
Scalable Zero Knowledge with no Trusted Setup

Eli Ben-Sasson1, Iddo Bentov2, Yinon Horesh3, and Michael Riabzev1

1 Technion & StarkWare Industries Ltd., Israel
2 Cornell Tech, NY, USA

3 Technion, Israel

Abstract. One of the approaches to constructing zero knowledge (ZK) argu-
ments relies on “PCP techniques” that date back to influential works from the
early 1990’s [Babai et al., Arora et al. 1991-2]. These techniques require only
minimal cryptographic assumptions, namely, the existence of a family of collision-
resistant hash functions [Kilian, STOC 1992], and achieve two remarkable prop-
erties: (i) all messages generated by the verifier are public random coins, and (ii)
total verification time is merely poly-logarithmic in the time needed to naı̈vely
execute the computation being verified [Babai et al., STOC 1991].
Those early constructions were never realized in code, mostly because proving
time was too large. To address this, the model of interactive oracle proofs (IOPs),
which generalizes the PCP model, was recently suggested. Proving time for ZK-
IOPs was reduced to quasi-linear, even for problems that require nondeterminis-
tic exponential time to decide [Ben-Sasson et al., TCC 2016, ICALP 2017].
Despite these recent advances it was still not clear whether ZK-IOP systems can
lead to concretely efficient succinct argument systems. Our main claim is that
this is indeed the case. We present a new construction of an IOP of knowledge
(which we call a zk-STIK) that improves, asymptotically, on the state of art: for
log-space computations of length T it is the first to O(T log T) arithmetic prover
complexity and O(log T) verifier arithmetic complexity. Prior IOPs had addi-
tional poly log T factors in both prover and verifier. Additionally, we report a
C++ realization of this system (which we call libSTARK). Compared to prevail-
ing ZK realizations, it has the fastest proving and (total) verification time for
sufficiently large sequential computations.

1 Introduction

By the early 1990s, a combination of works [44, 6, 5, 54, 39, 7] showed the existence
of proof systems that satisfy the following conditions, simultaneously:

1. universality: such systems can be constructed for any language L ∈ NEXP;
2. zero knowledge (ZK): the proof for the membership of x ∈ L reveals no mean-

ingful information about the nondeterministic witness w provided to show x ∈ L;
3. argument of knowledge (ARK): the witness w can be “extracted” from a prover

that succeeds in showing x ∈ L;
4. scalable (succinct) verification: for instances of size n, verifying membership in
L requires time at most poly(logT(n), n), where T(n) is the running time of the
nondeterministic machine4 deciding membership in L on instances of size n;

4 The machine could either be a Turing machine or a RAM machine.

2 Ben-Sasson, Bentov, Horesh & Riabzev

5. public coins: all messages and queries sent by the verifier are public random coins
(“Arthur-Merlin” protocols); we choose to refer to such protocols as transparent
and this allows us to compress terminology (one word instead of two) while em-
phasizing the benefits of such systems.

6. “simple” cryptographic assumptions: the soundness of these constructions as-
sumes only the existence of a family of collision resistant hash functions5.

The early theoretical constructions that achieved the six properties above were based
on the celebrated PCP Theorem [2, 3, 6, 5] and ZK variants of PCPs (ZK-PCPs) [39,
55, 52]. But these theoretical constructions were never realized6 in code, mostly due to
prover (in)efficiency problems. Recent advances in the study of quasilinear PCPs [27,
38, 25, 62, 17] and ZK Interactive Oracle Proofs (IOPs) [22, 13, 15, 67] have shown the
existence of ZK-IOP systems that achieve all six properties along with the following
property, simultaneously:

7. scalable (quasilinear) proving: the running time of the prover is Õ(T (n)) :=

T (n) · logO(1) T (n).

Nevertheless, the constructions that achieve all seven properties were inefficient
in terms of both prover and verifier running times. Indeed, a proof-of-concept IOP-
based system without ZK but with the remaining six properties, called SCI [9], was
reported recently but was relatively inefficient, and the cost of adding ZK to it would
further deteriorate its performance. The recent Aurora system [21] describes a ZK-IOP
(along with an accompanying implementation) that is designed for arithmetic circuits
and provides succinct proofs (poly-logarithmic in the size of the arithmetic circuit).
However, verifier running time scales linearly with the input size, meaning the system is
not (doubly) scalable according to our definition of the term. Therefore, a valid question
to ask is whether IOPs are a viable approach to obtaining ZK systems for any concretely
realizable computational setting? The main point of this paper is to provide a positive
answer to this question.

Contributions We make four:

1. The first strictly scalable ZK-IOP for log-space computations, in arithmetic com-
plexity (see Definition 3 and Theorem 1). In words, this is the first ZK-IOP for
computations requiring T (n) time and O(log T (n)) space (on instances of size n)
in which the arithmetic complexity of the prover is O(T (n) · log T (n)) and that of
the verifier is O(log T (n)). All prior ZK-IOP constructions had poly-log factors in
the verifier and/or prover with an exponent (in the poly-log) that is strictly greater
than 1.

2. A scalable ZK-IOP for general sequential computations (with no restrictions on
memory access) in NEXP, which is more efficient in terms of asymptotic prover and

5 In the “random oracle” model where all parties have access to the same random function, these
systems can be made non-interactive [60, 22].

6 Henceforth, a proof system realization refers to an implementation in code, along with reported
measurements, of it.

Scalable Zero Knowledge with no Trusted Setup 3

verifier complexity than the prior state of the art (Theorem 2). It is the first scalable
ZK-IOP system with strictly quasi-linear (O(T (n) log T (n))) proof length (mea-
sured in field elements) and strictly logarithmic (O(log T (n))) query complexity.

3. A code realization (in C++) of an argument system that implements this pair of
IOP systems. The code base, called libSTARK, is published under the permissive
MIT license [10]. Furthermore, the ZK-STARK prover is ≥ 10× faster than prior
ZK provers for general sequential computations (see Section 3). This reduction is
significant because prover complexity is the main bottleneck encountered when
scaling ZK proof systems to deal with large computations. Compared to SCI [9],
the prior state-of-the-art scalable IOP system, our ZK-STARK reduces proving time
by 7×–40× and communication complexity by 3×–20×; the improved verifier
complexity (but not prover compelxity) relies on a new set of algebraic conjectures
— different than those relied upon by SCI (and other ZK constructions). These
conjectures, which are of independent interest, are discussed in Section 4.3.

4. For the benefit of future and alternative constructions, we formally define the no-
tions of a scalable and transparent IOP of knowledge (STIK) and a scalable and
transparent argument of knowledge (STARK), which is a system that achieves, si-
multaneously, all seven properties listed earlier.

1.1 The virtues of transparent scalability

No prior ZK system realized in code has achieved both transparency and full (or double)
scalability for general programs, meaning the simultaneous combination of quasilinear
proving time and polylogarithmic (succinct) verification time. We briefly discuss the
importance of the combined effect of scalability and transparency in ZK systems.

Transparency Non-transparent protocols require an elaborate setup phase that is hard
to perform securely [20]. This phase constitutes a single point of failure that might be
exploited by powerful parties to compromise the system (especially when that system
carries significant value, as is the case with Zcash [64]). The complexity of performing
the setup leads to another security threat: to minimize the number of times the setup is
invoked, projects using non-transparent systems will batch together many system im-
provements within a single roll-out, adding to operational security risks; this is already
the case with Zcash’s recent “Sapling” upgrade.

A different benefit of transparency relates to decentralized open source code. It is
far easier to build transparent systems in this manner, because they do not require an
extra setup procedure, one that requires additional trust assumptions and governance
structures (who will be trusted to perform and manage the setup phase?). For the reasons
above, leading crypto-currencies that care about financial privacy (including Ethereum,
Monero and Zcash) agree that a move to transparent ZK ARKs is inevitable.

Scalability An aspect of proof systems (with or without ZK) that was first noted by [6,
5] is their potential for truly scaling computation in a sound and trustless manner. As
articulated by Babai et al.: “a single reliable PC can monitor the operation of a herd of
supercomputers working with possibly extremely powerful but unreliable software and
untested hardware” [5].

4 Ben-Sasson, Bentov, Horesh & Riabzev

A STARK (even without ZK capabilities) can deliver on this promise in an extreme
way, facilitating exponential savings in verification time and space (like compressing
Bitcoin’s blockchain to a logarithmic size proof that would attest to the validity of its
latest UTXO set); notably, a transparent proof system achieves this exponential com-
pression without any auxiliary key management issues and their associated trust as-
sumptions and governance problems.

Organization of the paper In Section 2 we define the notions STIK and STARK and
state the theorems backing our construction (proofs appear in the full online version [12]).
Section 3 compares our work to other ZK solutions, theoretically and practically. Sec-
tion 4 explains the main novel components in our IOP and STARK constructions, show-
ing how the asymptotic efficiency of Theorems 1 and 2 is translated to concrete effi-
ciency of the realized system. In Appendix A we provide a self-contained overview of
the ZK-STARK protocol from start to end, along with an example “toy problem” to
assist readers unfamiliar with ZK-IOP constructions. Full details appear in the online
version [12].

Acknowledgements We thank Arie Tal, Yechiel Kimchi and Gala Yadgar for help opti-
mizing code performance. We thank the Andrea Cerulli, Venkitasubramaniam Muthu-
ramakrishnan, Madars Virza, and the other authors of [30, 1] for assistance in obtaining
the data reported in Figure 2. We thank Alessandro Chiesa, Yuval Ishai and the anony-
mous referees for commenting on earlier drafts of this paper.

2 Theory — Definitions and Main Results

This section describes our theoretical contributions. After recalling the interactive ora-
cle proof model, we define a particularly efficient class of IOP protocols called scalable
and transparent IOPs of knowledge (STIK), present our main theorems for this model
(proofs omitted due to space limitations) and define the notion of a STARK.

2.1 Interactive Oracle Proofs (IOP)

The IOP7 model suggested in [22, 67] is a generalization of the IP [44], PCP [2], and in-
teractive PCP (IPCP) [53] models. It is an information theoretic model in which sound-
ness can be proven unconditionally, as in the PCP, IP and MIP models. But, like those
earlier models, the IOP model is unrealistic. To realize it, additional cryptographic as-
sumptions are needed, and those are discussed later.

Remark 1 (The computational integrity language). Our statements and constructions
apply to large classes of languages (like NP and NEXP). But we advise the reader to
focus on the specific computational integrity (CI) language L (also called the univer-
sal language and the bounded-halting language), comprised of quadruples (C, x, y,T)

7 Reingold et al. [67] use the name “Probabilistically Checkable Interactive Proofs” (PCIP).

Scalable Zero Knowledge with no Trusted Setup 5

such that the computation specified by a program C, on public input x and auxiliary (pri-
vate) witness w, reaches output y within T cycles. In fact, to achieve scalable verifica-
tion it is necessary to use succinctly represented instances, such as sequential programs
that are short and require execution time that is greater than the program description.

