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Abstract. The need for high-quality randomness in cryptography makes
random-number generation one of its most fundamental tasks.

A recent important line of work (initiated by Dodis et al., CCS ’13)
focuses on the notion of robustness for pseudorandom number generators
(PRNGs) with inputs. These are primitives that use various sources to
accumulate sufficient entropy into a state, from which pseudorandom bits
are extracted. Robustness ensures that PRNGs remain secure even under
state compromise and adversarial control of entropy sources. However, the
achievability of robustness inherently depends on a seed, or, alternatively,
on an ideal primitive (e.g., a random oracle), independent of the source
of entropy. Both assumptions are problematic: seed generation requires
randomness to start with, and it is arguable whether the seed or the ideal
primitive can be kept independent of the source.

This paper resolves this dilemma by putting forward new notions of
robustness which enable both (1) seedless PRNGs and (2) primitive-
dependent adversarial sources of entropy. To bypass obvious impossibility
results, we make a realistic compromise by requiring that the source
produce sufficient entropy even given its evaluations of the underlying
primitive. We also provide natural, practical, and provably secure con-
structions based on hash-function designs from compression functions,
block ciphers, and permutations. Our constructions can be instantiated
with minimal changes to industry-standard hash functions SHA-2 and
SHA-3, or key derivation function HKDF, and can be downgraded to
(online) seedless randomness extractors, which are of independent interest.

On the way we consider both a computational variant of robustness,
where attackers only make a bounded number of queries to the ideal
primitive, as well as a new information-theoretic variant, which dispenses
with this assumption to a certain extent, at the price of requiring a high
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rate of injected weak randomness (as it is, e.g., plausible on Intel’s on-chip
RNG). The latter notion enables applications such as everlasting security.
Finally, we show that the CBC extractor, used by Intel’s on-chip RNG,
is provably insecure in our model.

Keywords: provable security, pseudorandom number generation, prov-
able security, symmetric cryptography

1 Introduction

Good random number generation is essential for cryptography and beyond. In
practice, this difficult task is solved by a primitive called pseudorandom number
generator with input (PRNG), whose aim is to quickly accumulate entropy from
various physical sources in the environment (such as keyboard presses, timing
of interrupts, etc.) into the state of the PRNG and then convert this high-
entropy state into (pseudo) random bits. In particular, entropy accumulation
should never stop since one may need to recover from occasional compromises
of the PRNG state. PRNGs are ubiquitous and have extensive applications.
For example, virtually all operating systems come equipped with a PRNG;
e.g., /dev/random [48] for Linux, Yarrow [34] for MacOs/iOS/FreeBSD, and
Fortuna [24] for Windows [23], where the latter two make use of standard
cryptographic primitives as part of their design. Still, as we will argue below in a
much broader context, even these widely used PRNGs lack adequate theoretical
understanding and analysis, which are critical if such PRNGs or their future
tweaks continue to be used ubiquitously.

The situation is not better in terms of standardization efforts, where existing
PRNG standards [32,35,22,5] are less mature than those for most other crypto-
graphic primitives. For starters, there has not been any rigorous competition
soliciting PNRG designs, and big parts of the existing standards concentrate
on the difficult (ad-hoc and non-cryptographic) problem of entropy estimation
rather than entropy accumulation and extraction. More importantly, standardized
cryptographic PRNG constructions are rather ad-hoc, have no clear security
definition/model, often have confusing syntax, and sometimes have been broken
by subsequent analyses of the cryptographic community. The most widely known
example is the DualEC PRNG, which appeared in the first version of the NIST
SP 800-90A standard [5] in 2005 and remained there for years—despite early
warnings by [42,44] and allowing potential exploitation [12]—until Snowden’s
revelations finally led to its deprecation. Recent work [49] identified a lot of
gaps and imprecision (sometimes leading to attacks or security concerns) in the
existing analyses and deployment for the other 3 PRNGs from the NIST SP
800-90A standard. In a similar vein, [43] found several gaps and misconceptions
in previous analyses and security justifications for the popular Intel Secure Key
Hardware PRNG introduced in 2011.

One of the main goals of this work is to reverse this poor state of affairs and
to design a rigorous, theoretically sound model of PRNGs. This model should
be general enough to incorporate practical entropy sources available in the real
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world, as well as to formally prove security of “good,” widely used PRNGs against
realistic attackers.

1.1 Previous Theoretical Models for PRNGs: Seeds

In view of their practical importance, we are certainly not the first to formally
study PRNGs through a theoretical lens. Indeed, several theoretical models and
analyses of PRNGs have appeared in the literature [1,19,43,21,26,28]. While
differing in various details, these important works share two key principles:

(a) The PRNG should work even against adversarial entropy sources, as long
as such sources eventually provide enough entropy (such sources are called
“legitimate” [19]);

(b) assuming more structure beyond entropy is undesirable and brittle,4 as this
requires a rather detailed understanding of one’s entropy sources.

However, while such extremely minimalist assumptions make these PRNG models
applicable to a wide variety of entropy sources, they also come with a subtle, but
very important caveat: the randomness extraction module cannot be deterministic,
as deterministic extraction from general entropy sources is impossible [15]. As a
result, the PRNGs studied by these works are seeded (with the seed somehow
chosen at initialization), but the entropy sources are assumed to be independent of
the seed. This modeling is inherited from the underlying problem of randomness
extraction, where seeded extractors [40] indeed overcome the impossibility of
deterministic (or “seedless”) extraction from general entropy sources.

While natural and sufficient for some applications of extractors, we argue
that the need for a seed seems rather problematic in the deployment of PRNGs.
First, if the reason for random number generation is the lack of access to high-
quality random bits, then we may not have any way to generate the seed. More
importantly, even if we can generate a uniformly random seed, it is crucial for
the analysis that (potentially adversarial) entropy sources remain independent
of the seed, for otherwise the extractor guarantees are lost. For example, if
physical entropy sources inside the computer are used, these sources may be
affected by the internal computations of the PRNG itself, and thus there may
be correlations between the seed and the sources. Moreover, for many seeded
PRNGs, the attacker could obtain information about the seed by either directly
reading it from memory, or indirectly when the recently compromised or rebooted
RNG is called on “low-entropy” inputs (so the output is no longer random and
leaks information about the seed; this is called “premature next” attack by [21]).

This means that it is certainly an issue if the seed is just generated once and
for all (perhaps using an expensive source of randomness) and hard-coded within
implementations to be used for all future randomness extractions. Moreover, if
multiple entropy sources are used, it is natural that some of these sources are
adversarial and could depend on the seed (which is hard to protect against with
a dedicated attacker). Somewhat paradoxically (considering the common belief
that “more entropy cannot hurt”), the mixing of such seed-dependent sources

4We do, however, later discuss an interesting approach suggested by [3].
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once again invalidates all the provable guarantees of seeded PRNGs, even if all
the entropy is obtained from other, seed-independent sources.

We thus face a dilemma:

We want to support general entropy sources, for which seedless extraction is
impossible, and seeded extraction is only possible under very dangerous and
hard-to-ensure independence assumptions, which we would rather avoid.

The goal of this work is to provide a meaningful solution to this dilemma,
by keeping the PRNG design seedless while respecting properties (a) and (b)
mentioned above.

1.2 Seedless PRNGs and Extractors from Cryptographic Hashing

We will achieve this goal by using popular cryptographic hash functions (CHF) as
our technical tool, and by carefully defining the notion of entropy in the setting
when certain components of these CHFs are assumed idealized.

Why cryptographic hashing? Before describing our solution in more detail,
we explain why using CHFs appears essential for the design of seedless5 PRNGs.
For starters, all general-purpose software PRNGs used today, as well as all
recommendations in existing PRNG standards, are based on CHFs. Hence, this
setting must definitely be understood in order to provide results useful in the
real world.

