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Abstract. We introduce a new form of encryption that we name match-
making encryption (ME). Using ME, sender S and receiver R (each with
its own attributes) can both specify policies the other party must satisfy
in order for the message to be revealed. The main security guarantee is
that of privacy-preserving policy matching: During decryption nothing
is leaked beyond the fact that a match occurred/did not occur.
ME opens up new ways of secretly communicating, and enables several
new applications where both participants can specify fine-grained access
policies to encrypted data. For instance, in social matchmaking, S can
encrypt a file containing his/her personal details and specify a policy so
that the file can be decrypted only by his/her ideal partner. On the other
end, a receiver R will be able to decrypt the file only if S corresponds to
his/her ideal partner defined through a policy.
On the theoretical side, we define security for ME, as well as provide
generic frameworks for constructing ME from functional encryption.
These constructions need to face the technical challenge of simultane-
ously checking the policies chosen by S and R, to avoid any leakage.
On the practical side, we construct an efficient identity-based scheme
for equality policies, with provable security in the random oracle model
under the standard BDH assumption. We implement and evaluate our
scheme and provide experimental evidence that our construction is prac-
tical. We also apply identity-based ME to a concrete use case, in partic-
ular for creating an anonymous bulletin board over a Tor network.

Keywords. Secret handshake, attribute-based encryption, social match-
making, Tor.

1 Introduction

Intelligence operations often require secret agents to communicate with other
agents from different organizations. When two spies meet to exchange secrets,
they use a type of secret handshake to ensure that the parties participating in
the exchange are the ones intended. For example, an FBI agent may want to
communicate only with CIA agents, and if this is not the case, the commu-
nication should drop without revealing membership information and why the
communication failed. This form of live drop communication,1 when parties are

1 See https://en.wikipedia.org/wiki/Dead_drop.
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online and interact, has been implemented in cryptography and it is referred
to as secret handshake (SH) protocol [9]. In SH, two parties agree on the same
secret key only if they are both from the same group. Privacy is preserved in the
sense that, if the handshake fails, nobody learns anything relevant other than
the participants are not in the same group. In SH with dynamic matching [6],
groups and roles can even be determined just before the protocol execution.

SH can be thought of as an evolution of traditional key exchange protocols,
where protecting privacy of the participants assumes an essential role. As any
other key agreement protocol, SH is inherently interactive and its purpose is for
the parties to converge on a secret key. A natural question is whether there exists
a non-interactive version of SH, in a similar way as ElGamal public-key encryp-
tion can be interpreted as a non-interactive version of the classical Diffie-Hellman
key exchange. This new cryptographic primitive would allow senders to encrypt
messages offline given only the public key of the receiver, thus getting rid of
real-time interactions, while at the same time providing strong privacy guaran-
tees for time-delayed communications such as email. Non-interactivity mitigates
or prevents traffic analysis which affects all SH protocols when deployed within
a network environment (see, e.g., [6]). In particular, increased traffic between
nodes may signal to an adversary that the SH protocol was successful, even
though the nodes’ group affiliations and roles remain private.

Non-interactive SH is even more relevant if we consider that the most com-
mon method of espionage tradecraft is the dead drop one,1 which maintains
operational security by using a secret location for the exchange of information,
thus relieving the agents from meeting in person. Unfortunately, dead-drop com-
munication cannot be captured by any existing cryptographic primitive, since it
requires a form of expressiveness that is not currently provided by encryption
and its more advanced forms.

Matchmaking encryption. In this paper, we are revamping the encryption prim-
itive and introducing a new concept termed “Matchmaking Encryption”, or ME.
In ME, a trusted authority generates encryption and decryption keys associated,
respectively, to attributes of the sender and the receiver. The authority also gen-
erates an additional decryption key for the receiver, associated to an arbitrary
policy of its choice. The sender of the message can specify on the fly an arbi-
trary policy the receiver must satisfy in order for the message to be revealed. The
guarantee is now that the receiver will obtain the message if and only if a match
occurs (i.e., the sender’s attributes match the receiver’s policy and vice-versa).
Nothing beyond that is leaked; furthermore, the sender’s attributes are certified
by the authority, so that no malicious sender can forge a valid ciphertext which
embeds fake attributes.

For instance, the sender, during encryption, can specify that the message is
intended for an FBI agent that lives in NYC. The receiver, during decryption,
can also specify that he wants to read messages only if they come from CIA
agents. If any of these two policies is not satisfied, the message remains secret,
but nobody learns which policy failed. In this vein, ME can be seen as a non-
interactive version of SH, but with much more enhanced functionality. Indeed,
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an SH works only for groups and roles, while attribute-based key agreements [25]
do not consider privacy. We refer the reader to §1.3 for a comparison between
ME and other primitives in the realm of attribute-based cryptography.

Other killer applications of ME are those where the receiver must be shel-
tered from the actual content of messages to avoid liability, inconvenience or in-
appropriateness. ME naturally tackles social matchmaking confidentiality, where
potential partners open files intended for them but only if they contain the traits
of the desired person; if decryption fails, nobody learns why, so that privacy is
preserved. Encrypting bids (or votes) under ME provides an exciting twist to
well-studied problems. Bidders send private bids to a collector and specify the
conditions under which the encryption should be opened. The collector opens
only the bids that match specific requirements. If decryption fails, the collec-
tor does not learn why, and the actual bid (or vote) remain sealed. ME avoids
exposing information connected to unlooked-for bids which could influence the
receiver and adversely affect the bidding process outcome.

ME also supports marginalized and dissident communities in authoritarian
countries. It can act as an enabler for journalists, political activists and minori-
ties in free-speech technical applications such as SecurePost ([35]) that provides
verified group anonymity. Indeed, in their thorough study [35], the authors reveal
that, in authoritarian countries, anonymous communication may not be credible
and cannot be trusted since sources are unknown.2 ME provides a comprehen-
sive technical solution for censorship-resistant communication while providing
source authenticity and strong privacy guarantees that cannot be obtained with
existing tools. For instance, the ability to check ciphertexts against a policy
before decryption allows journalists or activists to vet messages and avoid ex-
posure to unwanted information that would make them liable. To this end, in
Section §6, we introduce and implement a privacy-preserving bulletin board that
combines Tor hidden services with ME to allow parties to collect information
from anonymous but authentic sources.

1.1 Our Contributions

We initiate a systematic study of ME, both in terms of definitions and construc-
tions. Our main contributions are summarized below.

Syntax of ME. In ME, a trusted authority publishes a master public key mpk,
associated to a master secret key msk. The master secret key msk is used by the
authority to generate three types of keys: (i) An encryption key ekσ, associated
with attributes σ for the sender (created using an algorithm SKGen); (ii) A
decryption key dkρ, associated with attributes ρ for the receiver (created using
an algorithm RKGen); (iii) A decryption key dkS, associated to a policy S that
the sender’s attributes should satisfy, but that is chosen by the receiver (created
using an algorithm PolGen).

2 See https://www.news.ucsb.edu/2019/019308/anonymous-yet-trustworthy
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A sender with attributes σ, and corresponding encryption key ekσ obtained
from the authority, can encrypt a plaintext m by additionally specifying a policy
R (chosen on the fly), thus yielding a ciphertext c that is associated with both
σ and R. Finally, the receiver can attempt to decrypt c using keys dkρ and dkS:
In case of a match (i.e., the attributes of both parties satisfy the counterparty’s
policy), the receiver obtains the plaintext, and otherwise an error occurs.

Security of ME. We consider two properties termed privacy, and authenticity.
On rough terms, privacy looks at the secrecy of the sender w.r.t. the plaintext
m, the chosen policy R, and its attributes σ, whenever a malicious receiver,
possessing decryption keys for several attributes ρ and policies S:

– Can’t decrypt the ciphertext (“mismatch condition”), i.e., either the sender’s
attributes do not satisfy the policies held by the receiver (S(σ) = 0), or
the receiver’s attributes do not satisfy the policy specified by the sender
(R(ρ) = 0).

– Can decrypt the ciphertext (“match condition”), i.e., both the sender’s and
the receiver’s attributes satisfy the corresponding policy specified by the
counterpart (R(ρ) = 1 and S(σ) = 1). Of course, in such a case the receiver
is allowed to learn the plaintext.

On the other hand, authenticity says that an attacker not possessing at-
tributes σ should not be able to create a valid ciphertext (i.e., a ciphertext not
decrypting to ⊥) w.r.t. any access policy that is satisfied by σ.

Black-box constructions. It turned out that building matchmaking encryption is
quite difficult. While a compiler turning key agreement into public-key encryp-
tion exists (e.g., Diffie-Hellman key exchange into ElGamal public-key encryp-
tion), there is no obvious way of building ME from SH, even by extending the
model of SH to include attributes and policies in order to achieve something akin
to attribute-based key agreement protocols. The main technical challenge is to
ensure that the policies established by the sender and receiver are simultaneously
checked to avoid any leakage. This simultaneity requirement is so elusive that
even constructions combining attribute-based encryption (ABE) with authenti-
cation mechanisms fail to achieve it (more on this later).