Informally, during an IOP protocol for a nondeterministic language L the prover and
verifier receive public input x and then interact over a number of rounds; the prover’s
goal is to establish in zero knowledge that it knows a nondeterministic witness w for
the fact that x belongs to L. During each round the verifier sends a message (in the case
of transparent IOPs, like ours, all messages are public random coins), and the prover
replies with an oracle, a long message which the verifier may query at random locations
and need not read in entirety (jumping ahead, these oracles will be implemented in
our ZK-STARK using Merkle-tree commitments). The verifier may query these oracles
at any time during the interaction but for transparent systems (like ours) all queries
can be postponed to the very last stage, after all prover-side oracles have been sent.
Once the interaction has terminated and the verifier has made the required queries, it
posts a decision — whether to accept x as a member of L or to reject it. Completeness
means that an honest prover knowing w will succeed in making the verifier accept with
probability 1, soundness means that for x 6∈ L the prover has only negligible probability
ε of convincing the verifier to accept, and knowledge soundness means that a prover
succeeding with probability � ε in convincing the verifier to accept x has provided
oracles that, if opened, will be found to encode a witness w that shows x ∈ L directly.
We now present the formal definitions.

A nondeterministic machine4 M that decides a language L ∈ NTIME(T (n)) in
time T (n) (n denotes instance size) induces a binary relation RM consisting of all pairs
(x,w) where x ∈ L and w is a sequence of nondeterministic choices of M(x) that lead
to an accepting state. In this case we say R = RM is induced by L and implicitly assume
M is fixed and known. We recall the IOP definition from [22].

Definition 1 (Interactive Oracle Proof (IOP)). Let R be a binary relation induced by
a nondeterministic language L and let ε ∈ [0, 1] denote soundness error. An Interactive
Oracle Proof (IOP) system S for R with soundness ε is a pair of interactive randomized
algorithms S = (P,V) that satisfy the properties below; P is the prover and V is the
verifier.

– operation: The input of the verifier is x, and the input of the prover is (x,w) for
some string w. The number of interactive rounds, denoted r(x), is called the round
complexity of the system. During a single round the prover sends a message (which
may depend on w and prior messages) to which the verifier is given oracle access,
and the verifier responds with a message to the prover. We denote by 〈P(x,w) ↔
V(x)〉 the output of V after interacting with P; this output is either accept or reject.

– completeness If (x,w) ∈ R then

Pr [〈P(x,w)↔ V(x)〉 = accept] = 1

– soundness If x 6∈ L then for any P∗,

Pr [〈P∗ ↔ V(x)〉 = accept] ≤ ε

6 Ben-Sasson, Bentov, Horesh & Riabzev

The proof length, denoted `(x), is the sum of lengths of all messages sent by the prover.
The query complexity of the protocol, denoted q(x), is the number of entries read by V
from the various prover messages. Given witness w such that (x,w) ∈ R, prover com-
plexity, denoted tp(x,w), is the complexity required to generate all prover messages,
and verifier complexity, similarly defined, is denoted tv(x).

2.2 ZK-STIK

Next, we introduce the definition of a scalable and transparent IOP of knowledge (STIK).
Most of the work described in later sections is related to constructing a new, concretely
efficient, ZK-STIK; soundness is proved information-theoretically, with no cryptographic
assumptions.

Definition 2 (Scalable Transparent IOP of Knowledge (STIK)). Let R be a binary
relation induced by a nondeterministic language L ∈ NTIME(T (n)) for T (n) ≥ n and
let S = (P,V) be an IOP for L with soundness error ε(n) < 1. We say S is

– transparent if all verifier messages and queries are public random coins.
– (doubly) scalable if for every instance x of length n, both of the following hold:

1. scalable verifier: tv(n) = poly(n, log T (n), log 1/ε(n))
2. scalable prover: tp(n) = T (n) · poly(n, log T (n), log 1/ε(n))

– a proof of knowledge if there exists a knowledge error function ε′(n) ∈ [0, 1] and
a randomized extractor E that, given oracle access to any prover P∗ that causes
the verifier to accept x with probability p(n) > ε′(n), outputs in expected time

poly
(

T (n)
p(n)−ε′(n)

)
a witness w such that (x,w) ∈ R.

– witness indistinguishable (privacy preserving) if there exists a randomized sim-
ulator Sim that samples (perfectly) the distribution on transcripts of interactions
between V and P, and runs in time poly(T (n)).

A (doubly) scalable and transparent IOP of knowledge will be denoted by STIK. A
witness indistinguishable STIK is denoted by wi-STIK, and when T (n) = poly(n) it
will be called a zero knowledge STIK, denoted ZK-STIK.

Remark 2 (Zero knowledge vs. witness indistinguishability). In this work we construct
(ZK) simulators that run in time that is polynomial in the prover’s running time. For
languages in NP, prover and verifier running times are both polynomial in the input
size, so our simulator gives perfect zero knowledge. However, for languages in super-
polynomial time, as stated in Theorem 2, our simulator only shows that the system is
witness indistinguishable. The question of presenting a succinct simulator is left as an
interesting open question; cf. [14] where a similar ZK simulator of NEXP is presented
for a different IOP construction.

Remark 3 (History). PCP systems are, by definition, transparent (1-round) IOP sys-
tems. The first such system with a scalable verifier was given in the works8 of Babai et
al. [6, 5] and the first doubly scalable PCP, i.e., the first STIK construction, appears in

8 The first work [6] shows this for NEXP and the second [5] scales it down to NP.

Scalable Zero Knowledge with no Trusted Setup 7

the works9 of Ben-Sasson et al. [25, 17]. The first ZK-STIK for NP appears in the work
of Ben-Sasson et al. [16], later extended to a ZK-STIK for NEXP [13].

For languages with logarithmic space our construction in Theorem 1 has prover and
verifier complexity that are asymptotically better than previous constructions, and lead
to a strictly scalable construction in arithmetic complexity, as defined next.

Definition 3 (Strictly scalable IOPs). Using the notation of Definition 2, we say that
S is a strictly scalable transparent IOP of Knowledge (strict STIK) if for every instance
x of length n, both of the following hold:

1. strictly scalable verifier: tv(n) = O(log T (n)) + poly(n, log 1/ε(n))
2. strictly scalable prover: tp(n) = O(T (n) log T (n)) + poly(n, log 1/ε(n))

When the complexity of prover and verifier is measured as the number of arithmetic
operations over a finite field of size O(T (n)), we say that S is a strict arithmetic STIK.

2.3 Main Theorems

We now state the two main theorems regarding IOP systems that underlie our con-
struction. IOP constructions use finite fields, so prover and verifier complexity are most
naturally stated using arithmetic complexity over the ambient field, the size of which
is derived from the size of the instance x; we use tvF and tpF to denote arithmetic
complexity, assuming the field F is understood from context. In contrast to other ZK
approaches, the size of the field does not need to grow with the security parameter. In
particular, our libSTARK implementation [10] uses the finite field of size 264, and could
use even smaller fields, yet achieves soundness error 2−128 � 1/|F|. This unlinking of
the security parameter from the ambient field size is one reason (out of several) our
libSTARK prover is fast.

Let NTimeSpace(T (n), S(n)) denote the class of nondeterministic languages that
are decidable in simultaneous time T (n) and space S(n). Our first theorem applies to
space bounded sequential computations.

Theorem 1 (ZK-STIK for space bounded computations). Let L be a language in
NTimeSpace(T (n), S(n)), T (n) ≥ n and let R be induced by L. Then R has a transpar-
ent witness indistinguishable IOP of knowledge with the following parameters, stated
for soundness error err = 2−λ (that may depend on n)

– perfect completeness and soundness error at most err(n) for instances of size n
– knowledge error bound err′(n) = O(err(n))

– round complexity r(n) = log T (n)
2 +O(1)

– query complexity q(n) = 36(λ+ 2) · (log T (n) + S(n)
log T (n) +O(1))

– alphabet size: each query answer belongs to a binary field F, |F| = 2n for n =
λ+ log T (n) +O(1)

9 The first work [25] presents a PCP with scalable verification and quasi-linear proof length,
the second work [17] bounds the prover running time and also proves the proof of knowledge
property.

8 Ben-Sasson, Bentov, Horesh & Riabzev

– verifier arithmetic complexity tvF(n) = Õ(n) +O(λ · (S(n)
log T (n) + log T (n))

– prover arithmetic complexity tpF(n) = O(S(n) · T (n))
– proof length O(S(n) · T (n)/ log T (n)), measured in field elements.

In particular, for S(n) = poly log T (n), this IOP is doubly scalable, i.e., the system is a
wi-STIK (see 2). Moreover, for S(n) = O(log T (n)) the IOP is a strict arithmetic STIK
(see Definition 3), meaning the prover arithmetic complexity is O(T (n) log T (n)) and
verifier arithmetic complexity isO(log T (n))+poly(n). Finally, when T (n) = poly(n),
the system has perfect ZK, i.e., it is a ZK-STIK.

For computations with super-poly-logarithmic space the theorem above is not scal-
able, neither for prover nor for verifier. The following theorem is doubly scalable for
any nondeterministic language, i.e., it can be said to be a universal wi-STIK (see Re-
mark 1). Comparing Theorem 2 to the previous Theorem 1, the following result is
more general, as it makes no assumptions regarding space. For computations requir-
ing space S(n) = o(log2 T (n)) Theorem 1 has lower asymptotic prover complexity,
but for S(n) = ω(log2 T (n)) the more general Theorem 2 has more efficient prover
complexity.

Theorem 2 (wi-STIK for NEXP). Let L be a language in NTIME(T (n)), T (n) ≥
n and R be induced by L. Then R has a doubly scalable, transparent, and witness
indistinguishable (see 2) IOP of knowledge (wi-STIK) with the following parameters,
stated for soundness error err = 2−λ (that may depend on n)

– perfect completeness and soundness error err(n) for instances of size n
– knowledge extraction bound err′(n) = O(err(n))

– round complexity r(n) = log T (n)
2 +O(1)

– query complexity O(λ · log T (n))
– alphabet size: each query answer belongs to a binary field F, |F| = 2n for n =
λ+ log T (n) + log log T (n) +O(1)

– verifier arithmetic complexity tvF(n) = Õ(n) +O(λ · log T (n)),
– prover arithmetic complexity tpF(n) = O(T (n) log2 T (n)),
– proof length O(T (n) log T (n)), measured in field elements.