However, there is a more glaring theoretical reason as well. The key component
of any PRNG is the shrinking function refresh which takes the current PRNG state
S as well as a new entropic input X and produces a new state S′ ← refresh(S,X).
The goal of this function is to absorb the potential entropy of X into the PRNG
state S, in which case the entropy of S′ should be higher than the original entropy
of S. In the extraction literature, this property is called condensing. If one uses a
seed, building such condensers is easy to accomplish information-theoretically. For
example, in the PRNG design of [19], the refresh function is linear: S′ = aS +X,
where a is a seed independent of X.

In the seedless/seed-dependent setting, it is not hard to see [20] that condensers
must be built cryptographically, as they require at least some form of preimage-
and collision-resistance.6 For example, when used in iteration, the simple aS +X
condenser function above—which yields (together with other building blocks) a
provably secure seeded PRNG construction [19]—can be broken in a catastrophic
way if the distribution of the input blocks X1, X2, . . . could depend on the
constant a: it is not hard to see that an attacker knowing a can rather easily
produce high-entropy inputs such that if the condenser is applied to it, the
resulting would have no entropy at all. In practice, one cannot imagine a PRNG
system which would risk such a catastrophic failure by critically depending on

5Or, in the non-uniform setting, “seed-dependent”
6For example, the ability to compute a random preimage of a given element, which

is known to imply one-way functions [31], allows the attacker to produce entropic inputs
whose entropy is completely lost by the refresh procedure.
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the fact that the constant a must remain hidden for the lifetime of the PRNG.
Therefore, not surprisingly, all real-world PRNG designs—including those used
by Windows, MacOS, and FreeBSD—critically rely on CHFs, despite lacking
adequate theoretical justification.

Cryptographically secure condensers, which at an absolute minimum seed-
less PRNGs have to be, can be built using a (very strong form of) collision-
resistance [20]. However, the types of condensers needed for applications, called
average-case seedless condensers, seem to require non-standard cryptographic
assumptions. For example, a relatively weak form of such average-case condensers
(called “condensers for leaky sources”) are already sufficient for instantiating
the Fiat-Shamir heuristic for public-coin proof systems [20]—and it is a major
open problem to provide such an instantiation under standard cryptographic
assumptions.

To put it differently, even ignoring the fact that we want our PRNGs to be
full-blown seedless extractors—a problem we will address next—just achieving
provably secure entropy accumulation appears to require the use of CHFs as
well as either (1) non-standard cryptographic assumptions (making the results
appear somewhat tautologous) or (2) some supporting justification argument in
an idealized model of computation, which is the approach taken by this work.

Our approach: new min-entropy notion. To describe our approach, it
is instructive to recall the basic impossibility of seedless extraction for general
entropy sources. Given any candidate (seedless) extractor G, an adversary can
perform a so-called extractor-fixing attack by sampling a random input X several
times until the first bit of G(X) is 0. The resulting distribution X has very high
entropy, but G(X) is clearly not uniformly random. Observe that with a strong
enough CHF G, one might be able to formally argue that the extractor-fixing
attack is the “most damaging” attack possible; for example by showing, that G(X)
has almost full entropy (i.e., is a good condenser) for any efficiently samplable
source X, as was done by [20]. In other words, using CHFs will protect against
the completely devastating attacks possible with information-theoretic extractors.

However, our goal is to have a meaningful model where real randomness
extraction is possible, so that we can later extend it all the way to the full
PRNG system. Our solution will be to define a elegant and practically motivated
refinement of general min-entropy in settings where CHFs exist, so that:

(a) somewhat artificial sources resulting from intentionally performing extractor-
fixing will not have much entropy according to our notion (meaning they are
no longer “legitimate”); in fact, seedless extraction will become possible for
our notion of min-entropy;

(b) most natural entropy sources, including those used by major operating
systems, will likely have good entropy according to our new measure.

While our final constructions and interpretation of our security analyses will
apply to real-world CHFs, such as those derived from SHA-2, SHA-3, HMAC or
HKDF, at present the only rigorous way we know how to achieve our ambitious
goals (a) and (b) will be by going to the idealized models of computation,
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such as the random oracle, the ideal cipher or the random permutation model.
This is quite standard for many areas of symmetric-key cryptography, and we
already indicated that doing provably secure (non-tautologous) seedless PRNG
constructions in the “standard model” appears beyond our current capabilities,
even for much simpler building blocks, such as (average-case) seedless condensers.

1.3 Toy Case: Monolithic Seedless Extraction from
Oracle-Dependent Sources

We start by presenting our new entropy notion for the simpler problem of
“monolithic randomness extraction,” where the entropy source X is assumed to
come in one piece (rather than slowly accumulated using a fixed-length PRNG
state), and a monolithic CHF G—modeled as a monolithic random oracle—is used
to output the value R = G(X) (so that we temporarily ignore any find-grained
structure inside G, such as Merkle-Damg̊ard or Sponge [8] iteration).

At first, it appears that we solved our problem in a totally trivial (and
uninteresting) way, even without refining standard min-entropy. Namely, in the
random oracle model, the following folklore proof (see [18]) appears to show that
a (seedless) random oracle G is a good extractor: For any min-entropy γ∗ source
X, the probability the distinguisher D can distinguish G(X) is upper bounded
by the probability D queries G on X, which is at most q · 2−γ∗ , where q is the
number of random oracle queries allowed to A.7

Implicit in this simple proof, however, is the key assumption that the distri-
bution X is independent of the random oracle G, meaning that our (potentially
adversarial) sampler producing X is not allowed to call the random oracle G.
Thus, modeling G as a random oracle is but a fancy way of introducing an
exponentially long seed that is independent of the source, making extraction
trivial.8 Indeed, to capture PRNG sources X arising in the real world, we must
allow the source X to depend on the ideal primitive G. For example, if the
timing of computer interrupts is used as our entropy source X—which is the most
common source of randomness in software PRNGs—it seems unreasonable to
assume that none of these interrupts could be affected by frequent hash function
computations done inside and outside the operating system.

Oracle-dependent sources. To fix this problem, in Section 3 we will explicitly
model our source as part of the attacker A, so that AG = (AG1 ,AG2 ), where AG1
outputs the oracle-dependent source X and passes state Σ to the second state
attacker AG2 (Σ), whose goal is to distinguish R = G(X) from uniform. Of course,
for this definition to make sense, we must require that X is “legitimate,” meaning
it has entropy at least γ∗ given the state information Σ (for some parameter γ∗).

7In fact, if the length of G(X) is slightly less than γ∗, we can even let A query all
of G and use leftover-hash lemma [30] to get information-theoretic security.

8Prior to our work, the above modeling of sources as being independent of the ideal
primitive, was the only way to overcome extractor-fixing attacks. Examples of this
approach include [18,36,49] and many others. While these results are non-trivial due to
the “non-monolithic” structure of their extractors G, none of these works model the
setting where the source could depend on the ideal primitive.
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In the standard model, this could be formalized by requiring H∞(X|Σ) ≥ γ∗ (see
Section 2). But this is too weak, as this still allows for extractor-fixing attacks, by
sampling a long random X and remembering a few bits of G(X) in the leakage
Σ. In fact, this extractor-fixing attack still works even if we condition on the
entire random oracle G (i.e., require H∞(X|Σ,G) ≥ γ∗). This leads to a central
question of this work:

What is the “right” notion of entropy for oracle-dependent sources X?

The key insight of our work comes from the fact that while it is reasonable to
assume that the source X could depend on the random oracle G, the natural
sources of entropy we want to extract from do not natively evaluate cryptographic
hash functions, but somehow add extra entropy in addition to all hash function
evaluations around them. For example, it is unreasonable to assume that the
timing of interrupts could not depend, even slightly, on various hash function
evaluations inside the computer. However, it seems that the real entropy of
interrupt timings comes from the fact that the attacker cannot perfectly predict
the exact lower order bits of the timing measurements, even if the attacker
knew all the hash function evaluations. Indeed, instead of only requiring that
H∞(X|Σ,G) ≥ γ∗, our approach will make a stronger requirement that

H∞(X|(Σ,L)) ≥ γ∗ , (1)

where L is the input-output list of random oracle queries made by the sampler
A1 to the random oracle. Another, equivalent way to interpret this legitimacy
condition is to mandate that A1 cannot “forget” any of its random oracle queries
when passing its state Σ to A2, but must forget some other useful information
about X, to ensure that X has entropy conditioned on Σ and L.

