
Watermarking PRFs from Lattices:
Stronger Security via Extractable PRFs∗

Sam Kim1 and David J. Wu2†

1 Stanford University, Stanford, CA
2 University of Virginia, Charlottesville, VA

Abstract. A software watermarking scheme enables one to embed a
“mark” (i.e., a message) within a program while preserving the program’s
functionality. Moreover, there is an extraction algorithm that recovers
an embedded message from a program. The main security goal is that
it should be difficult to remove the watermark without destroying the
functionality of the program. Existing constructions of watermarking
focus on watermarking cryptographic functions like pseudorandom func-
tions (PRFs); even in this setting, realizing watermarking from standard
assumptions remains difficult. The first lattice-based construction of
secret-key watermarking due to Kim and Wu (CRYPTO 2017) only
ensures mark-unremovability against an adversary who does not have
access to the mark-extraction oracle. The construction of Quach et al.
(TCC 2018) achieves the stronger notion of mark-unremovability even if
the adversary can make extraction queries, but has the drawback that
the watermarking authority (who holds the watermarking secret key)
can break pseudorandomness of all PRF keys in the family (including
unmarked keys).

In this work, we construct new lattice-based secret-key watermarking
schemes for PRFs that both provide unremovability against adversaries
that have access to the mark-extraction oracle and offer a strong and
meaningful notion of pseudorandomness even against the watermarking
authority (i.e., the outputs of unmarked keys are pseudorandom almost
everywhere). Moreover, security of several of our schemes can be based
on the hardness of computing nearly polynomial approximations to worst-
case lattice problems. This is a qualitatively weaker assumption than
that needed for existing lattice-based constructions of watermarking
(that support message-embedding), all of which require quasi-polynomial
approximation factors. Our constructions rely on a new cryptographic
primitive called an extractable PRF, which may be of independent interest.

1 Introduction

A software watermarking scheme enables a user or an authority to embed a “mark”
within a program in a way that the marked program behaves almost identically

∗The full version of this paper is available at https://eprint.iacr.org/2018/986.pdf.
†Part of this work was done while a student at Stanford University.

https://eprint.iacr.org/2018/986.pdf

to the original program. It should be difficult to remove the watermark from
a marked program without significantly altering the program’s behavior, and
moreover, it should be difficult to create new (or malformed) programs that are
considered to be watermarked. The first property of unremovability is useful for
proving ownership of software (e.g., in applications to digital rights management)
while the second property of unforgeability is useful for authenticating software
(e.g., for proving that the software comes from a trusted distributor).

1.1 Background and Motivation

Barak et al. [9, 10] and Hopper et al. [35] introduced the first rigorous math-
ematical framework for software watermarking. Realizing the strong security
requirements put forth in these works has been difficult. Early works [42, 51, 43]
made partial progress by considering weaker security models and imposing
restrictions on the adversary’s capabilities. This changed with the work of Co-
hen et al. [27], who gave the first positive construction of software watermarking
(for classes of cryptographic functionalities) that achieved unremovability against
arbitrary adversarial strategies from indistinguishability obfuscation.

More formally, a software watermarking scheme consists of two main algo-
rithms. First, the marking algorithm takes a circuit C and outputs a “marked”
circuit C ′ with the property that C ′ and C agree almost everywhere. Second, a
verification algorithm takes a circuit C and outputs marked or unmarked. In
the message-embedding setting, the marking algorithm also takes a message m in
addition to the circuit and embeds the message m within the circuit as the water-
mark. In this case, we replace the verification algorithm with a mark-extraction
algorithm that takes a circuit as input and which outputs either the embedded
message or unmarked. A watermarking scheme is robust against arbitrary re-
moval strategies if the adversary is given complete flexibility in crafting a circuit
C̃ ′ that mimics the behavior of a marked circuit C ′, but does not contain the
watermark. This most directly captures our intuitive notions of unremovability
and is the setting that we focus on in this work.

Since the work of Cohen et al., there has been many works on building stronger
variants of software watermarking [49, 50] and constructing watermarking (and
variants) from simpler assumptions [16, 38, 5, 45]. While this latter line of work
has made tremendous progress and has yielded constructions of watermarking
from standard lattice assumptions [38], CCA-secure encryption [45], and even
public-key encryption (in the stateful setting) [5], these gains have come at
the price of relaxing the watermarking security requirements. As such, there is
still a significant gap between the security and capabilities of the Cohen et al.
construction [27] from indistinguishability obfuscation and the best schemes we
have from standard assumptions. In this work, we narrow this gap and introduce
a new lattice-based software watermarking scheme for pseudorandom functions
(PRFs) that satisfies stronger security and provides more functionality than the
previous constructions from standard assumptions.

Watermarking PRFs. While the notion of software watermarking is well-
defined for general functionalities, Cohen et al. [27] showed that watermarking

2

is impossible for any class of learnable functions. Consequently, research on
watermarking has focused on cryptographic functions like PRFs. In their work,
Cohen et al. gave the first constructions of watermarking for PRFs (as well as sev-
eral public-key primitives) from indistinguishability obfuscation. The Cohen et al.
watermarking construction has the appealing property in that the scheme sup-
ports public mark-extraction (i.e., anyone is able to extract the embedded message
from a watermarked program). The main drawback though is their reliance on
strong (and non-standard) assumptions. Subsequently, Boneh et al. [16] intro-
duced the concept of a private puncturable PRF and showed how to construct
secretly-extractable watermarking schemes from a variant of private puncturable
PRFs (called private programmable PRFs). Building on the Boneh et al. frame-
work, Kim and Wu [38] showed that a relaxation of private programmable PRFs
also sufficed for watermarking, and they gave the first construction of watermark-
ing from standard lattice assumptions. Neither of these constructions support
public extraction, and constructing watermarking schemes that support public
extraction from standard assumptions remains a major open problem.

Towards publicly-extractable watermarking. Not only did the schemes
in [16, 38] not support public extraction, they had the additional drawback that
an adversary who only has access to the extraction oracle for the watermarking
scheme can easily remove the watermark from a marked program (using the
algorithm from [27, §2.4]). Thus, it is unclear whether these schemes bring
us any closer to a watermarking scheme with public extraction. A stepping
stone towards a publicly-extractable watermarking scheme is to construct a
secretly-extractable watermarking scheme, except we give the adversary access
to the extraction oracle. The difficulty in handling extraction queries is due
to the “verifier rejection” problem that also arises in similar settings such as
constructing designated-verifier proof systems or CCA-secure encryption. Namely,
the adversary can submit carefully-crafted circuits to the extraction oracle and
based on the oracle’s responses, learn information about the secret watermarking
key.

Recently, Quach et al. [45] gave an elegant and conceptually-simple construc-
tion of secretly-extractable watermarking that provided unremovability in this
stronger model where the adversary has access to the extraction oracle. Moreover,
their scheme also supports public marking: namely, anyone is able to take a
PRF and embed a watermark within it. The basic version of their scheme is
mark-embedding (i.e., programs are either marked or unmarked) and can be
instantiated from any CCA-secure public-key encryption scheme. To support full
message-embedding, their construction additionally requires private puncturable
PRFs (and thus, the only standard-model instantiation today relies on lattices).
In both cases, however, their scheme has the drawback in that the holder of
the watermarking secret key completely compromises pseudorandomness of all
PRF keys in the family (including unmarked keys). In particular, given even
two evaluations of a PRF (on distinct points), the watermarking authority in
the scheme of [45] can already distinguish the evaluations from random. While
it might be reasonable to trust the watermarking authority, we note here that

3

users must fully trust the authority (even if they generate a PRF key only for
themselves and never interact with the watermarking authority). Even if the
authority passively observes PRF evaluations (generated by honest users), it is
able to tell those evaluations apart from truly random values. As we discuss below,
this is a significant drawback of their construction and limits its applicability.
Previous constructions [27, 16, 38] did not have this drawback.

Security against the watermarking authority. Intuitively, it might seem
like in any secret-key watermarking scheme, users implicitly have to trust the
watermarking authority (either to mark their keys, or to verify their keys, or
both), and so, there is no reason to require security against the watermarking
authority. However, we note that this is not the case. For example, the marking
and extraction algorithms can always be implemented by a two-party computation
between the watermarking authority and the user, in which case the watermarking
authority never sees any of the users’ keys in the clear, and yet, the users still
enjoy all of the protections of a watermarking scheme. In existing schemes that do
not provide security against the watermarking authority [45], the PRF essentially
has a “backdoor” and the watermarking authority is able to distinguish every
evaluation or every PRF in the family from random. This is a significant increase
in the amount of trust the user now has to place in the watermarking authority.
The constructions we provide in this work provide a meaningful notion of security
even against the watermarking authority. Namely, as long as the users never
evaluate the PRF on a restricted set of points (which is a sparse subset of the
domain and statistically hidden from the users), then the input/output behavior
of both unmarked and marked keys remain pseudorandom even against the
watermarking authority.

More generally, as noted above, a watermarking scheme that supports ex-
traction queries is an intermediate primitive between secretly-extractable water-
marking and publicly-extractable watermarking. If the intermediate scheme is
insecure in the presence of a party who can extract, then the techniques used
in that scheme are unlikely to extend to the public-key setting (where everyone
can extract). Handling extraction queries (with security against the authority)
is closer to publicly-extractable watermarking compared to notions from past
works. We believe our techniques bring us closer towards publicly-extractable
watermarking from standard assumptions.

1.2 Our Contributions

In this work and similar to [45], we study secretly-verifiable watermarking schemes
for PRFs that provide unremovability (and unforgeability) against adversaries
that have access to both the marking and the extraction oracles. Our goal is
to achieve these security requirements while maintaining security even against
the watermarking authority. We provide several new constructions of secretly-
verifiable watermarking schemes for PRFs from standard lattice assumptions
where the adversary has access to the extraction oracle. Moreover, we show
that all of our constructions achieve a relaxed (but still meaningful) notion of

4

Scheme
Public Public Extraction PRF Security Hardness

Marking Extraction Oracle (Authority) Assumption

Cohen et al. [27] 7 3 3 3 iO
Boneh et al. [16] 7 7 7 3 iO
Kim-Wu [38] 7 7 7 3 LWE∗

Quach et al. [45] 3 7 3 7 LWE∗

Yang et al. [50] 7 3 3 3 iO

This Work
7 7 3 3† LWE‡

3 7 3 3† LWE‡ + RO

∗LWE with a quasi-polynomial modulus-to-noise ratio (i.e., 2logc n for constant c > 1).
†Our construction provides a weaker notion of restricted pseudorandomness against the
watermarking authority.
‡LWE with a nearly polynomial modulus-to-noise ratio (i.e., nω(1)).