Our first technical contribution is a construction of an ME for arbitrary poli-
cies based on three tools: (i) an FE scheme for randomized functionalities [1]
(rFE), (ii) digital signatures, and (iii) non-interactive zero-knowledge (NIZK)
proofs. When using the rFE scheme from [1], we can instantiate our scheme as-
suming the existence of either semantically secure public-key encryption schemes
and low-depth pseudorandom generators, or concrete assumptions on multi-
linear maps, or polynomially-secure indistinguishability obfuscation (iO).

This construction satisfies only security against bounded collusions, where
there is an a-priori upper bound on the number of queries a malicious receiver
can make to oracles RKGen and PolGen. We additionally give a simpler construc-
tion of ME for arbitrary policies that even achieves full security (i.e., security
against unbounded collusions), albeit under stronger assumptions. In particular,
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we replace rFE with 2-input functional encryption (2FE) [24]. When using the
2FE scheme by Goldwasser et al. [24], we can instantiate this construction based
on sub-exponentially secure iO.

Being based on strong assumptions, the above constructions should be mainly
understood as feasibility results showing the possibility of constructing ME for
arbitrary policies. It is nevertheless worth pointing out a recent construction of
iO based on LWE, bilinear maps, and weak pseudorandomness [4], which avoids
multi-linear maps. Additionally, Fisch et al. [20] show how to implement effi-
ciently FE and 2FE using Intel’s Software Guard Extensions (SGX), a set of
processors allowing for the creation of isolated execution environments called
enclaves. At a high level, in their practical implementation, a functional de-
cryption key skf consists of a signature on the function f , while messages are
encrypted using standard PKE. In order to run the decryption algorithm, a client
sends skf together with ciphertext c to a decryption enclave, which first checks
if the signature is valid (i.e., the function evaluation has been authorized by the
authority), and if so it decrypts c by using the corresponding secret key, and
outputs the function f evaluated on the plaintext. Lastly, the enclave erases its
memory. This approach can be applied directly to FE, 2FE, and even rFE for
arbitrary functionalities, which, thanks to our results, makes ME for arbitrary
policies practical in the trusted hardware setting.

The identity-based setting. Next, we turn to the natural question of obtaining
efficient ME in restricted settings. In particular, we focus on the identity-based
setting where access policies are simply bit-strings representing identities (as for
standard identity-based encryption). This yields identity-based ME (IB-ME).
For this setting, we provide an efficient construction that we prove secure in
the random oracle model (ROM), based on the standard bilinear Diffie-Hellman
assumption (BDH) over bilinear groups.

Recall that in ME the receiver needs to obtain from the authority a different
key for each access policy S. While this requirement is perfectly reasonable in
the general case, where the policy might consist of the conjunction of several
attributes, in the identity-based setting a receiver that wants to receive messages
from several sources must obtain one key for each source. As this would not
scale well in practice, we change the syntax of IB-ME and remove the PolGen
algorithm. In particular, the receiver can now specify on the fly an identity
string snd (playing the role of the access policy S) that is directly input to the
decryption algorithm (together with the secret key associated to the receiver’s
identity).

While the above modification yields much more efficient IB-ME schemes,
it comes with the drawback that an adversary in the privacy game can try
to unlock a given ciphertext using different target identities snd chosen on the
fly. The latter yields simple attacks that required us to tweak the definition of
privacy in the identity-based setting slightly. We refer the reader to §5 for more
details.
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Type Privacy Authenticity Assumptions

§4 ME X‡ X‡ rFE + Signatures + NIZK

§5 IB-ME X† X† BDH (RO model)

[5] ME X X 2FE + Signatures + NIZK

[5] A-ME X X FE + Signatures + NIZK

Table 1. Results achieved in this work ([5] is the full version of this paper). † Security
only holds in the identity-based setting. ‡ Security only holds in case of bounded
collusions.

Concrete use case and implementation. We give evidence of the practical via-
bility of our IB-ME construction by providing a prototype implementation in
Python. Our experimental evaluation can be found in §6. There, we also detail
a concrete use case where IB-ME is used in order to realize a prototype of a
new privacy-preserving bulletin board that is run on the Tor network [43]. Our
system allows parties to communicate privately, or entities such as newspapers
or organizations to collect information from anonymous sources.

A public bulletin board is essentially a broadcast channel with memory. Mes-
sages can be encrypted under ME so that their content is revealed only in case
of a policy match. The privacy-preserving feature of ME ensures that, if decryp-
tion fails, nobody learns which policies were not satisfied. This effectively creates
secure and private virtual rooms or sub-channels.

Arranged ME. In ME a receiver can obtain independent decryption keys for its
attributes and policies. Note that these keys can be arbitrarily combined during
decryption. For this reason, we also consider an alternative flavor of ME, called
arranged matchmaking encryption (A-ME), where there is a single decryption
key dkρ,S that describes simultaneously the receiver’s attributes ρ and the policy
S chosen by the receiver. Thus, an A-ME scheme does not come with a PolGen
algorithm. This feature makes sense in applications where a receiver has many
attributes, each bearing different restrictions in terms of access policies. A-ME is
simpler to construct, in fact we show how to obtain A-ME for arbitrary policies
from FE for deterministic functionalities, digital signatures, and NIZK proofs.

See Tab. 1 for a summary of our constructions in terms of assumptions and
for different flavors of ME.

1.2 Technical Approach

Below, we describe the main ideas behind our constructions of ME. We start
by presenting two unsuccessful attempts, naturally leading to our secure con-
structions. Both attempts are based on FE. Recall that FE allows us to generate
decryption keys dkf associated to a functionality f , in such a way that decrypting
a ciphertext c, with underlying plaintext x, under dkf , yields f(x) (and nothing
more). Note that FE implies both ciphertext-policy ABE [12] (CP-ABE) and
key-policy ABE [28] (KP-ABE).
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First attempt. A first natural approach would be to construct an ME scheme by
combining two distinct FE schemes. The idea is to apply sequentially two func-
tionalities f1 and f2, where the first functionality checks whether the sender’s
policy R is satisfied, whereas the second functionality checks whether the re-
ceiver’s policy S is satisfied. More in details, let f1 and f2 be the following
functions:

f1ρ (R, c) =

{
c, if R(ρ) = 1
⊥, otherwise

f2S (σ,m) =

{
m, if S(σ) = 1
⊥, otherwise

where R(ρ) = 1 (resp. S(σ) = 1) means that receiver’s attributes ρ (resp. sender’s
attributes σ) satisfy the sender’s policy R (resp. receiver’s policy S). A sender
now encrypts a message m under attributes σ by first encrypting (σ,m) un-
der the second FE scheme, and thus it encrypts the corresponding ciphertext
concatenated with the policy R under the first FE scheme. The receiver first
decrypts a ciphertext using secret key dkρ associated with function f1ρ , and then
it decrypts the obtained value using secret key dkS associated with function f2S .

While “semantic security” of the underlying FE schemes computationally
hides the plaintext of the resulting ME scheme, privacy is not guaranteed com-
pletely: In fact, when the first encrypted layer decrypts correctly (resp. does not
decrypt correctly), a receiver infers that the sender’s attributes σ match (resp.
do not match) the policy S.

Second attempt. One could think to salvage the above construction as follows.
Each function f i returns a random key ri in case the corresponding policy (i.e.,
the policy checked by function f i) is satisfied, and otherwise it returns a random
value generated by running a secure PRF F . Both partial keys r1, r2 are then
needed to unmask the string r1 ⊕ r2 ⊕m, which is included in the ciphertext.

More precisely, consider functions f1ρ (R, r1, k1) and f2S (σ, r2, k2), such that
f1ρ (R, r1, k1) (resp. f2S (σ, r2, k2)) returns r1 (resp. r2) if ρ satisfies R (resp. σ
satisfies S); otherwise, it returns Fk1(ρ) (resp. Fk2(S)), where k1 (resp. k2) is a
key for the PRF F . An encryption of message m w.r.t. attributes σ and policy
R would now consist of three values (c1, c2, c3), where c1 is an encryption of
(R, r1, k1) under the first FE scheme, c2 is an encryption of (σ, r2, k2) under the
second FE scheme, and finally c3 = r1 ⊕ r2 ⊕m. A receiver (with keys dkρ and
dkS associated to functions f1ρ and f2S as before) would decrypt c1 and c2 using
dkρ and dkS, and finally xor the outputs between them and with c3.