Notice, our solution places a more stringent requirement than conditioning on
the entire G, as A1 did not touch anything outside L, so these un-queried values
do not reduce entropy of X beyond what is done by L. Also, when the number
of queries q is not too large, the extractor-fixing is no longer a legitimate attack,
since X will not have much entropy when conditioned on L (which contains the
pair (X,G(X))). In fact, we can easily show full extraction (see Theorems 1 and 2),
along the lines of the folklore proof for oracle-independent sources mentioned
above. The basic intuition comes from the fact that our conditioning on the list
L ensures that with overwhelming probability the sampler A1 did not himself
evaluate G(X), which is essential for the extractor-fixing attack to succeed.

Did we go too far? Of course, the main question is whether the legitimacy
requirement H∞(X|(Σ,L)) ≥ γ∗ does not overly limit the class of high-entropy
sources from which we want to extract. We believe the answer is negative. First,
in the restrictive “folklore case” when X is independent of G (meaning L = ∅),
we get the best-possible min-entropy condition H∞(X|Σ) ≥ γ∗ we had in the
standard (non-random-oracle) model. Namely, our notion of min-entropy relative
to G includes all general min-entropy sources.9

9Of course, when we instantiate G with a real-world hash function, this is no longer
the case, as we discuss below.
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Second, while we certainly allow the source X to substantially depend on
G, we ensure that non-trivial bulk of entropy must come from outside of the
actual oracle evaluation queries. In other words, while “nature,” who outputs
X, could conceivably be influenced by a couple of hash function evaluations, it
should generate some intrinsic entropy in addition to (but possibly dependent
on!) these evaluations. We feel that all practically used physical sources (timing
of interrupts, temperature, keystroke dynamics, etc.) have very little to do with
hash functions, and should easily satisfy this requirement.

Thus, we believe that our technical restriction on the legitimacy for extraction
using CHFs—by conditioning min-entropy on the list of hash function evaluations—
strikes the right balance between allowing for seedless extraction, and yet keeping
the family of high-entropy sources large and realistic for applications.

1.4 Our Results

While the above toy example (analyzed in Section 3.2) illustrated the key techni-
cal insight behind our approach, in practice it is uncommon to assume access
to a monolithic random oracle G. Instead, practical hash functions are usually
built from (public) compression functions, ciphers, or permutations. These un-
derlying primitives P have limited input length and will therefore not be able to
process inputs of arbitrary length m. Therefore, extractors and PRNGs should
be designed in such a way that they can process short m-bit input blocks (e.g.,
m = 256, 512, 1600) and accumulate their entropy in the internal state.

Online extractors and insecurity of CBC. Thus, in Section 3.3 we
formalize the more realistic notion of online (seedless) extractors, which slowly
accumulate their long input into a fixed-length state (using access to a P ), and
then finalize their output once the whole input is processed. We also define both
computational and information-theoretic (IT) notions of online extractor security,
where in the latter notion the attacker is allowed to read the entire ideal primitive
P after it finished generating the oracle-dependent source X.

Turning to natural and widely used examples of such online extractors, we
show that the popular CBC mode of operation is insecure as a seedless extractor
in our framework. The details of our attack are given in Section 3.4, but the result
is a somewhat unexpected, since CBC is used as the extractor underlying the
CTR DRBG construction in the NIST PRNG standard NIST SP 800-90A Rev. 1 [4],
and also as the extractor for Intel’s on-chip RNG [38]. Moreover, its security was
formally shown by Dodis et al. [18], but in the setting where the entropy source
X was independent of the random permutation π. In contrast, we show that
once the latter assumption is relaxed to our oracle-dependent sources, the CBC
extractor is no longer secure (unless one generalizes it to the Sponge construction
in Section 5.3, where the input is only XORed to part of the state). Of course,
our attack is somewhat theoretical, and does not directly translate to attacking
the Intel on-chip RNG, for example. However, coupled with our positive results,
we feel our attack suggests using a different online extractor, if possible.

On a positive side, in the full version [17], we show several other (both com-
putational and information-theoretic) online extractors based on popular modes
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of operations used inside hash functions SHA-2 and SHA-3, which are provably
secure in our framework: from Merkle-Damg̊ard with a random compression func-
tion, from Merkle-Damg̊ard with the Davies-Meyer compression function, and
from Sponges. Hence, for the first time practitioners can use seedless extractors
which are both practical and have firm theoretical foundation. The security of
these natural online extractors follows as special cases of more general PRNG
security results, which we describe next.

Full-scale seedless PRNGs. Finally, we take all our ideas together to
solve our main problem: defining and building practical, yet provably secure
seedless PRNGs. In Section 4 we introduce a novel security definition for PRNGs
that differs from previous notions [19,1,26] in several crucial ways. The detailed
comparison appears in the full version, but we present the highlights here.

First and foremost, our design is seedless. This is accomplished by carefully
defining the legitimacy condition (relative to the fixed-length ideal primitive P ),
by conditioning our entropy notion on the list L of the queries to P made by the
attacker. Second, our seedless design allows us to merge the “distribution sampler”
and the distinguisher used by [19,26] into a single attacker A,10 making our
notion much simpler to describe. Third, the works of [19,26] used a much weaker
notion of worst-case min-entropy; moreover, the final entropy of the the source
X was defined as sum of individual worst-case min-entropies of the individual
blocks of X conditioned on all the other blocks (before and after). In contrast,
we use a much better notion of average-case min-entropy, and only look at the
global average-case min-entropy of the entire (long) vector X. Thus, our notion
of entropy is much less conservative: realistic entropy sources are likely to have
much higher entropy according to our definition, even when conditioning on the
list L. Fourth, the notion of [19,26] had explicit “entropy estimates” that the
attacker had to provide. Our notion gets rid of these estimates. Finally, and
somewhat surprisingly, we still managed to define our notion of legitimacy of
the entropy source in a manner which is construction-independent. This means
that one can potentially study the entropy properties of the source in a manner
independent of the PRNG used on this source.

We also define both computational and information-theoretic (IT) notions of
PRNG security. As with on-line extractors, for IT-PRNGs the attacker is allowed
to read the entire ideal primitive P after it finished generating the last block of
it’s oracle-dependent source X used for extraction. Such a notion is important
for applications where privacy must hold well after the PRNG is finished its
operations, or where information-theoretic security is important.

Our PRNG constructions. In Section 5 we then present three main PRNGs
which are provably secure in our framework: based on Merkle-Damg̊ard with a
random compression function (see Figure 2), based on Merkle-Damg̊ard with the
Davies-Meyer compression function (see Figure 3), and based on Sponges (see
Figure 4). All these constructions are extremely natural and practical, as Merkle-

10Since we no longer need to hide the seed from the distribution sampler, forcing us
to separate it from the attacker.
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Damg̊ard-based functions abstract SHA-2, while Sponges abstract SHA-3—two
most widely used cryptographic hash functions. Thus, our work (including new
notion of oracle-dependent entropy) could be used as theoretical justifications
why these popular hash functions yield good seedless PRNGs (as well as online
randomness extractors) even for a wide class of oracle-dependent entropy sources.

Moreover, for Merkle-Damg̊ard based variants we also proved the security for
the information-theoretic variant (the Sponge case is open, although we defined the
variant which we conjecture is IT-secure). Our three computational proofs heavily
use the “coefficient-H” technique [41,13], while our two information-theoretic
proofs extend the framework of so-called “graph-counting” proofs [18,7,25] to
bound the collision probability of iterated hash constructions. One novel challenge
we had to solve here comes from the fact that the input source could depend
on the list L of the ideal primitive queries, which breaks the “source-primitive”
independence assumption crucially used in these already subtle proofs.

We also showed numeric examples of how we propose to use our constructions.
Overall, we believe all of them are deployment ready, and we hope this work will
start influencing future PRNG deployments, and will be incorporated into next
RNG standards.

