strengthen the underlying
protocol so that post-quantum Fiat-Shamir can be proved (e.g. [DFG13, Unr17,
KLS18]) or use an alternative transformation altogether (e.g. [Unr15]). However,
in all cases, this leads to a less efficient and less elegant scheme.

1.1 Summary of Results

In this work, we revisit Fiat-Shamir, showing that in many cases Fiat-Shamir
can be successfully applied for post-quantum security without modifying the un-
derlying protocols.

Our results come in two parts. The first set of results concerns the Fiat-
Shamir transformation itself, resurrecting standard classical results in the quan-
tum ROM:

– If the underlying protocol is an argument (of knowledge), then Fiat-Shamir
gives an argument (of knowledge).

– If the underlying protocol is a secure identification scheme, then Fiat-Shamir
gives a secure signature scheme.

These results do not require making any additional assumptions on the un-
derlying protocol than what is needed classically (other than, of course, needing
security to hold against quantum adversaries).

These results overcome the barrier of Dagdelen, Fischlin, and Gagliardoni [DFG13]
by giving a proof that is outside the class of natural reductions they consider. On
the other hand, the results side-step the rewinding barrier of Ambainis, Rosma-
nis, and Unruh [ARU14], as the rewinding barrier already applies to the security
of the underlying protocol.

Our second set of results concerns overcoming the rewinding barrier of [ARU14].
Classically, 2-soundness/2-extractability1 are often used to prove that a proto-
col is an argument/argument of knowledge. While [ARU14] show that in general
these conditions are insufficient in the quantum setting, we show the following:

– We define a notion of collapsing for a protocol which is similar to the notion
of collapsing for hash functions [Unr16b].

– Abstracting a result of Unruh [Unr16b], we show that the usual classical
results carry over to the quantum setting, provided the protocol is col-
lapsing. That is, 2-soundness plus collapsing implies an argument, and 2-
extractability plus collapsing implies an argument of knowledge.

– Next, we give two weaker conditions, either of which are sufficient for a
protocol to be collapsing. The first is that the protocol has an associated
lossy function with certain properties. The second is that the protocol is
separable, a new notion we define.

1 2-extractability is often called “special soundness” in the literature

2



– Finally, we then show that the lattice-based protocol of Lyubashevsky [Lyu12]
is separable under the LWE assumption. Piecing together with our other re-
sults, we demonstrate that Lyubashevsky’s protocol is secure in the quantum
random oracle model without any modifications. These results naturally ex-
tend to protocols built from this protocol, such as [DKL+18].

A key feature of our results is that they can be used as a black box with-
out requiring the complicated details of quantum computing. In particular, the
needed security properties are 2-soundness/2-extractability and associated lossy
functions/separability. These properties are essentially classical in nature (ex-
cept for having to hold with respect to quantum adversaries) and can be proved
using classical proof techniques, and trivially porting them into the quantum
setting. All of the quantum difficulties are hidden inside our proofs.

1.2 Technical Details

A Quantum ROM Fiat-Shamir Proof Our first result is to prove the se-
curity of Fiat-Shamir in the quantum random oracle model, showing that Fiat-
Shamir is an argument (of knowledge) assuming the original protocol is.

Fiat-Shamir operates on a sigma protocol, which is a three-message protocol
with a public-coin verifier. The prover has some witness w for a statement x. In
the first message, the prover sends a commitment a. Then the verifier chooses
a random challenge c which it sends back. Finally, the prover comes up with a
response r. The verifier then looks at the transcript (a, c, r), which it accepts or
rejects. The protocol is an argument if no (computationally bounded) malicious
prover can cause the verifier to output 1 in the case x is false. The protocol is an
argument of knowledge if, moreover, from any computationally bounded prover,
a valid witness w can be extracted.

Honest verifier zero knowledge means that it is possible to generate valid
transcripts (a, c, r) without knowing a witness. Note that this generation proce-
dure typically chooses a based on c and maybe r; as such a generation procedure
does not allow one to break the soundness of the argument.

The Fiat-Shamir transformation, using a hash function H, simply replaces
the verifier’s challenge with c = H(a). Thus the prover can generate the entire
interaction for himself. The hope is that the hash function prevents a dishonest
prover from using the zero knowledge property to generate the transcript, by
forcing c to be determined after a. In fact, in the classical random oracle model,
this idea can be turned into a proof, showing how to turn any adversary for
Fiat-Shamir into an adversary for the original sigma protocol.

In the classical proof, the reduction simulates the random oracle on the fly,
keeping track of the points the adversary queries and programming the random
oracle to fresh random points with each query. It is straightforward to prove that
if the adversary eventually outputs a valid argument (a, c = H(a), r), then one
of the random oracle queries must have been on a. If the reduction knew which
query this was at the time of that query, it sends a as its commitment to the sigma
protocol. When it receives c from the verifier, it programs H(a) = c instead of
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choosing its own random value. Since the verifier chose c at random anyway, this
is undetectable to the adversary. Finally, when the adversary outputs (a, c, r),
the reduction simply sends r to the verifier, which will pass. Now, the reduction
does not know which query will correspond to the adversary’s output when the
query is made, so the adversary simply guesses a query at random, and aborts
if the guess turned out wrong. The resulting adversary still succeeds with non-
negligible probability.

This proof strategy is problematic once we consider quantum queries to the
random oracle. The classical on-the-fly simulation strategy of random oracles
does not work once quantum queries are allowed. The reason is that the sim-
ulation strategy requires recording the adversary’s queries; if the queries were
quantum, the result is effectively a measurement of the adversary’s query. Such
a measurement is easily detectable. A mischievous adversary could test for such
a measurement, and refuse to keep working if detected.

This is a universal problem in the quantum ROM; as such, the typical solution
is to avoid on-the-fly simulation. Instead, the function is set once and for all to
be a fixed function chosen from a careful distribution [BDF+11, Zha12, BZ13,
Unr17, TU15, Unr15, KLS18]. The reduction then answers the queries with this
function, without trying to record anything about the adversary’s query. By
designing the function to be indistinguishable from a truly random oracle, the
adversary cannot tell that it was given a different oracle.

However, while such fixed functions can be made to work in a wide variety
of settings, they seem incapable of proving the security of Fiat-Shamir. Indeed,
an impossibility of this sort is formalized by [DFG13]. The issue is that a Fiat-
Shamir proof needs to extract a from the adversary’s queries and feed it into its
own verifier. But such an extraction constitutes a detectable measurement. Even
worse, it then needs to program the challenge c into the oracle, but this might be
happening after many queries to the random oracle. Therefore, it seems crucial
for a proof to adaptively program the random oracle.

Compressed Oracles. Toward resolution, we start with a very recent technique
that allows for on-the-fly simulation of random oracles in the quantum setting:
Zhandry’s compressed oracles [Zha18].

Zhandry’s key observation is that some sort of on-the-fly simulation analo-
gous to the classical simulation is possible if care is taken to implement the oracle
correctly. Concretely, Zhandry simulates the random oracle as a stateful oracle
which stores a quantum superposition of databases D, where a database is just
a list of input/output pairs (x, y). A database intuitively represents a partial
specification of the oracle: if a pair (x, y) is in the database, it means the oracle
on input x is set to y, whereas if there is no pair that begins with x, it means
the oracle is un-specified at x. Since the oracle actually stores a superposition of
databases, a point x can be in superposition of being specified and unspecified.
Originally, the database starts out empty.

In the classical setting, on query x, the oracle would look up x in the database
and add a pair (x, y) for a random y if x was not found. Afterward (since there
is now guaranteed to be a pair (x, y)) it will output y.

4



In the quantum setting, something similar happens. The following description
is slightly inaccurate, but gives the high-level idea. On query x, very roughly,
if x is not found in the database, a pair (x, y) is added, where y is in uniform
superposition over all possible y values. Recall that the query can be quantum,
so this addition to the database is happening in superposition. Then once x is
guaranteed to be specified, the query is answered (again in superposition).

Now, an important difference from the classical setting is this: in order to
maintain perfect indistinguishability from a truly random oracle, a particular
test is performed on the database after answering the query. This test determines
whether the adversary maintains any knowledge of the oracle at input x. If not,
the pair (x, y) is removed from the database.

The above description is informal and slightly inaccurate. But nonetheless
by carrying out the operations correctly, Zhandry shows that this approach can
be made to correctly simulate a random oracle.

For us, Zhandry’s simulation gives a glimmer of hope. Indeed, we notice
that the oracle is now recording information about which points the adversary is
interested in. Therefore, the database has all the information we need to generate
a. Unfortunately though, there is a problem: in order for the reduction to win
against the verifier, it must produce a classical a. However, in order to produce a
classical a, we must measure the adversary’s database. But such a measurement
will affect the state of the oracle, and can be detected by the adversary. Indeed,
it is straightforward to devise adversaries that can catch such a measurement
and refuse to keep running.