Table 1: Comparison of our watermarkable family of PRFs to previ-
ous constructions. We focus exclusively on message-embedding con-
structions. For each scheme, we indicate whether it supports public
marking and public extraction, whether mark-unremovability holds in
the presence of an extraction oracle, whether unmarked keys remain
pseudorandom against the watermarking authority, and the hardness
assumption each scheme is based on. In the above, “iO” denotes
indistinguishability obfuscation and “RO” denotes a random oracle.

pseudorandomness for unmarked keys even in the presence of the watermarking
authority. Our constructions also simultaneously achieve unremovability and
unforgeability (with parameters that match the lower bounds in Cohen et al. [27]).
In fact, we show that meaningful notions of unforgeability (that capture the spirit
of unforgeability and software authentication as discussed in [35, 27, 50]) are even
possible for schemes that support public marking. Our constructions are the first
to provide all of these features. Moreover, we are able to realize these new features
while relying on qualitatively weaker lattice-based assumptions compared to all
previous watermarking constructions from standard assumptions (specifically,
on the hardness of computing nearly polynomial (i.e., nω(1)) approximations
to worst-case lattice problems as opposed to computing quasi-polynomial (i.e.,
2logc(n) for constant c > 1) approximations; see Remark 4.13). We provide a
comparison of our new watermarking construction to previous schemes in Table 1,
and also summarize these results below.

Extractable PRFs. The key cryptographic building block we introduce in this
work is the notion of an extractable PRF. An extractable PRF is a standard PRF
family F : K×X → Y outfitted with an extraction trapdoor td. The extractability
property says that given any circuit that computes F(k, ·), the holder of the
trapdoor td can recover the PRF key k (with overwhelming probability). In
fact, the extraction process is robust in the following sense: given any circuit

5

C : X → Y whose behavior is “close” to F(k, ·), the extraction algorithm still
extracts the PRF key k. The notion of closeness that we use is ε-closeness: we say
that two circuits C0 and C1 are ε-close if C0 and C1 only differ on at most an
ε-fraction of the domain. Of course, for extraction to be well-defined, it must be
the case that for any pair of distinct keys k1, k2, the functions F(k1, ·) and F(k2, ·)
are far apart. We capture this by imposing a statistical requirement on the PRF
family called key-injectivity,3 which requires that F(k1, ·) and F(k2, ·) differ on
at least an ε′-fraction of points where ε′ � ε. This ensures that if C is ε-close
to some PRF F(k, ·), then k is unique (and extraction recovers k). In Section 2,
we provide a detailed technical overview on how to construct extractable PRFs
from standard lattice assumptions. We give the formal definition, construction,
and security analysis in Section 4.

From extractable PRFs to watermarking. The combination of extractability
and key-injectivity gives a natural path for constructing a secret-key watermarking
scheme for PRFs. We begin with a high-level description of our basic mark-
embedding construction which illustrates the main principles. First, we will need
to extend our extractable PRF family to additionally support puncturing. In a
puncturable PRF [18, 37, 19], the holder of a PRF key k can puncture k at a
point x∗ to derive a “punctured key” kx∗ with the property that kx∗ can be used
to evaluate the PRF on all points x 6= x∗. Moreover, given the punctured key kx∗ ,
the value of the PRF F(k, x∗) at x∗ is still indistinguishable from a uniformly
random value.

Suppose now that we have an extractable PRF where the PRF keys can
be punctured. To construct a mark-embedding watermarkable family of PRFs
F : K ×X → Y, we take the watermarking secret key to be the trapdoor for the
extractable PRF family. To mark a PRF key k ∈ K, the watermarking authority
derives a special point x(k) ∈ X from k (using a PRF key that is also part of
the watermarking secret key), and punctures k at x(k) to obtain the punctured
key kx(k) . The watermarked program just implements PRF evaluation using
the punctured key kx(k) . To check whether a circuit C : X → Y is marked, the
watermarking authority applies the extraction algorithm to C to obtain a key
k ∈ K (or ⊥ if extraction does not output a key). If the extraction algorithm
outputs a key k ∈ K, the verification algorithm computes the special point x(k)

from k and outputs marked if C(x(k)) 6= F(k, x(k)) and unmarked otherwise.
If the extraction algorithm outputs ⊥, the algorithm outputs unmarked.

Unremovability of this construction essentially reduces to puncturing security.
By robust extractability (and key-injectivity), if the adversary only corrupts a
small number of points in a marked key (within the unremovability threshold),
then the extraction algorithm successfully recovers k (with overwhelming prob-
ability). To remove the watermark, the adversary’s task is to “fix” the value
of the PRF at the punctured point x(k). Any adversary that succeeds to do so
breaks puncturing security (in particular, the adversary must be able to recover
the real value of the PRF at the punctured point given only the punctured key).

3Key-injectivity also played a role in previous watermarking constructions, though in a
different context [27, 38].

6

Note that here, we do require that the range Y of the PRF be super-polynomial
(if the range was polynomial, then the adversary can guess the correct value of
the PRF at x(k) with noticeable probability and remove the watermark). Note
that this basic scheme neither provides unforgeability (i.e., it is easy to construct
circuits that are considered marked even without the watermarking key) nor
supports message-embedding. As we discuss in greater detail below, both of these
properties can be achieved with additional work.

Handling extraction queries. A primary objective of this work is to construct
a watermarking scheme for PRFs where unremovability holds even against an
adversary that has access to the extraction oracle. At first glance, our marking
algorithm may appear very similar to that in [16, 38], since all of these construc-
tions rely on some form of puncturable PRFs. These previous constructions do
not satisfy unremovability in the presence of an extraction oracle because they
critically rely on the adversary not being able to identify the special point x(k).
Namely, in these constructions, to check whether a circuit C is marked or not,
the authority derives the special point x(k) from the input/output behavior of
C and then checks whether C(x(k)) has a specific structure. If the adversary is
able to learn the point x(k), then it can tweak the value of the marked circuit at
x(k) and remove the watermark. In fact, even if the puncturable PRF completely
hides the special point x(k), the binary search attack from Cohen et al. [27] allows
the adversary to use the extraction oracle to recover x(k), and thus, defeat the
watermarking scheme.

In our construction, to decide whether a circuit C is marked or not, the
authority first extracts a key k and checks whether C(x(k)) = F(k, x(k)). Therefore,
in order to remove the watermark, it is not enough for the adversary to just recover
the special point x(k) via the extraction oracle (in fact, the special point x(k) is
public). To succeed, the adversary has to recover the original value of the PRF
at x(k), which is hard when the PRF has a super-polynomial range and the PRF
satisfies puncturing security. The fact that we do not rely on the unpredictability
of the special point for security is a subtle but important distinction in our
construction. In Section 5, we show that assuming the underlying PRF provides
robust extractability (and key-injectivity), the adversary can simulate for itself
the behavior of the extraction oracle. Thus, the presence of the extraction oracle
cannot help the adversary break unremovability.

Unforgeability and message-embedding via multi-puncturing. While the
basic construction above provides unremovability, it is easy to forge watermarked
programs. Namely, an adversary can simply take a circuit that implements a
PRF F(k, ·) and randomly corrupt a (1/poly(λ))-fraction of the output (where λ
is a security parameter). Then, with noticeable probability, the adversary will
corrupt the PRF at the special point x(k) associated with k, thereby causing
the verification algorithm to conclude that the circuit is marked. This is easily

prevented by puncturing k at λ points x
(k)
1 , . . . , x

(k)
λ . We now say that a circuit C

is marked only if C(x
(k)
i) 6= F(k, x

(k)
i) for all i ∈ [λ]. Of course, this modification

does not affect unremovability. Now, to forge a watermarked program, the

7

adversary has to construct a circuit C whose behavior closely resembles F(k, ·),
and yet, C and F(k, ·) disagree on all of the special points x

(k)
1 , . . . , x

(k)
λ , which are

derived pseudorandomly from the key k. This means that unless the adversary
previously made a request to mark k (in which case its circuit C would no

longer be considered a forgery), the points x
(k)
1 , . . . , x

(k)
λ associated with k look

uniformly random to A. But now, if C and F(k, ·) are close, they will not differ on
λ random points, except with negligible probability. We formalize this argument
in Section 5.2.

The same technique of puncturing at multiple points also enables us to extend
our basic mark-embedding watermarking scheme into a scheme that supports
message-embedding. We take a basic bit-by-bit approach similar in spirit to
the ideas taken in [43, 38, 45]. Specifically, to support embedding messages of
length t in a PRF key k, we first derive from k a collection of λ pseudorandom

points for each index and each possible bit: S
(k)
i,b = {x(k)i,b,1, . . . , x

(k)
i,b,λ} for all

i ∈ [t] and b ∈ {0, 1}. To embed a message m ∈ {0, 1}t in the key k, the

marking algorithm punctures k at all of the points in the sets S
(t)
i,mi

for i ∈ [t]. To
recover the watermark, the extraction algorithm proceeds very similarly as before.
Specifically, on input a circuit C, the extraction algorithm uses the trapdoor
for the underlying extractable PRF to obtain a candidate key k (or outputs
unmarked if no key is extracted). Given a candidate key k, the extraction

algorithm derives the sets S
(k)
i,b for each index i ∈ [t] and bit b ∈ {0, 1}. For each

index, the algorithm counts the number of points in S
(k)
i,0 and S

(k)
i,1 on which C

and F(k, ·) disagree. For correctly-watermarked keys, C and F(k, ·) will disagree
on all of the points in one of the sets and none of the points in the other set.
This difference in behavior allows the extraction algorithm to recover the bit at
index i. We provide the full description and analysis in the full version of this
paper [39].