Implications to standard model. To overcome the impossibility of seedless
extraction, our entropy notion is defined relative to the ideal primitive P . As we
argued in detail in Section 1.2, working in the idealized model seems somewhat
inherent to our approach, provided we wish to avoid highly non-standard, and
likely tautological, cryptographic assumptions about the CHF we are using in the
standard model. Still, it is good to ask what one might expect from our extractor
and PRNG constructions with real-world CHFs, such as those based on SHA-2,
SHA-3, HKDF, etc. As we already mentioned, we believe these constructions are
secure for real-world entropy sources, because our idealized notion of entropy
informally corresponds to sources which have fresh entropy, even given all the
hash function evaluations happening around the source. To state the counter-
positive, we believe that any real-world attack against our constructions with
existing hash functions will either require a highly artificial entropy source, or
will find a surprising weakness in the corresponding CHF.

1.5 Other Related Work

We mention some important categories of related works, in particular with respect
to seedless extraction, PRNGs, and their security.

Seeded extractors and PRNGs. We already mentioned the extensive work
on seeded extractors started by the seminal paper of Nisan and Zuckerman [39],
and why they are problematic in our context. In the context of PRNGs, the
first seeded PRNG notion was defined and constructed by Dodis et al. [19], who
extended the prior “monolithic PRNG” definition of Barak and Halevi [1] (which
did not explicitly talk about the seed, assuming the extraction module is “good
enough” for the class of distributions produced by the entropy source). This line
of work was extended in various ways by [21,26,29], where the latter two works
were also analyzed in the random permutation model (in addition to the seed).
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However, none of these works considered a seedless setting for general entropy
sources.

Extractors and PRNGs in ideal models. Extractors and PRNGs were also
studied in the ideal models by several works [18,9,43,49]. While not having explicit
seeds, these works nevertheless modeled the entropy source as being independent
of the ideal primitive. As we argued above, such oracle-independent modeling
seems to be too restrictive for many realistic scenarios. Also, from a theory point
of view, it effectively allows an exponentially long seed (the randomness used
to sample the corresponding ideal primitive), making the positive results less
interesting theoretically than the above-mentioned work on seeded extractors
and PRNGs.

Indeed, the main motivation of all these papers was not to design theoretically
optimal extractors and PRNGs, but to analyze the heuristic use of various
cryptographic hash functions and popular modes of operations (such as CBC,
HMAC, etc.) for randomness generation and extraction—a task these objects were
not natively designed for. From this perspective, and given their widespread use,
analyzing their extraction properties was an important first step in understanding
their security, even under the restrictive oracle-independence assumption. Our
work could be viewed as making a critical leap forward, by dropping—for the
first time—the oracle-independence assumption, but instead carefully modeling
what constitutes entropy in the much more realistic, oracle-dependent setting.

Restricting the class of entropy sources. This line of work has primarily
focused on the question of extraction, by assuming that the source X has more
structure beyond entropy. Early examples [47,16,10,37,14] include various bit-
fixing and limited dependence sources, culminating with the question of extracting
from several independent sources [2,11]. While mathematically very elegant, the
types of sources studied by these works appear “too structured” to be realistic
in the PRNGs scenario.

A different kind of restriction on the entropy source was studied by Barak et
al. [3]. Rather than restrict sources by some property of their distribution, the
work of [3] allows for arbitrary min-entropy sources, but assumes they come from
an a-priori bounded number of distributions. While potentially promising for the
setting of PRNGs, there are two disadvantages of the work of [3] as compared
to this work. First, the work of [3] concentrated on the “monolithic” extraction
setting, and did not address the question of entropy accumulation, where the
entropy in X might come slowly from a large number of samples, and has to
be accumulated into bounded state. In particular, it is unclear how to extend
their constructions to address entropy accumulation with a fixed-length state.
Second, the particular solutions offers by [3] used so called t-wise independent
hash functions for a large values of t (at least as large as the overall source length).
These functions are quite inefficient, and might not be fast enough for general
purpose PRNGs.

We note that our work could also be viewed as overcoming impossibility
of extraction by restricting the type of the source. However, we feel that our
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modeling is more natural for (and, thus, applicable to) the existing entropy
sources, as used by the current PRNGs.

Low-Complexity Samplers. Introduced by Trevisan and Vadhan [46] and
later extended by [33], here one assumes that the entropy source producing input
X is unable to run the extractor/PRNG even once, thus making it impossible to
do extractor-fixing. While this might be useful for situations where the entropy
source is extremely simple, it is too restrictive for most applications, such as
general purpose PRNG design studied in this work. In contrast, in this work
the entropy source can easily run the extractor, but the legitimacy condition is
defined in a way that doing the trivial extractor-fixing attack—by running the
extractor—will result in a low-entropy, “illegitimate” source.

Randomness condensers. This approach, formalized by Dodis, Ristenpart
and Vadhan [20], relaxes the security guarantees of the randomness extractor
to only ensure that the output of the (seedless or “source-dependent-on-seed”)
condenser is almost full entropy, despite not being perfectly uniform. Indeed, this
weaker security turns out to be sufficient for several applications, such as key
derivation schemes for signature schemes. Unfortunately, if we want an extractor
rather than a condenser—which is essential for general purpose PRNGs—this
approach is not sufficient.

UCEs and public-seed pseudorandomness. The notion of universal compu-
tational extractors (UCEs) [6], and its generalizations [45], study a complementary
problem to the one studies here: how to extract from any entropy source which
is only computationally-hard-to-predict, so it only has “computational entropy”.
On a positive, and similar to this work, when instantiated with constructions
from an ideal primitive P , a UCE hash function yields a good extractor even
if the inputs to it (the actual source) can be sampled depending on the ideal
primitive. The issue, however, is that the current UCE notion inherently requires
a seed, making in inapplicable for the PRNG scenario. An interesting direction for
future research could be to extend our work to deal with computational entropy,
by defining and constructing seedless UCEs in idealized models, and possibly
extending them to full-blown seedless PRNGs for computational entropy.

2 Preliminaries

2.1 Statistical Distance and Min-Entropy

The statistical distance of two random variables X and Y is SD(X,Y ) =
1
2

∑
x |P[X = x]− P[Y = x]|. The prediction probability of a random variable X is

Pred(X) := maxx P[X = x], and we also denote Pred(X|y) := maxx P[X = x|Y = y].
The conditional version of prediction probability is defined as

Pred(X|Y ) := Ey←Y
[
Pred(X|y)

]
.

The (average-case) conditional min-entropy is H∞(X|Y ) = − log(Pred(X|Y )).
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2.2 Security Games

All of the security properties considered in this paper are captured by considering
a game between a challenger and an attacker A, both of which may have access
to an ideal primitive P . The goal of the attacker is to guess a random bit b chosen
by the challenger, who offers a set of oracles to the attacker to aid with this task.
The advantage of A is defined as

2 ·
∣∣ P[A wins]− 1/2

∣∣ ,
where the probability is over the randomness of A, of the challenger, and of the
ideal primitive. The cases where b = 0 and b = 1 are referred to as the real world
and the ideal world, respectively. One may equivalently consider A’s advantage
at telling these two worlds apart, i.e.,∣∣ P[A = 1|b = 0]− P[A = 1|b = 1]

∣∣ .
3 Seedless Extraction

As a warm-up for full-fledged seedless PRNGs, this section considers the simpler
property of extraction, i.e., producing uniformly random bits from weak high-
entropy sources. Extraction can be seen as corresponding to the post-compromise
security of PRNGs, and as such it will be implied by PRNG robustness (as
defined in Section 4.2).

The definition of extraction security in Section 3.1 considers the entropy of
the attacker’s input to the extractor conditioned on the attackers state and the
queries made to an ideal primitive P . A definition is provided for computational
or information-theoretic security. IT extractors differ from computational ones
in that the output of the extractor remains random even if the attacker, after
providing the input, is given the entire function table of the underlying ideal
primitive. That is, IT extractors achieve so-called everlasting security (cf. works
in the hybrid bounded-storage model by Harnik and Naor [27]).