As before, “semantic security” still follows from the security of the two FE
schemes. Furthermore, it might seem that privacy is also satisfied because, by
security of the PRF, it is hard to distinguish whether the decryption of each ci
yields the random string ri (i.e., there was a match) or an output of Fki (i.e.,
there was no match). However, a malicious receiver possessing distinct attributes
ρ and ρ′, such that both satisfy the policy R, is able to figure out whether the
sender’s policy is matched by simply decrypting c1 twice (using attributes ρ and
ρ′) and comparing if the decryption returns twice the same value (i.e., r1). A
similar attack can be carried out using two different keys for distinct policies S
and S′, such that both policies are satisfied by the attributes σ.
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ME from 2FE. Intuitively, in order to avoid the above attacks, we need to check
simultaneously that S(σ) = 1 and R(ρ) = 1. 2FE comes handy to solve this
problem, at least if one is willing to give up on authenticity. Recall that in
a 2FE scheme we can associate secret keys with 2-ary functionalities, in such a
way that decrypting ciphertexts c0, c1 computed using independent keys ek0, ek1,
and corresponding to plaintexts x0, x1, yields f(x0, x1) (and nothing more).

Wlog., we reserve the 1st slot to the sender, while the 2nd slot is reserved
to the receiver; the administrator gives the key ek0 to the sender. The sender
now encrypts a message m under attributes σ and policy R by computing
Enc(ek0, (σ,R,m)), which yields a ciphertext c0 for the first input of the function
f . The receiver, as usual, has a pair of decryption keys dkρ, dkS obtained from the
administrator; here, dkS = Enc(ek1,S) = c1 is an encryption of S under key ek1.
Hence, the receiver runs Dec(dkρ, c0, c1), where dkρ is associated to the function
fρ((m,σ,R),S) that returns m if and only if both R(ρ) = 1 and S(σ) = 1 (i.e.,
a match occurs).

On rough terms, privacy follows by the security of the underlying 2FE scheme,
which guarantees that the receiver learns nothing more than the output of f .
Unfortunately, this construction does not immediately satisfy authenticity. To
overcome this limitation, we tweak it as follows. First, we let the sender ob-
tain from the authority a signature s on its own attributes σ; the signature is
computed w.r.t. a verification key that is included in the public parameters of
the scheme. Second, during encryption, the sender computes the ciphertext c0
as above, but now additionally proves in zero knowledge that it knows a valid
signature for the attributes that are hidden in the ciphertext. As we show, this
modification allows us to prove authenticity, while at the same time preserving
privacy. We refer the reader to the full version [5] for the formal proof.

ME from rFE. In §4, we give an alternative solution that combines rFE and FE
(and thus can be instantiated from weaker assumptions). Recall that rFE is a
generalization of FE that supports randomized functionalities. In what follows,
we write f1 for the randomized functionality supported by the rFE scheme, and
f2 for the deterministic functionality supported by the plain FE scheme. The
main idea is to let the sender encrypt (m,σ,R) under the rFE scheme. We then
consider the randomized function f1ρ that checks if ρ satisfies R: In case a match
occurs (resp. does not occur), it returns an encryption of (m,σ) (resp. of (⊥,⊥),
where ⊥ denotes garbage) for the second function f2S that simply checks whether
the policy S is satisfied or not. The receiver decryption keys are the keys dkρ, dkS
associated to the functions f1ρ and f2S .

Roughly speaking, since the randomized function f1 passes encrypted data
to f2, a malicious receiver infers nothing about the satisfiability of policy R. On
the other hand, the satisfiability of S remains hidden, as long as the FE scheme
for the function f2 is secure.

While the above construction does not directly satisfy authenticity, we can
show that the same trick explained above for the 2FE-based scheme works here
as well.
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A-ME from FE. Recall that the difference between ME and A-ME lies in the
number of decryption keys: While in ME there are two distinct keys (one for the
policy S, and one for the attributes ρ), in A-ME there is a single decryption key
dkρ,S that represents both the receiver’s attributes ρ and the policy S.

As a result, looking at our construction of ME from 2FE, we can now hard-
code the policy S (together with the attributes ρ) into the function, which allows
us to replace 2FE with plain FE. This way, each A-ME decryption key dkρ,S is
the secret key corresponding to the function fρ,S for the FE scheme. The security
proof, which appears in the full version [5], only requires FE with game-based
security [12], which in turn can be instantiated under much weaker assumptions.

IB-ME. Above, we mentioned that the natural construction of ME where a
ciphertext masks the plaintext m with two distinct pads r1, r2—where r1, r2 are
re-computable by the receiver as long as a match occurs—is insecure. This is
because the expressiveness of ME allows us to have two distinct attributes ρ and
ρ′ (resp. two distinct policies S and S′) such that both satisfy the sender’s policy
R (resp. both are satisfied by the sender’s attributes σ).

The main idea behind our construction of IB-ME (cf. §5) under the BDH
assumption is that the above attack does not work in the identity-based setting,
where each receiver’s policy S (resp. receiver’s policy R) is satisfied only by the
attribute σ = S (resp. ρ = R). This means that an encryption m⊕ r1⊕ r2 yields
an efficient IB-ME as long as the random pad r2 (resp. r1) can be re-computed by
the receiver if and only if its policy S is satisfied (resp. its attributes ρ satisfy the
sender’s policy). On the other hand, if S is not satisfied (resp. ρ does not satisfy
the sender’s policy), the receiver obtains a pad r′2 (resp. r′1) that is completely
unrelated to the real r2 (resp. r1). In our scheme, we achieve the latter by
following a similar strategy as in the Boneh-Franklin IBE construction [11].

1.3 Related Work

Secret handshakes. Introduced by Balfanz et al. [9], an SH allows two members of
the same group to secretly authenticate to each other and agree on a symmetric
key. During the protocol, a party can additionally specify the precise group
identity (e.g., role) that the other party should have.

SH preserves the privacy of the participants, meaning that when the hand-
shake is successful they only learn that they both belong to the same group (yet,
their identities remain secret), whereas they learn nothing if the handshake fails.
Subsequent work in the area [29,42,6,13,46,49,32,47,31,30,41] focused on improv-
ing on various aspects of SH, including members’ privacy and expressiveness of
the matching policies (i.e., attribute-based SH).

In this vein, ME can be thought of as a non-interactive SH. Indeed, ME gives
privacy guarantees similar to that of SH, but it provides a more efficient way to
communicate (being non-interactive) and, at the same time, it is more flexible
since a party is not constrained to a group.
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Attribute-based encryption. The concept of ABE was first proposed by Sahai
and Waters [40] in the setting of fuzzy identity-based encryption, where users
are identified by a single attribute (or identity string), and policies consist of a
single threshold gate. Afterwards, Bethencourt et al. [10] generalized this idea to
the case where users are described by multiple attributes. Their ABE scheme is
a CP-ABE, i.e., a policy is embedded into the ciphertext, whereas the attributes
are embedded into the receiver’s decryption keys. The first CP-ABE with non-
monotonic access structures was proposed by Ostrovsky et al. [37]. Goyal et
al. [28], instead, introduced KP-ABE, where ciphertexts contain the attributes,
whereas the policy is embedded in the decryption keys. Several other CP-ABE
and KP-ABE schemes have been proposed in the litterature, see, among oth-
ers, [16,27,48,53,14,15,51,38,50,52,36,8].

In ABE, only one party can specify a policy, and thus only one entity has
the power to select the source (or the destination) of an encrypted message.
Motivated by this limitation, Attrapadung and Imai [7] introduced dual-policy
ABE. Here, the sender encrypts a message by choosing both a policy and a set
of attributes. The receiver can decrypt the ciphertext using a single decryption
key that describes both the receiver’s policy and attributes. Similarly to ME, if
both policies are satisfied by the respective counterpart, the message is revealed.

Dual-policy ABE and ME differ in several aspects. First, on the syntactical
level, in ME there are two distinct decryption keys: One for the attributes and
one for the policy specified by the receiver. This yields improved flexibility, as
receivers are allowed to choose attributes and policies independently. (Indeed,
the syntax of dual-policy ABE is more similar to that of A-ME.) Second, on
the security level, both ME and A-ME provide much stronger privacy guaran-
tees than dual-policy ABE. In fact, the security definition for dual-policy ABE
only protects the secrecy of the plaintext. Additionally, the actual constructions
in [7,8] are easily seen not to preserve privacy w.r.t. the sender’s attributes/policy
whenever a match does not occur. Intuitively, this is because the procedure that
checks, during decryption, whether a match occurred or not, is not an atomic
operation. Also note that dual-policy ABE does not directly provide authentic-
ity, which instead is a crucial property for ME and A-ME (those being a type of
non-interactive SH).

Attribute-based key exchange. Gorantla et al. [25] introduced attribute-based au-
thenticated key exchange (AB-AKE). This is essentially an interactive protocol
which allows sharing a secret key between parties whose attributes satisfy a fixed
access policy. Note that the policy must be the same for all the parties, and thus
it must, e.g., be negotiated before running the protocol.

In a different work, Kolesnikov et al. [34] built a different AB-KE without
bilateral authentication. In their setting, a client with some attributes (certifi-
cated by an authority) wants to authenticate himself to a server according to a
fixed policy. The server will share a secret key with the client if and only if the
client’s attributes satisfy the server’s policy.

Note that in ME both senders and receivers can choose their own policies, a
feature not present in attribute-based key exchange protocols.
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Access control encryption. Access control encryption (ACE) [19,33,21,44] is a
novel type of encryption that allows fine-grained control over information flow.
The actors are a set of senders, a set of receivers, and a sanitizer. The goal is to
enforce no-read and no-write rules (described by a policy) over the communica-
tion, according to the sender’s and receiver’s identities.

The flow enforcement is done by the sanitizer, that applies a randomized
algorithm to the incoming ciphertexts. The result is that only receivers allowed
to communicate with the source will be able to decrypt the sanitized ciphertext
correctly, obtaining the original message (no-read rule). On the other hand, if
the source has not the rights to communicate with a target receiver (e.g., the
sender is malicious), then the latter will receive a sanitized ciphertext that looks
like an encryption of a random message (no-write rule).

ACE and ME accomplish orthogonal needs: The former enables crypto-
graphic control over information flow within a system, whereas the latter en-
ables both the sender and the receiver to specify fine-grained access rights on
encrypted data. Furthermore, ACE inherently requires the presence of a trusted
sanitizer, whereas ME involves no additional actor (besides the sender and the
receiver).

2 Preliminaries

2.1 Notation

We use the notation [n]
def
= {1, . . . , n}. Capital boldface letters (such as X) are

used to denote random variables, small letters (such as x) to denote concrete
values, calligraphic letters (such as X ) to denote sets, and serif letters (such as A)
to denote algorithms. All of our algorithms are modeled as (possibly interactive)
Turing machines; if algorithm A has oracle access to some oracle O, we often
implicitly write QO for the set of queries asked by A to O.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents
the cardinality of X . When x is chosen randomly in X , we write x←$ X . If A is
an algorithm, we write y←$ A(x) to denote a run of A on input x and output y; if
A is randomized, y is a random variable and A(x; r) denotes a run of A on input
x and (uniform) randomness r. An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in a polynomial number of steps (in the input size).

Negligible functions. Throughout the paper, we denote by λ ∈ N the security
parameter and we implicitly assume that every algorithm takes as input the
security parameter. A function ν : N → [0, 1] is called negligible in the security
parameter λ if it vanishes faster than the inverse of any polynomial in λ, i.e.
ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We sometimes write negl(λ)
(resp., poly(λ)) to denote an unspecified negligible function (resp., polynomial
function) in the security parameter.
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2.2 Signature Schemes

A signature scheme is made of the following polynomial-time algorithms.

KGen(1λ): The randomized key generation algorithm takes the security param-
eter and outputs a secret and a public key (sk, pk).

Sign(sk,m): The randomized signing algorithm takes as input the secret key sk
and a message m ∈M, and produces a signature s.

Ver(pk,m, s): The deterministic verification algorithm takes as input the public
key pk, a message m, and a signature s, and it returns a decision bit.

A signature scheme should satisfy two properties. The first property says
that honestly generated signatures always verify correctly. The second property,
called unforgeability, says that it should be hard to forge a signature on a fresh
message, even after seeing signatures on polynomially many messages. See the
full version [5] for formal definitions.

2.3 Functional Encryption

Functional Encryption for Randomized Functionalities A functional en-
cryption scheme for randomized functionalities [26] (rFE) f : K × X × R → Y
consists of the following polynomial-time algorithms.3

Setup(1λ): Upon input the security parameter, the randomized setup algorithm
outputs a master public key mpk and a master secret key msk.

KGen(msk, k): The randomized key generation algorithm takes as input the mas-
ter secret key msk and an index k ∈ K, and outputs a secret key skk for fk.

Enc(mpk, x): The randomized encryption algorithm takes as input the master
public key mpk, an input x ∈ X , and returns a ciphertext cx.

Dec(skk, cx): The deterministic decryption algorithm takes as input a secret key
skk and a ciphertext cx, and returns a value y ∈ Y.

Correctness of rFE intuitively says that decrypting an encryption of x ∈ X
using a secret key skk for function fk yields fk(x; r), where r←$R. Since fk(x)
is a random variable, the actual definition requires that whenever the decryption
algorithm is invoked on a fresh encryption of a message x under a fresh key for
fk, the resulting output is computationally indistinguishable to fk(x).

Definition 1 (Correctness of rFE). A rFE scheme Π = (Setup,KGen,Enc,
Dec) for a randomized functionality f : K×X ×R → Y is correct if the following
distributions are computationally indistinguishable:

{Dec(skkj , ci)}kj∈K,xi∈X {fkj (xi; ri,j)}kj∈K,xi∈X

where (mpk,msk)←$ Setup(1λ), skkj ←$ KGen(msk, kj) for kj ∈ K, ci←$ Enc(
mpk, xi) for xi ∈ X , and ri,j ←$R.

3 Often, and equivalently, FE schemes are parameterized by a function ensemble F =
{fk : X ×R → Y}k∈K.
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As for security, the setting of rFE tackles malicious encryptors. However, for
our purpose, it will be sufficient to consider a weaker security guarantee that
only holds for honest encryptors. In this spirit, the definition below is adapted
from [1, Definition 3.3] for the special case of honest encryptors.

Definition 2 ((q1, qc, q2)-NA-SIM-security of rFE). A rFE scheme Π =
(Setup,KGen,Enc,Dec) for a randomized functionality f : K × X × R → Y
is (q1, qc, q2)-NA-SIM-secure if there exists an efficient (stateful) simulator S =
(S1,S2,S3,S4) such that for all PPT adversaries A = (A1,A2) where A1 makes at
most q1 key generation queries and A2 makes at most q2 key generation query, the
output of the following two experiments are computationally indistinguishable:

REALΠ,A(λ)

(mpk,msk)←$ Setup(1λ)

(x
∗
, α)←$ A

O1(msk,·)
1 (1

λ
,mpk)

where x
∗
= (x0, . . . , xqc )

ci←$ Enc(mpk, xi) for i ∈ [qc]

out←$ A
O2(msk,·)
2 (1

λ
, {ci}, α)

return (x, {k}, out)

IDEALΠ,A(λ)

(mpk, α′)←$ S1(1
λ
)

(x
∗
, α)←$ A

O′1(α′,·)
1 (1

λ
,mpk)

where x
∗
= (x0, . . . , xqc )

Let {k1, . . . , kq1} = QO′1
For i ∈ [qc], j ∈ [q1]

yi,j = fkj (xi; ri,j), where ri,j ←$R
({ci}, α′)←$ S3(α

′
, {yi,j})

out←$ A
O′2(α′,·)
2 (1

λ
, {ci}, α)

return (x, {k′}, out)

where the key generation oracles are defined in the following way:

O1(msk, ·) and O2(msk, ·): Are implemented with the algorithm KGen(msk, ·).
The ordered set {k} is composed of the queries made to oracles O1 and O2.

O′1(st′, ·) and O′2(st′, ·): Are implemented with two simulators S2(α′, ·), S4(α′, ·).
The simulator S4 is given oracle access to KeyIdeal(x∗, ·), which, on input k,
outputs fk(xi; r), where r←$R for every xi ∈ x∗. The ordered set {k′} is
composed of the queries made to oracles O′1 and the queries made by S4 to
KeyIdeal.

Functional Encryption for Deterministic Functionalities Functional en-
cryption (FE) for deterministic functionalities f : K × X → Y can be cast as a
special case of rFE. Since f is a deterministic functionality, correctness now sim-
ply says that whenever the decryption algorithm is invoked on a fresh encryption
of a message x under a fresh key for f , the resulting output equals fk(x). The
definition of security is also a simple adaptation of Def. 2, with the twist that the
ideal functionality in the ideal experiment is deterministic. We refer the reader
to the full version [5] for the details.

2.4 Bilinear Diffie-Hellman Assumption

Our practical implementation of IB-ME is provably secure under the BDH as-
sumption, which we recall below.
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Definition 3 (BDH assumption). Let G and GT be two groups of prime order
q. Let e : G×G→ GT be an admissible bilinear map, and let P be a generator
of G. The BDH problem is hard in (G,GT , e) if for every PPT adversary A:

P
[
A(q,G,GT , e, P, P a, P b, P c) = e(P, P )abc

]
≤ negl(λ) ,

where P ←$ G∗, and a, b, c←$ Z∗q .

2.5 Non-Interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-
knowledge (NIZK) proof system for R is a tuple of polynomial-time algorithms
Π = (I,P,V) specified as follows. (i) The randomized algorithm I takes as in-
put the security parameter and outputs a common reference string ω; (ii) The
randomized algorithm P(ω, (y, x)), given (y, x) ∈ R outputs a proof π; (iii) The
deterministic algorithm V(ω, (y, π)), given an instance y and a proof π outputs
either 0 (for “reject”) or 1 (for “accept”). We say that a NIZK for relation R is
correct if for all λ ∈ N, every ω output by I(1λ), and any (y, x) ∈ R, we have
that V(ω, (y,P(ω, (y, x)))) = 1.

We define two properties of a NIZK proof system. The first property, called
adaptive multi-theorem zero knowledge, says that honest proofs do not reveal
anything beyond the fact that y ∈ L. The second property, called knowledge
soundness, requires that every adversary creating a valid proof for some state-
ment, must know the corresponding witness. We defer the formal definitions to
the full version [5].

3 Matchmaking Encryption

As explained in the introduction, an ME allows both the sender and the receiver,
characterized by their attributes, to choose fined-grained access policies that
together describe the access rights both parties must satisfy in order for the
decryption of a given ciphertext to be successful.

We present two flavors of ME. In the first, which is the standard one, the
receiver’s attributes and policy are independent of each other (i.e., a receiver
with some given attributes can choose different policies). In the second flavor,
dubbed A-ME, the receiver’s attributes and policy are tighten together. For
space reasons, we defer the formal definitions for A-ME to the full version [5].

3.1 Security Model

Formally, an ME is composed of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algo-
rithm outputs the master public key mpk, the master policy key kpol, and
the master secret key msk. We implicitly assume that all other algorithms
take mpk as input.
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SKGen(msk, σ): The randomized sender-key generator takes as input the master
secret key msk, and attributes σ ∈ {0, 1}∗. The algorithm outputs a secret
encryption key ekσ for attributes σ.

RKGen(msk, ρ): The randomized receiver-key generator takes as input the mas-
ter secret key msk, and attributes ρ ∈ {0, 1}∗. The algorithm outputs a secret
decryption key dkρ for attributes ρ.

PolGen(kpol,S): The randomized receiver policy generator takes as input the
master policy key kpol, and a policy S : {0, 1}∗ → {0, 1} represented as a
circuit. The algorithm outputs a secret decryption key dkS for the circuit S.

Enc(ekσ,R,m): The randomized encryption algorithm takes as input a secret
encryption key ekσ for attributes σ ∈ {0, 1}∗, a policy R : {0, 1}∗ → {0, 1}
represented as a circuit, and a message m ∈ M. The algorithm produces a
ciphertext c linked to both σ and R.

Dec(dkρ, dkS, c): The deterministic decryption algorithm takes as input a secret
decryption key dkρ for attributes ρ ∈ {0, 1}∗, a secret decryption key dkS
for a circuit S : {0, 1}∗ → {0, 1}, and a ciphertext c. The algorithm outputs
either a message m or ⊥ (denoting an error).

Note that the decryption keys dkρ and dkS are independent, thus allowing a
receiver with attributes ρ to obtain decryption keys for different policies S. We
also remark that the master policy key kpol could be considered as part of the
master secret key msk, but we preferred to use distinct keys for clarity.

Correctness. The intuition for correctness is that the output of the decryption
algorithm using decryption keys for receiver’s attributes ρ and access policy S,
when decrypting an honestly generated ciphertext which encrypts a message
m using sender’s attributes σ and policy R, should equal m if and only if the
receiver’s attributes ρ match the policy R specified by the sender, and at the
same time the sender’s attributes σ match the policy S specified by the receiver.
On the other hand, in case of mismatch, the decryption algorithm returns ⊥.
More formally:

Definition 4 (Correctness of ME). An ME with message spaceM is correct
if ∀λ ∈ N, ∀(mpk, kpol,msk) output by Setup(1λ), ∀m ∈ M, ∀σ, ρ ∈ {0, 1}∗,
∀R,S : {0, 1}∗ → {0, 1}:

P [Dec(dkρ, dkS,Enc(ekσ,R,m)) = m ] ≥ 1− negl(λ) ,

whenever S(σ) = 1 and R(ρ) = 1, and otherwise

P [Dec(dkρ, dkS,Enc(ekσ,R,m)) = ⊥] ≥ 1− negl(λ) ,

where ekσ←$ SKGen(msk, σ), dkρ←$ RKGen(msk, ρ), dkS←$ PolGen(kpol,S).

Security. We now turn to defining security of an ME via two properties, that we
dub privacy and authenticity. Intuitively, privacy aims at capturing secrecy of
the sender’s inputs (i.e., the attributes σ, the policy for the receiver R, and the
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plaintext m), in two different conditions: In case of a match between the sender’s
and receiver’s attributes/policy, and in case of mismatch. This is formalized
by requiring that the distributions Enc(ekσ0

,R0,m0) and Enc(ekσ1
,R1,m1) be

computationally indistinguishable to the eyes of an attacker with oracle access to
SKGen,RKGen,PolGen, where the values (m0,m1,R0,R1, σ0, σ1) are all chosen
by the adversary. The actual definition requires some care, as the adversary
could, e.g., obtain a decryption key for attributes ρ and policy S such that
R0(ρ) = 0 ∨ S(σ0) = 0 but R1(ρ) = 1 ∧ S(σ1) = 1, which clearly allows him
to distinguish by evaluating the decryption algorithm. In order to exclude such
“trivial attacks”, we quantify privacy over all valid adversaries, as explained
below:

– In case of a mismatch, i.e., when the adversary cannot decrypt the challenge
ciphertext, it must be the case that for each attribute ρ and policy S for
which the adversary knows a valid decryption key: (i) Either ρ does not
satisfy policies R0 and R1; (ii) or σ0 and σ1 do not satisfy policy S; (iii) or
ρ does not satisfy R0 and σ1 does not satisfy S; (iv) or ρ does not satisfy R1

and σ0 does not satisfy S.
– In case of match, i.e., when the adversary can decrypt the challenge cipher-

text, it must be the case that m0 = m1, and additionally, for each attribute ρ
and policy S for which the adversary knows a valid decryption key, it holds
that both: (i) R0 and R1 have the same evaluation on attributes ρ (i.e.,
R0(ρ) = R1(ρ)); and (ii) S has the same evaluation on attributes σ0 and σ1
(i.e., S(σ0) = S(σ1)).

Gpriv
Π,A(λ)

(mpk, kpol,msk)←$ Setup(1λ)

(m0,m1,R0,R1, σ0, σ1, α)←$ A
O1,O2,O3
1 (1

λ
,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(msk, σb)

c←$ Enc(ekσb ,Rb,mb)

b
′←$ A

O1,O2,O3
2 (1

λ
, c, α)

If (b
′
= b) return 1

Else return 0

Gauth
Π,A(λ)

(mpk, kpol,msk)←$ Setup(1λ)

(c, ρ, S)←$ AO1,O2,O3 (1
λ
,mpk)

dkρ←$ RKGen(msk, ρ)

dkS←$ PolGen(kpol, S)
m = Dec(dkρ, dkS, c)

If ∀σ ∈ QO1
: (S(σ) = 0) ∧ (m 6= ⊥)

return 1

Else return 0

Fig. 1. Games defining privacy and authenticity of ME. Oracles O1, O2, O3 are imple-
mented by SKGen(msk, ·), RKGen(msk, ·), PolGen(kpol, ·).

Definition 5 (Privacy of ME). We say that an ME Π satisfies privacy if for
all valid PPT adversaries A:∣∣∣∣P[Gpriv

Π,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,
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where game Gpriv
Π,A(λ) is depicted in Fig.1. Adversary A is called valid if ∀ρ ∈

QO2
,∀S ∈ QO3

it satisfies the following invariant:

– (Mismatch condition). Either

(R0(ρ) = R1(ρ) = 0) ∨ (S(σ0) = S(σ1) = 0)

∨ (R0(ρ) = S(σ1) = 0) ∨ (R1(ρ) = S(σ0) = 0); (1)

– (Match condition). Or (if ∃ρ̂ ∈ QO2 , Ŝ ∈ QO3 s.t. Eq. (1) does not hold)

(m0 = m1) ∧ (R0(ρ) = R1(ρ)) ∧ (S(σ0) = S(σ1)).

Note that in the above definition the challenge ciphertext is honestly com-
puted. This is because privacy captures security against malicious receivers. Au-
thenticity, on the other hand, demands that the only way to produce a valid
ciphertext under attributes σ is to obtain an encryption key ekσ from the au-
thority, thus guaranteeing that if a ciphertext decrypts correctly, then it has
been created by a sender with the proper encryption key. This captures security
against malicious senders.

The latter is modeled by a game in which the attacker has oracle access to
SKGen, RKGen, and PolGen. The attacker’s goal is to output a tuple (ρ, S, c) such
that Dec(dkρ, dkS, c) 6= ⊥, and none of the encryption keys ekσ for attributes σ
(obtained by the adversary via oracle queries) satisfies the policy S. Observe
that the adversary is not given access to an encryption oracle. The reason for
this is that we only consider security in the presence of chosen-plaintext attacks,
and thus ciphertexts might be malleable,4 which makes it possible to forge in
the authenticity game.

Definition 6 (Authenticity of ME). We say that an ME Π satisfies authen-
ticity if for all PPT adversaries A:

P
[
Gauth
Π,A(λ) = 1

]
≤ negl(λ) ,

where game Gauth
Π,A(λ) is depicted in Fig.1.

Finally, a secure ME is an ME satisfying all the properties.

Definition 7 (Secure ME). We say that an ME Π is secure, if Π satisfies
privacy (Def. 5) and authenticity (Def. 6).