Our New Extraction Technique. First, we observe that when the adversary out-
puts (a, c, r), the first thing the verifier does is to check that c = H(a). If the
adversary succeeds, it means that the adversary knows about the value of H at
a. But a lemma of Zhandry [Zha18] shows that in the compressed oracle simu-
lation, the pair (a, c) must be in the oracle’s database (whp). By the end of the
experiment, a has been measured (since the adversary produces a classical out-
put) which roughly has the effect of measuring a in the oracle’s database. Since
the oracle’s database starts out empty, this must mean that (a, c) was added at
some query. One may hope that this means it is possible to measure a random
query to get a.

Unfortunately, things are not so straightforward. The problem is that a might
not have been added to the database at a well-defined point in time. It could be
that each of the adversary’s queries is on a superposition that contains a, and
only after making several queries does the adversary have enough information
to determine H(a).

Now, as a thought experiment, consider running the adversary, and after
each query measuring the database in the compressed oracle. We will define the
adversary’s history as the vector of resulting databases (D1, . . . , Dq). Suppose
the adversary still was able to output (a, c, r) that passed verification. Then we
know that (a, c) ∈ Dq, and so there must be some point i at which a first enters
Di. But this means the adversary actually queries on input a for query i. This
means we could use the classical strategy for extracting a.
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Unfortunately, measuring all the queries would of course destroy the adver-
sary’s state, making it potentially unlikely the adversary would still pass verifica-
tion. The good news is that we can show the probability of passing verification is
at least non-zero. Indeed, Boneh and Zhandry [BZ13] give a measurement lemma
which says that if a measurement has T possibilities, it can only reduce the ad-
versary’s success probability by at most a multiplicative factor of T . Therefore,
the adversary still passes with probability at least the reciprocal of the number
of database histories. Of course, the number of histories is exponentially large, so
this is not useful yet. We note that the measurement lemma is tight in general.

However, we can use this notion of a history to help us achieve an extraction
technique with a higher success probability. For a history h, let |φh〉 be the final
state (where the queries were measured as above) of the algorithm conditioned
on observing the history h. Recall that quantum states are complex vectors of
unit norm. In contrast, |φh〉 will not be normalized, but instead have norm whose
square is equal to the probability of observing h.

Our key idea is to group histories in together, and apply a generalization of
the measurement lemma to the groups of histories. We show that a polynomial
number of groups of histories are possible, leading to a non-negligible chance of
success.

In more detail, we observe that the adversary’s final state, if we did not
measure the history, is exactly

∑
h |φh〉 where the sum is over all possible his-

tories. This is similar to the classical case, where the adversary’s probability
distribution is the sum of the conditional probability distributions for each his-
tory, weighted by the probability of that history. The key difference is that in
the quantum setting, the relation between states and probabilities distributions
requires squaring the amplitudes.

Next, we partition the histories into a polynomial number of sets S1, . . . , Sq.
Set Si consists of all histories (D1, . . . , Dq) for which:

– Di−1 does not contain a
– Di through Dq all contain a

For the clarity of exposition, we assume that the adversary always outputs
a successful tuple (a, c, r), meaning we know that a is in Dq. Therefore, Dq will
contain a in all histories. As such, the sets Si in fact do partition the space of
all possible histories. In the more general case where the adversary may fail, we
would include a set S⊥ of histories where Dq does not contain q.

Now we consider the states |φSi〉 =
∑
h∈Si |φh〉. We note that

∑
i |φSi〉 is

exactly the adversary’s final state, since the Si form a partition. By generalizing
the Boneh-Zhandry measurement lemma, we can show that the |φSi〉 must result
in (a, c, r) which pass verification with non-negligible probability.

Therefore, our goal is to extract a from the adversary’s query, and then hope
that the resulting state is |φSi〉 for some i. First, we choose a random i. For that
query, we measure two things:

– Whether that query resulted in a value being added to the database
– And if so, we measure that value to get a guess a′ for a
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If successful, this corresponds to the requirement that histories have Di−1 which
did not contain a and Di contained a. If unsuccessful, we abort. Then, for each
subsequent query, we measure if a′ is still in the database, corresponding to
the requirement that a ∈ Dj for all subsequent databases; if not we abort. At
the end, we test that the value a′ we measured happens to match the a in the
adversary’s output (a, c, r). If a′ = a, the end result is exactly the state |φSi〉,
since our measurements remove all histories except those in Si.

We show that this procedure succeeds with non-negligible probability, and
then by applying the generalized measurement lemma we get that (a, c, r) passes
verification with non-negligible probability. The result is that we can actually
extract the a at query time, and still have the adversary succeed in producing a
valid (a, c, r), just as in the classical setting.

Our New Programming Technique. Unfortunately, the above is not quite suf-
ficient for a reduction. After all, while we can now query the verifier on a, it
is unclear what it should do with the response c. It could program H(a) = c
by adding the pair (a, c) to the database (recall that H was previously un-
programmed at a since a /∈ Di−1). However, this is different from what the
compressed oracle would have done: the compressed oracle would have added a
uniform superposition over c of (a, c) pairs.

In particular, the information the compressed oracle uses to determine if a
pair should be removed is stored in the phase information of the output registers
in the database. By inserting a classical value c into the output, there is no
phase information for the compressed oracle to use. Actually, this will cause the
compressed oracle to almost always decide to keep the value in the database,
even if it should have been removed.

A natural solution is: in query i once we have extracted a, switch the oracle
database for input a to be permanently “uncompressed”. On all other inputs,
the database will behave as before, but on the special input a, it will no longer
run the check to remove a from the database.

Such a modification can indeed be made to Zhandry’s compressed oracle,
allowing for programming a random c. However, it does not quite work for us.
Remember that our extraction technique above required testing whether a was in
the database after query i. But this test needed to be applied to the original com-
pressed oracle, not the new oracle which doesn’t compress a. In particular, the
new compressed oracle will always report that a is in the database. Roughly this
means our extraction captures all histories where a was added to the database
at query i, even those where it was subsequently removed and added again.

Let Ti be the set of histories of this form. Notice that the Ti’s do not partition
all histories: the multi-set obtained by unioning the Ti contains each history
multiple times. In fact, the number of times each history is included is equal to
the number of times a is added to the database in that history. Some histories
will add a many times.

In order to overcome this issue, we need a way to partition the set of histories
such that the set of histories for query i is independent of the history after the
query. This corresponds to, after query i, no longer testing whether a is in the
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database. If we do not need such a test, we can switch the oracle at a to be
uncompressed and then program a random c.

One thought is to reverse the sets Si. That is, let S′i be the set of histories
where a is not in the history at any query up until i, and then is added at query
i; we do not care after i if a is added or removed from the database. These
S′i certainly partition the set of all histories, but unfortunately they cannot be
sampled efficiently. The problem is that a is not known until it is added to the
database in query i; yet, sampling histories in S′i requires knowing a at the very
beginning in order to test for a’s presence from the start.

Our solution is to try to combine the features of Si and S′i so that we do not
need to know a at the beginning, but also do not need to test for a’s presence
at the end. Toward that end, we define sets Ti,j,k. A history is in set Ti,j,k if:

– a is added to the database at query i

– a remains in the database until query j, at which point it is removed

– a remains absent from the database until query k, at which point it is added
a second time.

These sets can be easily sampled: at query i, we measure to learn a guess a′

for a. Then we keep testing to make sure that a′ is in the database until query
j, at which point we make sure that a′ is removed. Then we keep testing that a′

is absent until query k, when it is added back in. Once we get to query k, the
database is now programmed at point a′, and we will never need to check for the
presence of a′ in the database again. Therefore we can change the compressed
oracle to be uncompressed at a′, and simply program it’s value to c. When the
adversary finally outputs (a, c, r), we test if a′ = a; if so, the adversary’s state is
exactly the collection of histories in Ti,j,k.

The problem, of course, is that these Ti,j,k also do not partition the space of
all histories. In fact, if a history adds a a total of ` times, it will appear in `− 1
histories. Therefore the multi-set obtained by unioning the Ti,j,k contains each
history equal to the number of times a is added, minus 1.

Our final idea is to observe that if we take the multiset derived from the
Ti’s, and subtract the multiset derived from the Ti,j,k’s, we will get every history
exactly once. That means if we define |φT 〉 =

∑
h∈T |φh〉, we have that

|φ〉 =

(∑
i

|φTi〉

)
−

∑
i,j,k

|φTi,j,k〉


Analogous to the case of the Si’s this allows us to sample a |φTi〉 or |φTi,j,k〉

— which let us extract a and program c — and then have the adversary give us
a valid (a, c, r) with non-negligible probability. The reduction then simply sends
r and convinces the verifier. The end result is any adversary for Fiat-Shamir can
be turned into an adversary for the original interactive protocol, completing the
proof of security.
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How to Rewind an Argument For our next set of results, we show how to
rewind a sigma protocol to allow for proving that the protocol is an argument
(of knowledge). We note that [ARU14] show that 2-soundness/2-extractability
is insufficient. Therefore, we aim to identify some mild extra conditions that will
allow for the proof to go through.