Section 3.2 considers extracting with a monolithic random oracle. The cor-
responding security proofs (for the computational and IT cases) are instructive
for understanding the actual PRNG constructions provided in Section 5. Since
considering a monolithic oracle is not motivated by any hash function used in
practice, Section 3.3 introduces the concept of online extraction. An online extrac-
tor accumulates the entropy of its inputs in an internal state, from which uniform
randomness can be produced. Finally, in order to illustrate the non-triviality of
online extraction, Section 3.4 shows that extractors based on the popular CBC
mode are not suitable for extraction.

3.1 Definition

In a model with idealized primitive P (chosen from some set P), seedless extractors
are algorithms extP : X → Y with oracle access to P . The security definition for
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such extractors considers a two-stage attacker A = (A1,A2), where both parts
have access to P . The first stage A1 outputs a value x and some state information
σ for A2. The second stage takes an input y ∈ Y and outputs a single bit (i.e., it
acts as a distinguisher).

For an attacker A, denote by L1 and L2 the (random variables corresponding
to) the lists of the P -queries made by A1 and A2, respectively.

Definition 1. An attacker A = (A1,A2) is called a q-attacker if |L1 ∪ L2| ≤ q
always; it is called a q-IT-attacker if |L1| ≤ q always.

That is, for IT-attackers the second stage A2 may make an arbitrary number
of queries to P . Equivalently, A2 can be thought of as being given the entire
function table of P .

The security game for seedless extractors in the P -model roughly requires
that if the extractor is given a high-entropy input by A1, then A2 cannot tell
the extractor output apart from a random value in Y, even given the state
information σ and access to P . Formally, it proceeds as follows:

1. The challenger chooses b← {0, 1} and P ← P uniformly at random.

2. A1 gets access to P and produces (σ, x)← AP1 .

3. The output of the extractor is computed as y0 ← extP (x). Moreover, the
challenger picks a value y1 ← Y uniformly at random.

4. The second-stage attacker A2 is given σ and yb and outputs a decision bit
b′ ← AP2 (σ, yb). The attacker wins if and only if b′ = b.

The advantage of A in this extraction game is denoted by Advext,P
ext (A).

An attacker has to satisfy a legitimacy condition. Intuitively, this condition
requires that the output X of A1 have high min-entropy even conditioned on the
state information Σ and the list of queries L1.11

Definition 2. An attacker A = (A1,A2) is said to be γ∗-legitimate if, in the
extraction game above,

H∞(X|ΣL1) ≥ γ∗ .

The above finally leads to the following definition of seedless extractor in the
P -model:

Definition 3. An algorithm extP : X → Y with oracle access to P is an (γ∗, q, ε)-
(IT-)extractor in the P -model if for every γ∗-legitimate q-(IT-)attacker A,

Advext,P
ext (A) ≤ ε .

11Note, in the extraction game the definition of L1 is the same in the real and the
ideal worlds. For our future definitions of PRNGs, however, it will be important that
the notion of legitimacy is defined in the ideal world (i.e., conditioned on b = 1).
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3.2 Seedless Extraction with a Monolithic Random Oracle

For instructive purposes it is useful to consider monolithic extraction, i.e., the
case where the ideal primitive P itself is used as an extractor. To exemplify
this, assume P is a random oracle, i.e., a function G : {0, 1}m → {0, 1}n chosen
uniformly at random. Then, the monolithic extractor is defined as follows:

Construction 1 (Monolithic extractor). The monolithic seedless extractor
monoG : {0, 1}m → {0, 1}n using a random oracle G : {0, 1}m → {0, 1}n is
defined by

monoG(x) := G(x) .

Theorem 1 (Monolithic seedless extraction). Construction mono is a
(γ∗, q, ε)-extractor in the G-model for

ε ≤ q

2γ∗
.

The proof of Theorem 1 is a straight-forward application of the H-coefficient
technique. The idea is to first show that unless A1 or A2 queries the input x
provided by A1, the real and ideal worlds (i.e., the cases where b = 0 and b = 1,
respectively) are indistinguishable. That is, the corresponding ratio of transcript
probabilities is 1. Transcripts where x is in the query list are defined to be bad
transcripts, and the second part of the proof shows that bad transcripts are
unlikely to occur due to the legitimacy of A. The latter proof crucially relies
on the fact that the H-coefficient technique enables performing the bad-event
analysis in the ideal world. The proof of the following theorem is deferred and
can be found in the full version.

Theorem 2 (Monolithic seedless IT-extraction). Construction mono is a
(γ∗, q, ε)-IT-extractor in the G-model for

ε ≤ 1

2

√
2−(γ∗−n)

1− ρ
+ ρ ,

where ρ = q/2γ
∗
.

The proof of Theorem 2 proceeds by bounding the statistical distance ofA2’s views
in the real and ideal experiments via the corresponding collision probabilities (as
done in the proof of the left-over hash lemma). In the proofs of the actual PRNG
constructions in the following sections, bounding said collision probabilities
constitutes the bulk of the proof and is quite involved. The formal proof is
deferred and can be found in the full version.

Parameter choices. In terms of concrete parameters, observe the following
for the constructions towards monolithic seedless extraction from above:

– Computational: If we let n = 512 and q = 280. We would need γ∗ ≈ 160 to
get 80 bits of security.
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– Information Theoretic: We let n = 512. We also approximate 1/(1− ρ) ≤ 2,
very generously Then, if we set for example q = 280. We would need the
entropy loss, i.e, γ∗ = 160 for 80 bits of security.

3.3 Online Extraction

An “accumulating” extractor ext satisfies the same security Definition 3, but its
syntax can be thought of as two algorithms ext = (refresh, finalize), where refresh
accumulates entropy in an internal state and finalize produces the extractor
output from the current state.

Definition 4. An online extractor construction consists of two algorithms ext =
(refresh, finalize), where

– refresh takes a state s and an input x ∈ {0, 1}m and produces a new state
s′ ← refreshP (s, x), and

– finalize takes a state s and produces an output y ∈ {0, 1}r, i.e., y ←
finalizeP (s).

An online extractor processing m-bit inputs and producing r-bit output is called a
(m, r)-online extractor.

The security definition for online extractors additionally considers the number `
of times refresh is called by the attacker, i.e., it considers (q, `)-attackers.

Definition 5. An algorithm extP : X → Y defined by two algorithms ext =
(refresh, finalize) with oracle access to P is an (γ∗, q, `, ε)-(IT-)online extractor in
the P -model if for every γ∗-legitimate (q, `)-(IT-)attacker A,

Advext,P
ext (A) ≤ ε .

Online extractors can be built just like the PRNG constructions in Section 5,
and, in fact, the corresponding security results follow as a special case of PRNG
security. Correspondingly, their treatment is deferred until Section 5, where
such online extractors (and, in fact, full-fledged PRNGs) can be obtained from
Merkle-Damg̊ard with a random compression function, from Merkle-Damg̊ard
with the Davies-Meyer compression function, and from Sponges. For the reader’s
convenience, the full version of this paper [17] contains the online extractor
constructions along with the security bounds—for applications where extraction
is sufficient.

In contrast to Merkle-Damg̊ard and Sponges, as shown in the next section,
using the CBC paradigm (which can be thought of as an “extreme sponge”) will
not lead to a secure online extractor.

3.4 CBC-Based Extractors Are Insecure

A natural candidate for an online seedless extractor is using a permutation in CBC
mode. A CBC-based extractor construction uses a permutation π : {0, 1}n →
{0, 1}n to absorb n-bit inputs. Its refresh function is defined as

refreshπ(s, x) = π(s⊕ x) .

16



However, it turns out that this approach does not lead to a secure extractor. This
section presents a simple attack against CBC-based extractors. The attack works
irrespective of how the finalization function is defined.

Theorem 3 (Attack against CBC Extractors). Let refresh as defined above.
There exists an `-legitimate q-attacker A with black-box access to a function
finalize, such that for all CBC = (refresh, finalize)

Advext,π
CBC (A) = 1− 2−(r−1) ,

where r is the output length of the extractor, q = 2` + 2α, and α is the query
complexity of finalize.