Public marking in the random oracle model. In the mark-embedding and
message-embedding watermarking constructions we have described so far, both
marking and extraction require knowledge of the watermarking secret key. If
we look more closely at the marking algorithm, however, we see that the only
time the watermarking key is used during marking is to derive the set of points
to be punctured (specifically, the set of points to be punctured is derived by
evaluating a PRF on the key k). Critically, we do not require that the set of
punctured points be hidden from the adversary (and indeed, the watermarked
key completely reveals the set of punctured points), but only that they are
unpredictable (without knowledge of k). Thus, instead of using a PRF to derive
the points to be punctured, we can use a random oracle. This gives a construction
of a message-embedding watermarking scheme that supports public marking.
We provide the full description and analysis of this scheme in the full version
of this paper [39]. We note that Quach et al. [45] were the first to give a
watermarking scheme that supported public marking without random oracles (for
mark-embedding, they only needed CCA-secure public-key encryption while for
full message-embedding, they relied on lattices). However, as noted before, their

8

scheme does not provide any security against a malicious watermarking authority
(or provide unforgeability, which we discuss below).

Unforgeability and public marking. Recall that unforgeability for a water-
marking scheme says that no efficient adversary should be able to construct a
marked circuit that is significantly different from marked circuits it already re-
ceived. This property seems at odds with the semantics of a watermarking scheme
that supports public marking, since in the latter, anyone can mark programs of
their choosing. However, we can still capture the following spirit of unforgeability
by requiring that the only marked circuits that an adversary can construct are
those that are close to circuits that are contained in the function class. In the
case of watermarking PRFs, this means that the only circuits that would be
considered to be watermarked are those that are functionally close to a legitimate
PRF. This property is useful in scenarios where the presence of a watermark is
used to argue authenticity of software (e.g., to prove to someone that the software
implements a specific type of computation). In this work, we introduce a weaker
notion of unforgeability that precisely captures this authenticity property. We
then show that our watermarking construction supports public-marking while
still achieving this form of weak unforgeability. The only previous candidate of
software watermarking that supports public marking [45] does not satisfy this
property, and indeed, in their scheme, it is easy to construct functions that are
constant everywhere (which are decidedly not pseudorandom), but nonetheless
would be considered to be marked.

Optimal bounds for unremovability and unforgeability. We say that a
watermarking scheme is ε-unremovable if an adversary who only changes an
ε-fraction of the values of a marked circuit cannot remove the watermark,4 and
that it is δ-unforgeable if an adversary cannot create a new marked program that
differs on at least a δ-fraction of points from any marked circuits it was given.
Conceptually, larger values of ε means that the watermark remains intact even if
the adversary can corrupt the behavior of the marked program on a larger fraction
of inputs, while smaller values of δ means that the adversary’s forgery is allowed
to agree on a larger fraction of the inputs of a marked program. Previously,
Cohen et al. [27] showed that any message-embedding watermarking scheme can
at best achieve ε = 1/2 − 1/poly(λ) and δ = ε + 1/poly(λ). Our constructions
in this work achieve both of these bounds (for any choice of poly(λ) factors).
Previous constructions like [27, 45] did not provide unforgeability while [16, 38]
could only tolerate ε = negl(λ) (and any δ = 1/poly(λ)).

Security against the watermarking authority. The key property of ex-
tractable PRFs that underlies our watermarking constructions is that there is
an extraction trapdoor td that can be used to extract the original PRF key k
from any circuit whose behavior is sufficiently similar to that of F(k, ·). In the
case of watermarking, the watermarking authority must hold the trapdoor to

4This definition is the complement of the definition from previous works on water-
marking [27, 16, 38, 49, 45, 50], but we adopt this to maintain consistency with our
definition for robust extractability.

9

use it to extract watermarks from marked programs. This raises a new security
concern as the watermarking authority can now break security of all PRFs in
the family, including unmarked ones. As discussed in Section 1.1, this was the
main drawback of the Quach et al. [45] watermarking construction.

Due to our reliance on extractable PRFs, our watermarkable family of PRFs
also cannot satisfy full pseudorandomness against the watermarking authority.
However, we can show a weaker property against the watermarking authority we
call T -restricted pseudorandomness. Namely, we can associate a set S ⊆ X of
size at most T with our watermarkable family of PRFs such that any adversary
(even if they have the extraction trapdoor) is unable to break pseudorandomness
of any (unmarked) PRF, provided that they do not query the function on
points in S. The distinguisher is also provided the set S. In other words, our
family of PRFs still provides pseudorandomness everywhere except S. In our
concrete constructions (Construction 4.5), the restricted set S consists of λ
randomly-chosen points in X . This means that if the domain of the PRF is super-
polynomial, our notion of T -restricted pseudorandomness strictly interpolates
between weak pseudorandomness (or even non-adaptive pseudorandomness)5

and strong pseudorandomness. It is also worth noting that from the perspective
of a user who does not hold the watermarking secret key, the points in S
are statistically hidden. This means that in any standard usage of the PRF
between honest users, with overwhelming probability, the PRF would never
be evaluated on one of the restricted points. Equivalently, if the watermarking
authority only sees passive evaluations of the PRF, then it will not be able
to break pseudorandomness of the underlying PRF. This notion of “passive”
security against the watermarking authority strictly improves upon the lattice-
based message-embedding watermarking construction in [45]. In their setting,
the watermarking authority is able to break pseudorandomness given any two
(distinct) evaluations of the PRF; that is, their scheme does not even satisfy
weak pseudorandomness against the watermarking authority. It is an interesting
and important question to obtain watermarking with security in the presence of
an extraction oracle and which retrains full pseudorandomness even against the
watermarking authority. The only constructions that satisfy this notion rely on
obfuscation.

Watermarking without private puncturing. All existing constructions of
message-embedding watermarking from standard assumptions have relied on
private puncturable PRFs6 in some form [38, 45]. Our message-embedding wa-
termarking construction is the first that does not rely on private puncturing;
standard puncturing in conjunction with key-extractability suffices. While this

5In the weak pseudorandomness game, the adversary is given outputs of the PRF on
random inputs, while in the non-adaptive pseudorandomness game, the adversary must
declare all of its evaluation queries before seeing any evaluations of the PRF or the
public parameters.

6A private puncturable PRF [16] is a puncturable PRF where the punctured key also
hides the punctured point. There are several lattice-based constructions of private
puncturable PRFs (and more generally, private constrained PRFs) [25, 14, 21, 44, 26].

10

might seem like a minor distinction, we note that constrained PRFs can be
constructed from weaker assumptions. For instance, puncturable PRFs can be
built from one-way functions [30, 18, 37, 19] while the simplest constructions of
private puncturable PRFs rely on lattice-based assumptions [14, 25, 21, 44, 26]. If
we just consider lattice-based constrained PRFs, the Brakerski-Vaikuntanathan
puncturable PRF [23] can be based on the (polynomial) hardness of solving worst-
case lattice problems with a nearly polynomial approximation factor (i.e., nω(1)),7

while constructions of private puncturable PRFs from lattices [14, 25, 21, 44, 26]
can only be based on the hardness of solving worst-case lattice problems with
a quasi-polynomial approximation factor (i.e., 2logc n for some constant c > 1).
Since all of the existing constructions of message-embedding watermarking from
standard assumptions rely on private puncturing in some form, they can only
be reduced to worst-case lattice problems with quasi-polynomial approximation
factors at best. In this work, we show that a variant of our construction (satisfying
a relaxed notion of unforgeability as in [38]) can be based solely on worst-case
lattice problems with a nearly polynomial approximation factor (Remark 4.13).
Concretely, we give the first (message-embedding) watermarking scheme whose se-
curity can be based on computing nearly polynomial approximations to worst-case
lattice problems (Corollary 5.4).

1.3 Additional Related Work

We now survey some additional works that use similar techniques as those in our
construction.

Lattice-based PRFs. The study of lattice-based PRFs started with the seminal
work of Banerjee et al. [8]. Subsequently, [15, 7] constructed the first lattice-based
key-homomorphic PRFs. The first circuit-constrained PRFs were constructed
in [23, 6] and were later extended to private constrained PRFs in [14, 25, 21, 44,
26].

Matrix embeddings. The matrix embedding techniques used in this work build
on a series of works in the areas of attribute-based encryption [47] and predicate
encryption [17, 36] from LWE. These include the attributed-based encryption
constructions of [1, 31, 12, 33, 24, 20] and the (one-sided) predicate encryption
constructions of [2, 28, 32, 21, 34, 48].

2 Technical Overview

In this section, we provide a technical overview of our construction of extractable
PRFs from standard lattice assumptions. As described in Section 1.2, this is

7While the general construction described in [23] relies on worst-case lattice problems
with sub-exponential approximation factors, when restricted to just puncturing con-
straints (which can be computable by log-depth circuits), it can be based on worst-case
lattice problems with a nearly polynomial approximation factor by leveraging the
techniques for branching program evaluation [22].

11

the key cryptographic primitive we rely on in our watermarking constructions
(described formally in Section 5). We believe that the algebraic techniques we
develop for constructing our extractable PRF are general and will find applications
beyond the study of PRFs and watermarking. We highlight the core principles
and techniques here, but defer the formal definitions, constructions, and analysis
to Section 4.

The LWE assumption. The learning with errors (LWE) assumption [46],
parameterized by n, m, q, χ, states that for a uniformly random vector s ∈ Znq ,
a uniformly random matrix A ∈ Zn×mq , and a noise vector e sampled from a
(low-norm) error distribution χ, the distribution (A, s ·A+e)8 is computationally
indistinguishable from the uniform distribution over Zn×mq × Zmq . Equivalently,
rather than explicitly adding noise, the LWE assumption can instead be defined
with respect to a rounding modulus p < q and the component-wise rounding
operation b·ep : Zq → Zp [8]. This variant of the LWE assumption states that the
distribution (A, bs ·Aep) is computationally indistinguishable from the uniform

distribution over Zn×mq × Zmp ; this is also known as the learning with rounding
(LWR) assumption [8]. For the parameter setting we consider in this work,
hardness of LWE implies hardness of LWR [8].

Lattice-based PRFs. A natural way to construct a pseudorandom function
F : K × X → Y from the LWE assumption is to take the PRF key k ∈ K to be
the LWE secret s ∈ Znq and define F(s, x) to output an LWE sample bs ·Axep
for a matrix Ax that is uniquely determined by the input x ∈ X . Note that
when the domain X is super-polynomial, the matrix Ax cannot be a uniformly
random matrix as required by the LWE assumption since F(s, ·) must be an
(efficiently-computable) deterministic function. Constructing a PRF from LWE
thus amounts to designing a suitable mapping x 7→ Ax such that the vector
bs ·Axep is still pseudorandom under LWE.