Sometimes, we will also consider a weaker definition where there is an a priori
upper bound on the number of queries an attacker can make to oracles RKGen
and PolGen. We refer to this variant as security against bounded collusions. In
particular, we say that an ME is (q1, q

′
1, q2, q

′
2)-secure if it has (q1, q

′
1, q2, q

′
2)-

privacy and authenticity, where q1, q
′
1 (resp. q2, q

′
2) denote the number of queries

to RKGen and PolGen allowed by A1 (resp. A2) in the privacy game.

4 Note that malleability (and thus the authenticity property considered in our paper)
might be a desirable feature in some scenarios, as it implies a form of deniability.
It could also be useful in future extensions of ME (e.g., in the spirit of proxy re-
encryption).
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Relation to ABE. An ME for arbitrary policies can be used as a CP-ABE with
the same expressiveness. The idea is to ignore the attributes of the sender and
the policy of the receiver. It is sufficient to set the ABE master public key to
(mpk, ekσ) and an ABE receiver’s decryption key to (dkρ, dkφ), where ekσ is
the encryption key generated for attributes σ = 0λ, dkφ is the policy key for
a tautology φ (i.e., a circuit whose output is always 1 regardless of the input),
and dkρ is the decryption key for attributes ρ. The encryption of a message m
under a policy R works by running the ME encryption algorithm Enc(ekσ,R,m).
The receiver will decrypt the ciphertext by using the keys (dkρ, dkφ). Since φ is
a tautology, it does not matter under which attributes the message has been
encrypted. Thus, the scheme will work as a normal CP-ABE.

Following a similar reasoning, ME implies KP-ABE. This is achieved by
setting ekσ = σ, and by using the same approach described above (i.e., set the
sender’s policy circuit R to a tautology φ which ignores the receiver’s attributes).
Note that for this implication authenticity is not required, which is reminiscent
of the fact that in ABE the attributes are not explicitly certified by an authority.

4 Black-Box Construction

We explore black-box constructions of ME and A-ME from several types of FE
schemes. In particular, in §4.1 we give a construction of ME based on rFE and
FE. As discussed in the introduction, such a construction allows us to obtain ME
from weaker assumptions, at the price of achieving only security against bounded
collusions. In the full version of the paper [5], we describe and analyze two
additional schemes: (i) A construction of ME that is secure against unbounded
collusions, based on 2FE (and thus on stronger assumptions); (ii) A construction
of A-ME based on FE. All schemes additionally rely on digital signatures and
on NIZK proofs.

4.1 ME from rFE

Our construction is based on the following two functionalities fFE and f rFE:

fFES (σ,m) =

{
m, if σ 6= ⊥ ∧ S(σ) = 1
⊥, otherwise

and

f rFE(ρ,mpkFE)
(R, σ,m; r) =

{
Enc(mpkFE, (σ,m); r), if R(ρ) = 1
Enc(mpkFE, (⊥,⊥); r), otherwise.

Construction 1 (ME for arbitrary policies) Let FE, rFE, SS, NIZK be re-
spectively an FE scheme for the deterministic functionality fFE, a rFE scheme
for the randomized functionality f rFE, a signature scheme, and a NIZK proof
system for the NP relation:

R1
def
=

((c, pk,mpkrFE), (σ, s)) :
∃r,m,R s.t.

c = EncrFE(mpkrFE, (R, σ,m); r)∧
Ver(pk, s, σ) = 1

 .
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We construct an ME scheme in the following way:

Setup(1λ): On input the security parameter 1λ, the setup algorithm computes
(mpkFE,mskFE)←$ SetupFE(1λ), (sk, pk)←$ KGenSS(1λ), (mpkrFE,mskrFE)←$

SetuprFE(1λ), and ω←$ I(1λ). Finally, it outputs the master secret key msk =
(mskrFE, sk), the master policy key kpol = mskFE, and the master public key
mpk = (pk, ω,mpkFE,mpkrFE). Recall that all other algorithms are implicitly
given mpk as input.

SKGen(msk, σ): On input the master secret key msk = (mskrFE, sk), and at-
tributes σ ∈ {0, 1}∗, the algorithm returns the encryption key ekσ = (σ,
s) where s←$ Sign(sk, σ) (i.e., s is a signature on attributes σ ∈ {0, 1}∗).

RKGen(msk, ρ): On input the master secret key msk = (mskrFE, sk), and at-
tributes ρ ∈ {0, 1}∗, the algorithm computes the decryption key sk(ρ,mpkFE)

←$ KGenrFE(mskrFE, (ρ,mpkFE)). Then, it outputs the decryption key dkρ =
sk(ρ,mpkFE)

.
PolGen(kpol,S): On input the master policy key kpol = mskFE, and policy S rep-

resented as a circuit, the algorithm computes the function key skS by running
KGenFE(mskFE,S). Then, it outputs the decryption key dkS = skS.

Enc(ekσ,R,m): On input an encryption key ekσ = (σ, s), a policy R represented
as a circuit, and a message m, the algorithm encrypt the message by comput-
ing c←$ EncrFE(mpkrFE, (R, σ,m)). Finally, it returns the ciphertext ĉ = (c,
π) where π←$ P(ω, (pk, c,mpkrFE), (σ, s)).

Dec(dkρ, dkS, c): On input two keys dkρ = sk(ρ,mpkFE)
, dkS = skS, and a ciphertext

ĉ = (c, π), the algorithm first checks whether V(ω, (pk, c,mpkrFE), π) = 1.
If that is not the case, it returns ⊥, and else it returns DecFE(skS,DecrFE(
sk(ρ,mpkFE)

, c)).

Correctness of the scheme follows directly by the correctness of the underlying
primitives. As for security, we establish the following result, whose proof appears
in the full version [5].

Theorem 1. Let rFE, FE, SS, NIZK be as above. If rFE is (q1, 1, q2)-NA-SIM-
secure (Def.2), FE is (q′1, q1, q

′
2)-SIM-secure, SS is EUF-CMA, and NIZK satisfied

adaptive multi-theorem zero knowledge and knowledge soundness, then the ME
scheme Π from Construction 1 is (q1, q

′
1, q2, q

′
2)-secure.

5 Identity-Based Matchmaking Encryption

In this section, we present a practical ME for the identity-based setting (i.e.,
equality policies). As in ME, attributes are encoded by bit strings, but now
each attribute x ∈ {0, 1}∗ satisfies only the access policy A = x, which means
that both the sender and the receiver specify a single identity instead of general
policies (represented as a circuit). We will denote by snd and rcv, respectively,
the target identities (i.e., the access policies) specified by the receiver and by the
sender.

While any ME as defined in §3 perfectly works for this restricted setting, the
problem is that in order to select the identity snd of the source, a receiver must
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ask to the administrator the corresponding key dksnd such that S = snd. (Recall
that the sender, instead, can already specify the target identity R = rcv on the
fly, during encryption.) In particular, if the receiver is interested in decrypting
ciphertexts from several distinct sources, it must ask for several decryption keys
dksnd, which is impractical.5

We resolve this issue by removing algorithm PolGen from the syntax of an IB-
ME, so that the decryption algorithm takes directly as input the description of
the target identity snd (i.e., Dec(dkρ, snd, c)). This way, the receiver can specify
the target identity the source must satisfy on the fly, without talking to the
authority.

5.1 Security of IB-ME

The choice of removing the PolGen algorithm has an impact on the security prop-
erties for IB-ME. Below, we revisit each security guarantee in the identity-based
setting and explain how (and why) the security definition has to be adapted. We
refer the reader to Fig. 2 for the formal definitions.

Privacy of IB-ME. We cannot require that the sender’s identity remains hidden
in case of a decryption failure due to a mismatch condition. In particular, a
malicious receiver can always change the sender’s target identity in order to
infer under which identity a ciphertext has been encrypted.

More formally, consider the adversary that chooses a tuple (m,m, rcv, rcv, σ0,
σ1), and receives a ciphertext c such that c←$ Enc(ekσb , rcv,m), where the en-
cryption key ekσb corresponds to identity σb; the attacker can simply pick a
target identity snd′ such that, say, σ0 = snd′ (whereas σ1 6= snd′), and thus dis-
tinguish σ0 from σ1 by decrypting c with dkρ and target identity snd′.6 On the
other hand, privacy might still hold in case of mismatch, as long as the keys dkρ
held by the receiver correspond to identities ρ that do not match the receiver’s
target identity. Thus, in the security game, an attacker is now valid if for every
decryption key dkρ obtained from the oracle, it holds that ρ 6= rcv0 and ρ 6= rcv1,
where the target identities rcv0, rcv1 are chosen by the adversary. Lastly, note
that in case of a match, if a receiver has identity ρ and specifies a policy snd, it
can automatically infer that σ = snd and rcv = ρ. For this reason, the privacy
game does not consider any match condition.

This relaxed form of privacy is enough and desirable in many scenarios.
Intuitively, it guarantees that nothing is leaked to an unintended receiver who
doesn’t match the sender’s policy; on the other hand, an intended receiver can
choose which ciphertexts to decrypt by trying different policies. This feature is
essential in our bulletin board application (Section §6) because it allows parties,
e.g., journalists and political activists, to select which type of messages to read.

5 This is not an issue for an ME that supports arbitrary policies, as in that case, a
single policy encodes a large number of attributes.

6 This attack can be generalized to show that privacy does not hold if the PolGen
algorithm (and thus the policy key kpol) is made public.
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IB-ME works well in this scenario since it provides enough flexibility to the
intended receivers while protecting senders from possible attackers.

Finally, we note that the above security definition does not guarantee that
the message m remains secret with respect to an honest receiver that chooses
the “wrong” target identity snd. The latter is, however, a desirable feature that
our practical scheme will satisfy (cf. Remark 1).

Authenticity of IB-ME. Turning to unforgeability in the identity-based setting,
the forgery (c, ρ, snd) is considered valid if for all encryption keys ekσ obtained
by the adversary it holds that σ 6= snd, and moreover the identity ρ is not held
by the adversary (i.e., the adversary cannot “forge to itself”).

Gib-priv
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m0,m1, rcv0, rcv1, σ0, σ1, α)←$ A
O1,O2
1 (1

λ
,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(msk, σb)

c←$ Enc(ekσb , rcvb,mb)

b
′←$ A

O1,O2
2 (1

λ
, c, α)

If (b
′
= b) return 1

Else return 0

Gib-auth
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(c, ρ, snd)←$ AO1,O2 (1
λ
,mpk)

dkρ←$ RKGen(msk, ρ)

m = Dec(dkρ, snd, c)

If ∀σ ∈ QO1
: (σ 6= snd) ∧ (ρ 6∈ QO2

)∧
(m 6= ⊥)
return 1

Else return 0

Fig. 2. Games defining privacy and authenticity security of IB-ME. Oracles O1, O2 are
implemented by SKGen(msk, ·), RKGen(msk, ·).

Security definitions. The definitions below capture the very same correctness
and security requirements of an ME, but translated to the identity-based case.

Definition 8 (Correctness of IB-ME). An IB-ME Π = (Setup,SKGen,RKGen,
Enc,Dec) is correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ), ∀m ∈ M, ∀σ,
ρ, rcv, snd ∈ {0, 1}∗:

P [Dec(dkρ, snd,Enc(ekσ, rcv,m)) = m ] ≥ 1− negl(λ) ,

whenever σ = snd and ρ = rcv, and otherwise

P[Dec(dkρ, snd,Enc(ekσ, rcv,m)) = ⊥] ≥ 1− negl(λ) ,

where ekσ, dkρ are generated by SKGen(msk, σ), and RKGen(msk, ρ).

Definition 9 (Privacy of IB-ME). We say that an IB-ME Π satisfies privacy
if for all valid PPT adversaries A:∣∣∣∣P[Gib-priv

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,
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where game Gib-priv
Π,A (λ) is depicted in Fig 2. Adversary A is called valid if ∀ρ ∈

QO2
it satisfies the following invariant:

– (Mismatch condition). ρ 6= rcv0 ∧ ρ 6= rcv1

Definition 10 (Authenticity of IB-ME). We say that an IB-ME Π satisfies
authenticity if for all PPT adversaries A:

P
[
Gib-auth
Π,A (λ) = 1

]
≤ negl(λ) ,

where game Gib-auth
Π,A (λ) is depicted in Fig.2.

Definition 11 (Secure IB-ME). We say that an IB-ME Π is secure if it
satisfies privacy (Def. 9) and authenticity (Def. 10).

5.2 The Scheme

We are now ready to present our practical IB-ME scheme.

Construction 2 (IB-ME) The construction works as follows.

Setup(1λ): Let e : G × G → GT be a symmetric pairing, and P a generator of
G, with G, and GT of an order q that depends on λ. We also have three
hash functions H : {0, 1}∗ → G, H ′ : {0, 1}∗ → G, Ĥ : GT → {0, 1}`, mod-
eled as random oracles, and a polynomial-time computable padding function
Φ : {0, 1}n → {0, 1}`. We require that for all m ∈ {0, 1}n one can verify
in polynomial time if m has been padded correctly, and moreover that Φ(m)
is efficiently invertible. On input the security parameter 1λ, the setup algo-
rithm samples two random r, s ∈ Zq, and sets P0 = P r. Finally, it outputs

the master public key mpk = (e,G,GT , q, P, P0, H,H
′, Ĥ, Φ) and the master

secret key is msk = (r, s). Recall that all other algorithms are implicitly given
mpk as input.

SKGen(msk, σ): On input the master secret key msk, and identity σ, the algo-
rithm outputs ekσ = H ′(σ)s.

RKGen(mpk,msk, ρ): On input the master secret key msk, and identity ρ, the
algorithm outputs dkρ = (dk1ρ, dk

2
ρ, dk

3
ρ) = (H(ρ)r, H(ρ)s, H(ρ)).

Enc(mpk, ekσ, rcv,m): On input an encryption key ekσ, a target identity rcv = ρ,
and a message m ∈ {0, 1}n, the algorithm proceeds as follows:
1. Sample random u, t ∈ Zq.
2. Compute T = P t and U = Pu.
3. Compute kR = e(H(ρ), Pu0 ) and kS = e(H(ρ), T · ekσ).
4. Compute V = Φ(m)⊕ Ĥ(kR)⊕ Ĥ(kS).
5. Output ciphertext C = (T,U, V ).

Dec(mpk, dkρ, snd, c): On input the master public key mpk, a decryption key dkρ,
a target identity snd = σ, and a message m, the algorithm proceeds as follows:
1. Parse c as (T,U, V ).
2. Compute kR = e(dk1ρ, U) and kS = e(dk2ρ, H

′(σ)) · e(dk3ρ, T ).

3. Compute Φ(m) = V ⊕ Ĥ(kR)⊕ Ĥ(kS)
4. If the padding is valid, return m. Otherwise, return ⊥.
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Correctness The correctness of the scheme only depends on the computation
of kR and kS as evaluated by the decryption algorithm. Here, we require that
the padding function Φ satisfies the property that a random string in {0, 1}`
has only a negligible probability to form a valid padding w.r.t. the function
Φ.7 Let kR, kS be the keys computed during encryption, and k′R, k′S the ones
computed during decryption. The scheme is correct since ∀σ, ρ, rcv, snd ∈ {0, 1}∗,
ekσ←$ SKGen(msk, σ), dkρ←$ RKGen(msk, ρ):

1. If σ = snd and ρ = rcv:

kR = e(H(ρ), Pu0 ) = e(H(ρ)r, Pu) =

= e(dk1ρ, U) = k′R, and

kS = e(H(ρ), T · ekσ) = e(H(ρ), T ·H ′(σ)s) =

= e(H(ρ), T ) · e(H(ρ)s, H ′(σ)) =

= e(dk3ρ, T ) · e(dk2ρ, H ′(σ)) = k′S

2. Otherwise, if ρ 6= rcv = ρ′ or σ 6= snd = σ

kR = e(H(ρ′), Pu0 ) 6= e(H(ρ)r, Pu) =

= e(dk1ρ, U) = k′R, or

kS = e(H(ρ), T · ekσ) = e(H(ρ), T ·H ′(σ)s) =

= e(dk3ρ, T ) · e(dk2ρ, H ′(σ)) 6=
= e(dk3ρ, T ) · e(dk2ρ, H ′(σ′)) = k′S .

Since k′R (resp. k′S) is hashed by the random oracle Ĥ, then Ĥ(k′R) (resp. Ĥ(k′S))
is statistically close to a random string of length `. Hence, with overwhelming
probability, V ⊕ Ĥ(kR)⊕ Ĥ(k′S), where either kR 6= k′R or kS 6= k′S , will produce
an invalid padding, and the decryption algorithm returns ⊥.

Remark 1 (Plaintext secrecy w.r.t. unauthorized-but-honest receivers). We note
that the plaintext is information-theoretically hidden from the point of view of an
honest receiver which specifies a target identity that does not match the sender’s
identity. Moreover, the latter holds even given the internal state of the receiver
at the end of the decryption procedure. In fact, since Ĥ(kS) is statistically close
to uniform, and |Ĥ(kS)| = |Φ(m)| = `, the decryption algorithm will compute a
symmetric key kS different to the one generated during encryption.8

7 This can be achieved, e.g., by setting ` = n + λ + 1, and by appending to each
message the string 1||0λ.

8 It is important to recall that a similar guarantee does not hold in the identity-based
setting, when the receiver is semi-honest (cf. §5.1).
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Security. As for security, we establish the following result, whose proof appears
in the full version [5].

Theorem 2. Let G, GT be two groups of prime order q, and let e : G×G→ GT
be an admissible bilinear map. If the BDH problem is hard in (G,GT , e) (Def. 3),
then the IB-ME scheme Π from Construction 2 is secure (Def. 11) in the random
oracle model.