For T (n) = poly(n) the system has perfect ZK, i.e., it is a ZK-STIK.

We point out that this is the first construction of a scalable ZK-IOP system with
strictly quasi-linear (O(T (n) log T (n))) proof length and strictly logarithmic (O(log T (n)))
query complexity. Prior IOP systems, even without ZK, required query complexity
logc T (n) for exponent c > 1 for any quasi-linear length proofs [17, 9, 13].

2.4 STARK as a realization of STIK

Definition 2 refers to the IOP model, in which results can be proved with no crypto-
graphic assumptions. A number of fundamental transformations have been suggested
in the past to realize PCP systems using various cryptographic assumptions, and these
transformations were adapted to the IOP model [22]. In all such realizations the prover

Scalable Zero Knowledge with no Trusted Setup 9

must be computationally bounded, and such systems are commonly called argument
systems, and, consequently, the realization of a STIK results in a Scalable Transparent
ARgument of Knowledge (STARK).

The two main transformations of proof systems into realizable argument systems
are:

– Interactive STARK (iSTARK) As shown by Kilian [54] for the PCP model, a fam-
ily of collision-resistant hash functions can be used to convert a STIK into an inter-
active argument of knowledge system; if the STIK has perfect ZK, then the argu-
ment system has computational ZK. Any realization of a STIK using this technique
will be called an interactive STARK (iSTARK); when one wants to emphasize that
the STIK is zero knowledge, the term ZK-iSTARK will be used.

– Non-interactive STARK (nSTARK) As shown by Micali [61] and Valiant [77] for
the PCP model, and by Ben-Sasson et al. [22] for the IOP model, any STIK can
be compiled into a non-interactive argument of knowledge in the random oracle
model (called a non-interactive random-oracle proof (NIROP) there); if the STIK
had perfect zero knowledge then the resulting construction has computational zero
knowledge. Any realization of a STIK using this technique will be called an non-
interactive STARK (nSTARK); when one wants to emphasize that the STIK is zero
knowledge, the term ZK-nSTARK will be used.

While non-interactive STARKs have the advantage of being comprised of a single
message from the prover, they also rely on stronger assumptions. Thus, we leave the
choice of which particular realization mode to use for a (ZK)-STIK— (ZK)-iSTARK
vs. (ZK)-nSTARK— to be made by system designers based on particular use cases, and
refer to both realization modes of a STIK as a STARK; to emphasize the ZK aspect of
the STIK we may refer to the realization as a ZK-STARK.

3 Evaluation and comparison

In this section we compare our ZK-STARK to other implemented systems. We start
in Section 3.1 by comparing our approach to other implemented ZK approaches from
a purely asymptotic and theoretical point of view, and show that the combination of
full scalability, transparency and lean cryptographic assumptions for universal compu-
tations is unique to our system. We continue in Section 3.2, where we measure imple-
mented systems for similar circuit size and topology as that which our system deals
with. In Section 3.3 we compare our system to the previous state-of-the-art IOP system,
called SCI [9], and show our system is faster while also adding ZK, which SCI did not
obtain (see Remark 4 for a discussion of performance compared to the recent Aurora
system [21]).

3.1 Comparison to prior works — theory

The literature on ZK realizations is vast, and rapidly expanding, so we limit the discus-
sion to approaches that are ZK and universal, i.e., apply to any language in NP (thus, we
sadly omit reference to many verifiable computation approaches that do not achieve ZK,

10 Ben-Sasson, Bentov, Horesh & Riabzev

like the recent [81]). For the purposes of this discussion, we consider four properties:
asymptotic (i) prover scalability (quasilinear running time), (ii) asymptotic verifier scal-
ability (poly-logarithmic verification time, including setup/parameter generation time),
(iii) transparency (public randomness), and (iv) cryptographic assumptions.

Figure 1 summarizes our discussion, and we provide details next. Later, when we
evaluate the performance of our system against other methods (Section 3) we will use
the classification below.

prover scalability
(quasilinear time)

verifier scalability
(polylogarithmic time)

transparency
(public randomness)

cryptographic
assumptions

A. hPKC Yes Only repeated computation No
KoE,

DL, FS

B. DLP Yes No Yes
DL,
FS

C. IP Yes No Yes
none (interactive) /
FS (noninteractive)

D. MPC Yes No Yes
CRH (interactive) /
FS (noninteractive)

E. IVC+hPKC Yes Yes No
KoE,

DL, FS

F. Aurora Yes No Yes
CRH (interactive) /
FS (noninteractive)

G. This work Yes Yes Yes
CRH (interactive) /
FS (noninteractive)

Fig. 1: Theoretical comparison of universal (NP complete) realized ZK systems. KoE stands for
“knowledge of exponent” assumptions, DL for “hardness of discrete log”, CRH for “collision
resistant hash” and FS for Fiat-Shamir heuristic.

A. Homomorphic public-key cryptography (hPKC): This approach, initiated by
Ishai et al. [50] (for the “designated verifier” case) and Groth [45] (for the “publicly
verifiable” case), uses an efficient information-theoretic model called a “linear PCP”
that is then “compiled” into a cryptographic system using hPKC. An extremely effi-
cient instantiation, based on Quadratic Span Programs, was introduced by Gennaro et.
al [41] (see [49, 40, 58, 29, 47, 48] for related work and further improvements). It serves,
e.g., as the proof system behind Zerocash and Zcash™. The first implementation of a
QSP based system is called Pinocchio [63], with subsequent implementations includ-
ing libSNARK [19, 68] which is used in the Zerocash and Zcash™ implementations;
additional implementations appear in [70, 73, 72, 71, 24, 79, 37, 82].

The theoretical differences between hPKC and ZK-STARK are the lack of trans-
parency and the reliance on number-theoretic knowledge of exponent assumptions (which
are vulnerable to attacks by quantum computers). Verification time in hPKC is scalable
only for computations that are repeated many times, because the hPKC “setup phase”
requires time≥ T, where T denotes running time of the nondeterministic computation4

being verified.

Scalable Zero Knowledge with no Trusted Setup 11

B. Discrete logarithm problem (DLP): An approach initiated by Groth [46] (cf. [69])
and implemented in [30], relies on the hardness of the DLP to construct a system that is
transparent. Shor’s quantum factoring algorithm solves the DLP efficiently, rendering
this approach quantum-susceptible. Additionally, verifier complexity in the DLP ap-
proach requires time ≥ TC hence it is non-scalable (according to our definition of the
term), although communication complexity in the DLP approach is logarithmic. We re-
fer to the initial implementation of this system as BCCGP [30], and a recent improved
version is called BulletProofs [31].

C. Interactive Proofs (IP) based: IP protocols can be performed with zero knowl-
edge [8] but only recently have IP protocols been efficiently “scaled down” to small
depth (non-sequential) computations via so-called “proofs for muggles” of Goldwasser
et al. [43, 67]. This led to a line of realizations in code, early works lacked ZK [36, 35,
76, 78], but the state-of-the-art ones, like [82] and Hyrax [80], do have it.

Like ZK-STARK, most of these IP-based proofs (but for [82]) are transparent and
have a scalable prover, but their verifier is not scalable, as its running time grows lin-
early with computation time for “standard” (i.e., sequential) computations. In terms of
cryptographic assumptions, some are plausibly post-quantum secure while others rely
on number theoretic assumptions that are susceptible to quantum attacks.

D. Secure multi-party computation (MPC): This approach, suggested by Ishai
et al. [51] and implemented first in the ZKBoo [42] system, and more recently, in
Ligero [1], “compiles” secure MPC protocols into ZK-PCP systems, by requiring the
prover to commit to the transcript of a secure MPC protocol, and then reveal the view
of one of the parties.

Like ZK-STARK, the MPC-based proofs are transparent and have scalable (quasi-
linear) proving time. However, MPC based systems have a non-scalable verifier, one
that runs in time ≥ T. Additionally, their communication complexity is non-scalable, it
is
√
T in the state of the art system [1]; nevertheless, for concrete circuits and amortized

computations verification time and communication complexity are extremely efficient.
E. Incrementally Verifiable Computation (IVC): This approach, suggested by

Valiant [77] (cf. [34, 28]) reduces prover space consumption by relying on knowledge
extraction assumptions; this approach can be applied on top of other proof systems with
succinct (sub-linear) verifiers, including ZK-STARK, but thus far has been realized only
for a single hPKC system [23].

Compared with ZK-STARK, systems built this way inherit most properties from
the underlying proof system. In particular, the hPKC-based IVC is non-transparent and
quantum-susceptible; however the verifier is scalable even for a computation executed
only once, because the setup phase runs in poly-logarithmic time.

F. Aurora: The Aurora system is a recently posted ZK-IOP by Ben-Sasson et
al., that is optimized for arithmetic circuits [21]. For a circuit with N gates, prover
running time is scalable — O(N logN) arithmetic operations over the ambient field
— and proof length scales succinctly, poly-logarithmically in N . However, verifica-
tion time scales linearly in N . Aurora shares many similarities with our ZK-STARK:
both are IOP-based, plausibly post-quantum secure and require only symmetric cryp-
tographic assumptions (for the interactive setting; the non-interactive one relies on the
Fiat-Shamir heuristic). Furthermore, both use the FRI protocol for asserting proxim-

12 Ben-Sasson, Bentov, Horesh & Riabzev

ity to RS codes. The main difference between Aurora and our system regards verifier
time: Aurora’s verifier scales linearly with the computation size whereas our system has
poly-logarithmic verification time.

Summary

ZK-IOPs have a combination of beneficial attributes not achieved by any other code-
realized approach; these are full scalability (prover- and verifier-side) and transparency.
Additionally, the cryptographic assumptions needed by the ZK-IOP approach are rather
minimal, although obtained by other approaches — MPC and IP. As we shall see later,
the theoretical attributes are complemented by practical benefits, like the fastest proving
time for ZK proofs of sequential computations.

3.2 Comparison to prior works — concrete performance

In this section we compare measurements of different ZK systems on the same hard-
ware, a server with 32 AMD cores at clock speed of 3.2GHz, and 512GB of DDR3
RAM. Each pair of cores shares memory; this roughly corresponds to a machine with
16 cores and hyper-threading.

Comparison method All prior realized ZK systems we are aware of use arithmetic cir-
cuits over prime fields, and their complexity is mostly affected by arithmetic circuit (i)
depth and (ii) size — the number of addition and multiplication gates; typically mul-
tiplication complexity dominates addition complexity. (See Remark 4 for a discussion
of our system compared to the recent Aurora system [21].) Since these systems are
affected mostly by the circuit topology — size and depth — the exact nature of the
computation (beyond these parameters) does not significantly affect their complexity
measures.