Nearly all existing LWE-based PRF constructions follow this general blueprint;
we refer to Section 1.3 for a more comprehensive discussion of related work.
Specifically, these PRF families are defined with respect to a set of public
matrices pp = (A1, . . . ,Aρ) and an input-to-matrix mapping Evalpp : X → Zn×mq

(that implements the mapping x 7→ Ax) such that the outputs of

F(s, x) := bs ·Axep where Ax ← Evalpp(x) (2.1)

are computationally indistinguishable from uniform vectors over Znp under the
LWE assumption. In this overview, rather than focusing on a particular PRF
construction, we show how to obtain an extractable PRF from any lattice-based
PRF family that follows this blueprint.

Key extraction via lattice trapdoors. Recall from Section 1 that in an
extractable PRF family, the holder of a trapdoor td (for the PRF family) can
recover the PRF key k ∈ K given only oracle access to the PRF F(k, ·). Using the
basic structure of lattice-based PRF candidates from Eq. (2.1), a natural starting

8For notational simplicity, we drop the transpose notation when it is clear from context.

12

point is to design the mapping Evalpp : X → Zn×mq such that for a special input
x∗ ∈ X , the matrix D← Evalpp(x

∗) has a known (lattice) trapdoor tdD, which
can be included as part of the trapdoor for the extractable PRF family (together
with the special input x∗).

A lattice trapdoor tdD for a matrix D ∈ Zn×mq enables sampling short
preimages under the matrix D [3, 29, 4, 41, 40]. Specifically, given an arbitrary
target matrix T ∈ Zn×mq , the trapdoor tdD enables sampling a short matrix
RT ∈ Zm×mq such that D ·RT = T. Additionally, the trapdoor for D can be
used to solve the search version of the LWE problem: given an LWE instance
(D, bs ·Dep), one first computes a short matrix RG using the trapdoor D and
then derive the vector

bs ·Dep ·RG = bs ·D ·RGep + noise = bs ·Gep + noise ∈ Zmp ,

where noise is a small error vector that occurs from the modular rounding
and G ∈ Zn×mq is the standard powers-of-two gadget matrix [41]. Since GT

is the generator matrix for a linear error-correcting code, recovering s form
bs ·Gep + noise is straightforward (c.f., [41]).

Given the trapdoor tdD, it is straightforward to implement the Extract algo-
rithm. Namely, Extract first queries F(s, ·) on the special point x∗ ∈ X to obtain
the output bs ·Dep. It then uses the trapdoor information tdD to recover the
secret key s.

Programming the trapdoor. The problem of constructing an extractable
PRF family now boils down to generating a set of public parameters pp and a
suitable mapping Evalpp : X → Zn×mq such that the matrix Ax∗ ← Evalpp(x∗) can
be programmed to be a trapdoor matrix D. At the same time, Evalpp must be
designed so that the basic blueprint from Eq. (2.1) still satisfies pseudorandomness.
The concept of programming the output of a PRF was previously explored in
the context of constrained PRFs [16, 38, 25, 44]. These works study the notion
of a private programmable PRF where constrained keys can be programmed to a
specific value at a particular point (or set of points). However, the techniques used
in these works do not directly apply to our setting as our goal is fundamentally
different. To construct an extractable PRF, we need a PRF family such that
the evaluation of every PRF key from the family is programmed to a trapdoor
matrix. In fact, our notion is completely independent of constraining, and an
extractable PRF family need not even support constraining. In other words, we
want programmability with respect to the public parameters of the PRF family
rather than just an individual PRF key.

The way we construct the function Evalpp is quite simple and general. We
take any existing PRF construction F′ : Zmq × X → Zmp following the blueprint
from Eq. (2.1) that is defined respect to a set of matrices pp′ = (A1, . . . ,Aρ)
and mapping Eval′pp′ : X → Zn×mq , and define a new shifted mapping

Evalpp(x) := Eval′pp′(x) + W = Ax + W,

13

for some shift matrix W ∈ Zn×mq and a new set of public matrices pp =
(A1, . . . ,Aρ,W). First, observe that given a point x∗ ∈ X and a trapdoor matrix
D, it is easy to generate a programmed set of public parameters:

1. Generate the matrices A1, . . . ,Aρ ∈ Zn×mq as in the original PRF family.

2. Set W = D−Ax∗ where Ax∗ ← Eval′pp′(x
∗).

It is easy to see that security of the original PRF family is preserved. Specifically,
we now have

F(s, x) = bs · (Ax + W)ep ≈ bs ·Axep + bs ·Wep = F′(s, x) + bs ·Wep , (2.2)

Since a randomly sampled trapdoor matrix D is statistically close to uniform, the
matrix W is also statistically close to uniform. This means that the additional
vector offset w = bs ·Wep introduced by W looks indistinguishable from a
uniformly random vector under LWE. Moreover,

F(s, x∗) = bs · (Ax∗ + W)ep = bs ·Dep ,

so given the trapdoor tdD, it is easy to recover the key s.

2.1 Robust Extractability

The PRF family F : Znq × X → Znp defined in Eq. (2.2) already satisfies a basic
notion of key-extractability. Namely, any authority who holds the trapdoor
information (x∗, tdD) is able to extract the PRF key given just oracle access
to the function F(s, ·); moreover, F(s, ·) remains pseudorandom to anyone who
does not possess the trapdoor. To support watermarking, however, we require a
stronger security property called robust extractability (Definition 4.3).

Robustness and key-injectivity. At a high level, robust extractability says
that the Extract algorithm should successfully recover the PRF key even if it is
just given access to a function (modeled as a circuit) whose behavior is “close”
to F(s, ·). In fact, even if the adversary has oracle access to Extract, it should not
be able to produce a circuit C whose behavior is sufficiently “close” to F(s, ·)
for some key s ∈ Znq , and for which, the extraction algorithm fails to extract s
from C. The closeness metric that we use in this work is ε-closeness; namely, we
say that two circuits C and C ′ are ε-close if they agree on all but an ε-fraction
of elements in the domain. In all of our constructions, ε = 1/poly(λ). Of course,
for the extractability property to be well-defined, it should be the case that for
distinct keys s1, s2 ∈ Znq , F(s1, ·) and F(s2, ·) should be “far” apart. As discussed
in Section 1.2, we capture this by defining a notion of key-injectivity similar in
flavor to previous definitions from [27, 38], and then show (Theorem 4.8) that over
the randomness used to sample the public parameters, the basic construction in
Eq. (2.2) satisfies our key-injectivity property. Thus, in the subsequent discussion,
we assume without loss of generality that if a circuit C is ε-close to F(s, ·) for
any ε = 1/poly(λ), then s is unique.

14

The basic PRF construction from Eq. (2.2) does not satisfy robust extractabil-
ity (for any closeness parameter ε = 1/poly(λ)). Specifically, the adversary can
recover the special point x∗ ∈ X using binary search. To mount the attack,
the adversary first chooses a key s ∈ Znq , and constructs the circuit F(s, ·). The
adversary then (arbitrarily) partitions the domain into two halves X1 and X2 and
queries the extraction oracle on a circuit C that agrees with F(s, ·) on X1 and
outputs ⊥ on X2. Depending on whether the extraction algorithm succeeds in
recovering s or not, the adversary learns which of X1 or X2 contains the special
point x∗. After a polynomial number of queries, the adversary learns x∗. Once
the adversary learns the special point x∗, it can always cause extraction to fail on
a circuit by simply having the circuit output ⊥ on x∗ (and F(s, x) on all x 6= x∗).
Moreover, this circuit agrees with F(s, ·) on all but a single point (i.e., they agree
on all but a negligible fraction of the domain when |X | is super-polynomial),
which breaks robust extractability.

Defending against binary search. Effectively, the binary search attack re-
lies on the fact that the adversary can easily construct circuits C such that
the behavior of Extract on C (specifically, whether Extract succeeds or not) is
correlated with the secret extraction trapdoor (specifically, the point x∗). To
defend against this, we develop a way to ensure that the behavior of Extract on a
circuit C depends only on properties of the circuit C (and not on the extraction
trapdoor). If this is the case, then the extraction oracle does not leak information
about the extraction trapdoor, and in turn, robust extractability holds. We note
that this type of approach is conceptually very similar to the notion of strong
soundness in the context of constructing multi-theorem argument systems in the
designated-verifier setting [11, 13].9 To achieve this, we proceed in two steps.
First, we modify the Extract algorithm to force the adversary to only submit
circuits that are very close to an actual PRF circuit F(s, ·). Then, we tweak the
construction to ensure that extraction queries on circuits C that are too close to
a real PRF circuit are not helpful to the adversary. We describe this below.

– Testing for closeness. After the Extract algorithm recovers a candidate key
s ∈ Znq from a circuit C, it additionally checks whether the behavior of the cir-
cuit C and F(s, ·) are “similar.” While computing the exact distance between
C and F(s, ·) cannot be done in polynomial time, it is straightforward to con-
struct a randomized algorithm that accepts (with overwhelming probability)

9In designated-verifier argument systems, an adversary who has oracle access to the
verifier can observe the verifier’s behavior on different statements and proof strings.
When the verifier’s responses are correlated with its secret verification state, the
prover can potentially leverage the leakage and compromise soundness. This is the
so-called “verifier rejection” problem. Strong soundness is a property that says that
the responses of the verifier depend only on the statement or proof string, and not
on the secret verification state (the analog in our setting is that the behavior of the
extraction oracle only depends on the input circuit and not the extraction trapdoor).
This property is very useful for arguing soundness in the presence of a verification
oracle for designated-verifier argument systems.

15

whenever C and F(s, ·) are ε1-close and rejects (with overwhelming probabil-
ity) whenever C and F(s, ·) are ε2-far, for any choice of ε2 > ε1 + 1/poly(λ).

This can be done by sampling random points x1, . . . , xξ
r← X and counting

the number of inputs where C(xi) = F(s, xi). If the number of points on
which the two circuits differ is greater than ξ · (ε1 + ε2)/2, then the Extract
algorithm outputs ⊥. By choosing ξ = poly(λ) accordingly, we can appeal
to standard concentration bounds and show that Extract will only output
a candidate key when C and F(s, ·) are at least ε2-close. When applied to
watermarking, the parameter ε1 corresponds to the unremovability threshold
while the parameter ε2 corresponds to the unforgeability threshold.