The idea of the attack is to have the attacker create the ith input block as either
πi(0n)⊕πi(1n) or 0, each with probability 1/2.12 After ` such steps, the attacker
will have provided ` bits of entropy (even conditioned on its π-queries), but only
a single bit will have accumulated in the state, which will be πi(0n) or πi(1n),
each with probability 1/2.

The proof can be found in the full version of this paper [17].

4 Pseudorandom Number Generators with Input

A pseudorandom number generator with input (PRNG) is a stateful cryptographic
primitive. It gradually accumulates entropy in its state by absorbing inputs and
can be used to output pseudorandom bits once the entropy of the state is
sufficiently high. Moreover, it is both forward and backward secure, i.e., past
outputs remain random upon future state compromise, and, by absorbing sufficient
amounts of entropy, a PRNG can recover from state compromise.

This section introduces a novel security definition for PRNGs that differs
from previous notions in several crucial ways. Specifically, a comparison to the
original robustness notion by Dodis et al. [19], based on work by Barak and
Halevi [1], as well as to an adaptation of it by Gazi and Tessaro [26] for idealized
models is provided in the full version which is available on ePrint.

This paper considers two notions of PRNGs: computational PRNGs and
information-theoretically secure (IT) PRNGs. IT PRNGs differ from computa-
tional PRNGs in that once the attacker stops interacting with the PRNG, the
output of the PRNG remains random even if the attacker is given the entire
function table of the underlying ideal primitive. That is, IT PRNGs achieve
so-called everlasting security (cf. works in the hybrid bounded-storage model by
Harnik and Naor [27]). This distinction is analogous to that between seedless
extractors and IT seedless extractors (cf. Section 3).

4.1 Syntax

A PRNG consists of two algorithms: one for absorbing new inputs and one for
producing pseudorandom outputs. Formally, it is defined as follows:

12Here, πi denotes the i-fold application of π.

17



The PRNG Robustness Game

init
s← 0n

b← {0, 1}

adv-refresh (x)
s← refreshP (s, x)

get-state
return s

next-ror
(s, y0)← nextP (s)
y1 ← {0, 1}r
return yb

get-next/get-next*
(s, y)← nextP (s)
return y

set-state (s∗)
s← s∗

Fig. 1. Oracles for the PRNG robustness game.

Definition 6 (Syntax of PRNGs). A pseudorandom number generator with
input (PRNG) is a pair of algorithms PRNG = (refresh, next) having access to an
ideal primitive P and sharing an n-bit state s, where

– refresh takes a state s and an input x ∈ {0, 1}m and produces a new state
s′ ← refreshP (s, x), and

– next takes a state s and produces a new state and an output y ∈ {0, 1}r, i.e,
(s′, y)← nextP (s).

A PRNG processing m-bit inputs and producing r-bit output is called a (m, r)-
PRNG.

4.2 Security Game

Robustness game. PRNGs are expected to satisfy the so-called robustness
property, which captures the properties discussed at the beginning of Section 4.
The corresponding security game is depicted in Figure 1. The game initially
chooses a random bit b and initializes the state of the PRNG to 0n. Subsequently,
it offers the following oracles to A:

– adv-refresh(x) calls the refresh procedure to absorb x ∈ {0, 1}n into the
internal state of the PRNG;

– get-next and get-next* allow the attacker to get pseudorandom outputs
by calling the next procedure on the current state and returning the output
y. The difference between the two oracles is that get-next is supposed to
be called only when the state has high entropy, whereas get-next* can be
called prematurely, i.e., before the state has absorbed enough randomness for
the next function to output pseudorandom values (cf. definition of legitimate
attackers below).

– next-ror works like the get-next-oracle, except that it creates a challenge,
i.e., if b = 1, it outputs a uniform random value y1 ∈ {0, 1}r instead of the
PRNG output y0.

– get-state and set-state model state compromises by letting the attacker
learn the current state or set it to an arbitrary value, respectively.

The advantage of A in the robustness game is denoted by Advrob,P
PRNG(A).
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Canonical attackers. It will be useful to define to following notion of
canonical attackers: Consider the interaction of an attacker A with the robustness
game. The following events are called entropy drains:

– the beginning of the game,

– calls to get-state or set-state, and

– calls to get-next*.

In other words, entropy drains are the events that cause the PRNG state to lose
its entropy, which includes premature calls to next. An attacker A is said to be
canonical if it does not make get-next* queries nor the following query pattern:
an entropy drain followed by one or more adv-refresh queries, followed by a
get-state query.

Considering canonical attackers only is without loss of generality. This is
because the above sequence of queries can be simulated by the attacker by
making a get-state query right away and computing the output of get-state
or get-next* itself. In particular, for every attacker A, there exists a canonical
attacker A with the same advantage. All attackers in the remainder of this work
are therefore assumed to be canonical.

Legitimate attackers. In order to obtain a sensible definition devoid of
trivial attacks, attackers must satisfy a “legitimacy” condition. The condition
roughly requires that an attacker only ask for challenges when it has sufficient
amount of uncertainty about the PRNG’s internal state.

Towards formalizing the legitimacy condition, consider the interaction of
A with a variant of the robustness game defined as follows: Whenever oracles
next-ror or get-next are called, instead of evaluating next, the game simply
uses two uniformly random and independent values (s, y) as the output of next.

Observe that this variant of the robustness game, called the legitimacy game
corresponds to an interaction between A and an ideal PRNG, which produces
perfect randomness. Moreover, the legitimacy game is construction-independent.

In the legitimacy game, define now the following random variables immediately
before A makes the ith call to oracle get-next or next-ror:

– Li: the list of P -queries by A and the corresponding answers;

– Σi: the state of A;

– Xi: vector of inputs provided by A since the the most recent entropy drain
(MRED); and

– Si: the state of the PRNG immediately after the MRED.

The legitimacy condition requires that A provide inputs that have high min-
entropy even conditioned on its current state, the queries so far, and the state of
the PRNG after the MRED.

Definition 7 (Legitimate attackers). An attacker A is said to be γ∗-legitimate
if for all i,

H∞(Xi|ΣiLiSi) ≥ γ∗ ,
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where MREDs are defined as above.

In order to capture IT-legitimate attackers (against IT PRNGs), the set of entropy
drains is extended to include

– calls to get-next and next-ror.

With this definition of MRED and notation analogous to that in the previous
definition, IT-legitimate attackers are defined as follows:

Definition 8 (Legitimate IT attackers). An attacker A is said to be γ∗-IT-
legitimate if for all i,

H∞(Xi|ΣiLiSi) ≥ γ∗ ,

w.r.t. the extended definition of MRED.

Robust PRNGs. We are now ready to quantify the efficiency of attacker A,
and to define our final notion of PRNG robustness.

Definition 9 (Attacker efficiency). An attacker is called a (q, t, `)-attacker
if

– q is the maximum number of P -queries it makes,

– ` is the maximum number of adv-refresh calls between any entropy drain
and successive call to either next-ror or get-next, and

– t is the maximum total number of calls to any oracle in the robustness game
other than adv-refresh.

An attacker is called a (q, t, `)-IT-attacker if it satisfies the above conditions
but makes an arbitrary number of queries to P after the interaction with the
challenger ends.

Definition 10 (Robustness of PRNGs). A PRNG construction PRNG =
(refresh, next) with oracle access an ideal primitive P is (γ∗, q, t, `, ε)-(IT-)robust
in the P -model if for every γ∗-(IT-)legitimate (q, t, `)-(IT-)attacker,

Advrob,P
PRNG(A) ≤ ε .

Observe that online extractors (cf. Definition 4) are a special case of robust
PRNGs. In terms of construction, the PRNG next algorithm can be replaced
by finalize, which simply discards the state output by next. If then the PRNG
robustness game is relaxed such that the only queries the attacker can make
are (a) arbitrarily many queries to adv-refresh followed by (b) t = 1 query to
next-ror, one obtains a notion equivalent to Definiton 3.

5 Constructions of PRNGs

This section presents three simple, intuitive, and—most importantly—practical
PRNG constructions:
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– a construction based on the Merkle-Damg̊ard paradigm using a public fixed-
length compression function;

– a construction based on the Merkle-Damg̊ard paradigm using the Davies-
Meyer compression function (as in SHA-2), which is built from any public
block cipher; and

– a construction based on the Sponge paradigm (as in SHA-3), which uses a
public permutation.

For each paradigm, there are in fact two constructions: one achieving normal,
computational PRNG security and one achieving information-theoretic (IT)
security. The security analyses of these constructions can be found in the full
version of this paper, available online.

5.1 PRNGs from Merkle-Damg̊ard

A PRNG can be obtained from a compression function F as follows (cf. Fig-
ure 2):13

Construction 2 (PRNG from Merkle-Damg̊ard). The (m, r)-PRNG con-
struction MD = (refresh, next) based on Merkle-Damg̊ard with a compression
function F : {0, 1}n × {0, 1}m → {0, 1}n is defined as follows:14

– refreshF (s, x) = F (s, x), and

– nextF (s) = (F (s, 0), F (s, 1)‖ · · · ‖F (s, r/n)).

The security of Construction 2 is proved in the F -model, where F is a uniformly
random function.

Theorem 4 (Robustness of Merkle-Damg̊ard PRNGs). Construction 2
is a (γ∗, q, t, `, εrob)-robust PRNG in the F -model for

εrob ≤ 2t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗

)
,

where q̃ = q + r/n+ 1.

An IT-robust PRNG based on Merkle-Damg̊ard can be obtained if the next
function simply outputs the truncated state (and outputs 0n as the new state):

Construction 3 (IT-PRNG from Merkle-Damg̊ard). The (m, r)-PRNG
construction MDr = (refresh, next) based on Merkle-Damg̊ard with a compression
function F : {0, 1}n × {0, 1}m → {0, 1}n is defined as follows:

13To reduce notational clutter, the algorithms refresh and next of the PRNG con-
structions are not “branded” with the design name. There will be no ambiguity as to
which construction is meant in any place in this paper.

14The integer arguments to the compression function are to be naturally mapped to
{0, 1}n.
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Fig. 2. Procedures refresh (processing a single-block input xi) and next of Merkle-
Damg̊ard PRNG constructions with compression function F . Left: Computationally
secure Construction 2; right: IT secure Construction 3.

– refreshF (s, x) = F (s, x), and

– nextF (s) = (0n, s[1..r]).

The security of Construction 3 is proved in the F -model, where F is a uniformly
random function. To state the theorem for the IT construction, for an integer `,
let

d′(`) = max
`′∈{1,...,`}

|{d ∈ N : d|`′}| .

Observe that, asymptotically, d′(`) grows very slowly, i.e., as `o(1). Furthermore,
let F be a random compression function.

Theorem 5 (IT-Robustness of Merkle-Damg̊ard PRNGs). Construc-
tion 3 is a (γ∗, q, t, `, εrob)-IT-robust PRNG in the F -model, where

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2 · q̃

22r

22n
+ tρ ,

for ρ = q̃2

2r where q̃ = q + t`.

Parameter choices. In terms of concrete parameters, observe the following
for the Merkle-Damg̊ard constructions above:

– Computational PRNG: If one were to use SHA-512 as compression function
with n = 512, and, moreover, choose r = n. We let t = 1, q = 280 and let
γ∗ = `. This assumes that we get at least one bit of entropy from each block.
We would need γ∗ ≈ 160 to get 80 bits of security.
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– IT PRNG: For example, assume SHA-512’s compression function is used, i.e.,
n = 512. If we let r = 256, then we get (we also approximate 1/(1− ρ) ≤ 2,
very generously)

εrob-it ≤
t

2

√
2257−γ∗ +

` · d′(`)
2256

+ t
q2

2256
,

We let ` = γ∗. Then, if we set for example q = 280. We would need the
entropy loss, i.e, γ∗ − r = 162 for 80 bits of security.

5.2 PRNGs from Merkle-Damg̊ard with Davies-Meyer

The Davies-Meyer compression function maps two inputs a ∈ {0, 1}m and b ∈
{0, 1}n to an n-bit string

E(b, a)⊕ a ,

where E is an arbitrary block cipher (where b is the key and a the input).15

Correspondingly, a PRNG can be obtained from E as follows (cf. Figure 3):

Construction 4 (PRNG from MD-DM). The (n, r)-PRNG construction
DM = (refresh, next) based on Merkle-Damg̊ard with Davies-Meyer (MD-DM)
uses a cipher E : {0, 1}k × {0, 1}n → {0, 1}n and is defined as follows:16

– refreshE(s, x) = E(x, s)⊕ s, and

– nextE(s) = (E(0, s)⊕ s, E(1, s)⊕ s‖ · · · ‖E(r/n, s)⊕ s).

The security of Construction 4 is proved in the E-model, where E is a cipher
chosen uniformly at random from the set of all ciphers and can be queried in
both the forward and backward direction.

Theorem 6 (Robustness of MD-DM PRNGs). Construction 4 is a (γ∗, q, t, `, εrob)-
robust PRNG in the E-model for

εrob ≤ 4t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗

)
,

where q̃ = q + r/n+ 1.

In the IT-secure variant of the MD-DM construction, refresh remains the same,
but next will truncate the input state to r bits, which it outputs, and then zero
out the state.

Construction 5 (IT-PRNG from MD-DM). The (n, r)-PRNG construc-
tion DMr = (refresh, next) using Merkle-Damg̊ard with Davies-Meyer (MD-DM)
uses a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n and is defined as follows:

15A (block) cipher is an efficiently computable and invertible permutation E(k, ·) :
{0, 1}n → {0, 1}n for every key k ∈ {0, 1}n.

16The integer arguments to the cipher are to be naturally mapped to {0, 1}n.
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Damg̊ard PRNG constructions with the Davies-Meyer compression function based
on a block cipher E. Left: Computationally secure Construction 4; right: IT secure
Construction 5.

– refreshE(s, x) = E(x, s)⊕ s, and

– nextE(s) = (0n, s[1..r]).

The security of Construction 5 is proved in the E-model, where E is a cipher
chosen uniformly at random from the set of all ciphers and can be queried in
both the forward and backward direction. Let d′(`) be defined as in Section 5.1.

Theorem 7 (IT-Robustness of MD-DM PRNGs). Construction 5 is a
(γ∗, q, t, `, εrob)-IT-robust PRNG in the E-model, where

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) 2r

2n−1
+ 64`4 · 2r

22n−2
+ 16`2q̃2 · 2r

22n−2
+ tρ ,

for ρ = q̃2

2r where q̃ = q + t`

Parameter choices. In terms of concrete parameters, observe the following
for the PRNG constructions from Merkle-Damg̊ard with Davies-Meyer above:

– Computational PRNG: SHA-512 is a 512-bit block cipher algorithm that
encrypts 512 bit hash value using the input as key. Therefore, we let n = 512
and set r = n. We let t = 1, q = 280 and let ` = γ∗. This assumes that we get
at least one bit of entropy from each block. We would need γ∗ ≈ 163 to get
80 bits of security.
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– IT PRNG: We again let n = 512. If we let r = 256, then we get (we also
approximate 1/(1− ρ) ≤ 2, very generously)

εrob-it ≤
t

2

√
2129−γ∗ +

` · d′(`)
2127

+ t
q2

2128
,

We let ` = γ∗. Then, if we set for example q = 280. We would need the
entropy loss, i.e, γ∗ − r = 162 for 80 bits of security.

5.3 PRNGs from Sponges

Let n ∈ N and n = r + c. In the following, for an n-bit string s, let s = s(r)‖s(c)
be decomposition of s into an r-bit and c-bit string. A PRNG using the Sponge
paradigm can be obtained from a permutation π as follows (cf. Figure 4):

Construction 6 (PRNG from Sponges). The Sponge-based PRNG con-
struction Spg = (refresh, next) uses a permutation π : {0, 1}n → {0, 1}n to absorb
and produce r-bit inputs and outputs, respectively, and is defined as follows:

– refreshπ(s, x) = π(s⊕ x‖0c), and

– nextπ(s) = (π(s)⊕ 0r‖s(c), s(r)).
The next function design is due to Hutchinson [28], who simplified a proposal
by Gazi and Tessaro [26]. Recall that the Merkle-Damg̊ard constructions have a
“parallel” next function in order to produce r/n blocks of random output with
r/n+ 1 calls to the ideal primitive, where the additional call is used to produce a
new state. Were it not for this optimization, on order to obtain r bits of output,
one would have to apply the next function r/n times in a row, which would
results in twice the number of ideal-primitive calls.

The next function for Sponges, on the other hand, only makes a single call
to the ideal primitive to produce both a new state and the random output.
Therefore, no parallel next function is provided for the Sponge-based PRNG.

The security of Construction 6 is proved in the π-model, where π is a uniformly
random permutation, which can be queried in both the forward and backward
direction.

Theorem 8 (Robustness of Sponge PRNGs). Construction 6 is a (γ∗, q, t, `, εrob)-
robust PRNG in the π-model for

εrob ≤ 4t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗
+
q̃2

2c

)
,

where q̃ = q + r/n+ 1.

Observe that the bound in Theorem 8 is only reasonable when c is large enough,
which matches the fact that CBC-based PRNGs—which correspond to the case
c = 0, are not secure.

In the IT variant of the Sponge construction, refresh remains the same, but
next will truncate the input state to r bits, which it outputs, and then zero out
the state.
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Construction 7 (IT-PRNG from Sponges). The Sponge-based PRNG con-
struction Spgr = (refresh, next) uses a permutation π : {0, 1}n → {0, 1}n to absorb
and produce r-bit inputs and outputs, respectively, and is defined as follows:

– refreshπ(s, x) = π(s⊕ x‖0c), and

– nextπ(s) = (0n, s[1..r]).

Theorem 9 (IT-Robustness of Sponge PRNGs). Construction 7 is a
(γ∗, q, t, `, εrob)-IT-robust PRNG in the π-model for

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+
` · (`+ q̃)

2c−1
+ tρ ,

for ρ = q̃2

2c where q̃ = q + t`

Parameter choices. In terms of concrete parameters, observe the following
for the PRNG constructions from Sponges above: above:

– Computational PRNG: SHA-3 like parameters have n = 1600 and c = 1024.
We let t = 1, q = 280 and let ` = γ∗. This assumes that we get at least one
bit of entropy from each block. We would need γ∗ ≈ 163 to get 80 bits of
security.

– IT PRNG: We let n = 1600 and c = 1024. In addition, we let t = 1 and
q = 280. We also let ` = γ∗. Therefore, we incur an entropy loss of 160 bits
to get 80 bits of security.

6 Overview of Our Techniques
Due to paucity of space we defer the proofs of the various constructions to the
appendix. Due to paucity of space, the proofs have been deferred to the full
version of the paper which is now available on ePrint [17]. The proofs appear
in separate sections for the computational PRNG constructions and the IT
constructions. In this section we give a brief overview of our techniques.
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Computational PRNGs Proving Techniques. The main technique we
use in all the proofs is the “H-Coefficient” technique. In addition, it is instructive
to view the robustness game through the lens of simpler intermediate security
notions. We define two properties - recovering and preserving. The former requires
that the PRNG, after accumulating enough entropy after a drain, has the output
of the next function looking random. The latter defines the property that when
the start state is random, even after absorbing adversarially controlled inputs,
the output of next is still random. A formal proof showing how they generically
imply robustness can be found in the full version.

Further, we define the ideas of extraction security, maintaining security and
next security. The first of the three requires that the state of the PRNG is indistin-
guishable from random when sufficient entropy has been absorbed. Maintaining
security requires that the PRNG state is indistinguishable from random even
in the face of adversarially chosen inputs, provided the initial state itself was
random. Next security requires that the output of next is indistinguishable from
random if the input itself was random. It is easy to see how these ideas would
imply the larger properties of recovering and preserving.

IT PRNGs Proving Techniques. The crux of our proofs is the idea of
reducing the robustness game to online extraction. We then employ a graph
counting argument to bound the collision probability. The bound for the collision
probability is then used to compute an upper bound for the statistical distance
of our distribution from uniform. To this end, we use three propositions to
achieve the final bound. Indeed, similar to the intermediate security notion for
robustness of computational PRNGs, we define a notion of recovering security.
This requires that, after an entropy drain, the IT-PRNG can accumulate enough
entropy thereby making the output of next indistinguishable from (0n, Ur). It is
easy to see that this constraint is a relaxation of the requirement posed by its
computational counterpart.
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25. Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact PRF-security of

NMAC and HMAC. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 113–130, Santa Barbara, CA, USA, August 17–
21, 2014. Springer, Heidelberg, Germany.

26. Peter Gazi and Stefano Tessaro. Provably robust sponge-based PRNGs and KDFs.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 87–116, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

27. Danny Harnik and Moni Naor. On everlasting security in the hybrid bounded
storage model. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 192–203,
Venice, Italy, July 10–14, 2006. Springer, Heidelberg, Germany.

28. Daniel Hutchinson. A robust and sponge-like PRNG with improved efficiency. In
Roberto Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS,
pages 381–398, St. John’s, NL, Canada, August 10–12, 2016. Springer, Heidelberg,
Germany.

29. Daniel Hutchinson. A robust and sponge-like PRNG with improved efficiency.
Cryptology ePrint Archive, Report 2016/886, 2016. http://eprint.iacr.org/

2016/886.
30. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation

from one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24,
Seattle, WA, USA, May 15–17, 1989. ACM Press.

31. Russell Impagliazzo and Michael Luby. One-way functions are essential for com-
plexity based cryptography (extended abstract). In 30th FOCS, pages 230–235,
Research Triangle Park, North Carolina, October 30 – November 1, 1989. IEEE
Computer Society Press.

32. Information technology - Security techniques - Random bit generation.
ISO/IEC18031:2011, 2011.

33. Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic
extractors for small-space sources. J. Comput. Syst. Sci., 77(1):191–220, 2011.

29

http://eprint.iacr.org/2016/886
http://eprint.iacr.org/2016/886


34. John Kelsey, Bruce Schneier, and Niels Ferguson. Yarrow-160: Notes on the design
and analysis of the yarrow cryptographic pseudorandom number generator. In In
Sixth Annual Workshop on Selected Areas in Cryptography, pages 13–33. Springer,
1999.

35. Killmann, W. and Schindler, W. A proposal for: Functionality classes for random
number generators. AIS 20 / AIS31, 2011.

36. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648, Santa
Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

37. David Lichtenstein, Nathan Linial, and Michael E. Saks. Some extremal problems
arising form discrete control processes. Combinatorica, 9(3):269–287, 1989.

38. John M. Intel digital random number generator (DRNG) software
implementation guide. https://software.intel.com/en-us/articles/

intel-digital-random-number-generator-drng-software-implementation-guide,
2014.

39. Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
May 16-18, 1993, San Diego, CA, USA, pages 235–244, 1993.

40. Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput.
Syst. Sci., 52(1):43–52, 1996.

41. Jacques Patarin. The “coefficients H” technique (invited talk). In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS,
pages 328–345, Sackville, New Brunswick, Canada, August 14–15, 2009. Springer,
Heidelberg, Germany.

42. Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the dual elliptic
curve pseudorandom generator. Cryptology ePrint Archive, Report 2006/190, 2006.
http://eprint.iacr.org/2006/190.

43. Thomas Shrimpton and R. Seth Terashima. A provable-security analysis of Intel’s se-
cure key RNG. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 77–100, Sofia, Bulgaria, April 26–30, 2015.
Springer, Heidelberg, Germany.

44. Dan Shumow and Niels Ferguson. On the possibility of a back door in the nist
sp800-90 dual ec prng. CRYPTO Rump Session, 2007.

45. Pratik Soni and Stefano Tessaro. Public-seed pseudorandom permutations. In Jean-
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