To generate circuits for other systems, we started with a program written in TinyRAM
assembly [18] — the exhaustive subset-sum program reported for SCI in [9]. This com-
putation does not access RAM memory, which is a requirement when comparing to
other ZK systems that deal with circuits, not RAM machines (in the next section we
shall also discuss RAM computations, when comparing ZK-STARK to SCI). This pro-
gram was compiled into a ZK-STARK system, and also into a set of quadratic arith-
metic program (QAP) constraints by libSNARK. This offers a rather direct comparison
between the following three systems — SCI (an IOP system with no ZK), libSNARK
(an hPKC system, with ZK) and our ZK-STARK. All three apply to the same computa-
tion, running on the same machine, and use multi-threading (see Remark 5 for a more
thorough discussion of the comparison method).

We extracted depth and multiplication complexity numbers from the libSNARK
compiler and requested the authors of the following systems to measure them on our
server for arbitrary circuits with similar depth and multiplication complexity. Figure 1
shows the resulting proving time, verifying time and communication complexity. Since
several of the systems operate only in single-threaded proving mode (all systems use
single-thread for verification), we have a separate comparison of single-threaded ZK-
STARK vs. the other single-treaded systems. Recall the classification of ZK approaches

Scalable Zero Knowledge with no Trusted Setup 13

215 219 223 227 231 235

100
ms

1 sec

1 min

10 min

1 hr

10 hr

Prover time — single thread

BulletProofs 128b
BCCGP 128b
Ligero 60b
STARK 120b
STARK 80b

26 28 210 212 214 216 218

215 219 223 227 231 235

100
ms

1 sec

1 min

10 min

1 hr

10 hr

Prover time — multi thread

SCI 80b
libSNARK 80b
STARK 120b laptop
ZK-STARK 120b
ZK-STARK 80b

26 28 210 212 214 216 218

215 219 223 227 231 235

10 ms

100
ms

1 sec

1 min

1 hour

9.5 h

Verifier time — single thread
26 28 210 212 214 216 218

215 219 223 227 231 235

100B

1KB
5KB

100KB

1MB
5MB

1GB
5GB

100GB

Communication Complexity

libSNARK post

26 28 210 212 214 216 218

Fig. 2: A comparison of different realized proof systems as a function of the number of machine
cycles (top axis) and multiplication gates (bottom axis); each cycle of the TinyRAM program
corresponds to ≈ 2000 ≈ 211 multiplication gates. The estimated level of security of each
system is denoted on the legend above (e.g., “STARK 80b” means estimated soundness error of
≤ 2−80). All systems were tested on the same server (specs below) and executed a computation
of size and structure corresponding to the “exhaustive subset-sum” program from [9, Section 3];
our ZK-STARK was also executed on the same program on a weaker laptop (quad core i7-8550U
CPU @ 1.80GHz clock with 32GB of DDR4 RAM), see right top plot. Notice that even on this
weaker machine the ZK-STARK prover is faster, and reaches larger circuit size, than all other
systems.

14 Ben-Sasson, Bentov, Horesh & Riabzev

from Section 3.1. The systems that have performed the above testing procedure on our
machine are:

– hPKC-based: libSNARK with 80 bits (80b) of security (commit dc78fd, September
7, 2017);

– DLP-based: The system of BCCGP with logarithmic communication complex-
ity [30], and the BulletProofs system of [31]; both systems are single-threaded and
have 128b security.

– MPC-based: Ligero strong with 60b security, single-threaded [1] (this system has
sublinear communication complexity, compared with linear complexity of ZKBoo,
hence we include only it in our measurements).

Regarding ZK-STARK, we evaluated it in single- and multi-theard mode, for 80
and 120 bits of security, using Blake2s (with 128-bits of security) as our CRH for con-
structing the Merkle tree commitments to oracles. To address concerns about the ability
to execute ZK-STARK on weaker machines, we also plot the measured proving time
on a Lenovo T440 laptop with 32GB of DDR4 RAM and a quad-core Intel i7-8550U
CPU 1.80GHz clock speed.

Let us discuss prover time, verifier time, and communication complexity, addressing
the systems above. We hope to add measurements for IP based systems like Hyrax in
the future [80].

Prover complexity All systems surveyed here have prover complexity that scales either
linearly or nearly-linearly in computation size. However, as shown in Figure 2, our ZK-
STARK prover is the fastest among the single-threaded systems (though not by a large
margin) and is at least 10× faster than the second fastest prover (that of libSNARK)
when multi-threading is allowed; all systems were tested up to maximal proving time
of 12 hours. Notice that even when executed not on a large server but on a weaker
laptop with 32 GB of RAM, our ZK-STARK prover is noticeably faster, and reaches
larger circuit size, than all other systems (which were measured only on the stronger
and bigger server). This shows that ZK-STARK proving efficiency is not an artifact
of using a strong machine, but rather follows from the efficiency of the underlying
protocol (the interested reader is welcome to test libSTARK on her laptop, using the
runSubsetsumTests.sh procedure there [10].)

The speedup of multi-threaded over single-threaded execution of libSTARK on the
server is plotted in Figure 3. For very small instances multi-threading gives moderate
improvements, possibly due to short running time and cost of opening many threads,
and for very large instances it drops somewhat, perhaps because memory swapping
contributes more significantly to running time.

Verifier complexity The total verifier running time (including setup/parameter genera-
tion and post-processing) of all prior works grows at least like

√
T, and, often, like T; in

contrast, our ZK-STARK scales like a + logT (see Theorems 1 and 2). Consequently,
for medium- and large-scale sequential computations our ZK-STARK total verification
time is better than all prior solutions, as shown by Figure 2. The efficiency of ZK-IOP
systems tailored specifically for small depth, parallel computations (the setting which
Hyrax is tailored to) is left to future work.

Scalable Zero Knowledge with no Trusted Setup 15

26 29 212 215 218
0

5

10

15

20

multi-threading speedup over single-thread

Fig. 3: The ratio of multi-threaded to single-threaded proving time of ZK-STARK for the exhaus-
tive subset-sum computation, as a function of the number of cycles. Recall that the server used
for testing has 32 AMD cores, which correspond to 16 cores with hyperthreading.

hPKC-based systems like Pinocchio and libSNARK, and IVC+hPKC systems like
that of [23] are different in this respect. They have a setup that is performed only once
per circuit. For Pinocchio and libSNARK pre-processing time grows linearly with cir-
cuit size. E.g., the libSNARK system requires ≈ 16 seconds for a computation with
220 gates. In Figure 1 we plot both post-processing verification time (and CC) using
open blue triangles and total time/CC (including setup) using filled blue triangles. For
the IVC+hPKC system, pre-processing time is constant and does not depend on circuit
size; this constant (≈ 10 seconds) is quite large compared to our verifier time, but on
the other hand is needed only once, so amortized over many computations it approaches
0.

Communication complexity (CC) The use of a pre-processing phase in the hPKC and
IVC+hPKC systems leads to extremely small post-processing CC; the BCCGP and
BulletProofs systems also enjoy extremely short CC and, because pre-processing is
transparent, can be effectively replaced with a short seed to a pseudo-random generator.
Concretely, for all computations measured in practice, post-processing CC of Pinoc-
chio, libSNARK and the IVC+hPKC system are less than 300 bytes, that of BCCGP is
less than 7KB, and BulletProofs is roughly 3× smaller, less than 2.5KB [30, 31] (see
also Figure 2). However, pre-processing key length scales linearly with circuit size for
hPKC; the IVC+hPKC system is different in this respect, it has succinct pre-processing
length even for large computation size, but once again, this length is concretely large —
more than 40 MB for our computation. For Ligero, communication complexity scales
like 70

√
multn field elements [1, Section 5.3].

Discussion

Among all ZK systems compared above, our ZK-STARK has the fastest prover in
single- and multi-thread modes; in particular, it is ≈ 10× faster than the second fastest

16 Ben-Sasson, Bentov, Horesh & Riabzev

measured system — libSNARK. Other systems perform better (shorter communication,
faster verification) on small circuits (ZKBoo, Ligero), small-depth circuits (Hyrax),
and on computations repeated many times with the same fixed circuit (BulletProofs,
Pinocchio, libSNARK). However, for general large scale sequential computations our
ZK-STARK has verification time and communication complexity that outperforms all
other transparent systems published thus far for this range of parameters. In other
words, our particular ZK-STARK realization shows that the asymptotic benefits of full
scalability and transparency are manifested already for concrete computations, and sug-
gest that ZK-IOP systems are of interest not merely as a theoretical construct but also
as a viable approach to building future ZK-systems.

Remark 4 (Runtime comparison to Aurora). For computations that are specified sim-
ply as arithmetic circuits, Aurora out-performs our ZK-STARK (and Ligero) (see [21,
Figures 10–12]). However, for sequential computations specified by succinct programs,
verification time in our ZK-STARK out-performs that of Aurora. Concretely, Aurora
verification time for a circuit with a million gates requires ∼ 1 second (see Figure 12
there) and scales linearly with N , whereas our ZK-STARK verifier scales quite slowly
and requires less than 0.1 seconds even for a circuit with 34 billion gates (see Figure 2).

Summarizing, we view Aurora and our ZK-STARK as complementary: both are
IOP-based, transparent, plausibly post-quantum secure and have concretely efficient
provers. Arora is better when dealing with computations specified as generic arithmetic
circuits but does not offer full scalability, while our ZK-STARK is better when dealing
with sequential programs because its verification time scales poly-logarithmically with
computation time.

Remark 5 (On validity of the comparison method). The reader might ask whether the
method outlined above — compiling the particular exhaustive subset-sum program into
(i) arithmetic circuits over prime fields and (ii) AIRs over binary fields, is fair and valid.
Wouldn’t it better to “hand optimize” the circuit/AIR for a particular computation, and
perhaps do it over the same ambient field?

The choice of program — the exhaustive subset-sum — was dictated by the con-
straint of including a comparison to SCI, the prior IOP state of the art; this limited us
to choosing one of the programs provided there. Hand-optimizing AIRs and arithmetic
circuits for the same computation for all the various proof systems surveyed here is be-
yond the scope of this work, as these systems are provided by different teams and some
of the code-bases (SCI, for instance) are not updateable.

The compilation process that converts a program (in our case, written in TinyRAM
assembly) to an arithmetic circuit, and to an AIR, leads to a construction that is less
efficient than a “hand-written” circuit/AIR of the very same computation. It is hard to
estimate which approach (AIR vs. circuits) suffers more from compilation inefficiency
but the fundamental complexity measures for circuits and STARKs — number of gates
per cycle (for arithmetic circuit), and “total degree” per cycle (= state width× constraint
degree / code rate) — are roughly similar for this particular choice of program and
compilation: roughly 2,000 multiplication gates per cycle (for arithmetic circuits), and
total degree roughly 9,000 per cycle (because our program leads to 94 state width, the
constraint degree is 12 and the code rate is 1/8).