– Embedding multiple trapdoors. The closeness test prevents the adversary
from querying the extraction oracle on circuits that are more than ε2-far
from valid PRF circuits F(s, ·), since the output of Extract on these queries
is ⊥ with overwhelming probability. However, since ε2 = 1/poly(λ), the
adversary can still query the extraction oracle on circuits that are ε2-close to
the real PRF circuit F(s, ·). In this case, each query still (roughly) allows the
adversary to rule out at least an ε2-fraction of the domain, and so, in time
poly(1/ε2) = poly(λ), the adversary is again able to extract the special point
x∗ for the PRF family.

The second ingredient in our construction is to embed multiple trapdoors.
Specifically, instead of just embedding a single lattice trapdoor at x∗, we

instead embed λ distinct trapdoors at λ special points x∗1, . . . , x
∗
λ

r← X . Now,
on input a circuit C, the Extract algorithm evaluates C at each special point
x∗i , and use the lattice trapdoor inversion algorithm to obtain candidate
keys si. It performs the closeness test described above on each candidate
key si and outputs si if the closeness test succeeds, and ⊥ if none succeed.
By key-injectivity, there can only be one key s where F(s, ·) is ε2-close to
C whenever ε2 < 1/2. At a very high level, the benefit of having multiple
trapdoors is that the adversary has to corrupt the value at all of the trapdoors
in order to cause the output of the Extract algorithm to differ (in a manner
that is correlated with the secret extraction state). Since the special points
x∗1, . . . , x

∗
λ are independently and uniformly distributed, and the adversary

is effectively constrained to choosing circuits C which are ε2-close to some
F(s, ·), the probability that the adversary succeeds in constructing such a
circuit is ελ2 = negl(λ). We refer to Section 4.2 and Theorem 4.12 for the
formal analysis.

2.2 Puncturing and Pseudorandomness Given the Trapdoor

Recall from Section 1.2 that to obtain a watermarking scheme from an extractable
PRF, we additionally require that the extractable PRFs support puncturing
constraints. Since our techniques for building extractable PRFs are broadly
applicable to many lattice-based PRFs, we can take an existing candidate with the
structure from Eq. (2.1) and derive from it an extractable PRF. In particular, we
can apply our general construction to the Brakerski-Vaikuntanathan constrained

16

PRF [23], and obtain a puncturable extractable PRF. To achieve the stronger
security notion of (T -restricted) pseudorandomness against an authority that
holds the extraction trapdoor, we have to develop new techniques. We discuss
the challenges below.

Security against the authority. As discussed in Section 1.2, a key contribution
of our work is showing that the keys in our watermarkable PRF family still provide
a relaxed form of pseudorandomness even against the holder of the watermarking
secret key. This property amounts to showing that the underlying extractable
PRF satisfies T -restricted pseudorandomness against an adversary who is given
the extraction trapdoor. Specifically, we show that as long as the adversary
(who has the trapdoor) is not allowed to query the PRF on the special points
x∗1, . . . , x

∗
λ, then pseudorandomness holds. This set of special points constitute

the restricted set in the T -restricted pseudorandomness experiment. First, recall
from Eq. (2.2) that

F(s, x) = bs · (Ax + W)ep ≈ F′(s, x) + bs ·Wep ,

where F′(s, x) is the existing PRF (specifically, the Brakerski-Vaikuntanathan
PRF [23]). At first glance, one might be tempted to believe that T -restricted
pseudorandomness against the authority follows immediately from the security of
F′ since the value F(s, x) is just F′(s, x) shifted by bs ·Wep where W = D−Ax∗ .
Without the extraction trapdoor, D is statistically close to uniform, so we can
appeal to LWE to argue that the shift bs ·Wep is uniformly random (and looks
independent of F′(s, x)). But given the trapdoor matrix D, this is no longer the
case; the shift bs ·Wep is correlated with the PRF key s, and not easily simulated
without knowing s itself. Thus, it is unclear how to directly reduce security of F
to security of the underlying PRF F′.

Consider a potential reduction algorithm B that uses an adversary for F in
the T -restricted pseudorandomness security game to break the security of F′.
In this case, B is given the extraction trapdoor. If the reduction algorithm B
is able to correctly simulate the evaluation F(s, x) on all points x ∈ X , then
it can use its trapdoor information tdD to extract s and break security of F′

itself. Thus, for the proof to go through, we minimally need to rely on some type
of “puncturing” argument (c.f., [23]). A possible starting point is to give the
reduction algorithm B a punctured key k′S for F′ that enables evaluation of F′ at
all points except the restricted points S = (x∗1, . . . , x

∗
λ). Then, B can simulate the

correct PRF evaluations at all non-restricted points, but it is unable to compute
the evaluations at the special points for itself.

Unfortunately, this basic puncturing approach is still insufficient to prove
security. Namely, even if the reduction algorithm can simulate the non-shifted PRF
evaluation F′(s, x) at all of the non-restricted points, it must still simulate the shift
bs ·Wep without knowledge of the key s. To address this, we additionally need to
“program” the evaluations of the punctured key kS at the non-punctured points.
Specifically, we program the key kS to introduce a shift by the key-dependent
vector bs ·Wep at all of the non-punctured points. This latter step relies on an
adaptation of the technique of programmable matrix embeddings from [38]. This

17

enables B to simulate the full PRF evaluation F(s, x) = F′(s, x) + bs ·Wep for
the adversary. We refer to Section 4.2 for the full details of the construction and
security analysis.

3 Preliminaries

We begin by introducing some of the notation we use in this work. For an integer
n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a distribution D,
we write x← D to denote that x is sampled from D; for a finite set S, we write

x
r← S to denote that x is sampled uniformly from S.
Unless specified otherwise, we use λ to denote the security parameter. We

say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for
all c ∈ N. We say that an event happens with overwhelming probability if its
complement happens with negligible probability. We say an algorithm is efficient
if it runs in probabilistic polynomial time in the length of its input. We use poly(λ)
to denote a quantity whose value is bounded by a fixed polynomial in λ. For two

families of distributions D1 and D2, we write D1
s
≈ D2 if the two distributions

are statistically indistinguishable (i.e., the statistical distance between D1 and
D2 is negligible). We now define the circuit-similarity metric we use in this work.

Definition 3.1 (Circuit Similarity). Fix a circuit class C on ρ-bit inputs. For
two circuits C,C ′ ∈ C and for a non-decreasing function ε : N → N, we write
say that C is ε-close to C ′, denoted C ∼ε C ′, if C and C ′ agree on all but an
ε-fraction of inputs. More precisely, we write

C ∼ε C ′ ⇐⇒ Pr[x
r← {0, 1}ρ : C(x) 6= C ′(x)] ≤ ε.

Similarly, we write C 6∼ε C ′ to denote that C and C ′ differ on at least an
ε-fraction of inputs.

We provide additional background on lattice-based cryptography in the full
version of this paper [39].

4 Extractable PRF

In this section, we introduce the core notion of an extractable PRF that we use
throughout this work. Due to space limitations, we just present our definition of
robust extractability. In the full version of this paper [39], we provide the formal
definitions of both pseudorandomness as well as our relaxed notion of T -restricted
pseudorandomness from Section 1, where pseudorandomness holds on all but a
small number (i.e., up to T) points.

Definition 4.1 (Extractable PRF). An extractable PRF with key-space K,
domain X , and range Y consists of a tuple of efficient algorithms ΠEPRF =
(PrmsGen,SampleKey,Eval,Extract) with the following syntax:

18

– PrmsGen(1λ)→ (pp, td): On input the security parameter λ, the parameter-
generation algorithm outputs a set of public parameters pp and a trapdoor
td.

– SampleKey(pp)→ k: On input the public parameters pp, the key-generation
algorithm outputs a PRF key k ∈ K.

– Eval(pp, k, x) → y: On input the public parameters pp, a PRF key k ∈ K,
and input x ∈ X , the PRF evaluation algorithm outputs a value y ∈ Y.

– Extract(pp, td, C)→ k/⊥: On input the public parameters pp, the trapdoor td,
and a circuit C : X → Y, the extraction algorithm outputs a key k ∈ K∪{⊥}.
Without loss of generality, the Extract algorithm can also be defined to take a
circuit whose domain is any superset of the PRF domain X .

The public parameters pp of an extractable PRF induces a PRF family Fpp : K ×
X → Y where Fpp(k, x) := Eval(pp, k, x) and Fpp.KeyGen(1λ) computes and
returns k ← SampleKey(pp). Note that the description of the induced PRF family
F does not include the trapdoor td.

Definition 4.2 (Extract-and-Test). An extractable PRF ΠEPRF = (PrmsGen,
SampleKey,Eval,Extract) with key-space K has an “extract-and-test” extrac-
tion algorithm if Extract can additionally be decomposed into two algorithms
(ExtractCandidates,TestCandidate) with the following properties:

– ExtractCandidates(pp, td, C) → S: On input the public parameters pp, the
trapdoor td, and a circuit C, the candidate extraction algorithm outputs a
(possibly empty) set S ⊆ K of candidate keys, where |S| = poly(λ).

– TestCandidate(pp, td, C, k)→ b: On input the public parameters pp, the trap-
door td, a circuit C : X → Y, and a candidate key k ∈ K, the test candidate
algorithm outputs a bit b ∈ {0, 1}. Note that we allow TestCandidate to be a
randomized algorithm.

Moreover, the Extract(pp, td, C) algorithm can be written as follows:

– Extract(pp, td, C): First invoke ExtractCandidates(pp, td, C) to obtain a set
S ⊆ K of candidate keys. For each k ∈ S, compute bk ← TestCandidate(pp, td, C, k).
Output any k ∈ S where bk = 1. If bk = 0 for all k ∈ S, output ⊥.

Definition 4.3 (Robust Extractability). Fix a security parameter λ and
closeness parameters ε1, ε2. Let ΠEPRF = (PrmsGen,SampleKey,Eval,Extract) be
an extractable pseudorandom function with key-space K, domain X , and range Y.
Suppose ΠEPRF has an extract-and-test extraction algorithm where for (pp, td)←
PrmsGen(1λ) and ε1 < ε2, the TestCandidate algorithm satisfies the following two
properties:

– For all k ∈ K and C(·) ∼ε1 Eval(pp, k, ·), Pr[TestCandidate(pp, td, C, k) =
1] = 1− negl(λ).