6 IB-ME Performance Evaluation and Application to Tor

In this section, we demonstrate that our IB-ME is practical and we use it to
implement a novel system for anonymous but authentic communication. We first
show in §6.1 the performance evaluation of our IB-ME implementation. We then
describe in §6.2 an application for IB-ME built on top of our implementation.
The proposed application is a bulletin board hidden service that allows parties
to collect or exchange anonymous messages that have an expected format and
come from authentic sources. It allows users to exchange IB-ME messages over
the Tor network, specifically, using the Tor Hidden Services feature (cf. §6.2). Our
bulletin board prototype can be used for covert communication by journalists
or activists under authoritarian governments. It improves upon systems such
as SecurePost ([35]) for verified group anonymity by providing much stronger
privacy guarantees since ciphertexts can be vetted before decryption.

6.1 Implementation and Evaluation of the IB-ME cryptosystem

We provide an experimental evaluation of the IB-ME cryptosystem. To this end,
we implemented a proof of concept in Python 3.6.5 using Charm 0.50 [2], a
framework for prototyping pairing-based cryptosystems (among others). Since
our IB-ME is defined using symmetric pairings (also called Type-I pairings), we
instantiate it with a supersingular curve with a 512-bit base field (curve SS512

in Charm), which gives approximately 80 bits of security [39]. The execution en-
vironment is an Intel NUC7i7BNH with an Intel Core i7-7567U CPU @ 3.50GHz
and 16 GB of RAM, running Ubuntu 18.04 LTS.

Table 2. Performance of high- and low-level cryptographic operations of IB-ME

Operation Minimum (ms) Average (ms)

Setup 2.197 2.213
RKGen 2.200 2.225
SKGen 3.400 3.429

Encryption 6.942 7.012
Decryption 4.344 4.385

Table 2 shows the cost in milliseconds associated to the main high- and low-
level cryptographic operations of IB-ME. We executed these experiments in 50
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different runs of 10 times each and both the minimum and average timing was
taken for each operation; we use the Python module timeit for these measure-
ments. It can be seen that the average timings for the main high-level operations
of IB-ME, namely Encryption and Decryption, are 7.012 ms and 4.385 ms, re-
spectively. These results show that the scheme is highly practical.

It is worth mentioning that there is room for improvement in the implementa-
tion if we use optimizations such as pre-computation of some pairing operations
when one of the arguments is fixed (which occurs in the two pairings during
decryption since one argument is a decryption key) or is reused (the two pair-
ings in the encryption function have H(ρ) as an argument), which can lead to
speeds-up around 30%, as reported in [18]. Another potential optimization is the
use of multipairings in the decryption operation. A promising direction would
be to redefine the scheme in a Type-III pairing setting, which allows for more
performant curves [22].

Finally, Table 3 shows a summary of the space costs associated to different
elements of our IB-ME. We analyze both the theoretical cost and the actual
values with the parameters of the experiment. In addition to the use of Charm’s
curve SS512 (which implies that the size of |G| = 512 bits and |GT | = 1024), we
use for the size of identity bitstrings |G|, for the size of messages n = |GT |, and
for the padding output size ` = n+ λ+ 1 = 1105.

Table 3. Space costs of IB-ME elements.

Element Theoretical cost Size (in bits)

Encryption key |G| 512
Decryption key 3|G| 1536

Message n 1024
Ciphertext 2|G|+ ` 2129

Ciphertext expansion `
n

+ 2|G|
n

≈2

6.2 An Anonymous Bulletin Board

Here, we describe the implementation of a bulletin board hidden service that
is powered by our IB-ME scheme (cf. §5). In a nutshell, our application allows
senders to post encrypted messages to an anonymous bulletin board, hosted by a
Tor hidden service [45]. To this end, senders specify a target identity string that
acts as the receiver’s access policy, as well as the encryption key corresponding
to their own identity. Conversely, receivers can fetch encrypted messages from
the bulletin board, and try to decrypt them with their own decryption keys
(associated with their identity) and the expected identity of the sender. Only
those encrypted messages where there is a match between sender and receiver
can be decrypted correctly.

Our system protects every party’s privacy in several aspects. First of all,
thanks to the nature of Tor hidden services, the IP addresses of each party and

25



the connection between the client and the server remain hidden. Secondly, if
decryption fails nothing is revealed to the parties.

Next, we will give a brief overview of Tor Hidden Services.

Tor and Hidden Services Tor [43] is the most prominent P2P anonymous
system, totaling more than 2 million users and 6, 000 relays. It allows clients to
access the Internet anonymously by hiding the final destination of their connec-
tions. It achieves this by creating random circuits between the client and the
destination (e.g., web server), where every relay is aware only of its incoming
and outgoing links.

Various services can be set up so that they are accessible only within the Tor
network. These Tor Hidden Services [45], or HS, are run without revealing their
IP addresses and can be reached with no prior information. In order to deploy
an HS, the owner needs to initialize the service by choosing some relays that
will act as introduction points (IPs). The service will keep an open Tor circuit
to each IP that will be used as the entry points to access the HS. The IPs’
identities are communicated to Tor by creating a service descriptor entry. This
entry contains all the information needed to access the service (e.g., description
ID, list of IPs, etc.). Then, the entry is uploaded to the hidden service directory
(HSDir) which stores the description entries of all available HSs. A node that
wants to connect to an HS will (1) retrieve from HSDirs the correct description
entry, (2) establish a Tor circuit to a random relay known as the rendezvous
point, RP in short, and (3) reveal to one of the hidden service’s IP (contained in
the description entry) the address of the RP. The HS can now open a Tor circuit
to the RP, so that the node and the HS can communicate without revealing their
respective IP addresses.

Our Anonymous Bulletin Board Our application is composed of two parts:
a web server implemented as a Tor hidden service, and a command line client
that is used to upload and download data from the server.

A user that wants to post a message to the bulletin board can use the client to
encrypt it (using their IB-ME encryption key ekσ and an identity string policy rcv
for the intended receiver), and upload the ciphertext to the web server through
the Tor network. These ciphertexts are publicly available.

A receiver can now use the client to download all the ciphertexts and try to
decrypt each of them, using the receiver’s decryption key dkρ and the sender’s
identity policy snd (given as input to the client). The client will report to the
user the outcome of the decryption phase, showing all the successfully decrypted
messages. The role of the web server is to store encrypted messages and to offer
a simple REST API that allows clients to post and read these messages. In our
prototype, we do not include any additional security measure, but in a real-world
deployment, specific countermeasures should be taken in order to protect against
potential denial of service attacks from clients (e.g., by requiring a proof-of-work
along with the request) and/or include some authentication mechanisms. We
refer the reader to Fig. 3 for an overview of the system.
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C 1 C 2 C 3

RP 1 RP 2 RP 3

bjopwtc2f3umlark.onion

Tor Network

Client Level

Hidden Service

Fig. 3. Example of interaction between three clients C1, C2, C3 and the anonymous
bullentin board (http://bjopwtc2f3umlark.onion) using Tor. The relays RP1, RP2, and
RP3 are the rendezvous points shared between the service and the respective clients.
Each party communicates with the respective RP using a Tor circuit.

As in any identity-based cryptosystem, key management requires a key gen-
eration service that generates and distributes encryption and decryption keys.
This service could be implemented as another Tor hidden service, or even inte-
grated with an existing HSDir (already assumed to be trusted because down-
loaded from legitimate servers), that automatically converts email addresses or
phone numbers into keys. Another possibility is to assume the existence of an
off-line authority so that users of the application obtain their keys through an
out-of-band channel. In our prototype, we assume the latter option for simplicity.

Finally, note that the performance cost of our Tor application is dominated
by the network latency of the Tor relays. Since the main focus of the paper is
the new cryptographic primitive, we report only the performance evaluation of
our IB-ME scheme (cf. §6.1).

7 Conclusions

We have proposed a new form of encryption, dubbed matchmaking encryption
(ME), where both the sender and the receiver, described by their own attributes,
can specify fine-grained access policies to encrypted data. ME enables several
applications, e.g., communication between spies, social matchmaking, and more.

On the theoretical side, we put forward formal security definitions for ME
and established the feasibility of ME supporting arbitrary policies by leveraging
FE for randomized functionalities in conjunction with other more standard cryp-
tographic tools. On the practical side, we constructed and implemented practical
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ME for the identity-based setting, with provable security in the random oracle
model under the BDH assumption. We also showcased the utility of IB-ME to
realize an anonymous bulletin board using the Tor network.

Our work leaves open several important questions. First, it would be inter-
esting to construct ME from simpler assumptions. Second, it is conceivable that
our black-box construction could be instantiated based on better assumptions
since we only need secure rFE w.r.t. honest encryptors; unfortunately, the only
definition that is specifically tailored for this setting [3] has some circularity prob-
lems [26,1]. Third, a natural direction is to come up with efficient ME schemes
for the identity-based setting without relying on random oracles, or to extend
our scheme to the case of fuzzy matching [6]. Further extensions include the
setting of chosen-ciphertext security, ME with multiple authorities, mitigating
key escrow [17,23], and creating an efficient infrastructure for key management
and revocation.
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