Scalable Zero Knowledge with no Trusted Setup 17

3.3 SCI vs. ZK-STARK

27 210 213 216 219 222

1 sec

1 min

10 min

1 hr

10 hr

Prover time

SCIsrt
SCIexh
ZK-STARKsrt
ZK-STARKexh

27 210 213 216 219 222

400KB

800KB
1MB

2MB

4MB

8MB

16MB

Communication complexity

Fig. 4: SCI vs. ZK-STARK comparison of prover time and communication complexity. Both sys-
tems measured at 80 bits of security on the same machine.

To compare SCI and ZK-STARK we use the exact same pair of TinyRAM programs
used by SCI and reported in [9], namely:

– exh: the exhaustive-search subset-sum program which does not require RAM ac-
cess (no use of LOAD/STORE TinyRAM opcodes); this corresponds to Theorem 1

– srt: the sorted subset-sum program which does require RAM access (with LOAD-
/STORE opcodes), corresponding to Theorem 2

Both systems were executed with an 80-bit security level and measured on the ma-
chine specified at the beginning of Section 3.2. Figure 4 shows that ZK-STARK prover
time is 7×–40× faster than that of SCI and has communication complexity that is 3×–
20× smaller than that of SCI. Notably, ZK-STARK has ZK, which SCI does not (the
cost of adding ZK increases computational complexity across the board).

As pointed out earlier (Section 4), this improvement is due to the better arithmetiza-
tion which uses many RS codewords (one per register), tighter soundness analysis, the
use of the more efficient FRI protocol and the efficient additive FFTs of [57].

The improvement of ZK-STARK over SCI is more noticeable for the program that
does not use RAM. The reason for this is verifying correct RAM requires certain tools
that incur large blow-ups in communication complexity and prover time. These blowups
are due to the need to verify that an arbitrary RAM access pattern was executed cor-
rectly. This is solved in both SCI and ZK-STARK using switching networks to “route”
accesses to memory, following the method of [17]. We refer the reader to Appendices
C.3 and G in the online version of this paper [12] for full details.

4 Novel ingredients in the construction

Our new ZK-STARK builds significantly on recent ZK-IOP research [22, 13, 15, 11],
and its main advantage is improved efficiency, leading to it being the first strictly scal-

18 Ben-Sasson, Bentov, Horesh & Riabzev

able IOP for space bounded computation (Theorem 1). Our main improvements are
four, listed below. We briefly recount the prior state of the art as background and then
explain how ZK-STARK improves on it.

Background — SCI and FRI The SCI system [9] is an IOP without zero knowledge.
It uses an arithmetization process that reduces a witness of membership in a language
to a pair of univariate polynomial, and reduces the transition function of the computa-
tion to a single low-degree multivariate polynomial. Then, it employs an IOP version of
the quasilinear PCP of Proximity (PCPP) of [27] to solve the low-degree testing prob-
lem. This PCPP, and the IOP emerging from it, require quasi-linear proving time and
poly-logarithmic verification time, but both algorithms are not strictly quasi-linear (cf.
Definition 3). Due to the reliance on bivariate polynomials in that IOP, when converting
it to an argument system via Merkle trees, different queries to the proof oracles led to
different authentication paths, resulting in increased communication complexity.

Another component that is used in ZK-STARK (and in Aurora [21]) is the recent
stricly quasi-linear IOP of proximity (IOPP) for univariate polynomials called FRI and
discussed further below [11].

Improvements In addition to the qualitative improvement over SCI of adding ZK, our
system is asymptotically and concretely more efficient in terms of verifier complexity
and communication complexity than SCI, and has a prover that is more efficient, for
sequential computations, than all other existing systems. The main novel components
in ZK-STARK that facilitate this are:

1. ZK-STARK uses the FRI protocol of [11], which is vastly more efficient, both
asymptotically and concretely, than the Ben-Sasson–Sudan PCPP used by SCI.
Asymptotically, FRI has prover arithmetic complexity that is strictly linear in block-
length (prior IOPPs required quasi-linear proving time) and strictly logarithmic
verifier arithmetic complexity (prior verifiers required poly-logarithmic complex-
ity, with an exponent greater than 1).

2. The FRI oracle structure is used by our ZK-STARK to significantly reduce Merkle-
tree authentication path complexity; this aspect is explained in Section 4.1;

3. Our ZK-STARK uses an arithmetization with one RS codeword per register, as
opposed to one RS codeword for all registers; we then use a round of interaction to
solve the RPT problem only once over all different RS codewords; see Section 4.2.

4. in similar fashion to the step above, our new algebraic linking IOP (ALI) protocol
“compresses” all of the constraints that enforce the computational integrity of the
transition function, into a single random combination of them all. This dramatically
reduces the memory and computational complexity of the prover. The specification
of the ALI protocol and its analysis appear in the full version of the paper [12,
Sections B.5, D].

Below we elaborate on the second and last items of the list above.

4.1 Reduced Authentication Path Complexity

The largest contributor to communication complexity, and to verifier time and space
complexity in our ZK-STARK (and prior related works [27, 17, 33, 9]) is the cost of

Scalable Zero Knowledge with no Trusted Setup 19

checking authentication paths. We now discuss the way our ZK-STARK reduces this
cost. Let λ denote the number of output bits of the cryptographic hash function used
to construct a Merkle tree in our system; let APtotal denote the total number of au-
thentication path nodes in all subtrees of Merkle trees whose leaves are query answers,
and let qtotal denote the total number of queries, made to all proof oracles. The total
communication complexity (CC) of the proof system is

CC = qtotal · log |F|+ APtotal · λ (1)

Compared to prior works, most notably SCI, our ZK-STARK reduces the second
summand in two separate ways:

1. The ZK-STARK verifier queries rows of the (low degree extension of the) exe-
cution trace, each row comprises a field elements that represent the state at some
point in the computation (or its low degree extension). To reduce communication
complexity, the ZK-STARK prover places each such row in a single sub-tree of
the Merkle tree, and therefore only one authentication path is required per row (as
opposed to a many paths in prior solutions).

2. The verifier of the FRI protocol queries functions on cosets of a fixed subspace;
i.e., the entries of each oracle accessed by the verifier can be partitioned, so that
a single authentication path covers all entries required by the verifier in a single
test. Accordingly, the ZK-STARK prover places each member of the partition in a
single sub-tree of the Merkle tree, thereby reducing the number of authentication
paths to one-per-coset (as opposed to one per field element).

4.2 Algebraic Linking Interactive Oracle Proof (ALI)

The main bottleneck for prover time and space complexity is the cost of performing
polynomial interpolation and its inverse operation — multi-point polynomial evalua-
tion. The complexity measure that dominates this bottleneck is the maximal degree of
a polynomial which the prover must interpolate and/or evaluate; for a computation in-
volving a T×a execution trace specified by s constraints of degree at most d, we denote
this degree by dmax = dmax(T, a, s, d). Prior state-of-the-art [27, 17, 33, 9] gave

dmax
old (T, a, s, d) = T · a · d+ T · s. (2)

which leads to concretely large values. Our ZK-STARK reduces dmax to

dmax
ZK−STARK(T, a, s, d) = T · d (3)

The improved efficiency of our ZK-STARK is due to two reasons, explained next.
The first one completely removes the second summand of (2) and the second one re-
moves a from its first summand.

Algebraic linking IOP (ALI) The second summand of (2) arises because our prover
needs to apply a “local map” induced by the AIR constraint system. Prior state-of-the-
art systems, like [9], used a local map that checks each constraint of the AIR separately,

20 Ben-Sasson, Bentov, Horesh & Riabzev

leading to this second summand. Instead, our ZK-STARK uses a single round of interac-
tion to reduce all s constraints to a single constraint that is a random linear combination
of all AIR constraints, thereby completely removing the second summand of (2). See
[12, Sections B.5, D] for a specification of the protocol.

Register-based encoding Prior systems, like [9], encoded the full execution trace by a
single Reed-Solomon codeword, leading to degree T·a; this degree is then multiplied by
d to account for application of the AIR constraints to this codeword, resulting in the first
summand of (2). Our ZK-STARK uses a separate Reed-Solomon codeword for each
register10, leading to a many codewords, each of lower degree T. At first glance this
tradeoff may seem wasteful, because we now have to solve an RPT problem for each of
these a codewords. However, the interaction and use of randomness allowed by the IOP
model once again come to our aid: it suffices to solve a single RPT problem, applied to a
random linear combination of all a codewords. The use of a single codeword per register
also helps with reducing communication complexity, as explained in Section 4.1.

4.3 Algebraic security assumptions

In our measurements (Section 3.2) we rely on two conjectures. Informally, the first,
which appears in the full version [12, Conjecture B.17] due to space limitations, says
that any efficient attacker will be presenting proof oracles f (0), g(0) that are maximally
far from the respective RS codes, and the second, stated below, says that δ-far words
are rejected by the FRI protocol with probability ≈ δ. Both conjectures match our
current understanding of the best possible attacks against the ZK-STIK system; it is
reasonable to use such an approach when running comparisons to other implemented
systems, because all other systems use a similar “security-based” approach when setting
parameters (group size in an elliptic curve, field size in a discrete-log based approach,
bit-length in a cryptographic hash function, etc.). To be fair, these other assumptions
have received more scrutiny than ours but by stating this conjecture we hope it, too,
will be further inspected by the research community.

Conjecture 1 (FRI soundness — informal). For any rate parameter ρ and constant δ, if
f : S → F is δ-far from RS[F, S, ρ], then the FRI protocol rejects f with probability at
least δ − O(1)

|F| .

For a code of rate ρ = 2−R, the conjecture implies that to reach a security level of
λ bits (or error probability < 2−λ), the QUERY phase of the FRI protocol should be
invoked λ/R times. See [11, 26] for a discussion of the conjecture.

Without Conjecture 1 and [12, Conjecture B.17], the number of FRI-verifier tests
would increase at most three-fold, to 3 ·λ/R (to achieve λ bits of security). This would
entail a×3 increase in communication complexity and verifier running time (both scale
linearly with the number of FRI-verifier tests), however, there would be no other change

10 For simplicity, the current description discusses the case of space bounded computations; the
case of computations with large space also uses multiple codewords but the reduction is more
complicated, and discussed in the online version of the paper.

Scalable Zero Knowledge with no Trusted Setup 21

to the system parameters, such as field size, the schedule of reductions, etc. Regarding
prover time — the main bottleneck in proof systems — the impact would be negligi-
ble (< 1% for all reasonable sized computations) because producing query answers re-
quires only poly-logarithmic running time (whereas producing the proof requires quasi-
linear running time and vastly dominates overall proving time).

We stress that in terms of security, our ZK-STARK is qualitatively better than most
prior ZK approaches (but for Ligero and Aurora that are similar in this respect). Con-
sider the effect of refuting, in the strongest possible way, either of the Knowledge of
Exponent (KoE) or Discrete Log Problem (DLP) hardness assumptions discussed in
Section 3.1, say, by an efficient algorithm that breaks them (or by a large scale quantum
computer). In such a case, the systems relying on KoE/DLP would be rendered com-
pletely broken and useless. In stark contrast (pun intended), if Conjecture 1 and [12,
Conjecture B.17] were to be refuted in the strongest possible way, the effect on ZK-
STARK would only be to increase communication complexity and verifier complexity
by a factor of ≤ ×3. This is thanks to proven, information-theoretic bounds that show
that for any δ ≤ 1− 3

√
ρ = 1−2−R/3 the conjecture above is in fact a theorem (see [26]

for more details)11.

References

[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. “Ligero: Lightweight Sub-
linear Arguments Without a Trusted Setup”. In: Proceedings of the 24th ACM Conference on Computer and Com-
munications Security. 2017.

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof verification and the
hardness of approximation problems”. In: Journal of the ACM 45.3 (1998). Preliminary version in FOCS ’92.,
pp. 501–555.

[3] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization of NP”. In: Journal of
the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[4] László Babai and Lance Fortnow. “Arithmetization: A new method in structural complexity theory”. In: computa-
tional complexity 1.1 (1991), pp. 41–66. ISSN: 1420-8954. DOI: 10.1007/BF01200057. URL: http://dx.
doi.org/10.1007/BF01200057.

[5] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations in polylogarithmic
time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing. STOC ’91. 1991, pp. 21–32.

[6] László Babai, Lance Fortnow, and Carsten Lund. “Nondeterministic exponential time has two-prover interactive
protocols”. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science. FOCS ’90. 1990,
pp. 16–25.

[7] Mihir Bellare and Oded Goldreich. “On Defining Proofs of Knowledge”. In: Proceedings of the 12th Annual Inter-
national Cryptology Conference on Advances in Cryptology. CRYPTO ’92. 1993, pp. 390–420.

[8] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Hr astad, Joe Kilian, Silvio Micali, and Phillip Rogaway.
“Everything Provable is Provable in Zero-Knowledge”. In: Proceedings of the 8th Annual International Cryptology
Conference. CRYPTO ’89. 1988, pp. 37–56.

[9] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis, Evgenya Perga-
ment, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza. “Computational integrity with a public
random string from quasi-linear PCPs”. In: IACR Cryptology ePrint Archive 2016 (2016), p. 646. URL: http:
//eprint.iacr.org/2016/646.

[10] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. libSTARK: a library for zero knowledge (ZK)
scalable transparent argument of knowledge (STARK). https://github.com/elibensasson/libSTARK.
URL: https://github.com/elibensasson/libSTARK.

[11] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed-Solomon Interactive Oracle Proofs
of Proximity”. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic. 2018, 14:1–14:17. DOI: 10.4230/LIPIcs.ICALP.2018.14. URL:
https://doi.org/10.4230/LIPIcs.ICALP.2018.14.

11 Our ZK-STARK still requires a collision resistant hash function, and in the interactive setting
even the Fiat-Shamir heuristic, and, obviously, we make no information-theoretic claims on
those.

22 Ben-Sasson, Bentov, Horesh & Riabzev

[12] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive, Report 2018/046. https://eprint.iacr.org/2018/
046. 2018.

[13] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
“On Probabilistic Checking in Perfect Zero Knowledge”. In: Electronic Colloquium on Computational Complexity
(ECCC) 23 (2016), p. 156. URL: http://eccc.hpi-web.de/report/2016/156.

[14] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
“Zero Knowledge Protocols from Succinct Constraint Detection”. In: Theory of Cryptography - 15th International
Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II. 2017, pp. 172–206. DOI:
10.1007/978-3-319-70503-3_6. URL: https://doi.org/10.1007/978-3-319-70503-
3_6.

[15] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner. “Short Interactive
Oracle Proofs with Constant Query Complexity, via Composition and Sumcheck”. In: Electronic Colloquium on
Computational Complexity (ECCC) 23 (2016), p. 46.

[16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-Size Zero Knowledge from
Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of Cryptography Conference. TCC ’16. 2016, pp. 33–
64.

[17] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. “On the Concrete Efficiency of Probabilistically-
Checkable Proofs”. In: Proceedings of the 45th ACM Symposium on the Theory of Computing. STOC ’13. 2013,
pp. 585–594.

[18] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. “TinyRAM architecture spec-
ification v2. 00, 2013”. In: URL: http://scipr-lab. org/tinyram ().

[19] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. “SNARKs for C: Verifying
Program Executions Succinctly and in Zero Knowledge”. In: Proceedings of the 33rd Annual International Cryp-
tology Conference. CRYPTO ’13. 2013, pp. 90–108.

[20] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. “Secure Sampling of Public
Parameters for Succinct Zero Knowledge Proofs”. In: 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. 2015, pp. 287–304. DOI: 10.1109/SP.2015.25. URL: http://dx.
doi.org/10.1109/SP.2015.25.

[21] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P. Ward.
Aurora: Transparent Succinct Arguments for R1CS. Cryptology ePrint Archive, Report 2018/828. To appear in
Eurocrypt 2019, https://eprint.iacr.org/2018/828. 2018.

[22] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Theory of Cryptography:
14th International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings, Part II.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 31–60. ISBN: 978-3-662-53644-5. DOI: 10.1007/978-
3-662-53644-5_2. URL: http://dx.doi.org/10.1007/978-3-662-53644-5_2.

[23] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable Zero Knowledge via Cycles of
Elliptic Curves”. In: Proceedings of the 34th Annual International Cryptology Conference. CRYPTO ’14. Extended
version at http://eprint.iacr.org/2014/595. 2014, pp. 276–294.

[24] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Succinct Non-Interactive Zero Knowledge
for a von Neumann Architecture”. In: Proceedings of the 23rd USENIX Security Symposium. Security ’14. Extended
version at http://eprint.iacr.org/2013/879. 2014, pp. 781–796.

[25] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. “Short PCPs Verifiable in Poly-
logarithmic Time”. In: Proceedings of the 20th Annual IEEE Conference on Computational Complexity. CCC ’05.
2005, pp. 120–134.

[26] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. “Worst-Case to Average Case Reductions for the Distance
to a Code”. In: 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA.
2018, 24:1–24:23. DOI: 10.4230/LIPIcs.CCC.2018.24. URL: https://doi.org/10.4230/
LIPIcs.CCC.2018.24.

[27] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM Journal on Computing
38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–607.

[28] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive Composition and Bootstrapping for
SNARKs and Proof-Carrying Data”. In: Proceedings of the 45th ACM Symposium on the Theory of Computing.
STOC ’13. 2013, pp. 111–120.

[29] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. “Succinct Non-Interactive Ar-
guments via Linear Interactive Proofs”. In: Proceedings of the 10th Theory of Cryptography Conference. TCC ’13.
2013, pp. 315–333.

[30] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. “Efficient Zero-Knowledge Ar-
guments for Arithmetic Circuits in the Discrete Log Setting”. In: Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part II. 2016, pp. 327–357. DOI: 10.1007/978-3-662-49896-5_12.
URL: http://dx.doi.org/10.1007/978-3-662-49896-5_12.

[31] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Efficient Range Proofs for Confidential Transactions. Cryptology ePrint Archive, Report 2017/1066. https://
eprint.iacr.org/2017/1066. 2017.

[32] Vitalik Buterin. 2017. URL: https://vitalik.ca/.
[33] Alessandro Chiesa and Zeyuan Allen Zhu. “Shorter arithmetization of nondeterministic computations”. In: Theor.

Comput. Sci. 600 (2015), pp. 107–131.

Scalable Zero Knowledge with no Trusted Setup 23

[34] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay Arguments from Signature Cards”. In:
Proceedings of the 1st Symposium on Innovations in Computer Science. ICS ’10. 2010, pp. 310–331.

[35] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. “Practical Verified Computation with Streaming In-
teractive Proofs”. In: Proceedings of the 4th Symposium on Innovations in Theoretical Computer Science. ITCS ’12.
2012, pp. 90–112.

[36] Graham Cormode, Justin Thaler, and Ke Yi. “Verifying computations with streaming interactive proofs”. In: Pro-
ceedings of the VLDB Endowment 5.1 (2011), pp. 25–36.

[37] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. “Square Span Programs with Applications to
Succinct NIZK Arguments”. In: Advances in Cryptology – ASIACRYPT 2014: 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 532–550. ISBN: 978-3-662-45611-8.
DOI: 10.1007/978-3-662-45611-8_28. URL: http://dx.doi.org/10.1007/978-3-662-
45611-8_28.

[38] Irit Dinur. “The PCP theorem by gap amplification”. In: Journal of the ACM 54.3 (2007), p. 12.
[39] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. “Low Communication 2-Prover Zero-

Knowledge Proofs for NP”. In: Proceedings of the 11th Annual International Cryptology Conference. CRYPTO ’92.
1992, pp. 215–227.

[40] Rosario Gennaro, Craig Gentry, and Bryan Parno. “Non-interactive Verifiable Computing: Outsourcing Computa-
tion to Untrusted Workers”. In: Proceedings of the 30th Annual Conference on Advances in Cryptology. CRYPTO’10.
Santa Barbara, CA, USA: Springer-Verlag, 2010, pp. 465–482. ISBN: 3-642-14622-8, 978-3-642-14622-0. URL:
http://dl.acm.org/citation.cfm?id=1881412.1881445.

[41] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic Span Programs and Succinct
NIZKs without PCPs”. In: Proceedings of the 32nd Annual International Conference on Theory and Application of
Cryptographic Techniques. EUROCRYPT ’13. 2013, pp. 626–645.

[42] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. “ZKBoo: Faster Zero-Knowledge for Boolean Circuits”. In:
25th USENIX Security Symposium (USENIX Security 16). Austin, TX: USENIX Association, 2016, pp. 1069–1083.
ISBN: 978-1-931971-32-4. URL: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/giacomelli.

[43] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating Computation: Interactive Proofs for
Muggles”. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing. STOC ’08. 2008, pp. 113–
122.

[44] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of interactive proof systems”.
In: SIAM Journal on Computing 18.1 (1989). Preliminary version appeared in STOC ’85., pp. 186–208.

[45] Jens Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In: Proceedings of the 16th In-
ternational Conference on the Theory and Application of Cryptology and Information Security. ASIACRYPT ’10.
2010, pp. 321–340.

[46] Jens Groth. “Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic Commitments”. In: Advances
in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings. 2011, pp. 431–448. DOI: 10.1007/
978-3-642-25385-0_23. URL: http://dx.doi.org/10.1007/978-3-642-25385-0_23.

[47] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II. 2016, pp. 305–326. DOI: 10.1007/978-3-662-49896-5_11.
URL: http://dx.doi.org/10.1007/978-3-662-49896-5_11.

[48] Jens Groth and Mary Maller. “Snarky Signatures: Minimal Signatures of Knowledge from Simulation-Extractable
SNARKs”. In: Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II. 2017, pp. 581–612. DOI: 10.1007/978-3-319-
63715-0_20. URL: https://doi.org/10.1007/978-3-319-63715-0_20.

[49] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for Bilinear Groups”. In: Advances in Cryptol-
ogy - EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings. 2008, pp. 415–432. DOI: 10.1007/978-3-540-
78967-3_24. URL: http://dx.doi.org/10.1007/978-3-540-78967-3_24.

[50] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. “Efficient Arguments without Short PCPs”. In: Proceedings of
the Twenty-Second Annual IEEE Conference on Computational Complexity. CCC ’07. 2007, pp. 278–291.

[51] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-knowledge from secure multiparty compu-
tation”. In: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. ACM. 2007, pp. 21–
30.

[52] Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On Zero-Knowledge PCPs: Limitations, Simpli-
fications, and Applications. Available at http://www.cs.virginia.edu/˜mohammad/files/papers/
ZKPCPs-Full.pdf. 2015.

[53] Yael Kalai and Ran Raz. “Interactive PCP”. In: Proceedings of the 35th International Colloquium on Automata,
Languages and Programming. ICALP ’08. 2008, pp. 536–547.

[54] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of the 24th Annual ACM
Symposium on Theory of Computing. STOC ’92. 1992, pp. 723–732.

[55] Joe Kilian, Erez Petrank, and Gábor Tardos. “Probabilistically checkable proofs with zero knowledge”. In: Proceed-
ings of the 29th Annual ACM Symposium on Theory of Computing. STOC ’97. 1997, pp. 496–505.

24 Ben-Sasson, Bentov, Horesh & Riabzev

[56] Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang S. Han, and Wei-Ho Chung. “Novel Polynomial Basis With Fast
Fourier Transform and Its Application to Reed-Solomon Erasure Codes”. In: IEEE Trans. Information Theory 62.11
(2016), pp. 6284–6299.

[57] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. “Novel Polynomial Basis and Its Application to Reed-
Solomon Erasure Codes”. In: Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science. FOCS ’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 316–325. ISBN: 978-1-4799-6517-5.
DOI: 10.1109/FOCS.2014.41. URL: http://dx.doi.org/10.1109/FOCS.2014.41.

[58] Helger Lipmaa. “Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments”.
In: Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography. TCC ’12. 2012, pp. 169–
189.

[59] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. “Algebraic Methods for Interactive Proof
Systems”. In: Journal of the ACM 39.4 (1992), pp. 859–868.

[60] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000). Preliminary version
appeared in FOCS ’94., pp. 1253–1298.

[61] Silvio Micali. “Computationally Sound Proofs”. In: SIAM J. Comput. 30.4 (2000), pp. 1253–1298. DOI: 10.1137/
S0097539795284959. URL: http://dx.doi.org/10.1137/S0097539795284959.

[62] Thilo Mie. “Polylogarithmic Two-Round Argument Systems”. In: Journal of Mathematical Cryptology 2.4 (2008),
pp. 343–363.

[63] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. “Pinocchio: Nearly Practical Verifiable Computa-
tion”. In: Proceedings of the 34th IEEE Symposium on Security and Privacy. Oakland ’13. 2013, pp. 238–252.

[64] M. Peck. “A blockchain currency that beat s bitcoin on privacy [News]”. In: IEEE Spectrum 53.12 (2016), pp. 11–
13. ISSN: 0018-9235. DOI: 10.1109/MSPEC.2016.7761864.

[65] Evgenya Pergament. “Algebraic RAM”. MA thesis. Technion — Israel Institute of Technology, 2017.
[66] Alexander A Razborov. “Lower bounds on the size of bounded depth circuits over a complete basis with logical

addition”. In: Mathematical Notes of the Academy of Sciences of the USSR 41.4 (1987), pp. 333–338.
[67] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-round interactive proofs for delegating com-

putation”. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016. 2016, pp. 49–62. DOI: 10.1145/2897518.2897652. URL: http:
//doi.acm.org/10.1145/2897518.2897652.

[68] SCIPR Lab. libsnark: a C++ library for zkSNARK proofs. https://github.com/scipr-lab/libsnark.
URL: https://github.com/scipr-lab/libsnark.

[69] Jae Hong Seo. “Round-Efficient Sub-linear Zero-Knowledge Arguments for Linear Algebra”. In: Public Key Cryp-
tography - PKC 2011 - 14th International Conference on Practice and Theory in Public Key Cryptography, Taormina,
Italy, March 6-9, 2011. Proceedings. 2011, pp. 387–402. DOI: 10.1007/978-3-642-19379-8_24. URL:
http://dx.doi.org/10.1007/978-3-642-19379-8_24.

[70] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. “Toward practical and unconditional verification of remote
computations”. In: Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems. HotOS ’11.
2011, pp. 29–29.

[71] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael Walfish. “Resolving the
conflict between generality and plausibility in verified computation”. In: Proceedings of the 8th EuoroSys Confer-
ence. EuroSys ’13. 2013, pp. 71–84.

[72] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. “Making argument systems for out-
sourced computation practical (sometimes)”. In: Proceedings of the 2012 Network and Distributed System Security
Symposium. NDSS ’12. 2012.

[73] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish. “Taking
proof-based verified computation a few steps closer to practicality”. In: Proceedings of the 21st USENIX Security
Symposium. Security ’12. 2012, pp. 253–268.

[74] Adi Shamir. “IP = PSPACE”. In: Journal of the ACM 39.4 (1992), pp. 869–877.
[75] Roman Smolensky. “Algebraic methods in the theory of lower bounds for Boolean circuit complexity”. In: Proceed-

ings of the nineteenth annual ACM symposium on Theory of computing. ACM. 1987, pp. 77–82.
[76] Justin Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: Proceedings of the 33rd Annual Inter-

national Cryptology Conference. CRYPTO ’13. 2013, pp. 71–89.
[77] Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Efficiency”. In:

Proceedings of the 5th Conference on Theory of Cryptography. TCC’08. New York, USA: Springer-Verlag, 2008,
pp. 1–18. ISBN: 3-540-78523-X, 978-3-540-78523-1. URL: http://dl.acm.org/citation.cfm?id=
1802614.1802616.

[78] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. “A hybrid architecture for interactive verifiable
computation”. In: Proceedings of the 34th IEEE Symposium on Security and Privacy. Oakland ’13. 2013, pp. 223–
237.

[79] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish. “Efficient RAM
and control flow in verifiable outsourced computation”. In: 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2014. 2015.

[80] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient zkSNARKs without
trusted setup. Cryptology ePrint Archive, Report 2017/1132. https://eprint.iacr.org/2017/1132.
2017.

[81] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vRAM: Faster Verifiable RAM With
Program-Independent Preprocessing”. In: 2018 IEEE Symposium on Security and Privacy (SP). Vol. 00, pp. 203–

Scalable Zero Knowledge with no Trusted Setup 25

220. DOI: 10.1109/SP.2018.00013. URL: doi.ieeecomputersociety.org/10.1109/SP.2018.
00013.

[82] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou. A Zero-
Knowledge Version of vSQL. Cryptology ePrint Archive, Report 2017/1146. https://eprint.iacr.org/
2017/1146. 2017.

A Standalone construction

In this section we give an overview of the process leading to the main theorems specified
above (Section 2.3). For didactic reasons we accompany our description with a simple
and concrete “toy” computation as an example, marked in boxed texts, and gloss over
some of the (numerous) technicalities (a few examples are discussed in the last part in
this section); nevertheless, the same steps apply to more complex computations. Further
details and formal definitions appear in the full version of this paper [12].

Many ZK systems (including ours) use arithmetization, a technique introduced to
prove circuit lower bounds [66, 75] and adapted later to interactive proof systems [4,
59]. Arithmetization is the reduction of computational problems to algebraic problems,
that involve “low degree” polynomials over a finite field F; in this context, “low degree”
means degree is significantly smaller than field size.

The start point for arithmetization in all proof systems is a computational integrity
statement which the prover wishes to prove, like the following instance of the CI lan-
guage (see Remark 1):

“I know private input y, such that executing C for T steps on public input x
and private input y leads to result z.” (*)

For our ZK-STIK and for related prior systems [27, 25, 9], the end point of arithme-
tization is a pair of Reed-Solomon (RS) proximity testing (RPT) problems12, and the
scalability of our ZK-STIK relies on a new solution to it — the FRI protocol discussed
below [11]. For S ⊂ F and rate parameter ρ ∈ (0, 1), the RS code with evaluation
domain S and rate ρ is the space of evaluations of low-degree functions over S,

RS[F, S, ρ] = {f : S → F | deg(f) < ρ|S|} .

The RPT problem for RS[F, S, ρ] is one of deciding, with a small number of queries,
whether a function f : S → F is a member of RS[F, S, ρ] or far from all members of
the code in relative Hamming distance.

12 The other solutions described in Section 3.1 like those based on Homomorphic public-key
cryptography (hPKC) have different end points.

26 Ben-Sasson, Bentov, Horesh & Riabzev

Toy problem For concreteness, consider the following special case of (*), which com-
putes the T entry in a “multiplicative modular Fibonacci sequence”:

“I know initial values y0, y1 ∈ F, such that z ∈ F∗ is the Tth element in the
sequence defined inductively by yi = yi−2 · yi−1 for i > 1 (i.e., z = yT)” (**)

We call this a multiplicative modular Fibonacci sequence because, fixing g to be a
generator of F∗, and setting yi = gji one sees that the correct output z is z = gFT where
FT is the Tth element in the Fibonacci sequence that starts with j0, j1, and is computed
modulo |F∗| = |F|− 1. We choose this simple computation as our toy problem because
it is non-trivial to compute over all fields (the standard modular Fibonacci sequence is
trivial over binary fields).

Our process has 4 parts (see Figure 5). When reading the description below, the
main thing to notice is that from start to end, verification costs are logarithmic in T (and
polynomial in the description of the computation C). To see this it is useful to think
informally of T � |C|, like T = 2|C|. In each of the reductions, the verifier receives
only an instance (denoted x) as its input, whereas the prover additionally receives a
witness (denoted w) for membership of x in the relevant language.