– For all k ∈ K and C(·) 6∼ε2 Eval(pp, k, ·), Pr[TestCandidate(pp, td, C, k) =
1] = negl(λ).

19

Next, for an adversary A, we define two experiments ExtRealA(λ, ε1, ε2) and
ExtIdealA(λ, ε1, ε2):

– Setup phase: At the start of both experiments, the challenger samples
(pp, td)← PrmsGen(1λ) and gives pp to A.

– Query phase: Adversary A can issue any (polynomial) number of extraction
queries to the challenger. On an extraction oracle query C : X → Y, the
challenger in the two experiments responds as follows:

• ExtReal : In the real experiment, the challenger replies with Extract(pp, td, C).
• ExtIdeal : In the ideal experiment, the challenger proceeds as follows:

∗ If there exists a unique k ∈ K where C(·) ∼ε2 Eval(pp, k, ·), the
challenger computes bk ← TestCandidate(pp, td, C, k). It replies with
k if bk = 1 and ⊥ if bk = 0.

∗ Otherwise, the challenger replies with ⊥.

– Output phase: Once the adversary A is done making queries, it outputs a
bit b ∈ {0, 1}. This is the output of the experiment.

We say that ΠEPRF satisfies (ε1, ε2)-robust extractability if for all (possibly un-
bounded) adversaries A making any polynomial number Q = poly(λ) queries, we
have that∣∣Pr

[
ExtRealA(λ, ε1, ε2) = 1

]
− Pr

[
ExtIdealA(λ, ε1, ε2) = 1]

∣∣ = negl(λ).

Remark 4.4 (Generalized Candidate Testing). In our constructions, we will re-
quire a generalized version of TestCandidate with the following properties:

– The TestCandidate algorithm is publicly-computable; namely, TestCandidate
does not depend on the trapdoor td. To make this explicit, in the case where
TestCandidate is publicly-computable, we write the algorithm as TestCandidate(pp, C, k).

– If C1, C2 satisfy C1 ∼ε C2 for some ε = negl(λ), then for all pp and all k ∈ K,

Pr[TestCandidate(pp, C1, k) 6= TestCandidate(pp, C2, k)] = negl(λ).

– Instead of taking as input a candidate key k ∈ K as input, the TestCandidate
can also take as input an arbitrary circuit C ′ : X → Y, with the property
that for (pp, td) ← PrmsGen(1λ) and k ← SampleKey(pp), and any circuit
C ′ : X → Y where C ′ ∼ε Eval(pp, k, ·) and ε = negl(λ),

{TestCandidate(pp, C, k)}
s
≈ {TestCandidate(pp, C, C ′)},

where the randomness is taken over the random coins in PrmsGen, SampleKey,
and TestCandidate.

Key-injectivity. As discussed in Section 2, a property that is often useful in
conjunction with robust extractability is key-injectivity. We give the formal
definition in the full version of this paper [39].

20

4.1 Puncturable Extractable PRFs

In a puncturable PRF [18, 37, 19], the PRF key k can be used to derive a
punctured key kx∗ that can be used to evaluate the PRF everywhere except
the punctured point x∗ ∈ X . Moreover, the actual PRF value F(k, x∗) remains
pseudorandom even given the punctured key. More generally, we can consider
puncturing the PRF at a set S ⊆ X . In this case, the punctured key kS can
be used to evaluate the PRF at all points in X \ S, while the PRF values at
points in S remain pseudorandom. This is also called a constrained PRF [18]. In
our setting, we primarily consider puncturing at sets containing up to poly(λ)
elements. We review the formal definitions in the full version of this paper [39].

4.2 Constructing Extractable PRFs

In this section, we present our extractable PRF family from standard lattice
assumptions. Although our construction follows the main ideas that we outlined
in Section 2, implementing these ideas algebraically is non-trivial. We begin with
a brief algebraic overview of our construction.

Construction overview. As discussed in Section 2, our PRF family is defined
with respect to a set of public matrices in Zn×mq , which we denote by (Aj)j∈[ρ],

(Ãα,β)α∈[n],β∈[m], (Bi,j)i∈[t],j∈[ρ], (Cj)j∈[ρ], V, and W. Here, n,m, q are lattice
parameters, t is the number of punctured points, and ρ is the bit-length of the
PRF input. These matrices can be logically partitioned into three sets of matrices
that handle different correctness or security goals.

– The matrices (Aj)j∈[ρ], (Ãα,β)α∈[n],β∈[m] are used for the T -restricted pseu-
dorandomness proof. As discussed in Section 2.2, handling the evaluation
queries in T -restricted pseudorandomness requires generating a punctured
key that is specifically programmed to enable simulation of the key-dependent
shift (i.e., the bs ·Wep term in Eq. (2.2)).

– The matrices (Bi,j)i∈[t],j∈[ρ], (Cj)j∈[ρ], V implement the constrained PRF
construction of [23].

– The matrix W is the shift matrix. As described in Section 2, matrix W is
generated by first evaluating Evalpp on the rest of the matrices (Aj)j∈[ρ],

(Ãα,β)α∈[n],β∈[m], (Bi,j)i∈[t],j∈[ρ], (Cj)j∈[ρ], V, and then defining it as a
corresponding shifted matrix from a trapdoor matrix D.

As discussed in Section 2.1, to achieve robust extractability, we need to embed
multiple trapdoors. We support this by simply concatenating together multiple
copies of the PRF, where each copy is associated with one of the trapdoors. We
now give the formal construction.

Construction 4.5 (Puncturable Extractable PRFs). Let λ be a security
parameter, and ε1, ε2 be distance parameters where 0 < ε1 < ε2 < 1/2, and
ε2 ≥ ε1 + 1/poly(λ). We define the following scheme parameters:

– (n,m, q, χB) – lattice parameters, where χB is a B-bounded distribution,

21

– p – the rounding modulus,
– t – a bound on the number of points to be punctured (indexed by i),
– ρ – the bit-length of the PRF input (indexed by j),
– η – the number of special points where we embed the extraction trapdoor

(indexed by `).

Throughout this section and in the analysis, we will assume that n,m, t, ρ, η =
poly(λ). Let (TrapGen, Invert) be the lattice trapdoor algorithms (see full version
of this paper [39]). For an input x ∈ {0, 1}ρ, we define the equality function
f eqx : {0, 1}ρ → {0, 1} where

f eqx (x∗) =

{
1 if x = x∗

0 otherwise.

More generally, for a set of points S ⊆ {0, 1}ρ of size t (represented as a
concatenation of the bit-strings in S), we define the containment function
f conx : {0, 1}tρ → {0, 1} where

f conx (S) =

{
1 if x ∈ S
0 otherwise.

Note that both the equality circuit f eqx and the containment circuit f conx for any
x ∈ {0, 1}ρ can be computed by a circuit of depth d = O(log ρ+ log t) = O(log λ).
Our (puncturable) extractable PRF ΠPRF = (PrmsGen,SampleKey,Eval,Extract,
Puncture,PunctureEval) with key-space K = [−B,B]n, domain X = {0, 1}ρ\{0},
and range Y = Zηmp is defined as follows:10

– PrmsGen(1λ): On input the security parameter λ, the PrmsGen algorithm

begins by sampling (A
(`)
j)j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m], (B

(`)
i,j)i∈[t],j∈[ρ], (C

(`)
j)j∈[ρ],

V(`) uniformly at random from Zn×mq for every ` ∈ [η]. It also samples a set of

η special points h(`)
r← {0, 1}ρ along with trapdoor matrices (D(`), tdD(`))←

TrapGen(1λ) for all ` ∈ [η]. Then, for all ` ∈ [η], it computes

• A
(`)

h(`) ← EvalPpk

(
f eq
h(`) , (A

(`)
j)j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m]

)
,

• B
(`)

h(`) ← Evalpk
(
f con
h(`) , (B

(`)
i,j)i∈[t],j∈[ρ]

)
,

• C
(`)

h(`) ← Evalpk
(
f eq
h(`) , (C

(`)
j)j∈[ρ]

)
,

and defines the matrix

W(`) = A
(`)

h(`) + B
(`)

h(`)G
−1(C(`)

h(`)

)
G−1

(
V(`)

)
+ D(`) ∈ Zn×mq . (4.1)

Finally, it outputs

pp =
(
W(`),

(
A

(`)
j

)
j∈[ρ],

(
Ã

(`)
α,β

)
α∈[n],β∈[m]

,
(
B

(`)
i,j

)
i∈[t],j∈[ρ],

(
C

(`)
j

)
j∈[ρ],V

(`)
)
`∈[η]

,

(4.2)
and td =

(
h(`), tdD(`)

)
`∈[η].

10We refer to the full version of this paper [39] for the specification of the Evalpk, Evalct,
EvalPpk, and EvalPct algorithms for computing on matrix embeddings [12, 38].

22

– SampleKey(pp): On input the public parameters pp, the key-generation algo-
rithm samples a key s← χn, and outputs the PRF key k = s.

– Eval(pp, k, x): On input the public parameters pp (as specified in Eq. (4.2)),
a PRF key k = s, and an input x ∈ {0, 1}ρ \ {0}, the evaluation algorithm
first computes the matrices

• A
(`)
x ← EvalPpk

(
f eqx , (A

(`)
j)j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m]

)
,

• B
(`)
x ← Evalpk

(
f conx , (B

(`)
i,j)i∈[t],j∈[ρ]

)
,

• C
(`)
x ← Evalpk

(
f eqx , (C

(`)
j)j∈[ρ]

)
,

for all ` ∈ [η]. Then, it sets

Z(`)
x = A(`)

x + B(`)
x G−1(C(`)

x)G−1(V(`)), (4.3)

for all ` ∈ [η], and computes the vector

ỹx = s
(
W(1) − Z(1)

x | · · · |W(η) − Z(η)
x

)
∈ Zηmq . (4.4)

Finally, it outputs the rounded vector yx = bỹep ∈ Zηmp .
– Extract(pp, td, C): The extraction algorithm is defined with respect to two

sub-algorithms ExtractCandidates and TestCandidate (as in Definition 4.2)
that are defined as follows:
• ExtractCandidates(pp, td, C): On input the public parameters pp (as spec-

ified in Eq. (4.2)), a trapdoor td =
(
h(`), tdD(`)

)
`∈[η], and a circuit

C : {0, 1}ρ → Zηmp , the candidate extraction algorithm evaluates the

circuit on the test points to get y(`) ← C
(
h(`)

)
for all ` ∈ [η]. Then,

for all ` ∈ [η], it parses the vector y(`) = (y
(`)
1 | · · · | y(`)

η) where each

y
(`)
1 , . . . ,y

(`)
η ∈ Zmp . Then, it extracts s(`) ← Invert(tdD(`) ,y

(`)
`) and out-

puts the set of all s(`) for which s(`) 6= ⊥ and s(`) ∈ [−B,B]n.
• TestCandidate(pp, C, k): Let δ = (ε2 − ε1)/2 = 1/poly(λ), ε = ε1 + δ, and
ξ = λ/δ2 = poly(λ). On input the public parameters pp, a key k = s,
and a circuit C : {0, 1}ρ → Zηmp , the test candidate algorithm samples

x∗1, . . . , x
∗
ξ

r← {0, 1}ρ and computes the number Ns of indices i ∈ [ξ] where
C(x∗i) 6= Eval(pp, s, x∗i). If Ns ≤ εξ, then output 1. Otherwise, output
0. Note that TestCandidate is publicly-computable (it does not require a
trapdoor).