The difficulty in proving soundness comes from the difficulty of quantum
rewinding, which was first observed by Watrous [Wat06]. In a classical rewinding
proof, the adversary commits to a, gets a challenge c1 from the verifier, and
responds with r1. Then, the adversary is rewound to just after a is produced. The
adversary is then run on a different challenge c2, which causes it to give a different
response r2. Then the tuple (a, c1, r1, c2, r2) either breaks 2-soundness, or in
the case of 2-extractability can be used to generate a witness. 2-soundness/2-
extractability are typically easy to prove using standard tools.

In the quantum setting, a problem arises. Namely, while the adversary is
quantum, the r1 it produces during the first run is classical. This means that
r1 must be measured. But this measurement in general cannot be undone. As
such, it is in general impossible to rewind back to the first message to try
again. [ARU14] formalizes this observation by showing (relative to an oracle)
that there are schemes for which 2-soundness/2-extractability are not enough to
prove security.

The natural solution, and the approach we take in this work, is to show that
for some schemes rewinding is possible. Basically, in the absence of measurements
quantum computation is reversible. Therefore we know that if r1 is not measured,
then the adversary can be rewound and it will succeed in producing r2. What we
need to show is that measuring r1 does not significantly impact the probability
that the adversary will successfully produce r2.

Unruh [Unr12] shows that if a sigma protocol additionally satisfies the notion
of strict soundness — meaning that for every a, c there is unique valid r — then
rewinding is possible. The idea is that you can leave r1 in superposition and
not measure it. Then, just the fact that (a, c1, r1) passed verification means that
the superposition over r1 collapses to the unique valid r1. Therefore, measuring
r1 has no additional affect over measuring whether verification succeeded. Of
course, measuring whether verification succeeded will also affect the probability
r2 passes, but Unruh shows that the probability is not too low.

Collapsing Protocols. Unfortunately, strict soundness is undesirable in practice,
as it leads to inefficient schemes. Instead, Unruh [Unr16b] shows that for a par-
ticular protocol built from an object known as a collapse-binding commitment,
rewinding is possible even though there are multiple valid r. Collapse-binding
commitments can in turn be built from a so-called a collapsing hash function.

We abstract Unruh’s ideas, defining a general notion of collapsing for sigma
protocols. Roughly, a collapsing sigma protocol is one where there may be many
valid r’s for a given (a, c), but the adversary cannot tell whether a superposition
of valid r’s is measured or not. This is exactly what Unruh’s protocol guarantees,
and is exactly what is needed to be able to rewind in the setting of many r’s.
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By following Unruh’s techniques, we show that collapsing is a sufficient extra
condition to get the classical results to carry though to the quantum setting

But now we face another challenge: how do we construct a collapsing sigma
protocol? We can look for techniques for building collapsing hash functions or
commitments and see if they apply. However, the techniques are sparse. [Unr16b]
only shows that a random oracle is collapsing, and a more recent work of Un-
ruh’s [Unr16a] gives a construction using lossy trapdoor functions (LTDFs).
However, trying to embed a LTDF in the sigma protocol construction will result
a less efficient scheme, which will be important for the application to signatures.
In particular, Lyubashevsky’s scheme is inherently lossy, and moving to a regime
where there is an injective mode will significantly increase parameter sizes.

Associated Lossy Functionss. Our resolution is to devise a new technique for
proving that a sigma protocol (or hash function) is collapsing. They key idea is
that the protocol itself does not need to be lossy, just that there is an associated
lossy function (not necessarily trapdoored) with a useful relationship to the
protocol.

In more detail, an associated lossy function for a sigma protocol consists
of two sampling procedures GenL,GenI . GenI(a, c) takes as input the first two
messages of the protocol, and outputs a function f . It guarantees that over the
space of valid r, f is injective. In contrast, GenL(a, c) samples a lossy mode f ,
which is guaranteed to be constant over the space of valid r. In either case, no
guarantees are made on invalid r. Lastly, we require that for any a, c, the two
modes are computationally indistinguishable (even if the attacker knows a, c).

Any scheme with an associated lossy function is collapsing. Indeed, given a, c
and a superposition over valid r, sample a lossy mode f . Then measuring f(r)
has no effect on the state (since f is constant over the set of valid r). Then
we switch f to an injective mode and still measure f(r). By the computational
indistinguishability of the modes, this change is undetectable. Finally, in the
injective mode, f(r) information-theoretically contains all information about r,
so measuring f(r) is equivalent to measuring r. This means we can measure r
without detection.

Next, we observe that typical lattice-based sigma protocols have associated
lossy functions. For example, Lyubashevsky’s signature scheme [Lyu12] uses a
sigma protocol where the set of valid responses r are short vectors such that
A ·r = u mod q where A is a short wide matrix that is part of the public key and
u depends on a, c. We will define our associated lossy function to be the natural
lossy function built from the Learning With Errors (LWE) problem [AKPW13].
A lossy mode f is sampled by choosing a tall skinny matrix C, a matrix E with
short entries, and computing B = C · A+ E mod q. The function fB(r) is then
bB·r mod qe, where b·e represents a suitably course rounding. Since r is short and
E has short entries, we will have that B ·r mod q ≈ C ·A ·r mod q = C ·u mod q,
which is independent of which valid r is used.

For the injective mode, we simply choose B at random mod q. By choosing
parameters correctly, one can ensure that fB(r) is injective.
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One problem with the above is that, in order for the lossy mode to be con-
stant, we need that q is super-polynomial. Otherwise, rounding errors will cause
fB(r) in the lossy mode to not quite equal bC · ue, and the errors will depend
on r. As such, for polynomial modulus, fB(r) is not constant on valid r. Using
a super-polynomial modulus will negatively impact the efficiency of the scheme,
and requires a stronger computational assumption.

Our first observation is that we do not actually need full indistinguishability
of the measured vs not measured r. For our application to sigma protocols, we
just need that anything that happens when r is unmeasured will also happen
with reasonable probability when r is measured. But the two cases could be
distinguishable in the strict sense. This gives a weak notion of collapsing which
is sufficient for rewinding.

What this allows us to do is shrink q to be small, and we will have that
the lossy mode in constant with non-negligible probability, which we show is
sufficient. However, we still need q to be somewhat larger than what is required
classically. This is because when we prove that the lossy mode is constant, we
need to union bound over each row of C. Decreasing the height of C improves
the probability of success, but we need to keep C a certain height so that the
injective mode is actually injective.

Separable Sigma Protocols. In order circumvent the above difficulties and get an
optimally-small q, we show that we can get by using a single row of C.

In more detail, we will say that a sigma protocol is separable if there is an
associated family of functions with particular properties. Like associated lossy
functions, the family of functions has two modes: a preserving mode (which can
be seen as the analog of the lossy mode) and a separating mode (the analog of
the injective mode). Unlike the lossy functions, the family of functions here will
output only a single bit. In this case, there clearly can not be an injective mode.

Instead, we will use the following requirements. A preserving mode f is still
constant on valid r. On the other hand, the separating mode has the property
that, for any valid r 6= r′, f(r) = f(r′) with probability, say, 1/2.

We show that such separating functions can be used to show collapsing.
What’s more, for lattice-based schemes, the separating functions can be seen as
instances of the lossy functions where C is just a single row. As before, we will
need to allow for some weak indistinguishability between preserving and sepa-
rating modes, leading to weak collapsing. We will also need to handle separating
modes where the probability is not necessarily exactly 1/2. We show how to do
all of this, demonstrating that Lyubashevsky’s sigma protocol [Lyu12] is weakly
collapsing.

Putting It All Together Piecing our results from the previous sections to-
gether, we show that Lyubashevsky’s signature scheme [Lyu12] is secure under
standard lattice assumptions. Namely, 2-soundness follows from the SIS assump-
tion, under the same asymptotic parameters needed to prove security classically.
The separating function we need in the quantum setting follows from the LWE
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assumption; recall that LWE implies SIS. The result is that the sigma proto-
col underlying Lyubashevsky’s signatures is sound under the LWE assumption.
Then we apply our Fiat-Shamir proof, obtaining existentially unforgeable signa-
tures. Our techniques readily extend to schemes based on Lyubashevsky’s, such
as the efficient signature scheme of [DKL+18].

Other Results Our techniques for showing lattice-based sigma protocols are
collapsing can also be applied to hash functions. In particular, our techniques
show that the SIS hash function is collapsing. Recall that the SIS hash function
is specified by a short wide matrix A, takes as inputs short vectors r, and outputs
A · r mod q.

If q is super-polynomial, then SIS will have an associated lossy function
with strong indistinguishability, namely the same function constructed for the
sigma protocols. As such, SIS with super-polynomial q is collapsing. On the
other hand, for polynomial q, SIS is weakly separable using the same functions
as above, showing that SIS is weakly collapsing. This gives the to-date most
efficient standard-model collapsing hash function.

Limitations The obvious limitation of our work is the tightness of our reduc-
tions. Our Fiat-Shmir proof is quite loose, losing a factor of q9 where q is the
number of random oracle queries; we leave tightening our proof as an important
open problem.

This looseness makes our results all but useless for guiding parameter choices
in practice. However, we note that in practice parameter choices typically are
chosen to block the best attacks rather than the bounds obtained by reductions.
Of course, getting a tight bound that matches the parameters used in practice is
the ideal outcome, but this is often not attainable. Indeed, even the classical Fiat-
Shamir proof is somewhat loose. This has lead to some authors (e.g. [DKL+18])
to make new assumptions that incorporate the hash function which can be tightly
connected to the security of their scheme. These new assumptions can then be
justified (with a loss!) using the classical Fiat-Shamir proof.

We therefore view our results as at least showing asymptotically that Lyuba-
shevsky’s and related signature schemes are secure, meaning there are no funda-
mental weaknesses incurred by using the Fiat-Shamir heuristic in the quantum
world. Alternatively, our proof can be used to give a quantum justification for
assumptions which can then be tightly connected to the security of schemes.

2 Weakly Collapsing Sigma Protocol

2.1 Sigma Protocol

First, let us recall the definition of sigma protocol. The full definition can be
found in the full version [LZ19].

For every λ, there is a relation Rλ = {(x,w) : x ∈ Lλ, w ∈ W (x)} such
that the length of x and w is bounded by a polynomial of λ, x is a statement
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in an NP language Lλ and W (x) is the set of witness for proving x ∈ Lλ. In
other words, there is an polynomial time algorithm runs in poly(λ) that decides
whether (x,w) ∈ Rλ.

A sigma protocol for Rλ consists two polynomial time algorithms, prover
P and verifier V. The sigma protocol procedure looks like the follows:

– P is given both x,w and generates (a, st) ← P.Commit(1λ, x, w). st is its
own state and it sends the commitment a to V;

– V given x and a, generates a challenge c uniformly at random in {0, 1}λ
where wlog λ is the security parameter of this protocol;

– P given the challenge c, generates a response r ← P.Prove(1λ, x, w, st, c);
– V.Ver(1λ, x, a, c, r) returns 0/1 meaning the transcript is valid or not.

When it is clear in the context, we omit 1λ for convenience.
Sometimes, we will need to consider a distribution over instances. In these

cases, we associate a Gen(·) algorithm to a sigma protocol. Gen(1λ) outputs a
pair of (x,w) ∈ Rλ. Gen(·) defines a distribution over Rλ. In this setting, we
use pk to denote x and sk to denote (x,w). Moreover, we have P.Commit(sk) =
P.Commit(x,w), P.Prove(sk, st, c) = P.Prove(x,w, st, c) and V.Ver(pk, a, c, r) =
V.Ver(x, a, c, r). This notation will be useful when we build an ID protocol or
a signature scheme from a sigma protocol. In this case, some definitions are
average-case definitions: for example, correctness is defined as probability that
the above procedure outputs 1 taken the randomness of challenge c, P,V and
also the distribution over Rλ induced by Gen(·).

2.2 Collapsing

In addition to the usual properties considered classically, we define a new notion
of security for sigma protocols, inspired by Unruh’s notion of collapsing for hash
functions and commitments [Unr16b]:

Definition 1 (Collapsing Sigma Protocol). For any λ, for any Gen(1λ)
and any polynomial time quantum distinguisher D, define the following game
CollapsingGamebD,pk,sk:

– (pk, sk) ← Gen(1λ), D is given pk and generates and sends a to the chal-
lenger; it then gets a uniformly random c from the challenger Ch; then it
generates a superposition |φ〉 over all r (may not be a valid r) together with
its own quantum states and sends the part |φ〉 to the challenger Ch;

– Upon receiving |φ〉, Ch verifies in superposition that |a, c〉|φ〉 is a superposi-
tion over valid transcripts. If the verification fails, Ch outputs a random bit
and aborts. Otherwise, let |φ′〉 be the superposition after the measurement,
which is the projection of |φ〉 onto r such that |a, c, r〉 is valid.
Then Ch flips a coin b, if b = 0, it does nothing; if b = 1, it measures |φ′〉 in
computational basis. Finally it sends the superposition back to D.

– The experiment’s output is what D outputs.
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We say a quantum sigma protocol associated with Gen(·) is collapsing if for
every polynomial time quantum distinguisher D, the probability D distinguishes
is negligible, in other words, there is a negligible function negl, such that∣∣Pr

[
CollapsingGame0D,pk,sk = 0

]
− Pr

[
CollapsingGame1D,pk,sk = 0

]∣∣ ≤ negl(λ)

Where probabilities are taken over the randomness of (pk, sk)← Gen(1λ) and the
randomness of D.

We can similarly define weakly collapsing property which is used in the rest of
the paper.

Definition 2 ((γ-)Weakly Collapsing). We say a quantum secure sigma pro-
tocol associated with Gen(1λ) is weakly collapsing, if there exists a non-negligible
γ(·), such that for any polynomial time quantum distinguisher D,

Pr
[
CollapsingGame1D,pk,sk = 0

]
≥ γ(λ) · Pr

[
CollapsingGame0D,pk,sk = 0

]
− negl(λ)

Weak collapsing captures the setting where measuring the adversary’s re-
sponse causes a noticeable change in outcome in contrast to not measuring, but
any event that occurs in the un-measured setting also occurs in the measured
setting. We can similarly define a worst case version of weak collapsing where
that holds for any choice of (x,w) ∈ R, rather than for a random (pk, sk) chosen
from Gen.

In the next subsections, we give sufficient conditions for demonstrating the
collapsing property. Our definitions are given for sigma protocols, but can easily
be extended to hash functions. A key feature of our definitions is that they
are essentially classical definitions, as opposed to collapsing which is inherently
quantum. As such, we believe our weaker definitions will be easier to instantiate,
as we demonstrate in Section 4.

2.3 Compatible Lossy Function

A compatible lossy function can be thought as a function generator CLF.Gen(·).
It takes all the parameters λ, pk, sk, a, c and mode ∈ {constant, injective}, outputs
a constant or small range (polynomial size) function over all valid r. Here valid r
means V.Ver(pk, a, c, r) = 1. Also, no efficient quantum algorithm can distinguish
whether it is given a function description from constant mode or injective mode.
In the full version [LZ19], we give the full definition, and show that it implies
collapsing. For the remainder of this section, we will instead focus on an even
weaker notion.

2.4 Compatible Separable Function

Definition 3 ((τ, β)-Compatible Separable Function). A compatible sepa-
rable function for a sigma protocol is an efficient procedure CSF.Gen(λ, pk, sk, a, c,mode)
which takes a security parameter λ, pk, sk, a commitment a, a challenge c and
mode ∈ {preserving, separating}, it outputs a description of an efficiently com-
putable function f that outputs 0, 1 such that
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1. preserving mode: over the set Va,c of valid r, with non-negligible probability f
is a constant function. Formally, there exists a non-negligible function τ(·),
such that for all λ, pk, sk, for all a, c, let Fp be the distribution sampled by
CSF.Gen(λ, pk, sk, a, c, preserving),

Pr
f←Fp

[|Im(f)| = 1] ≥ τ(λ)

where Im(f) is the image of f over all valid r satisfying (a, c, r) is a valid
transcript.

2. separating mode: there exists an α such that, for all valid r 6= r′, the prob-
ability of f(r) = f(r′) is exactly 1+α

2 where the randomness is taken over
the choice of f .
Formally, there exists β(λ) < τ(λ) such that τ(λ)−β(λ) is non-negligible, for
all λ, pk, sk, for all a, c, let Fs be the distribution of functions that sampled by
CSF.Gen(λ, pk, sk, a, c, injective), there exists an α(·) which is upper bounded
by β(·) (but which is potentially negative), for every pair of valid r 6= r′,

Pr
f←Fs

[f(r) = f(r′)] =
1 + α(λ)

2

3. Indistinguishability: Let us first define SFGamebD,pk,sk:
– D is given pk and interacts with the challenger Ch which has pk, sk,
– D sends a pair of valid a, c to the challenger,
– Ch chooses a random function f from Fp if b = 0 or from Fs if b = 1,

where Fp or Fs is determined by pk, sk, a, c,
– D is given the description of f , the result of the game is D’s output.

We require that for every λ, for every polynomial time quantum distinguisher
D, taken the randomness of (pk, sk)← Gen(1λ),∣∣Pr

[
SFGame0D,pk,sk = 0

]
− Pr

[
SFGame1D,pk,sk = 0

]∣∣ ≤ negl(λ)

Lemma 1. If a sigma protocol associated with Gen(·) has (τ, β)-compatible sep-
arable functions, it is τ−β

2 -weakly collapsing.

Proof. Assume there is a non-negligible function ε(·) and a polynomial time
quantum distinguisher D that breaks the τ−β

2 -weakly collapsing property of this
sigma protocol. From the definition, taken the randomness of pk, sk, we have,

Pr
[
CGame1D,pk,sk = 0

]
<
τ(λ)− β(λ)

2
· Pr

[
CGame0D,pk,sk = 0

]
− ε(λ)

where CGame stands for CollapsingGame.
Let us assume there exist a (τ, β)-compatible separable function. We will

build an adversary A that uses D as a subroutine and breaks the compatible
separable function. Here is what A does:

– A given pk, it runs D (which taks pk as input) and gets a,

– A samples c
$← {0, 1}λ, and gives c to D and a, c to the challenger Ch,
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– A gets |φ〉 from D and a function f from Ch. It first checks |φ〉 contains
valid r on superposition. If the measurement does not pass, A randomly
guesses a bit. Otherwise, let |φ′〉 =

∑
r αr|r〉 be the superposition after the

measurement. It applies f to |φ′〉,

|φ′′〉 = Uf |φ′〉 =
∑

valid r

αr · (−1)f(r)|r〉

– It gives |φ′′〉 to D and outputs what D outputs.

For any pk, sk, a, c, any possible |φ′〉 =
∑

valid r αr|r〉 in the above game, what
is the density matrix of |φ′〉 or |φ′〉 measured in computational basis? If the state
is not measured (which corresponds to the density matrix in CGame0D,pk,sk), we
have the density matrix is

ρ0 =
∑

valid r,r′

ᾱrαr′ |r〉〈r′|

and if |φ′〉 is measured (which corresponds to the density matrix in CGame1D,pk,sk),
the density matrix is ρ1 =

∑
valid r |αr|2 · |r〉〈r|.

If we take a function f ← Fp, let Uf be a unitary Uf |r〉 = (−1)f(r)|r〉. Apply
Uf to ρ0, we have

ρp =
∑
f←Fp

1

|Fp|
·Uf ρ0 U†f = Pr

f←Fp
[|Im(f)| = 1] ·ρ0 +

∑
f←Fp

f is not constant

1

|Fp|
·Ufρ0U†f

which is easy to see that ρp is a convex combination of ρ0 and Ufρ0U
†
f for f is

not constant. The above equality holds because when f is a constant function,
Uf is an identity. It says if a distinguisher outputs 0 when ρ0 is given, the same
distinguisher outputs 0 with probability at least Pr[|Im(f)| = 1] ≥ τ(λ) when
ρp is given. In other words, we have

Pr[SFGame0A,pk,sk = 0] ≥ τ(λ) · Pr[CGame0D,pk,sk = 0]

Next if we apply Uf where f ← Fs to the density matrix ρ0, we have

ρs =
∑
f←Fs

1

|Fs|
· Uf ρ0 U†f =

∑
valid r,r′

∑
f←Fs

1

|Fs|
· ᾱrαr′ · Uf |r〉〈r′|U†f

=
∑

valid r

|αr|2 · |r〉〈r|+
∑

valid r 6=r′
ᾱrαr′ · |r〉〈r′| ·

 ∑
f←Fs

1

|Fs|
(−1)f(r)+f(r

′)


= (1− α(λ)) · ρ1 + α(λ) · ρ0

If α(λ) ≤ 0, we have ρ1 = 1
1−α(λ) · ρs + −α(λ)

1−α(λ) · ρ0. If a distinguisher outputs

0 when ρs is given, the same distinguisher outputs 0 with probability at least 1
2

when ρ1 is given. In other words, for any distinguisher D′,

Pr[D′(ρs) = 0] ≤ 2 · Pr[D′(ρ1) = 0]
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If α(λ) is positive, we have ρs = (1 − α(λ)) · ρ1 + α(λ) · ρ0. In other words,
for any distinguisher D′, because α(λ) < β(λ),

Pr[D′(ρs) = 0] = (1− α(λ)) · Pr[D′(ρ1) = 0] + α(λ) · Pr[D′(ρ0) = 0]

≤ Pr[D′(ρ1) = 0] + β(λ) · Pr[D′(ρ0) = 0]

Combining the two above equations, taken over the randomness of pk, sk, a, c,

Pr[SFGame1A,pk,sk = 0] ≤ 2 · Pr[CGame1D,pk,sk = 0]+

β(λ) · Pr[CGame0D,pk,sk = 0]

Finally, we show that A breaks the compatible separable function,

Pr[SFGame0A,pk,sk = 0]− Pr[SFGame1A,pk,sk = 0]

> τ(λ) · Pr[CGame0D,pk,sk = 0]−(
2 · Pr[CGame1D,pk,sk = 0] + β(λ) · Pr[CGame0D,pk,sk = 0]

)
= (τ(λ)− β(λ)) · Pr[CGame0D,pk,sk = 0]− 2 · Pr[CGame1D,pk,sk = 0]

> 2 · ε(λ)

ut

3 Quantum ID Protocol and Quantum HVZKPoK

In this section, we will see that given a quantum secure sigma protocol with
weakly collapsing property, we can overcome the difficulty of doing quantum
rewinding and build a quantum secure identification protocol. The same tech-
nique can be applied to HVZKPoK.

3.1 Quantum ID Protocol

Theorem 1. Assume we have a quantum secure sigma protocol with associated
Gen(·) which satisfies the weakly collapsing property (with perfect/weak complete-
ness). Then it is a quantum secure identification protocol (with perfect/weak
completeness).

In other words, if a sigma protocol has (1) perfect/weak completeness, (2)
post-quantum 2-soundness, (3) statistical/post-quantum computational HVZK
and (4) weakly collapsing property, it is a sigma protocol with (1) perfect/weak
completeness, (2) post-quantum ID soundness.

Proof. We recall the definitions of the various properties in the full version [LZ19].
The full proof of Theorem 1 is in the full version [LZ19]. Here, we briefly sketch
the proof.

Assume there is an algorithm A breaks the soundness of the sigma protocol
as an ID protocol. We can use A and output one valid tuple (a, c, r). If we can
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then rewind the algorithm to just after a was produced, we can run it again and
will find two valid tuples (a, c, r) and (a, c′, r′). Notice that c, c′ are distinct with
overwhelming probability.

However, when A generates (a, c, r), it will in general be a superposition over
r. By measuring this superposition, A has a non-negligible change to output a
valid r. Measurement will destroy superposition and we can not roll-back the
quantum machine and restart the whole algorithm.

Suppose we just measure whether (a, c, r) is a valid transcript, but not the
entire superposition over r. Even though this will alter the adversary’s state,
Unruh [Unr12] demonstrates that (a, c′, r′) from the second run will still be a
valid transcript with non-negligible probability. However, by not measuring the
first transcript, we still do not have a classical (a, c, r) that we can output along
with (a, c′, r′).

Fortunately, weak collapsing tells us that even if A measures the superposi-
tion over r, (a, c′, r′) will still be a valid transcript with non-negligible probability.
So we will obtain two pairs (a, c, r), (a, c′, r′) with non-negligible probability. ut

3.2 Quantum HVZKPoK

Theorem 2. If a sigma protocol has (1) perfect completeness, (2) statistical/post-
quantum computational HVZK, (3) worst case weakly collapsing property and (4)
2-extractability, it is a quantum HVZKPoK. In other words, it is a sigma pro-
tocol with (1) perfect completeness, (2) statistical/post-quantum computational
HVZK and (3) (c, p, κ, negl)−validity form c = 3, polynomial p and negligible
functions κ = 0, negl.

The proof idea can also be found in the full version [LZ19].

4 Construction of Collapsing Sigma Protocol

The following protocol is from [Lyu12]. Although in the paper, Lyubashevsky
only shows a digital signature scheme, it follows the framework of Fiat-Shamir.
We extract the following sigma protocol from the digital signature. We will
reprove it is a quantum secure sigma protocol (which is already shown to be
secure as a signature scheme in [Lyu12]) and then show it has compatible
lossy/separable functions. We will have parameters, most of the proofs (already
shown in [Lyu12]) and the proof of compatible lossy functions in the full ver-
sion [LZ19] and only show the proof of compatible separable functions in this
section.

– Gen(1λ): A
$← Zn×mq and S

$← {−d, · · · , d}m×k and let pk = (A,T = AS)
and sk = (A,S).

– Commitment Stage: P given sk, y
$← Dm

σ and a = Ay. It sends a to V.

– Challenge Stage: V randomly samples c
$← {−1, 0, 1}k satisfying ‖c‖1 ≤ κ

and sends c to P.
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– Response Stage: P after getting c, r = Sc+y and sends y with probability
pr(c, r). Otherwise, it sends ⊥.

pr(c, r) = min

{
Dm
σ (r)

M ·Dm
Sc,σ(r)

, 1

}
– Verification Stage: V outputs 1 if Ar = Tc + a and ‖r‖2 ≤ ησ

√
m.

Remark: The definition of discrete Normal Dm
σ and Dm

v,ς can be found in the
full version [LZ19]. We note that the protocol only satisfies a weak completeness
requirement, where the honest prover succeeds with non-negligible probability.

The challenge stage looks different from a challenge stage defined by a sigma
protocol. But indeed, we can think of it as choosing a random bit string and
mapping it to a vector c that c ∈ {−1, 0, 1}k and ‖c‖1 ≤ κ.

We reprove this scheme is a secure quantum sigma protocol in the full ver-
sion [LZ19]. Next let us prove it is weakly collapsing. Theorem 3 directly follows
from Theorem 4.

Theorem 3. The sigma protocol constructed above is weakly collapsing.

Compatible Separable Functions

Theorem 4. There exists (τ, β)-compatible separable function CSF.Gen where
τ(λ) = 0.499 and β(λ) = 1/q(λ)2, for any λ, pk = (A,T), sk = (A,S),a, c,

Fp =
{
f : f(r) = [(uA + e) · r + z][q/2],u

$← Znq , e
$← Dm

q,αq, z
$← Zq

}
Fs =

{
f : f(r) = [v · r + z][q/2],v

$← Zmq , z
$← Zq

}
where [x][q/2] rounds x/[q/2] to the nearest integer (0 or 1), αq > 2

√
n, ∆ =

(ησ
√
m) · (αq) · 2

√
m = q/8. In which case, q = 32ησm

√
n is a polynomial of λ.

Proof. Preserving: First, let us show that for any λ, pk, sk, a, c, the correspond-
ing Fp has many constant functions.

Because we say r is valid if and only if Ar = Tc + a and r is short. For any

function f
$← Fp, we have

f(r) = [(uA + e) · r + z][q/2] = [uAr + er + z][q/2]

where uAr + z = uA(Tc + a) + z is constant regardless of the input r and with
the random choice of z, its value is uniformly at random in Zq.

We have the following corollary that bounds the inner product of e and r,

Corollary 1. For any r ∈ Rm, ‖r‖ ≤ ησ
√
m, we have

Pr
[
|〈e, r〉| > ∆ ; e← Dm

q,αq

]
≤ 2e

− ∆2

2(ησ
√
m)2(αq)2

By letting ∆ = (ησ
√
m)(αq) · 2

√
m, we have the above probability is bounded by

2e−m.
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By setting ∆ = q/8, in which case αq = q
16·ησm , we know that

1. uAr + z falls into [∆, [q/2]−∆] or [[q/2] +∆, q−∆] with probability ≥ 1/2,

2. Draw e
$← Dm

q,αq, for all valid r, with overwhelming probability, |〈e, r〉| ≤ ∆.

So τ(λ) = Prf←Fp [|Im(f)| = 1] > 1
2 − negl(λ) > 0.499.

0 Separating: Second, let us show that there exists a β(·) such that for any
λ, pk, sk,a, c, for any pair of valid r 6= r′, f(r) and f(r′) will be mapped to the

same bits with the same probability 1+α(λ)
2 where β(λ) = α(λ) = 1

q2 .

Fixing r 6= r′, let us consider the distribution of (vr + z,vr′+ z) for random
chosen v, z. Given a random chosen v, the difference vr − vr′ is uniformly at
random. And given the random choice of z, (vr + z,vr′ + z) is a uniformly
random element in Zq × Zq. Therefore we have

Pr
f←Fs

[f(r) = f(r′)] = 1− 2 · ([q/2] + 1) · [q/2]

q2
=

1 + α(λ)

2
where α(λ) =

1

q2

It also satisfies that τ − β is non-negligible.

Indistinguishability: A distinguisher is given either (uA+e, z) or (v, z). It
corresponds to an instance of DLWE. Based on the quantum security of DLWE,
indistinguishability holds. ut

Compatible Lossy Functions It also has a compatible lossy function. The
full theorem statement is in the full version [LZ19].

5 Compressed Oracles

In [Zha18], Zhandry showed a new proof technique to analyze random oracles
[2N ] → [2N ] under quantum query access. The technique allows a simulator,
given a random oracle machine making polynomial number of queries, to simulate
a quantum random oracle efficiently. The full details can be found in the full
version [LZ19], and we sketch the details here:

1. Compressed Fourier Oracles: Assume a simulator B is simulating a quan-
tum random oracle for A. The simulator B maintains a superposition over
databases of pairs D = {(xi, ui)} (here we always assume a database is
sorted according to xi). At the beginning, B only has |D0〉 which is a pure
state over an empty database D0. We will think of the database as being the
specification for a function, where (xi, ui) ∈ D means xi 7→ ui, whereas if x
is not present in the database, then x 7→ 0.
Define D(x) = ⊥ if x is not in the database and D(x) = ui if there is a pair
(xi, ui) such that x = xi. We then define the following operation ⊕ for a
database D and a pair (x, u). Intuitively, thinking of D as the encoding of
a function, it will XOR u into the image of x. More precisely, (1) if u = 0,
D ⊕ (x, u) = D, (2) else if D(x) = ⊥, D ⊕ (x, u) = D ∪ {(x, u)}, (3) else if
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D(x) = ui and u + ui ≡ 0 (mod 2N ), D ⊕ (x, u) = D \ {(x, ui)} and (4)
otherwise, D ⊕ (x, u) = (D \ {(x, ui)}) ∪ {(x, ui + u)}.
So we start with

∑
x,u a

0
x,u|x, u〉⊗|D0〉 where D0 is empty. After making the

i-th query, we have

CFourierO
∑
x,u,D

ai−1x,u,D|x, u〉 ⊗ |D〉 ⇒
∑
x,u,D

ai−1x,u,D|x, u〉 ⊗ |D ⊕ (x, u)〉

One observation is when the algorithm A only makes q queries, any database
in the superposition contains at most q non-zero entries. So B can efficiently
simulate quantum random oracle. And Zhandry shows the density matrices
of A given B or a true quantum random oracle are identical.

2. Compressed Phase Oracles: By applying the QFT on the database of a
compressed Fourier oracle, we get a compressed phase oracle.
In this model, a database contains all the pairs (xi, ui) which means the
oracle outputs ui on xi and uniformly at random on other inputs. We can
also define D(x) = ⊥ if x is not in the database and D(x) = ui if there is a
pair (xi, ui) such that x = xi. When making a query on |x, u,D〉,
– If (x, u′) is in the database D for some u′, a phase ωuu

′

N (where ωN =

e2πi/2
N

) will be added to the state; it corresponds to update u′ to u′+u
in the compressed Fourier oracle model;

– Otherwise a superposition is appended to the state |x〉 ⊗
∑
u′ ω

uu′

N |u′〉;
it corresponds to put a new pair (x, u′) in the list in the compressed
Fourier oracle model;

– Also make sure that the list will never have a (x, 0) pair in the compressed
Fourier oracle model (by doing a QFT and see if the register is 0); if there
is one, delete that pair;

– all the ‘append’ and ‘delete’ operations above means doing QFT on |0〉
or a uniform superposition.

Intuitively, it is identical to a compressed Fourier oracle. You can image QFT
is automatically applied to every entry of the compressed Fourier database
and converts it to a compressed phase oracle.

In this paper, we introduce two more quantum oracle variations. These vari-
ations can be based on both compressed Fourier oracles and compressed phase
oracles. Here we only introduce the first case. The second one is straightforward.

– The first variation is almost compressed Fourier oracles, which is based
on compressed Fourier oracles. For most points, we simulate using the com-
pressed Fourier oracle. However, for a small set of points, we just keep them
as a (uncompressed) phase oracle. Formally, let x∗ be an element in the do-
main of the random oracle O : X → Y . The database D contains only the
(x, u) pairs for x 6= x∗, the whole system can be written as the following, at
the beginning of the computation, D0 is an empty list:∑

x,u

αx,u|x, u〉 ⊗

(
|D0〉 ⊗

∑
r

|r〉

)
By making a quantum query, the simulator does the follows:
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• If the query is (x, u) and x 6= x∗, the simulator updates D as what it
does in the compressed Fourier oracle setting;

• If the query is on the special point (x∗, u), the second part of the oracle
is updated as a phase oracle:

αx∗,u,D,u′ |x∗, u〉 ⊗ |D〉 ⊗
∑
r

ωu
′r
N |r〉

⇒αx∗,u,D,u′ |x∗, u〉 ⊗ |D〉 ⊗
∑
r

ω
(u′+u)r
N |r〉

In other words, we only apply QFT on most of the domain but x∗. This
random oracle model can be extended to the case where we exclude a poly-
nomial numbe of special points from D. As long as the number is polynomial,
it can be efficiently simulated.

– The second one is inspired from our technique of extracting information from
quantum oracle queries in the next section. Assume before the i-th query,
the database does not have x∗, in other words, for any D containing x∗ and
arbitrary x, u, z, αx,u,z,D = 0. The superposition is∑

x,u,z,D
D(x∗)=⊥

αx,u,z,D|x, u, z,D〉

Then we can switch random oracle models between the i-th query: before
the i-th query, we simulate a random oracle as a compressed Fourier oracle,
and right before the i-th query, we switch to almost compressed Fourier
random oracle. We call i is the switch stage. Because before the i-th query,
every database D with non-zero weight does not contain x∗, we can simply
append

∑
r |r〉 to the superposition. So the superposition now becomes∑

x,u,z,D
D(x∗)=⊥

αx,u,z,D|x, u, z,D〉 ⊗
∑
r

|r〉

6 Extracting Information From Quantum Oracle Queries

We first describe a technique for extracting the adversary’s query, without per-
turbing its behavior too much. The setting is the following. The adversary makes
some number of oracle queries (let us say q) to a random oracle, implemented
as a compressed Fourier oracle. At the end of the interaction, we measure the
entire state of the adversary and oracle, obtaining (w,D), where w is some string
that we will call a witness. We will only be interested in the case where D is
non-empty. Let γw,D denote the probability of obtaining w,D.

We now consider the following experiment on the adversary. We run the
adversary as above, but we pick a random query i ∈ [q] or a random triple
i < j < k ∈ [q] with equal probability. That is, we pick a random i with
probability 1/(q+

(
q
3

)
) or pick a random triple i, j, k with probability 1/(q+

(
q
3

)
).

Then we do Expi or Expi,j,k as follows:
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1. Expi: Before making the i-th query, we measure the query register to get x∗

and check if the database D does not have x∗ before the i-th query and has
x∗ right after the i-th query.
In other words, before measuring query register, let us assume the state is∑

x,u,z,D

αx,u,z,D |x, u, z,D〉

Conditioned on the measurement gives x∗, the state becomes∑
u,z,D

αx∗,u,z,D |x∗, u, z,D〉

If the database D does not have x∗ before the i-th query and has x∗ right
after the i-th query, it means (1) all D does not contain x∗, (2) u 6= 0 so
that after the i-th query, all D will contain x∗. So if the check passes, the
state becomes ∑

u 6=0,z,D:D(x∗)=⊥

αx∗,u,z,D |x∗, u, z,D〉

And then we do not care whether D contains x∗ for all the remaining oracle
queries and computation. If it does not satisfy any condition, we abort.
We know that after the measurement, the superposition contains all D that
does not contain x∗. We can switch to almost compressed Fourier oracle with
the special point x∗.

2. Expi,j,k: We measure the query register to get x∗ before making the i-th
query. And we check the following (on superposition) that
– D does not have x∗ before the i-th query,
– D always has x∗ after the i-th query and before the j-th query,
– D does not have x∗ after the j-th query and before the k-th query,
– D has x∗ right after the k-th query. (But we do not care whether D

contains x∗ for the remaining oracle queries and computation.)

If the check does not pass, we abort. Just right before the k-th query, we
switch to almost compressed Fourier oracles with the special point x∗.

Let γi,x∗,w,D be the probability that conditioned on we are in Expi, the mea-
surement gives x∗ and the final output is w,D. Let γi,j,k,x∗,w,D be the probability
that conditioned on we are in Expi,j,k, the measurement gives x∗ and the final
output is w,D. We have the following lemma:

Theorem 5. For any w,D, for any x such that D(x) 6= ⊥, there are at least
one i or one tuple i < j < k such that γi,x,w,D ≥ γw,D/(q+

(
q
3

)
)2 or γi,j,k,x,w,D ≥

γw,D/(q +
(
q
3

)
)2.

Proof. Let
∑
x,y,z αx,y,z|x, y, z〉 be the state of the adversary just before the first

query, and let U
(i)
x,y,z,x′,y′,z′ be the transition function after the i-th query. For

vectors x,y, z and w, let

αx,y,z,w = αx1,y1,z1U
(1)
x1,y1,z1,x2,y2,z2 · · ·U

(q)
xq,yq,zq,w
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Then we can write the final joint state of the adversary and oracle as:

∑
x,y,z,w

αx,y,z,w|w〉 ⊗

∣∣∣∣∣
q⊕
i=1

(xi, yi)

〉

For any D, define the following sets SD: it contains all the vector x,y pairs such
that

⊕q
i=1(xi, yi) = D. Thus we have γw,D = |γ′w,D|2 where

γ′w,D =
∑

(x,y)∈SD,z

αx,y,z,w

Next consider any x such that D(x) 6= ⊥, we can define the following sets:

– SD,i: it contains all the vector x,y such that
1. The fixed x is not in the database defined by ⊕i−1j=1(xi, yi),
2. xi = x and yi 6= 0.

In other words, x is not in the database before the i-th query and appears in
the database right after i-th query. We can define γ′i,x,w,D =

∑
(x,y)∈SD,i,z αx,y,z,w.

Similarly we have γi,x,w,D = |γ′i,x,w,D|2.
– SD,i,j,k: it contains all the vector x,y such that

1. x is not in the database before the i-th query,
2. x is in the database after the i-th query and before the j-th query,
3. x is not in the database after the j-th query and before the k-th query,
4. x appears in the database right after the k-th query.

We can define γ′i,j,k,x,w,D =
∑

(x,y)∈SD,i,j,k,z αx,y,z,w. Similarly we have

γi,j,k,x,w,D = |γ′i,j,k,x,w,D|2.

Then we have the following lemma:

Lemma 2. For any w,D and any x such that D(x) 6= ⊥, we have∑
i

γ′i,x,w,D −
∑
i<j<k

γ′i,j,k,x,w,D = γ′w,D

Given the lemma above, we can argue that there exists some i or some triple
i < j < k such that either |γ′i,x,w,D| ≥ |γw,D|/(q +

(
q
3

)
) or |γ′i,j,k,x,w,D| ≥

|γw,D|/(q +
(
q
3

)
) by triangle inequality. Combining with γi,x,w,D = |γ′i,x,w,D|2

and γi,j,k,x,w,D = |γ′i,j,k,x,w,D|2, we complete the proof of our theorem. The only
thing we need to prove is lemma 2.

Proof. Consider every (x,y) ∈ SD and z, consider the database defined by
these vectors. Assume x is inserted t times into the database. On the left side,
αx,y,z,w,D will appear in

∑
i γ
′
i,x,w,D exactly t times and appear in the second

term
∑
i<j<k γ

′
i,j,k,x,w,D exactly t − 1 times. On the right side, it appears only

once. Every αx,y,z,w,D appears exactly once on both side. So the left side is equal
to the right side. ut

We finish our proof for the theorem 5. ut
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And we notice that if A makes measurement during computation, the theo-
rem also holds. And all the theorems and corollary below apply to the case where
the algorithm can make measurement during computation. This proof and all
proofs for the theorems below are in the full version [LZ19].

Theorem 6. For any w, compressed Fourier database D and any x such that
D(x) 6= ⊥, let τx,w,D be the probability that in the above extracting experiment
(that is to randomly pick Expi or Expi,j,k), the measurement gives x and the

output is w,D, we have τx,w,D ≥ 1

(q+(q3))3
· γw,D.

Proof. It follows directly from theorem 5. Because we have probability 1

q+(q3)
to

stay in the experiment that maximize the probability of getting x and outputting
w,D, the total probability is at least τx,w,D ≥ 1

(q+(q3))3
· γw,D. ut

Theorem 6 can be generalized to the setting where D is a compressed phase
database, i.e, applying QFT on compressed Fourier database.

Corollary 2. Define a set S contains pairs of w and compressed phase database
D. Define a measurement, P0 =

∑
(w,D)∈S |w,D〉〈w,D|, P1 = I − P0.

Let τ be the probability that in the extracting experiment, the extraction gives
some xw,D in the database D for a given pair (w,D) and the final measurement
is 0. Let γ be the probability that in the normal game, the final measurement is
0. q is the total number of oracle queries made. We have τ ≥ 1

(q+(q3))3
· γ.

7 Programming Quantum Random Oracles

Lemma 3. Assume an adversary A is interacting with an almost compressed
phase oracle whose the switch stage is i and the special point is x∗. Wlog, assume
the random oracle maps {0, 1}N → {0, 1}N . Instead of appending

∑
r |r〉 before

the i-th query, the simulator chooses a random r and appends |r〉 to the whole
superposition. Then the adversary and the simulator keeps running. Finally the
simulator measures the output registers.

Let γr,w,D be the probability that the output is w,D ∪ {(x∗, r)} in the normal
game (where D does not contain x∗) and γ′r,w,D be the probability that the output
is w,D ∪ {(x∗, r)} in the modified game with |r〉 is appended. We have

1

2N
γ′r,w,D = γr,w,D

where D is a compressed phase database.

In other words, if we choose r uniformly at random, the probability of getting
certain output does not change at all even if we program the oracle at x∗ to
output r. The lemma also holds if the almost compressed phase oracle has several
special points and applies the technique to all the special points. The proof
directly follows the proof for a single special point.

25



Proof. The proof is in the full version [LZ19]. Intuitively, when 1/
√

2N ·
∑
r |r〉

is appended, from A’s view, the density matrix remains the same as the case
where a random |r〉 is appended. ut

Corollary 3. Assume an adversary A is interacting with an almost compressed
phase oracle whose the switch stage is i and the special point is x∗. Wlog, assume
the random oracle maps {0, 1}N → {0, 1}N . Instead of appending

∑
r |r〉 before

the i-th query, the simulator chooses a random r and appends |r〉 to the whole
superposition. Then the adversary and the simulator keeps running. Finally the
simulator measures the output registers.

Let S be a set of w and compressed phase database D ∪ {(x∗, r)}. Define a
measurement P0, P1,

P0 =
∑

(w,D∪{(x∗,r)})∈S

|w,D ∪ {(x∗, r)}〉〈w,D ∪ {(x∗, r)}| P1 = I − P0

Let γ be the probability that the measurement gives 0 in the normal game and
γ′ the probability that the measurement gives 0 in the extracting game where |r〉
is randomly chosen. We have γ = γ′.

The lemma also holds if the almost compressed phase oracle has several special
points and applies the technique to all the special points.

8 Fiat-Shamir in the QROM

8.1 Post-Quantum Signature

Consider a (weakly complete) quantum secure identification protocol P,V, Fiat-
Shamir approach gives a post-quantum digital signature as follows:

– It generates a pair of valid keys for identification protocol, say (pk, sk). pk is
the verification key and sk is the signing key.

– SignH(sk,m): it generates (a, st)← P.Commit(sk), and c← H(a||m); and it
generates r ← P.Prove(sk, st, c). If r is not valid, it runs another round. It
keeps running until r is valid. Finally it returns σ = (a, c, r).

– VerH(pk,m, σ = (a′, c′, r′)): given pk,m and a′, c′, r′, it first verifies whether
c′ is generated honestly, in other words, c′ = H(a′||m). Then it checks
(a′, c′, r′) is a valid transcript by checking whether V.Ver(pk, a′, c′, r′) = 1.

Theorem 7. For a (weakly complete) secure quantum identification protocol
with unpredictable commitment, Fiat-Shamir heuristic gives a secure post-quantum
digital signature in the quantum random oracle model.

First, let us look at completeness. By definition, there exist sets Goodλ, such
that for all (pk, sk) ∈ Goodλ, a honest generated transcript (a, c, r) is valid with
some non-negligible probability at least η(λ). It is easy to see when SignH runs
the sigma protocol λ· 1

η(λ) rounds, it generates a valid transcript with probability

≥ 1 − O(e−λ). Besides, if (pk, sk) is sampled by Gen(1λ), with overwhelming
probability (pk, sk) ∈ Goodλ. Completeness follows. Next, let us look at security
(existential unforgeability).
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Proof. Assume we have quantum polynomial time A that makes q classical sign-
ing queries and p quantum oracle queries breaks the digital signature with ad-
vantage ε where ε is non-negligible.

Hyb 0: Let ChSign be the challenger in A’s game. The game is defined as the
following:

1. A makes p quantum oracle queries to the random oracle which
is simulated by B;

2. Amakes q classical signing queries to the challenger ChSign. Every
time A wants to make a classical signing query, it measures the
query register (to make sure the signing query is classical).
To answer signing queries mi, the challenger draws (ai, st) ←
P.Commit(sk), makes a classical oracle query to the random or-
acle to get ci = H(ai||mi) and gets ri = P.Prove(sk, st, ci). ChSign
sends σi = (ai, ci, ri) to A.

Wlog, the final superposition will have three parts. The first part is A’s
registers containing a new signature, the second part is ChSign’s registers which
contain all the signing queries made by A and the third part is the oracle’s
registers (which B simulates it by using a compressed phase oracle).

Define the following measurement that checks if A succeeds in forgery:

P0 =
∑

valid m,σ,s
{(mi,σi},D

|m,σ, s〉|{(mi, σi)}〉|D〉〈m,σ, s|〈{(mi, σi)}|〈D|

and P1 = I − P0. In P0, we require that the output satisfies

1. σ = (a, c, r) and σi = (ai, ci, ri).
2. It contains a valid new signature m,σ and all signing queries mi, σi.
3. m,σ is new relative to {(mi, σi)}qi=1, i.e, (m,σ) 6∈ {(mi, σi)}qi=1.
4. All the signatures (including the newly forged one) are valid. First, for all
i, V.Ver(sk, ai, ci, ri) = 1 and V.Ver(sk, a, c, r) = 1. And second, for all i,
D(ai||mi) = ci and D(a||m) = c.

Because D is a compressed phase oracle. It is possible that D(ai||mi) = ⊥
but still we have H(ai||mi) = ci. But in this case, H(ai||mi) is completely
random. From Lemma 5 in [Zha18], there is only negligible loss (as long as q is
polynomial). So we have in the above game, the final measurement gives 0 with
probability at least ε0 = ε− negl(λ) which is non-negligible.

Next we are going to modify the above game step by step until we get a B
which simulates signing queries and breaks the underlying identification protocol.
The difference of each hybrid is marked and the detailed algorithms in each
hybrid are in the full version [LZ19].

Hyb 1: Here for each classical query ai||mi made by ChSign, B checks
the current compressed phase database does not have ai||mi. In other
words, B applies the measurement

∑
w,D:D(ai||mi)=⊥ |w,D〉〈w,D|.
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Because the sigma protocol has unpredictable commitments, the probability
the measurement does not pass is negligible in λ. And every time B checks ai||mi

is not in any database, it puts ai||mi into the set of the special points, i.e, append∑
ci
|ci〉 to the oracle superposition denoting D(ai||mi) = ci.

Let ε1 be the probability that in the above game, all the intermediate mea-
surements pass and the final measurement gives 0. We have ε1 ≥ ε0 − negl(λ)
which is non-negligible.

Hyb 2: The algorithm A is interacting with a simulated random oracle (simu-
lated by B) and ChSign. B applies our extracting technique in Section 6:
it randomly picks i or i, j, k ∈ [p], and does one of the experiments.

We care about the probability the all that measurements/checks pass, the
extracted x = a||m contains the same thing (the same a,m) as the message of
the forged signature x, σ = (a, c, r) and the final measurement gives 0 which tells
a valid new signature is generated correctly.

From corollary 2, given w = ((m,σ), s, {(mi, σi)}qi=1) and D that passes the
measurement P0, define xw,D = a||m. Then we have the probability that the
above experiment passes all the checks, the extracted query is a||m and the final
output measured over P0, P1 is 0 is at least ε2 ≥ 1

(q+(q3))3
· ε1.

Hyb 3: At the time of appending
∑
c |c〉 or

∑
ci
|ci〉 to the superposition, B

randomly picks c and ci and appends |c〉 and |ci〉. From corollary 3, the
probability that the experiment passes all the checks, the extracted query is a||m
and the final output measured over P0, P1 is 0 remains the same, i.e, ε3 = ε2.

Hyb 4: Now each ci is chosen uniformly at random. B can simulate ChSign
using the honest generated transcripts. Every time A makes a signing
query mi, B picks the next generated transcript (ai, ci, ri). Let H(ai||mi) = ci
and σi = (ai, ci, ri).

The distribution of transcripts does not change. So the overall probability
that the experiment passes all the checks, the extracted query is a||m and the
final output measured over P0, P1 is 0 remains the same, i.e, ε4 = ε3.

Hyb 5: In the final hybrid, |c〉 is not longer chosen uniformly at random.
B is now in the game of breaking the quantum computational soundness of an
identification protocol with the challenger Chid.
B gives a to Chid where the extracted query is x = a||m, and receives c

from Chid. It then uses the given |c〉 instead of the randomly chosen one.
The distribution does not change because c is also uniformly chosen by Chid.
The overall probability that the experiment passes all the checks, the extracted
query is a||m and the final output measured over P0, P1 is 0 remains the same,
i.e, ε5 = ε4 is non-negligible.

And because the extracted query is x = a||m and the newly forged signature
is m,σ = (a, c, r). We know that a, c, r is valid. So B can use an adversary A
for breaking the signature scheme with advantage ε, to break the underlying
identification protocol with advantage at least Ω(ε/p9)− negl(λ). ut
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8.2 Quantum NIZKPoK

We have the following theorem (The proof is in the full version [LZ19].):

Theorem 8. If a sigma protocol has (1) perfect completeness, (2) post-quantum
computational HVZK, (3) quantum proof of knowledge, (4) unpredictable com-
mitments, the Fiat-Shamir heuristic gives a quantum NIZKPoK.
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