AIR APR
RPT
×2

FRI
×2

placement
+ routing

algebraic
linking

proximity
testing

Fig. 5: The reduction from an AIR instance to a pair of RPT problems, solved using the FRI
protocol, explained later in this section. Briefly, the Algebraic Intermediate Representation (AIR)
is converted via the Algebraic Placement and Routing (APR) reduction to an APR instance. This
is reduced via the Algebraic Linking IOPP (ALI) protocol to a pair of RPT problems, which are
solved using two applications of the FRI protocol.

Part I The starting point is a natural algebraic intermediate representation13 (AIR) of x
andw, denoted xAIR,wAIR. The verifier receives xAIR and the prover also receiveswAIR.
Informally, xAIR corresponds to the statement (*) and wAIR corresponds to an execution
trace witnessing correctness of (*), i.e., wAIR is a T × a array in which the ith row de-
scribes the state of the computation at time i and the jth column tracks the contents of
the jth register over time (this column will later give rise to fj). Each entry of this array
is an element in the field F. The transition relation of the computation is specified by a
set of multi-variate polynomials over variables X1, . . . , Xa, Y1, . . . , Ya that correspond
to the current state registers (X variables) and next state registers (Y variables). These
constraints enforce the validity of the transition from one state to the next.

13 AIRs are called algebraic constraint satisfaction problems (ACSPs) in prior works like [27,
9]; we prefer the mono-syllable term AIRs which also relates to the notion of an intermediate
representation used in other areas of computer science.

Scalable Zero Knowledge with no Trusted Setup 27

In our toy problem (**), we shall use an execution trace of dimensions T × 2, where
an honest prover is expected to fill the ith row with entries yi−1, yi. Using X0, X1

and Y0, Y1 to denote the registers in two consecutive sets, our toy transition relation is
captured by the pair of polynomial constraints

C0(Y0, X1) := Y0 −X1; C1(X0, X1, Y1) := Y1 −X0 ·X1.

Satisfying a constraint means assigning values to its variables as to make it vanish
(evaluate to 0). The first constraint above ensures we move the latest element in the
sequence to the first register and the second constraint ensures we compute the next ele-
ment correctly. xAIR contains these two constraints, along with the boundary constraint
that “forces” the [T, 2]-entry of wAIR to equal z (the public input of the statement (**)).

Notice that |xAIR| can be much smaller than |wAIR|; this is crucial for (full) scalabil-
ity because tv must be bounded by a polynomial in |xAIR| and logT. Another point to
bear in mind is that constructing an AIR for simple computations is straightforward (as
shown in our toy example); additional examples appear in Vitalik Buterin’s blog posts
I and III on STARKs [32], in the examples in libSTARK [10], and in previous works
like [9, Appendix B] and [65].

Part II We reduce the AIR representation into a different one, in which states of the
execution trace are “placed” on nodes of an affine graph, so that consecutive states are
connected by an edge in that graph. Informally, an affine graph is a “circuit” that has
“algebraic” topology. The process of “placing” machine states on nodes of a circuit is
roughly analogous to the process of placement and routing which is commonly used
in computer and circuit design, although our design space is constrained by algebra
rather than by physical reality. We refer to this particular transformation as the alge-
braic placement and routing (APR) reduction, and the resulting representation is an
APR instance/witness pair (xAPR,wAPR). The affine graph will necessarily be quite
large, larger than |wAPR| ≥ T, but the verifier requires only a succinct representation
of this graph, via a constant size set of (edge) generators. This succinct representation
is crucial for obtaining verifier scalability and avoiding the “computation unrolling”
costs incurred by other ZK approaches. We first explain how a prover computes this
transformation, and then address the verifier’s transformation.

The (honest) prover interprets the jth column of the algebraic execution trace as a
partial function f̂j from a domain that is a subset of F and which maps into the field
F. Thus, the prover now interpolates this function f̂j to obtain a polynomial Pj(X),
and then evaluates this polynomial on a different domain S ⊂ F of size |S| = β · T,
to obtain a function fj . The final step of this stage on the prover-side is providing
the verifier with oracle access to the sequence f = (f1, . . . , fa) where fi : S → F,
noticing this sequence is an encoding of columns (registers) of the execution trace via
RS codewords. (in the ZK-STARK, this oracle access will be realized via Merkle-tree
commitments to f).

The verifier, on receiving xAIR, computes the size β · T and picks the same domain
S ⊂ F as the prover (notice S does not depend on wAIR). Then, the verifier computes
the succinct set of affine transformations that correspond to edges in the affine graph,
and obtains an APR instance, denoted xAPR.

28 Ben-Sasson, Bentov, Horesh & Riabzev

In the toy problem (**) the APR reduction involves picking a multiplicative subgroup
G of F∗ of size |G| = T (for simplicity we assume such G exists; in libSTARK we
use additive subgroups instead of multiplicative ones and pad the execution trace to
size |G|). Let g denote a generator of G. The affine graph in this case has vertex set G
and directed edges (h, g · h). Using this, we now view the execution trace as a pair of
mappings f̂0, f̂1 : G→ F, one mapping per register/column of the execution trace. The
prover interpolates each function to obtain a pair of polynomials P0(X), P1(X) and
evaluates them over a set S that is a union of cosets of G, creating the first proof oracle
f = (f0, f1) (when constructing the ZK-STARK, this means the prover computes the
Merkle root of f and sends it to the verifier).

The reduction in this step is deterministic on the verifier side, i.e., involves no
verifier-side randomness and no interaction; as such, it also has perfect completeness
and perfect soundness. On the prover side, randomness is used to create a zero knowl-
edge version of the execution trace, by allowing the prover to use polynomials of degree
slightly greater than T, as to allow for Shamir-style secret sharing techniques to hide
individual entries of the execution trace.

Part III The APR representation is used to produce, via a 1-round IOP, a pair of in-
stances of the Reed-Solomon proximity testing (RPT) problem. In our case, the two
codes resulting from the reduction are over the same field F but may have different
evaluation domains and different code rates. To maintain verifier scalability, we point
out that specifying the code parameters — S and ρ, will be done in a succinct man-
ner, one that requires space log |T|; thus, this part of our construction also supports
verifier-side scalability.

The witness in this case is a pair of purported codewords (f (0), g(0)). The first func-
tion f (0) is simply a random linear combination of f to which the prover committed in
the previous step. The second function g(0) is obtained after the various constraints that
enforce execution trace validity are randomly “linked” into a single (random) constraint.
We thus refer to this step as the algebraic linking IOP (ALI) protocol.

Scalable Zero Knowledge with no Trusted Setup 29

For the toy problem (**) the ALI protocol works thus. After receiving oracle access to
f (or its Merkle commitment), the verifier samples r0, r1, r′0, r

′
1 ∈ F and sends them to

the prover. The prover is expected to compute f (0) = r0 ·f0+ r1 ·f1. To construct g(0),
the prover first constructs the single random constraint

C(X0, X1, Y0, Y1) := r′0 · C0(Y0, X1) + r′1 · C1(X0, X1, Y1)

where C0, C1 are as defined in step 1. Then, the prover recalls the interpolating polyno-
mials P0, P1 from step 2 and computes

Q(X) := C(P0(X), P1(X), P0(g ·X), P1(g ·X)).

Let ZeroG(X) :=
∏
ξ∈G(X − ξ). The prover computes g(0) : S → F as the evaluation

ofQ(X)/ZeroG(X) on S. Notice that g(0) is well-defined becauseG∩S = ∅. Recalling
the verifier has oracle access to f , notice that each entry of f (0) can be computed
by querying a single row of the execution trace f (one query from f0 and one from
f1; similarly, each entry of g(0) can be computed by reading two consecutive rows (4
entries) of f . Thus, even though the next step will assume oracle access to f (0), g(0),
the protocol does not require the prover to send another set of oracles during this step,
the oracles can be “locally computed” from f .
Finally, notice that if the prover is honest, then it holds that f (0) is a codeword of the
RS code of rate |G|/|S| over evaluation domain S. Similarly, since Q(X) vanishes
on all ξ ∈ G, we deduce that Q(X)/ZeroG(X) is a polynomial of degree at most
deg(C) · |S| − deg(ZeroG) = |S|, so g(0) is also a codeword of RS[F, S, |G|/|S|].

Part IV In the last step of our reduction, for each of the two functions (oracles) f (0), g(0),
the prover and verifier interact according to the fast RS IOP of proximity (FRI) proto-
col from [11] (cf. [12, Appendix B.6]). That protocol has a scalable verifier and query
complexity that is logarithmic in the size of the evaluation domain of the code, further
establishing verifier scalability. And thus, from start to end, verifier side complexity
remains scalable — logarithmic in T (and polynomial in |C|).
In this last step our toy problem (**) behaves no differently than the general case. We
apply the FRI protocol to each of f (0), g(0) described in the prior step, and compute the
entries of each function by making oracle access to f .

Regarding prover scalability, inspection reveals that the main bottleneck in the pro-
cess is the low-degree extension part, in which each function f̂j that encodes a register
gets interpolated and then evaluated on a domain of size β · T. For this part we use
so-called additive FFTs; in particular, libSTARK uses the recent innovative algorithm
of [56] that performs this computation with O(βT log(βT)) arithmetic operations. All
other steps of the prover’s computation are merely linear in |T|; in particular, the FRI
computation is such.

In closing we briefly mention some of the subtle issues that were glossed over in
our toy example and are discussed at length in our formal proofs, and implemented in
the code:

30 Ben-Sasson, Bentov, Horesh & Riabzev

1. The toy construction is not zero knowledge, because each entry of f does reveal
some information about y0, y1. To achieve zero knowledge we slacken the degree
constraint on f0, f1, allowing the prover to sample a random polynomial that agrees
with f̂0, f̂1 on G, and thus hide information regarding y0, y1 for query-limited ver-
ifiers (in a manner resembling Shamir secret sharing [74]).

2. We did not enforce the boundary condition stating that the last entry is z. To enforce
this, the verifier interpolates a polynomial corresponding to all boundary constraints
(in our toy example there is only one such constraint) and “incorporates it” in the
proof oracle f .

3. Verifier scalability requires that ZeroG be computed efficiently. This is indeed the
case (because G is a subgroup of F), and holds also for additive subgroups (as
implemented by libSTARK [10]).

4. The toy computation does not make use of random memory access (RAM); main-
taining scalability for programs that make significant use of RAM complicates the
construction, requiring more elaborate affine graphs that embed DeBruijn switch-
ing networks; these issues are addressed by Theorem 2 and its proof.