The full extraction algorithm follows the extract-and-test procedure described
in Definition 4.2.

– Puncture(pp, k, S): On input the public parameter pp (as specified in Eq. (4.2)),
a PRF key k = s, and a set of points to be punctured S = {xi}i∈[t], the

Puncture algorithm first samples error vectors e
(`)
A,j , e

(`)

Ã,α,β
, e

(`)
B,i,j , e

(`)
W ← χm

for all i ∈ [t], j ∈ [ρ], α ∈ [n], β ∈ [m], and ` ∈ [η]. Then, for each ` ∈ [η] it
defines the vectors
• a

(`)
j = sA

(`)
j + e

(`)
A,j for all j ∈ [ρ],

• ã
(`)
α,β = sÃ

(`)
α,β + e

(`)

Ã,α,β
for all α ∈ [n] and β ∈ [m],

23

• b
(`)
i,j = s

(
B

(`)
i,j + xi,j ·G

)
+ e

(`)
B,i,j for all i ∈ [t] and j ∈ [ρ],

• w(`) = sW(`) + e
(`)
W .

Finally, it outputs the punctured key

kS =
(
S,
(
w(`), (a

(`)
j)j∈[ρ], (ã

(`)
α,β)α∈[n],β∈[m], (b

(`)
i,j)i∈[t],j∈[ρ]

)
`∈[η]

)
. (4.5)

– PunctureEval(pp, kS , x): On input the public parameters pp (as specified in
Eq. (4.2)), the punctured key kS (as specified in Eq. (4.5)), and an input
x ∈ {0, 1}ρ \ {0}, the punctured evaluation algorithm computes the following
for each ` ∈ [η]:

• a
(`)
x ← EvalPct

(
f eqx ,0, (A

(`)
j)j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m], (a

(`)
j)j∈[ρ], (ã

(`)
α,β)α∈[n],β∈[m]

)
,

• b
(`)
x ← Evalct

(
f conx , S, (B

(`)
i,j)i∈[t],j∈[ρ], (b

(`)
i,j)i∈[t],j∈[ρ]

)
,

• C
(`)
x ← Evalpk

(
f eqx , (C

(`)
j)j∈[ρ]

)
.

Then, for each ` ∈ [η], it sets

z(`)x = a(`)
x + b(`)

x G−1(C(`)
x)G−1(V(`)), (4.6)

and computes the vector

yx = (w(1) − z(1)x | · · · | w(η) − z(η)x) ∈ Zηmq . (4.7)

Finally, it outputs the rounded vector yx = bỹxep ∈ Zηmp .

Security analysis. We now show that under the LWE and 1D-SIS-R [23, 14]
assumptions (with suitable parameters),11 the puncturable extractable PRF
construction from Construction 4.5 satisfies correctness, puncturing security, and
robust extractability. We give the formal theorem statements here, but defer
the formal proofs to the full version of this paper [39]. We also discuss adaptive
security in the full version.

Theorem 4.6 (Perfect Correctness for Most Keys). Fix a security pa-
rameter λ and lattice parameters n,m, q, p,B. Suppose m = Ω(n log q), q =
Ω(np

√
log q), and 2ρB · mO(log λ) · p/q = negl(λ). Then, the extractable PRF

ΠEPRF from Construction 4.5 satisfies perfect correctness for most keys.

Theorem 4.7 (Almost-Functionality-Preserving for All Keys). Fix a se-
curity parameter λ and lattice parameters n,m, q, p,B. Suppose m = Ω(n log q),
q = Ω(np

√
log q), and ρ = ω(log λ). Then, under the 1D-SIS-Rm′,p,q,E assump-

tion for m′ = nmη and E = B · mO(log λ), the extractable PRF ΠEPRF from
Construction 4.5 is almost-functionality-preserving for all keys.

Theorem 4.8 (Key-Injectivity). Fix a security parameter λ and lattice pa-
rameters n,m, q, p,B. Suppose m = Ω(n log q), q = Ω(np

√
log q), and 2ρ(4B +

1)n/pηm = negl(λ). Then, the extractable PRF ΠEPRF from Construction 4.5
satisfies key-injectivity.

11We refer to full version of this paper [39] for the formal statements of these assumptions.

24

Theorem 4.9 (Puncturing Security). Fix a security parameter λ and lattice
parameters n,m, q, p,B. Suppose m = Ω(n log q), q = Ω(np

√
log q), and 2ρB ·

mO(log λ) · p/q = negl(λ). Then, under the LWEn,m′,q,χ assumption for m′ =
ηm(nm+ (t+ 2)ρ+ 1) + ηm, the extractable PRF ΠEPRF from Construction 4.5
satisfies selective puncturing security.

Corollary 4.10 (Pseudorandomness). Fix a security parameter λ and lattice
parameters n,m, q, p,B. Suppose the conditions in Theorem 4.9 hold. Then, the
extractable PRF ΠEPRF from Construction 4.5 satisfies selective pseudorandom-
ness.

Theorem 4.11 (T -Restricted Psueodrandomness). Fix a security param-
eter λ and lattice parameters n,m, q, p,B. Suppose m = Ω(n log q) and q =
Ω(np

√
log q) and 2ρB ·mO(log λ) · p/q = negl(λ). Then, under the LWEn,m′,q,χ

assumption for m′ = ηm(nm+ ρ(t+ 2)) + ηm, the extractable PRF ΠEPRF from
Construction 4.5 satisfies selective T -restricted pseudorandomness for T = η.

Theorem 4.12 (Robust Extractability). Fix a security parameter λ and
lattice parameters n,m, q, p,B. Take any 0 < ε1 < ε2 < 1/2 where ε2 − ε1 ≥
1/poly(λ). Let ΠEPRF be the extractable PRF from Construction 4.5. Suppose
m = Ω(n log q), q = Ω(np

√
log q), m ≥ 2n log q, dq/pe ≤ q/4, and η = ω(log λ),

and that ΠEPRF satisfies key-injectivity. Then, ΠEPRF satisfies (ε1, ε2)-robust ex-
tractability (Definition 4.3). Moreover, the TestCandidate algorithm in Construc-
tion 4.5 satisfies the generalized candidate testing properties from Remark 4.4.

4.3 Concrete Parameter Instantiations

In the full version of this paper [39], we describe one possible instantiation for the
parameters of the extractable PRF scheme in Construction 4.5. We choose our
parameters so that the underlying LWE and 1D-SIS assumptions that we rely on
reduce to approximating worst-case lattice problems to within a sub-exponential

factor 2Õ(n1/c) for some constant c where n is the lattice dimension.

Remark 4.13 (Extractable PRFs from Weaker Lattice Assumptions). If we relax
the requirements on the extractable PRF and only require the standard notion
of correctness (Theorem 4.6), then it is possible to instantiate the parameters
such that all of the remaining properties only rely on the hardness of solving
worst-case lattice problems with a nearly polynomial approximation factor. We
provide more details in full version of this paper [39].

5 Watermarking from Puncturable Extractable PRFs

In this section, we show how to use our extractable PRF to construct a mark-
embedding watermarking scheme in the secret-key setting. In the full version
of this paper [39], we show how to extend this construction to obtain message-
embedding watermarking from the same assumptions. We also show to obtain a
scheme that supports public marking in the random oracle model.

25

5.1 Watermarking PRFs

We begin by formally introducing the notion of a watermarkable PRF family.

Definition 5.1 (Watermarkable Family of PRFs). Fix a security parameter
λ and a message space M. A secretly-extractable, message-embedding watermark-
able family of PRFs with key-space K, a domain X , and a range Y is a tuple of
algorithms ΠWM = (Setup,Mark,Extract) with the following properties:

– Setup(1λ)→ (pp,wsk): On input the security parameter λ, the setup algorithm
outputs public parameters pp and the watermarking secret key wsk.

– Mark(wsk, k,m) → C: On input the watermarking secret key wsk, a PRF
key k ∈ K, and a message m ∈ M, the mark algorithm outputs a circuit
C : X → Y.

– Extract(wsk, C)→ m: On input the watermarking secret key wsk and a circuit
C : X → Y, the extraction algorithm outputs a string m ∈M∪ {⊥}.

Moreover, ΠWM includes the description of a PRF family F : K × X → Y. The
description of the PRF family may include the public parameters pp for the
watermarkable PRF family, as sampled by the Setup algorithm. We often refer to
ΠWM as a watermarking scheme for the PRF family F : K ×X → Y.

Remark 5.2 (Mark-Embedding Watermarking). To simplify the description of
our construction (and just focus on the main ideas), we also consider the weaker
notion of mark-embedding watermarking where programs are either considered to
be marked or unmarked. Equivalently, this corresponds to Definition 5.1 where
M = {marked}. When describing a mark-embedding watermarking scheme, we
simplify the Mark algorithm to only take in two parameters: the watermarking
secret key wsk and the PRF key k. In this case, we will also often write unmarked
in place of ⊥.

Correctness. The two correctness requirements on a software watermarking
scheme are that the watermarked keys (approximately) implement the same
functionality as the original key. Moreover, the extraction algorithm should
successfully extract the embedded message from a marked key. We give the
formal definitions and some discussion in the full version of this paper [39].

Pseudorandomness. The second property we require on a watermarkable family
of PRFs is the usual notion of pseudorandomness for the PRF family. As discussed
in Section 1, we also consider a stronger notion where pseudorandomness should
hold even against the watermarking authority (i.e., the holder of the watermarking
secret key). While many existing watermarking schemes based on obfuscation or
lattices [27, 16, 38] naturally satisfy this property, both our scheme and that of
Quach et al. [45] do not provide full pseudorandomness. However, in our case,
we can achieve the weaker notion of T -restricted pseudorandomness against the
watermarking authority. Intuitively, this means that pseudorandomness is ensured
even against the watermarking authority provided that the authority does not

26

see the PRF evaluations on any of T “special” points. We define this formally in
the full version of this paper [39].

Unforgeability and unremovability. The main security notions for a crypto-
graphic watermarking scheme we consider are unremovability and unforgeability.
Conceptually, unremovability says that an efficient adversary cannot should not
be able to remove a watermark from a marked program while unforgeability says
that an adversary should not be able to construct a new marked program. We
provide the formal definitions in the full version of this paper [39].

5.2 Mark-Embedding Watermarking

In this section, we present our basic construction of a mark-embedding water-
markable family of PRFs (in the secret-key setting) from extractable PRFs. We
refer to Section 1.2 for a high-level overview of this construction. In the full
version of this paper [39], we build upon this construction to obtain message-
embedding watermarking (and, in the random oracle model, message-embedding
watermarking with public marking).

Construction 5.3 (Mark-Embedding Watermarkable PRFs). Let λ be
a security parameter. Our mark-embedding watermarkable PRF relies on the
following primitives:

– Let ΠEPRF = (EX.PrmsGen,EX.SampleKey,EX.Eval,EX.Extract,EX.Puncture,
EX.PunctureEval) be a puncturable extractable PRF with key-space KEPRF,
domain X , and range Y.

– Let PRF : KPRF ×KEPRF → X λ be a pseudorandom function.

We construct a watermarkable PRF ΠWM = (Setup,Mark,Extract) as follows:

– Setup(1λ): On input the security parameter λ, the setup algorithm samples a

PRF key kPRF
r← KPRF, and parameters for the extractable PRF (pp, td)←

EX.PrmsGen(1λ). It outputs the public parameters pp and the watermarking
secret key wsk = (kPRF, pp, td).

– Mark(wsk, k): On input the watermarking secret key wsk = (kPRF, pp, td),
and a key k ∈ KEPRF, the marking algorithm derives points (x∗1, . . . , x

∗
λ)←

PRF(kPRF, k) and a punctured key k′ ← EX.Puncture(pp, k, (x∗1, . . . , x
∗
λ)). It

outputs the circuit C : X → Y that implements the punctured evaluation
algorithm EX.PunctureEval(pp, k′, ·).

– Extract(wsk, C): On input the watermarking secret key wsk = (kPRF, pp, td),
and a circuit C : X → Y, the extraction algorithm first extracts a key k ←
EX.Extract(pp, td, C). If k = ⊥, output unmarked. Otherwise, it computes
(x∗1, . . . , x

∗
λ) ← PRF(kPRF, k). If C(x∗i) 6= EX.Eval(pp, k, x∗i) for all i ∈ [λ],

then output marked. Otherwise, output unmarked.

The underlying PRF family F : KEPRF×X → Y (induced by the public parameters
pp for the watermarking scheme) is defined as F(k, x) := Eval(pp, k, x) and
F.KeyGen simply returns EX.SampleKey(pp). Note that the description of the
PRF family F includes the public parameters pp, but not the other components
in the watermarking secret key wsk.

27

In the full version of this paper [39], we show that assuming ΠEPRF is a punc-
turable extractable PRF and PRF is a secure pseudorandom function, then ΠWM

from Construction 5.3 is a mark-embedding watermarking scheme that provides
unremovability, unforgeability, and T -restricted pseudorandomness against the
watermarking authority.

5.3 Watermarking Instantiations from Lattices

In this section, we summarize our main results on constructing new lattice-based
watermarking schemes from our puncturable extractable PRF. We refer to the
full version of this paper [39] for the full details of our constructions (as well as
extensions to the main construction).

Corollary 5.4 (Message-Embedding Watermarking from Lattices). Fix
a security parameter λ. Take any 0 < ε < δ < 1/2 where δ > ε+ 1/poly(λ). Then,
assuming it is difficult to approximate to worst-case lattice problems (e.g., GapSVP
or SIVP) with a nearly polynomial approximation factor, there exists a secret-
key message-embedding watermarking scheme that satisfies ε-unremovability, a
relaxed version of δ-unforgeability (see the full version of this paper [39]), and
T -restricted pseudorandomness against the watermarking authority for T = λ.
Assuming hardness of approximating worst-case lattice problems with a sub-
exponential approximation factor, the resulting watermarking scheme satisfies
the standard notion of δ-unforgeability. Moreover, under the same assumptions
in the random oracle model, we obtain watermarking schemes that satisfy weak
δ-unforgeability (and all of the other properties) that additionally supports public
marking.

Acknowledgments

We thank Willy Quach, Sina Shiehian, Daniel Wichs, and Giorgos Zirdelis for
many insightful conversations. We thank the anonymous CRYPTO reviewers for
helpful feedback on the presentation. This work was funded by NSF, DARPA, a
grant from ONR, and the Simons Foundation. Opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of DARPA.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, 2010.

2. S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for
inner product predicates from learning with errors. In ASIACRYPT, 2011.

3. M. Ajtai. Generating hard instances of the short basis problem. In ICALP, 1999.
4. J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In

STACS, 2009.

28

5. F. Baldimtsi, A. Kiayias, and K. Samari. Watermarking public-key cryptographic
functionalities and implementations. In ISC, 2017.

6. A. Banerjee, G. Fuchsbauer, C. Peikert, K. Pietrzak, and S. Stevens. Key-
homomorphic constrained pseudorandom functions. In TCC, 2015.

7. A. Banerjee and C. Peikert. New and improved key-homomorphic pseudorandom
functions. In CRYPTO, 2014.

8. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
EUROCRYPT, 2012.

9. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

10. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2), 2012.

11. N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-
interactive arguments via linear interactive proofs. In TCC, 2013.

12. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In EUROCRYPT, 2014.

13. D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. Lattice-based snargs and their
application to more efficient obfuscation. In EUROCRYPT, 2017.

14. D. Boneh, S. Kim, and H. W. Montgomery. Private puncturable prfs from standard
lattice assumptions. In EUROCRYPT, 2017.

15. D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic
prfs and their applications. In CRYPTO, 2013.

16. D. Boneh, K. Lewi, and D. J. Wu. Constraining pseudorandom functions privately.
In PKC, 2017.

17. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, 2007.

18. D. Boneh and B. Waters. Constrained pseudorandom functions and their applica-
tions. In ASIACRYPT, 2013.

19. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. In PKC, 2014.

20. Z. Brakerski, D. Cash, R. Tsabary, and H. Wee. Targeted homomorphic attribute-
based encryption. In TCC, 2016.

21. Z. Brakerski, R. Tsabary, V. Vaikuntanathan, and H. Wee. Private constrained
prfs (and more) from LWE. In TCC, 2017.

22. Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In
ITCS, pages 1–12, 2014.

23. Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
TCC, 2015.

24. Z. Brakerski and V. Vaikuntanathan. Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In CRYPTO, 2016.

25. R. Canetti and Y. Chen. Constraint-hiding constrained PRFs for NC1 from LWE.
In EUROCRYPT, 2017.

26. Y. Chen, V. Vaikuntanathan, and H. Wee. GGH15 beyond permutation branching
programs: Proofs, attacks, and candidates. In CRYPTO, 2018.

27. A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, and D. Wichs. Water-
marking cryptographic capabilities. In STOC, 2016.

28. R. Gay, P. Méaux, and H. Wee. Predicate encryption for multi-dimensional range
queries from lattices. In PKC, 2015.

29

29. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, 2008.

30. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions
(extended abstract). In FOCS, 1984.

31. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. In STOC, 2013.

32. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits
from LWE. In CRYPTO, 2015.

33. S. Gorbunov and D. Vinayagamurthy. Riding on asymmetry: Efficient ABE for
branching programs. In ASIACRYPT, 2015.

34. R. Goyal, V. Koppula, and B. Waters. Lockable obfuscation. In FOCS, 2017.
35. N. Hopper, D. Molnar, and D. A. Wagner. From weak to strong watermarking. In

TCC, 2007.
36. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,

polynomial equations, and inner products. In EUROCRYPT, 2008.
37. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable

pseudorandom functions and applications. In ACM CCS, 2013.
38. S. Kim and D. J. Wu. Watermarking cryptographic functionalities from standard

lattice assumptions. In CRYPTO, 2017.
39. S. Kim and D. J. Wu. Watermarking prfs from lattices: Stronger security via

extractable prfs. IACR Cryptology ePrint Archive, 2018:986, 2018.
40. V. Lyubashevsky and D. Wichs. Simple lattice trapdoor sampling from a broad

class of distributions. In PKC, 2015.
41. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.

In EUROCRYPT, 2012.
42. D. Naccache, A. Shamir, and J. P. Stern. How to copyright a function? In PKC,

1999.
43. R. Nishimaki. How to watermark cryptographic functions. In EUROCRYPT, 2013.
44. C. Peikert and S. Shiehian. Privately constraining and programming PRFs, the

LWE way. In PKC, 2018.
45. W. Quach, D. Wichs, and G. Zirdelis. Watermarking PRFs under standard as-

sumptions: Public marking and security with extraction queries. In TCC, 2018.
46. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.

In STOC, 2005.
47. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.
48. D. Wichs and G. Zirdelis. Obfuscating compute-and-compare programs under LWE.

In FOCS, 2017.
49. R. Yang, M. H. Au, J. Lai, Q. Xu, and Z. Yu. Collusion resistant watermarking

schemes for cryptographic functionalities. IACR Cryptology ePrint Archive, 2017.
50. R. Yang, M. H. Au, J. Lai, Q. Xu, and Z. Yu. Unforgeable watermarking schemes

with public extraction. In SCN, 2018.
51. M. Yoshida and T. Fujiwara. Toward digital watermarking for cryptographic data.

IEICE Transactions, 94-A(1), 2011.

30

	Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs

