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Abstract. We show that the correlation of any quadratic Boolean func-
tion can be read out from its so-called disjoint quadratic form. We further
propose a polynomial-time algorithm that can transform an arbitrary
quadratic Boolean function into its disjoint quadratic form. With this
algorithm, the exact correlation of quadratic Boolean functions can be
computed efficiently.
We apply this method to analyze the linear trails of MORUS (one of the
seven finalists of the CAESAR competition), which are found with the
help of a generic model for linear trails of MORUS-like key-stream gen-
erators. In our model, any tool for finding linear trails of block ciphers
can be used to search for trails of MORUS-like key-stream generators.
As a result, a set of trails with correlation 2−38 is identified for all ver-
sions of full MORUS, while the correlations of previously published best
trails for MORUS-640 and MORUS-1280 are 2−73 and 2−76 respectively
(ASIACRYPT 2018). This significantly improves the complexity of the
attack on MORUS-1280-256 from 2152 to 276. These new trails also lead to
the first distinguishing and message-recovery attacks on MORUS-640-128
and MORUS-1280-128 with surprisingly low complexities around 276.
Moreover, we observe that the condition for exploiting these trails in an
attack can be more relaxed than previously thought, which shows that
the new trails are superior to previously published ones in terms of both
correlation and the number of ciphertext blocks involved.

Keywords: Quadratic Boolean function · Disjoint quadratic form · Cor-
relation attack · CAESAR competition · MORUS · MILP

1 Introduction

The notion of authenticated encryption (AE), which provides both confidential-
ity and authenticity, was first introduced by Bellare and Namprempre around
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2000 [4,5]. It was further developed and evolved into the notion of authenticated
encryption with associated data (AEAD) [26,27,28] to capture the settings of
real-world communication networks, where the authenticity of some public infor-
mation (e.g., packet header) must be ensured. Informally, an AEAD is a secret-
key scheme involving an encryption algorithm and a decryption algorithm. Its
encryption algorithm receives a plaintext or message M , an associated data A,
and a secret key K, and produces a ciphertext C and a tag T . The authenticity
of the message and associated data can be checked against the tag T . We refer
the reader to [26] for a more rigorous treatment of the definition of AEAD.

The CAESAR competition (the Competition for Authenticated Encryption:
Security, Applicability, and Robustness) was announced at the Early Symmetric-
key Crypto workshop 2013 [13] and also on-line at [7]. After several years of
intensive analysis and comparison of the 57 submissions, the finalists were an-
nounced at FSE 2018. In this work, our target is one of the seven finalists —
MORUS [36], which provides three main variants: MORUS-640 with a 128-bit
key, and MORUS-1280 with either a 128-bit or a 256-bit key.

Related Work. Apart from the analysis provided by the designers, MORUS
has received extensive third-party cryptanalysis. These cryptanalysis include
differential cryptanalysis [24,30,12], linear cryptanalysis [19], SAT-based crypt-
analysis [11], cube cryptanalysis [29,19], state-recovery [17,35] and key-recovery
attacks [12], as well as attacks in the nonce-reuse setting [24]. However, these
attacks either target round-reduced versions of MORUS, or are launched in the
nonce-reuse setting which is contradicting to the nonce-respect assumption as-
sumed by the designers. Therefore, none of these analysis violates the security
claims of MORUS.

A major breakthrough on the cryptanalysis of MORUS was made at ASI-
ACRYPT 2018 [2]. In this work, based on rotational-invariant linear approxima-
tions, Ashur et al. transfered linear approximations for a state-reduced version
of MORUS (named as MiniMORUS) to linear approximations for MORUS. Lin-
ear approximations in the ciphertext bits with correlation 2−73 and 2−76 were
identified for MORUS-640 and MORUS-1280 respectively. The approximation of
MORUS-1280 leads to distinguishing attacks and message-recovery attacks on
the full MORUS-1280 with 256-bit key. Since it requires about 22×76 = 2152

encryptions to exploit the correlation, MORUS-1280 with 128-bit keys remain
immune to these attacks. Similarly, to exploit the correlation of MORUS-640, it
requires about 2146 encryptions, which means MORUS-640-128 is also immune
to these attacks.

Our Contribution. In this work, we investigate the problem of computing
the correlation of quadratic Boolean functions. By transforming a quadratic
Boolean function into its so-called disjoint quadratic form, we propose, to the
best of our knowledge, the first polynomial time algorithm that can determine
the correlation of an arbitrary quadratic Boolean function, while in previous
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work (e.g., [2]), such correlations are computed with exhaustive or quite ad-hoc
approaches which intrinsically limits their effectiveness.

Equipped with this new weapon, we set out to search for more complex
rotational invariant linear trails of MORUS, and then compute their correlations
with the new method. To this end, we set up a model for finding linear trails of
MORUS-like key-stream generators, such that most existing search tools can
be applied. The model we proposed is generic and can be applied to many
other schemes, which is of independent interest. Eventually, using MILP based
approach, we identify trails of all versions of MORUS which lead to significant
improvement over the previous attack on MORUS-1280-256 presented by Ashur
et al. [2]. Generally, the complexity is reduced from 2152 to 276. Moreover, these
trails result in the first attacks on full MORUS-640 and MORUS-1280 with 128-
bit key. A summary of the results are given in Table 1, from which we can see that
the attack is not marginal and the complexities are approaching the boundary
of practical attacks. We verify the attacks on a reduced version of MORUS. Also,
following Ashur et al.’s approach [2], we verify all trail fragments for all versions
of full MORUS.

Along the way, we make an interesting observation that the condition im-
posed on Ashur et al.’s attack can be relaxed. Specifically, the attacks actually
only require that enough plaintexts with a common prefix of certain size are
encrypted, rather than the same plaintext is encrypted enough times as stated
in [2]. This observation motivates us to find trails involving a smaller number
of ciphertext blocks, since the common-prefix assumption does occur in some
practical protocols.

At this point, we would like to mention that even after Ashur et al.’s work [2],
many researchers are not sure if MORUS will stay in the competition given the
high complexities of the attacks and the status of MORUS-640-128 and MORUS-
1280-128. However, we think that the new attacks breaking all versions of full
MORUS with complexity around 276 severely shake the security confidence of
MORUS and should deserve more attentions. Finally, our technique is purely
linear, and most of the attacks presented in our paper are known-plaintext at-
tacks, where we do not rely on any property of the output of the initialization
process except its randomness. Hence, it is interesting to see how to improve our
analysis by applying the differential-linear framework [18,3].

The exact linear trails we used can be found in an extended version of the
paper at https://eprint.iacr.org/2019/172, and the source code is available
at https://github.com/siweisun/attack_morus.

Organization. In Sect. 2, we give a brief visualized description of the authenti-
cated encryption scheme MORUS. Then in Sect. 3, we show how to compute the
correlation of a quadratic Boolean function by transforming it into the so-called
disjoint quadratic form. A generic model for finding linear trails of MORUS-like
key-stream generators is constructed in Sect. 4, which is employed in Sect. 5
to search for linear trails of MORUS with high absolute correlations, leading to
attacks on all versions of full MORUS. Section 6 discusses the condition of the at-

https://eprint.iacr.org/2019/172
https://github.com/siweisun/attack_morus
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tacks presented in the previous section and clarifies why trails involving a smaller
number of ciphertext blocks are preferred. We propose some open problems and
conclude in Sect. 7.

2 Specification of MORUS and MiniMORUS

We give a brief description of MORUS and MiniMORUS, which largely follows
the notations used by Ashur et al. [2] to facilitate cross checking.

2.1 MORUS

MORUS is a family of AEAD schemes [36] whose interfaces are shown in Fig. 1.
The encryption algorithm of MORUS operates on a 5q-bit state composed of
five q-bit registers (q ∈ {128, 256}), and each register is divided into four q/4-
bit words as shown in Fig. 2, where we use Si,j to denote the jth bit of the
ith register Si of the 5q-bit state S. The three recommended parameter sets of
MORUS are listed in Table 2. Note that when the exact key size is not important,
we use MORUS-640 and MORUS-1280 to denote the versions with 640-bit state
and 1280-bit state, respectively.

Key

Message
Nonce

Associated Data

Ciphertext

Authentication Tag

Fig. 1: The high-level structure of the encryption algorithm of an AEAD scheme

S0

S0,q−1 S0,0

S1

S1,q−1 S1,0

S2

S2,q−1 S2,0

S3

S3,q−1 S3,0

S4

S4,q−1 S4,0

Fig. 2: A view of the MORUS internal state

During the encryption process of MORUS, a function

StateUpdate : F5q
2 × Fq2 → F5q

2

is repeatedly executed on the internal state. Each call to the StateUpdate func-
tion is called a step. We denote the state at the very beginning of the encryption
process by S−16 = S−160 ‖ S−161 ‖ S−162 ‖ S−163 ‖ S−164 . After a series of steps, a
sequence of states is produced:

S−16
StateUpdate−−−−−−−→ S−15

StateUpdate−−−−−−−→ · · · StateUpdate−−−−−−−→ S0 StateUpdate−−−−−−−→ · · ·
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Table 2: The three variants of MORUS, where the sizes are measured in bits

Name
State size Register size Word size

Key size Tag size
(5q) (q) (q/4)

MORUS-640-128 640 128 32 128 128
MORUS-1280-128 1280 256 64 128 128
MORUS-1280-256 1280 256 64 256 128

Therefore, we can use the notion St = St0 ‖ St1 ‖ St2 ‖ St3 ‖ St4 to reference the
state at step t. The detail of the StateUpdate function is shown in the following
equations:

St+1
0 ← (St0 ⊕ (St1 · St2)⊕ St3) ≪w b0, St3 ← St3 ≪ b

′

0,

St+1
1 ← (St1 ⊕ (St2 · St3)⊕ St4 ⊕mi) ≪w b1, St4 ← St4 ≪ b

′

1,

St+1
2 ← (St2 ⊕ (St3 · St4)⊕ St0 ⊕mi) ≪w b2, St0 ← St0 ≪ b

′

2,

St+1
3 ← (St3 ⊕ (St4 · St0)⊕ St1 ⊕mi) ≪w b3, St1 ← St1 ≪ b

′

3,

St+1
4 ← (St4 ⊕ (St0 · St1)⊕ St2 ⊕mi) ≪w b4, St2 ← St2 ≪ b

′

4,

where ≪ω bi means rotation inside every w-bit (w = q/4) word of the register
to the left by bi bits, and ≪ is the ordinary left bitwise rotation operation. The
concrete values for the rotation offsets are listed in Table 3, and we refer the
readers to Fig. 3 for a visualization of the StateUpdate function.

M

≪ω b0

≪ b′0

∧

M

≪ω b1

≪ b′1

∧

M

≪ω b2

≪ b′2

∧

M

≪ω b3

≪ b′3

∧

≪ω b4

≪ b′4

∧

S0

S1

S2

S3

S4

Fig. 3: The StateUpdate function of MORUS

The encryption algorithm of MORUS can be divided into four phases. A visu-
alized description of the encryption algorithm of MORUS without the finalization
phase can be found in Fig. 4.
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Table 3: Rotation constants bi for ≪w and b′i for ≪ in round i of StepUpdate

Cipher
Rotation offsets for ≪w Rotation offsets for ≪
b0 b1 b2 b3 b4 b′0 b′1 b′2 b′3 b′4

MORUS-640-128 5 31 7 22 13 32 64 96 64 32
MORUS-1280-128 13 46 38 7 4 64 128 192 128 64
MORUS-1280-256 13 46 38 7 4 64 128 192 128 64

f(St, V t) = StateUpdate(St, V t)

g(St) = St
0 ⊕ (St

1 ≪ b′2)⊕ (St
2 ∧ St

3)

c1
c0
1∗

Key
Nonce

S−16

f

0

· · ·
· · ·
· · ·
· · ·
· · ·

f

0 Key

Initialization S0

f

A0

· · ·
· · ·
· · ·
· · ·
· · ·

f

Au−1

SuAssociated data
processing

g

f

M0

C0

g

f

M1

C1

g

f

M2

C2

g

f

M3

C3

· · ·

Fig. 4: The encryption algorithm of MORUS

Initialization. The initialization of every MORUS instance starts by loading
the key and nonce materials into the state to produce the starting state S−16.
Then update the state by calling StateUpdate 16 times, and finally the key is
exclusive-ored into the state to produce the resulting state S0. Let c0 and c1 be
two 128-bit constants, and we use N128, K128, and K256 to denote the 128-bit
nonce, 128-bit key and 256-bit key, respectively. The details of the initialization
processes for different versions of MORUS are given in the following.

MORUS-640-128: S−16 = N128 ‖ K128 ‖ 1128 ‖ c0 ‖ c1. Then for t = −16,−15,
· · · , −1, St+1 = StateUpdate(St, 0128). Finally, we set S0 ← S0

0 ‖ S0
1 ⊕K128 ‖

S0
2 ‖ S0

3 ‖ S0
4 .

MORUS-1280-128: S−16 = (N128 ‖ 0128) ‖ (K128 ‖ K128) ‖ 1256 ‖ 0256 ‖ (c0 ‖
c1). Then for t = −16,−15, · · · , −1, St+1 = StateUpdate(St, 0256). Finally, we
set S0 ← S0

0 ‖ S0
1 ⊕ (K128 ‖ K128) ‖ S0

2 ‖ S0
3 ‖ S0

4 .

MORUS-1280-256: S−16 = (N128 ‖ 0128) ‖ K256 ‖ 1256 ‖ 0256 ‖ (c0 ‖ c1).
Then for t = −16,−15, · · · , −1, St+1 = StateUpdate(St, 0256). Finally, we set
S0 ← S0

0 ‖ S0
1 ⊕K256 ‖ S0

2 ‖ S0
3 ‖ S0

4 .

Associated Data Processing. If there is no associated data, this process is
omitted. Otherwise, the associated data is padded with zeros when necessary to
form a multiple of q-bit (register size) block. Then the state is updated with the
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associated data A as St+1 = StateUpdate(St, At), for t = 0, · · · , u − 1, where
u = d|A|/qe is the number of q-bit blocks of the (padded) associated data A.

Encryption. The plaintext is processed in q-bit blocks to update the state
and generate the ciphertext block at the same time. Similar to associated data
processing, the plaintext is padded with zeros if the last block is fractional. For
t = 0, · · · , v − 1, the following is performed.

Ct = M t ⊕ Su+t0 ⊕ (Su+t1 ≪ b′2)⊕ (Su+t2 ∧ Su+t3 ),

Su+t+1 = StateUpdate(Su+t,M t),

where v = d|M |/qe is the number of q-bit blocks of the padded plaintext.

Finalization. The authentication tag T is generated in the finalization phase by
calling StateUpdate ten more times. Since our attacks are completely irrelevant
to how the tag is generated, we omit its details.

2.2 MiniMORUS and Rotational Invariance

MiniMORUS, proposed by Ashur et al. [2], is a family of helper constructions
derived from MORUS. For every MORUS instance with a 5q-bit state, there is a
MiniMORUS instance with 5 ·(q/4)-bit state. To be more specific, each register in
MiniMORUS contains a single word of w = q/4 bits. Therefore, the word-oriented
rotations in the StateUpdate function of MORUS are removed in MiniMORUS,
and the rotations within words (≪ω bi) are equivalent to ordinary bit-wise
rotations (≪ bi) in MiniMORUS. We refer the reader to Fig. 5 and Fig. 3 for a
comparison.

∧

C

M

≪ b0

∧

M

≪ b1

∧

M

≪ b2

∧

M

≪ b3

∧

≪ b4

∧

S0

S1

S2

S3

S4

Fig. 5: The StateUpdate function of MiniMORUS.
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Obviously, MiniMORUS can be regarded as a reduced version of MORUS.
Therefore, it is easier to search for linear trails of MiniMORUS. When a linear
trail of MiniMORUS is identified, we can consider the trail for MORUS where
the bits involved in every q/4-bit register of MiniMORUS are copied into all the
four q/4-bit words in the corresponding register of MORUS. To put it simply, we
only consider trails of MORUS involving the same bits within each word of one
register. This kind of patterns are invariant under word-wise rotations. Therefore,
the trails for MiniMORUS can be regarded as truncated representations of the
trails for MORUS with rotational invariant patterns. We refer the reader to [2]
for more details.

3 Correlation of Quadratic Boolean Functions

In this section, we give a brief introduction of necessary background of Boolean
functions, prove that the correlation of a quadratic Boolean function can be
read out from its disjoint quadratic form, and show how to convert an arbi-
trary quadratic Boolean function into its so-call disjoint quadratic term with a
polynomial time algorithm.

Let f : Fn2 → F2 be a Boolean function with algebraic normal form (ANF)

f(x) =
∑
u∈Fn

2

aux
u,

where x = (x1, · · · , xn),u = (u1, · · · , un), au ∈ F2, and xu =
∏n
i=1 x

ui
i . The

degree of the Boolean function f is defined as

deg(f) = max
u∈Fn

2 :au 6=0
wt(u),

where wt(u) is the Hamming weight of u.

Definition 1 (Correlation). The correlation of an n-variable Boolean func-
tion f is cor(f) = 1

2n

∑
x∈Fn

2
(−1)f(x), and the weight of the correlation is defined

as − log2 |cor(f)|.

In the following, we use Var(f) to denote the set of variables involved in the
Boolean function f . For example, if h = x1x2 +x1x3 + 1 and g = x2x3x4 +x3x4,
then Var(h) = {x1, x2, x3} and Var(g) = {x2, x3, x4}. Note that the variables are
treated as symbolic objects. A variable xi is degenerate if it does not appear in the
ANF of f , i.e., xi /∈ Var(f). For example, if f(x1, x2, x3, x4, x5) = x1+x2x3+x4,
then x5 is degenerate.

Lemma 1. Let g(x1, · · · , xn) =
∑k
t=1 ft be a Boolean function such that the k

sets Var(ft) for 1 ≤ t ≤ k are mutually disjoint. Then cor(g) =
∏k
t=1 cor(ft).
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Proof. Let ft be a Boolean function with nt variables for 1 ≤ t ≤ k, and m =
n− n1 − · · · − nk. According to Definition 1, we have

cor(g) =
1

2n

∑
x∈Fn

2

(−1)g(x) =
∑
x∈Fn

2

(−1)(f1+f2+···+fk)(x)

2n

=
∑

x1∈Fn1
2

(−1)f1(x1)

2n1
· · ·

∑
xk∈Fnk

2

(−1)fk(x1)

2nk
·
∑

x∈Fm
2

(−1)0

2m

=

k∏
t=1

cor(ft),

as desired.

Example 1. cor(x1x2 + x3x4) = cor(x1x2) · cor(x3x4) = 2−2.

Corollary 1. Let f(x1, · · · , xn) be a Boolean function, and f = g+xj such that
xj /∈ Var(g) is a separated linear term. Then cor(f) = 0.

Example 2. cor(x1x2+x2x3x4+x3x5+x6) = cor(x1x2+x2x3x4+x3x5)·cor(x6) =
cor(x1x2 + x2x3x4 + x3x5) · 0 = 0.

Lemma 2. Let f(x, y) = xy + ax+ by be a Boolean function and a, b ∈ F2 are
constants. Then cor(f) = (−1)ab · 2−1.

Proof. Prove by exhaustive analysis of a and b with Definition 1.

Definition 2. Two Boolean functions f(x) and g(x) are called cogredient if
there exists an invertible matrix M , such that g(x) = f(xM).

Lemma 3. Let f(x) and g(x) be two Boolean functions cogredient to each other.
Then cor(f) = cor(g).

Proof. Since f(x) and g(x) are cogredient to each other, g(x) = f(xM) for
some invertible matrix M . The result follows from the following equation

cor(g) = 1
2n

∑
x∈Fn

2

(−1)g(x) = 1
2n

∑
x∈Fn

2

(−1)f(xM)

= 1
2n

∑
xM−1∈Fn

2

(−1)f(x) = 1
2n

∑
x∈Fn

2

(−1)f(x).

Lemma 3 implies that the correlation of a Boolean function is invariant by
applying an invertible linear transformation to the input variables. Also, it is
sufficient to consider functions with constant term 0 since cor(f) = −cor(f + 1)
for any f .
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Definition 3 (Quadratic form). A Boolean function f is quadratic if deg(f) =
2. A quadratic Boolean function is called a quadratic form if its constant term
is 0. Hence, a quadratic form can be written as

f(x1, · · · , xn) =
∑

1≤i≤j≤n
ai,jxixj = Qf (x1, · · · , xn) + Lf (x1, · · · , xn)

where ai,j ∈ F2, Qf contains all quadratic terms of f while Lf consists of all
linear terms of f .

Let f(x1, · · · , xn) be a quadratic Boolean function. For i ∈ {1, · · · , n}, we
use σ(f, xi) to denote the number of terms of Qf involving variable xi.

Definition 4 (Disjoint quadratic form). Let f(x1, · · · , xn) be a quadratic
form. A term xixj of f is a separated quadratic term if σ(f, xi) = σ(f, xj) = 1.
In particular, f is disjoint if all its quadratic terms are separated quadratic terms.

Example 3. The two functions x1x2 + x3x4 and x1x3 + x2x4 + x2 + x5 are both
disjoint quadratic forms, while x1x2 + x2x3 is not a disjoint quadratic form.

Lemma 4. Let f = xi1xi2 + · · · + xi2k−1
xi2k + xj1 + · · · + xjs be a disjoint

quadratic form. Then

cor(f) =

{
(−1)

∑k
t=1 Coef (xi2t−1

)Coef (xi2t
) · 2−k {j1, · · · , js} ⊆ {i1, · · · , i2k}

0 {j1, · · · , js} ( {i1, · · · , i2k}

where Coef (xu) denotes the coefficient of the monomial xu in the ANF of f .

Proof. It follows from Lemma 1, Corollary 1, and Lemma 2.

With Lemma 4, it is easy to obtain the correlation of a disjoint quadratic
form. In the remainder of this section, we will present an efficient algorithm
for converting any given quadratic form to a cogredient disjoint quadratic form.
Hence, we can efficiently compute the correlation of any given quadratic form.
Before diving into the details of the algorithm, we first introduce some useful
notations and subroutines employed in Algorithm 1.

Subroutine 1 (PickIndex). Given a quadratic Boolean function f(x) with x =
(x1, · · · , xn), PickIndex(f) returns the index t of xt, where t is the smallest
integer t ∈ {1, · · · , n}, such that σ(f, xt) ≥ σ(f, xt′) for all t′ ∈ {1, · · · , n}.
Example 4. Let n = 3, f(x) = x1x2 + x2x3 + x3. Then PickIndex(f) = 2.

Subroutine 2 (Substitute). Given a Boolean function f(x) = f(x1, · · · , xn)
and an n×n invertible matrix M , Substitute(f,M) returns the Boolean func-
tion f(xM).

Example 5. Let f = x1x2+x2x3+x3, andM =

1 0 0
1 1 0
0 1 1

 . Then Substitute(f,M)

gives f(xM) = (x1 + x2)(x2 + x3) + (x2 + x3)x3 + x3 = x1x2 + x1x3 + x2.
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In Algorithm 1, for a given Boolean function f(x1, · · · , xn), we repeatedly
use a substitution of variables of the form:{

xu ← xt1 + xt2 + · · ·+ xtm
xj ← xj , ∀j ∈ {1, · · · , n} − {u}

,

where m ≥ 2, u ∈ {t1, · · · , tm}, and t1 < t2 < · · · < tm. This substitution can
be reformulated in the matrix form as x ← xIu←t1,··· ,tm , where Iu←t1,··· ,tm is
obtained from the n×n identity matrix I by substituting the u-th column with
a column vector whose tj-th entry is 1 for 1 ≤ j ≤ m and other entries are 0.
Note that we always have Iu←t1,··· ,tm = I−1u←t1,··· ,tm .

Algorithm 1: Transform to disjoint quadratic form

Input: A quadratic form f(x) = f(x1, · · · , xn)
Output: An invertible matrix M and a disjoint quadratic form f̂(x) such

that f̂(x) = f(xM)

1 /* Initialization */

2 M ← I /* I is the n× n identity matrix */

3 f̂(x)← f(x1, · · · , xn)

4 v ← PickIndex(f̂)

5 /* Transformation */

6 while σ(f̂ , xv) ≥ 2 do

7 m← σ(f̂ , xv) /* The number of quadratic terms involving xv */

8 Find all t1 < t2 < · · · < tm, such that xvxti is a term of f̂ .

9 f̂ ← Substitute(f̂ , It1←t1,··· ,tm)
10 M ← It1←t1,··· ,tm ·M

11 if σ(f̂ , xt1) ≥ 2 then

12 k ← σ(f̂ , xt1)

13 Find all s1 < s2 < · · · < sk, such that xt1xsi is a term of f̂ .

14 f̂ ← Substitute(f̂ , Iv←s1,··· ,sk )
15 M ← Iv←s1,··· ,sk ·M
16 end

17 v ← PickIndex(f̂)

18 end

19 return M and f̂

Example 6. Let f̂ ← f(x1, x2, x3, x4, x5) = x1x2 +x1x5 +x2x3 +x2x4 +x1 +x2.

Then σ(f̂ , x1) = 2, σ(f̂ , x2) = 3, σ(f̂ , x3) = 1, σ(f̂ , x4) = 1, and σ(f̂ , x5) = 1.

Thus, v ← PickIndex(f̂) = 2. Now we extract the common factor xv = x2 in
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Qf̂ :

f̂(x) = x2(x1 + x3 + x4) + x1x5 + x1 + x2.

Then we apply the following substitution of variables:{
x1 ← x1 + x3 + x4

xj ← xj , j ∈ {1, · · · , 5} − {1} . (1)

This variable substitution gives f̂ ← x2x1+(x1+x3+x4)x5+(x1+x3+x4)+x2 =
x1x2 +x1x5 +x3x5 +x4x5 +x1 +x2 +x3 +x4. Then we need to check whether x1
(the variable corresponding to a sum of the original variables rather than a single

xj) appears multiple times in Qf̂ . Since σ(f̂ , x1) = 2 (x1 appears multiple times),

we extract the common factor: f = x1(x2 +x5)+x3x5 +x4x5 +x1 +x2 +x3 +x4.
Then we apply the variable substitution:{

x2 ← x2 + x5

xj ← xj , j ∈ {1, · · · , 5} − {2} . (2)

This variable substitution gives f̂ ← x1x2 + x3x5 + x4x5 + x1 + (x2 + x5) +
x3 + x4 = x1x2 + x3x5 + x4x5 + x1 + x2 + x3 + x4 + x5. At this point (a whole
while loop is done), we can observe that x1x2 is a separated quadratic term

of f̂ . Actually, as shown in Theorem 1, every execution of the while loop will
make one quadratic term separated. Then PickIndex(f̂) returns 5, and we have

f̂ = x1x2 + (x3 + x4)x5 + x1 + x2 + x3 + x4 + x5. Applying the substitution{
x3 ← x3 + x4

xj ← xj , j ∈ {1, · · · , 5} − {3} , (3)

gives f̂ = x1x2 + x3x5 + x1 + x2 + x3 + x5, which is a disjoint quadratic form.
It follows from Equations (1) – (3) that

M =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1

 ·


1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 0 0 0 1

 =


1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 0 1 1 0
0 1 0 0 1

 .

It is readily to verify that f̂ = f(xM). Consequently, according to Lemma 3,
the correlation of f is (−1)1·1+1·1 · 2−2 = 2−2 .

To show the validity of Algorithm 1, we present the following result.

Lemma 5. For any input quadratic form f(x) = f(x1, · · · , xn) of Algorithm 1,
each while loop will generate at least one separated quadratic terms.
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Proof. Let f̂ = xv(xt1 + xt2 + · · · + xtm) + g, where v = PickIndex(f̂) and

t1, t2, · · · , tm be all the indices such that xtixv is a term of f̂ with t1 < t2 <
· · · < tm. Then we have σ(g, xv) = 0 according to the way we choose ti’s. After
the variable substitution x← x · It1←t1,··· ,tm , we have

f̂ ← xvxt1 + g(x · It1←t1,··· ,tm).

Since xv is unchanged under It1←t1,··· ,tm , we have σ(f̂ , xv) = 1 + σ(g, xv) = 1.

If σ(f̂ , xt1) = 1, then xvxt1 is a separated quadratic term. Otherwise, we

have σ(f̂ , xt1) ≥ 2. Assume that the current f̂ can be written as f̂ = xt1(xv +
xs1 + · · · + xsk) + h, where s1, s2, · · · , sk are all the indices such that xt1xsi is

a term of f̂ and s1 < s2 < · · · < sk. It implies that σ(h, xt1) = 0. Further,
we have σ(h, xv) = 0 since σ(h, xv) ≤ σ(g, xv) = 0. Then the transformation

x← Iv←s1,··· ,sk carries the function f̂ into

f̂ ← xvxt1 + h(x · Iv←s1,··· ,sk).

Thus, we have σ(f̂ , xt1) = 1 and σ(f̂ , xv) = 1 . This means that xvxt1 is a
separated quadratic term.

Theorem 1. Given a quadratic form f(x) = f(x1, · · · , xn), Algorithm 1 out-

puts a disjoint quadratic form f̂(x) and an invertible n × n matrix M , such

that f̂(x) = f(xM). Moreover, Algorithm 1 has time complexity O(n3.8) and
memory complexity Ω(n2).

Proof. According to Lemma 5, each while loop will generate at least one sepa-
rated quadratic term. Hence, after at most n/2 while loops, all quadratic terms

of the current f̂ are disjoint quadratic terms.
Now we briefly analyze the complexity of Algorithm 1. From the above anal-

ysis, Algorithm 1 will have n/2 while loops in the worst case. This implies
that the time complexity is upper bounded by the n matrix multiplications.
Therefore, the time complexity of the algorithm can be estimated as O(n1+2.8),
where we take O(n2.8) as the time complexity of the multiplication two n × n
matrices [31]. It is readily seen that the memory complexity is Ω(n2).

To sum up, with Lemma 3, Lemma 4, and Algorithm 1, we can compute the
correlation of any quadratic Boolean function with polynomial time complexity.

4 Exploitable Linear Approximations of MORUS-like Key
Stream Generators

We consider a typical stream cipher construction shown in Fig. 6. A partially
unknown state SU (initialized with a secret key and some public values) is pro-
cessed by an initialization algorithm. Then a vectorial Boolean function G is
applied to the state S0 to produce one key stream word Z0. For 0 ≤ i < k, a
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Init

SU

β−1

S0

γ0

G
λ0

Z0

α0 β0
F
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α1 β1
F · · ·

· · ·

αk−2 βk−2
F

Sk−1

γk−1

G
λk−1

Zk−1

αk−1 βk−1
F

Sk

γk

G
λk

Zk

αk

Fig. 6: Linear trails for MORUS-like key-stream generator

state update function is employed to obtain a new state Si+1 = F(Si), from
which a key stream word Zi+1 = G(Si+1) is extracted.

For this kind of stream ciphers, a generic attack based on linear cryptanal-
ysis (e.g.,[25]) can be applied, whose goal is to find a sequence of linear masks
(λ0, · · · , λk) for the key-stream blocks Zi, such that the absolute value of the

correlation cor
(∑k

i=0 λiZ
i
)

can be maximized, where the number of cipher-

text blocks involved in the linear approximation is called the span. In what
follows, we establish a model in which finding (λ0, · · · , λk) is conceptually the
same as finding linear trails of a block cipher with additional constraints im-
posed on some linear masks at some special positions. With this model, existing
tools [23,8,32,34,14] for finding good linear trails of block ciphers can be applied
to search for (λ0, · · · , λk).

Definition 5. A linear trail of the key stream generator shown in Fig. 6:

(β−1, γ0, λ0, α0, β0, · · · , αk−1, βk−1, γk, λk, αk)

is said to be exploitable if and only if β−1 = 0, αk = 0, and αi + γi + βi−1 = 0
for 0 ≤ i ≤ k.

The motivation behind Definition 5 is that when the following equations

β−1 = 0

αk = 0

αi + γi + βi−1 = 0, 0 ≤ i ≤ k
γiS

i + λiZ
i = 0, 0 ≤ i ≤ k

αiS
i + βiS

i+1 = 0, 0 ≤ i ≤ k − 1

(4)

hold simultaneously, we have

k∑
i=0

λiZ
i =

k∑
i=0

γiS
i = β−1S

0 +

k−1∑
i=0

(αiS
i + βiS

i+1) + αkS
k = 0. (5)

Although in Definition 5 we require β−1 = 0, in fact, any characteristic starting
with some βi = 0 that follows the same pattern specified in Definition 5 across
several consecutive ciphertext blocks can be exploited.
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In this work, the MILP-based approach [32,34,14] is employed to search for
linear trails of MORUS. One solution of the MILP model is a linear characteristic
satisfying additional constraints specified in Definition 5. The objective function
of the model is to minimize the number of active AND gates. The trails produced
by the models are only locally consistent, and thus we cannot guarantee their
global soundness with respect to optimality and validity, since the models are
constructed under the assumption that all AND gates are independent.

Let us inspect a toy example where f = f1 + f2 = x1x2 + x1x3 + x2 and{
f1(x1, x2, x3) = x1x2 + x2

f2(x1, x2, x3) = x1x3
.

The reader can check that in this case cor(f1) = cor(f2) = 2−1, but cor(f) = 0,
which implies that the sum of biased Boolean functions may be balanced. There-
fore, global consistency of the full trail cannot be ensured by local consistency. To
be more concrete, we show a real example. Table 4 presents an invalid linear trail
generated by our MILP model whose span is 3. Note that in this paper, we show
our trails in their linear-mask representations. There is a correspondence be-
tween the linear-mask representation and the trail-equation representation used
in [2]. The five linear masks between α0 and β0 listed in Table 4 are the linear
masks in the positions shown in Fig. 5 marked with dashed lines. Each row of the
linear masks determines which AND gates are activated, and each active AND
gate produces one equation containing one product term. By adding up these
equations, we can reproduce the trail-equation representations used in [2]. In this
work, we always need to convert the linear-mask representation into the trail-
equation representation, which is required to determine its overall correlation by
using the method proposed in Sect. 3.

For the sake of completeness, we give a complete example of the conversion
process based on the trail shown in Table 4. From the linear masks, we can get
the following equations:

C0
30 ⊕ S0

0,30 ⊕ S0
1,30 = S0

2,30 · S0
3,30

C0
22 ⊕ S0

0,22 ⊕ S0
1,22 = S0

2,22 · S0
3,22

S0
0,30 ⊕ S1

0,3 ⊕ S0
3,30 = S0

1,30 · S0
2,30

S0
0,22 ⊕ S1

0,27 ⊕ S0
3,22 = S0

1,22 · S0
2,22

S0
1,22 ⊕ S1

1,21 ⊕ S0
4,22 = S0

2,22 · S0
3,22

S0
4,22 ⊕ S1

4,3 ⊕ S1
2,22 = S1

0,22 · S1
1,22

C1
29 ⊕ S1

0,29 ⊕ S1
1,29 = S1

2,29 · S1
3,29

C1
27 ⊕ S1

0,27 ⊕ S1
1,27 = S1

2,27 · S1
3,27

C1
22 ⊕ S1

0,22 ⊕ S1
1,22 = S1

2,22 · S1
3,22

C1
21 ⊕ S1

0,21 ⊕ S1
1,21 = S1

2,21 · S1
3,21

C1
3 ⊕ S1

0,3 ⊕ S1
1,3 = S1

2,3 · S1
3,3
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S1
0,29 ⊕ S2

0,2 ⊕ S1
3,29 = S1

1,29 · S1
2,29

S1
0,22 ⊕ S2

0,27 ⊕ S1
3,22 = S1

1,22 · S1
2,22

S1
0,21 ⊕ S2

0,26 ⊕ S1
3,21 = S1

1,21 · S1
2,21

S1
1,27 ⊕ S2

1,26 ⊕ S1
4,27 = S1

2,27 · S1
3,27

S1
1,3 ⊕ S2

1,2 ⊕ S1
4,3 = S1

2,3 · S1
3,3

S1
2,27 ⊕ S2

2,2 ⊕ S2
0,27 = S1

3,27 · S1
4,27

C2
26 ⊕ S2

0,26 ⊕ S2
1,26 = S2

2,26 · S2
3,26

C2
2 ⊕ S2

0,2 ⊕ S2
1,2 = S2

2,2 · S2
3,2

Adding up the above equations gives the trail equation:

C0
30 ⊕ C0

22 ⊕ C1
29 ⊕ C1

27 ⊕ C1
22 ⊕ C1

21 ⊕ C1
3 ⊕ C2

26 ⊕ C2
2

= S1
2,22 · S1

3,22 ⊕ S1
1,22 · S1

2,22 ⊕ S1
2,22 ⊕ S1

3,22 ⊕ S1
1,22

⊕ S1
2,21 · S1

3,21 ⊕ S1
1,21 · S1

2,21 ⊕ S1
3,21

⊕ S1
2,29 · S1

3,29 ⊕ S1
1,29 · S1

2,29 ⊕ S1
3,29 ⊕ S1

1,29

⊕ S0
2,30 · S0

3,30 ⊕ S0
1,30 · S0

2,30 ⊕ S0
3,30 ⊕ S0

1,30

⊕ S0
1,22 · S0

2,22

⊕ S1
0,22 · S1

1,22

⊕ S1
3,27 · S1

4,27 ⊕ S1
4,27

⊕ S2
2,26 · S2

3,26

⊕ S2
2,2 · S2

3,2 ⊕ S2
2,2

⊕ S0
3,22

⊕ S1
2,27.

The right-hand side of the equation is a quadratic Boolean function. Thus by
applying the method shown in Sect. 3, we can obtain its correlation. However,
for this special case, we know that its correlation is zero without converting it
into the disjoint quadratic form, since the variable S1

2,27 never appears in any
other term of the quadratic Boolean function. Thus, according to Corollary 1,
the correlation of C0

30 ⊕ C0
22 ⊕ C1

29 ⊕ C1
27 ⊕ C1

22 ⊕ C1
21 ⊕ C1

3 ⊕ C2
26 ⊕ C2

2 is zero.
At this point, we emphasize that Definition 5 is only used as a mental helper

to identify potentially good trails. Since in practice, we apply search tools that
produce “good” linear trails assuming the independencies of the rounds or com-
ponents within F and G. However, these assumptions are generally not true
as illustrated by the above example. Therefore, the outputs of the search tools
are not reliable. We must recompute the correlation of the full trail by using
dedicated methods which are suitable to the target under consideration. For
instance, using the method presented in Sect. 3, we automatically detect such
inconsistencies shown in the above examples.
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Table 4: An invalid trail of MiniMORUS-640 with span 3

Round Linear masks

0

α0 40400000 40400000 00000000 40400000 00000000
08000008 00400000 00000000 00000000 00000000
08000008 00200000 00000000 00000000 00400000
08000008 00200000 00000000 00000000 00400000
08000008 00200000 00000000 00000000 00400000

β0 08000008 00200000 00400000 00000000 00000008
γ0 40400000 40400000 00000000 40400000 00000000
λ0 40400000

1

α1 20600000 28400008 00400000 20600000 00000008
0c000004 08000008 00000000 00000000 00000008
0c000004 04000004 08000000 00000000 08000000
04000004 04000004 00000004 00000000 00000000
04000004 04000004 00000004 00000000 00000000

β1 04000004 04000004 00000004 00000000 00000000
γ1 28600008 28600008 00000000 20600000 00000000
λ1 28600008

2
γ2 04000004 04000004 00000004 00000000 00000000
λ2 04000004

5 Searching for Linear Approximations of MORUS

By setting the plaintext to zero message as in [2], MiniMORUS and MORUS fit
exactly into the model established in Sect. 4. Hence, linear trails of MiniMORUS
and MORUS can be searched by using any existing tools for finding linear approx-
imations. In our work, we apply the MILP-based approach, where the constraints
imposed on the linear trails are encoded into MILP models.

In practice, we must determine the number of ciphertext blocks involved in
the final linear combination of the ciphertext bits before we can set up the MILP
model. First, we theoretically show that there is no useful linear approximation
for MORUS involving only one ciphertext block. Let λ0 be a linear mask of the
key-stream generator shown in Fig. 6 for one ciphertext block. Then we have

λ0Z
0 =

⊕
j,λ0,j=1

(S0
0,j ⊕ (S0

1,j+b
′
2

⊕ S0
2,j · S0

3,j))

=
⊕

j,λ0,j=1

S0
0,j ⊕

⊕
j,λ0,j=1

(S0
1,j+b

′
2

⊕ S0
2,j · S0

3,j).

Since the variable S0
0,j does not appear in other terms, we have cor(λ0Z

0) = 0
according to Corollary 1.

Since the linear trails used in [2] span across 5 ciphertext blocks, we decide
to only search for rotational invariant trails with spans greater than 1 and less
than 6 (models for larger spans will have more variables which are difficult to
solve). The best trails we found are of span 4, and the trails for MiniMORUS-640
and MORUS-640 are listed in Table 5 and Table 6, respectively.

As an illustration, let us compute the correlation of the trail of MiniMORUS-
640 shown in Table 5. Firstly, according to the linear masks shown in Table 5,
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Table 5: A linear trail of MiniMORUS-640 with correlation −2−8

Round Linear masks

0

α0 10000000 10000000 00000000 10000000 00000000
00000002 00000000 00000000 00000000 00000000
00000002 00000000 00000000 00000000 00000000
00000002 00000000 00000000 00000000 00000000
00000002 00000000 00000000 00000000 00000000

β0 00000002 00000000 00000000 00000000 00000000
γ0 10000000 10000000 00000000 10000000 00000000
λ0 10000000

1

α1 08000200 08000202 00000002 08000200 00000000
00004001 00000002 00000002 00000000 00000000
00004001 00000001 00000000 00000000 00000002
00004001 00000001 00000000 00000000 00000002
00004001 00000001 00000000 00000000 00000002

β1 00004003 00000003 00000002 00000000 00004000
γ1 08000202 08000202 00000002 08000200 00000000
λ1 08000202

2

α2 00000100 00004100 00000000 00000100 00004000
00002000 00004000 00000000 00000000 00004000
00002000 00002000 00000000 00000000 00000000
00002000 00002000 00000000 00000000 00000000
00002000 00002000 00000000 00000000 00000000

β2 00002000 00002000 00000000 00000000 00000000
γ2 00004103 00004103 00000002 00000100 00000000
λ2 00004103

3
γ3 00002000 00002000 00000000 00000000 00000000
λ3 00002000

we write down the following equations which hold with probability 1.

C0
28 ⊕ S0

0,28 ⊕ S0
1,28 = S0

2,28 · S0
3,28

S0
0,28 ⊕ S1

0,1 ⊕ S0
3,28 = S0

1,28 · S0
2,28

C1
27 ⊕ S1

0,27 ⊕ S1
1,27 = S1

2,27 · S1
3,27

C1
9 ⊕ S1

0,9 ⊕ S1
1,9 = S1

2,9 · S1
3,9

C1
1 ⊕ S1

0,1 ⊕ S1
1,1 = S1

2,1 · S1
3,1

S1
0,27 ⊕ S2

0,0 ⊕ S1
3,27 = S1

1,27 · S1
2,27

S1
0,9 ⊕ S2

0,14 ⊕ S1
3,9 = S1

1,9 · S1
2,9

S1
1,1 ⊕ S2

1,0 ⊕ S1
4,1 = S1

2,1 · S1
3,1

S1
4,1 ⊕ S2

4,14 ⊕ S2
2,1 = S2

0,1 · S2
1,1

C2
14 ⊕ S2

0,14 ⊕ S2
1,14 = S2

2,14 · S2
3,14

C2
8 ⊕ S2

0,8 ⊕ S2
1,8 = S2

2,8 · S2
3,8

C2
1 ⊕ S2

0,1 ⊕ S2
1,1 = S2

2,1 · S2
3,1

C2
0 ⊕ S2

0,0 ⊕ S2
1,0 = S2

2,0 · S2
3,0

S2
0,8 ⊕ S3

0,13 ⊕ S2
3,8 = S2

1,8 · S2
2,8

S2
1,14 ⊕ S3

1,13 ⊕ S2
4,14 = S2

2,14 · S2
3,14
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Table 6: A linear trail of MORUS-640 with correlation 2−38, where “*4” stands
for 4 copies of the same bit string

Round Linear masks

0

α0 10000000*4 10000000*4 00000000*4 10000000*4 00000000*4
00000002*4 00000000*4 00000000*4 00000000*4 00000000*4
00000002*4 00000000*4 00000000*4 00000000*4 00000000*4
00000002*4 00000000*4 00000000*4 00000000*4 00000000*4
00000002*4 00000000*4 00000000*4 00000000*4 00000000*4

β0 00000002*4 00000000*4 00000000*4 00000000*4 00000000*4
γ0 10000000*4 10000000*4 00000000*4 10000000*4 00000000*4
λ0 10000000*4

1

α1 08000200*4 08000202*4 00000002*4 08000200*4 00000000*4
00004001*4 00000002*4 00000002*4 00000000*4 00000000*4
00004001*4 00000001*4 00000000*4 00000000*4 00000002*4
00004001*4 00000001*4 00000000*4 00000000*4 00000002*4
00004001*4 00000001*4 00000000*4 00000000*4 00000002*4

β1 00004003*4 00000003*4 00000002*4 00000000*4 00004000*4
γ1 08000202*4 08000202*4 00000002*4 08000200*4 00000000*4
λ1 08000202*4

2

α2 00000100*4 00004100*4 00000000*4 00000100*4 00004000*4
00002000*4 00004000*4 00000000*4 00000000*4 00004000*4
00002000*4 00002000*4 00000000*4 00000000*4 00000000*4
00002000*4 00002000*4 00000000*4 00000000*4 00000000*4
00002000*4 00002000*4 00000000*4 00000000*4 00000000*4

β2 00002000*4 00002000*4 00000000*4 00000000*4 00000000*4
γ2 00004103*4 00004103*4 00000002*4 00000100*4 00000000*4
λ2 00004103*4

3
γ3 00002000*4 00002000*4 00000000*4 00000000*4 00000000*4
λ3 00002000*4

C3
13 ⊕ S3

0,13 ⊕ S3
1,13 = S3

2,13 · S3
3,13

Combining the above equations, we obtain an equation whose left-hand side
involves only cipher-text bits, while the right-hand side of the equation can be
regarded as a quadratic Boolean function.

C0
28 ⊕ C1

27 ⊕ C1
9 ⊕ C1

1 ⊕ C2
14 ⊕ C2

8 ⊕ C2
1 ⊕ C2

0 ⊕ C3
13

= S0
2,28 · S0

3,28 ⊕ S0
1,28 · S0

2,28 ⊕ S0
3,28 ⊕ S0

1,28

⊕ S1
2,9 · S1

3,9 ⊕ S1
1,9 · S1

2,9 ⊕ S1
3,9 ⊕ S1

1,9

⊕ S1
2,27 · S1

3,27 ⊕ S1
1,27 · S1

2,27 ⊕ S1
3,27 ⊕ S1

1,27

⊕ S2
2,8 · S2

3,8 ⊕ S2
1,8 · S2

2,8 ⊕ S2
3,8 ⊕ S2

1,8

⊕ S2
0,1 · S2

1,1 ⊕ S2
0,1 ⊕ S2

1,1

⊕ S2
2,1 · S2

3,1 ⊕ S2
2,1

⊕ S2
2,0 · S2

3,0

⊕ S3
2,13 · S3

3,13

The right-hand side of the above equation can be transformed into its disjoint
quadratic form with the method presented in Sect. 3.

S0
2,28 · S0

3,28 ⊕ S0
1,28 · S0

2,28 ⊕ S0
3,28 ⊕ S0

1,28
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⊕ S1
2,9 · S1

3,9 ⊕ S1
1,9 · S1

2,9 ⊕ S1
3,9 ⊕ S1

1,9

⊕ S1
2,27 · S1

3,27 ⊕ S1
1,27 · S1

2,27 ⊕ S1
3,27 ⊕ S1

1,27

⊕ S2
2,8 · S2

3,8 ⊕ S2
1,8 · S2

2,8 ⊕ S2
3,8 ⊕ S2

1,8

⊕ S2
0,1 · S2

1,1 ⊕ S2
0,1 ⊕ S2

1,1

⊕ S2
2,1 · S2

3,1 ⊕ S2
2,1

⊕ S2
2,0 · S2

3,0

⊕ S3
2,13 · S3

3,13

= (S0
2,28 ⊕ 1)(S0

1,28 ⊕ S0
3,28)

⊕ (S1
2,9 ⊕ 1)(S1

1,9 ⊕ S1
3,9)

⊕ (S1
2,27 ⊕ 1)(S1

1,27 ⊕ S1
3,27)

⊕ (S2
2,8 ⊕ 1)(S2

1,8 ⊕ S2
3,8)

⊕ (S2
0,1 ⊕ 1)(S2

1,1 ⊕ 1)

⊕ S2
2,1(S2

3,1 ⊕ 1)

⊕ S2
2,0 · S2

3,0

⊕ S3
2,13 · S3

3,13 ⊕ 1

Therefore, the correlation of C0
28 ⊕C1

27 ⊕C1
9 ⊕C1

1 ⊕C2
14 ⊕C2

8 ⊕C2
1 ⊕C2

0 ⊕C3
13

is −2−8. Similarly, we can compute the correlations of the trails of MORUS-640,
MiniMORUS-1280, and MORUS-1280.

Before going any further, we would like to give some insight into the trails
of MiniMORUS to show how the linear approximations covering different parts
of the cipher eventually eliminate all internal variables, leading to approxima-
tions involving only ciphertext variables. The following discussion is similar to
the Section 4 of [2]. Several fragments are common between [2] and ours. We
recommend the reader to review the Figure 2 of [2] before reading the following
part.

We can use the variables of Ct to approximate the variables of St+1
0 , denoted

by Ct → St+1
0 . At the same time, Ct+1, St+1

0 , St+2
1 → St+1

4 . These approxi-
mations are visualized in Fig. 7a and Fig. 7b, Note that two AND operations
are involved in Fig. 7a, in which one is approximated to S3 and the other is
approximated to S1. This seems to require weight 2. This trail fragment is the
same as one of the fragments in [2], and [2] explains that there is another way of
approximating those two AND operations: one is approximated to S3 ⊕ S2 and
the other is approximated to S2 ⊕ S1. Two ways of the approximation form a
hull effect, which makes its weight 1.

Fig. 7b was also used in [2], which involves two AND operations. Those
AND operations take the same input variables, S2 and S3. Hence those two
deterministically cancel each other, which makes the weight of this fragment 0.

Basically, by combining the fragments in Fig. 7a to Fig. 7d, 1 bit of St+1
4 is

approximated from the ciphertext bits. We do the same to approximate 1 bit
of St+2

4 by sliding the steps by 1. Fig. 7e to Fig. 7h are for this approximation.
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Fig. 7: MiniMORUS linear trail fragments
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Hence by removing the step indices, Fig. 7e to Fig. 7h are exact copies of Fig. 7a
to Fig. 7d.

Note that the linear trail up to here, which has weight 6, is identical with
[2]. Ashur et al. [2] iterated this approximation twice and added 4 more approx-
imations, which makes the weight of their trail (6× 2) + 4 = 16. The core of our
improvement lies in the detection of a rather complicated new approximation
that approximates St+1

4 and St+2
4 by ciphertext bits only with weight 2. The

new approximations are shown in Fig. 7i to Fig. 7j, in which St+1
4 and St+2

4

are approximated to the 3-bit sum of St+2
0 , St+2

1 and St+2
2 , and Ct+2 are also

approximated to the 3-bit sum of St+2
0 , St+2

1 , St+2
2 . The previous work [2] found

the attack by hand thus the most of the approximations are simple such that
2 internal state bits are approximated to 1-bit of another state. thanks to the
generic model in Sect. 4, we could detect this efficient approximation

We stress that the trail fragments are only used to shed insight on the full
trails, and the verification of these trail fragments are only used to provided
additional evidence of the validity of the analysis. We never use trail fragments
to compute the correlation. The correlation must be computed on the full trail as
whole.

Remark. we would like to make a remark on the effect of the in-word rota-
tion (≪w) offsets (bi, i ∈ {0, · · · , 4}) of MORUS on the linear trails we find.
In [2], Ashur et al. assumes that the trails work for any choice of bi without
any concrete discussion of the actual effect. We randomly choose 50 different
(b0, b1, b2, b3, b4)’s and generate 50 MILP models to search for their trails. We
do observe slight variance of the correlations of the trails we find for differ-
ent choices of (b0, b1, b2, b3, b4). For example, in the case of (b0, b1, b2, b3, b4) =
(16, 31, 23, 3, 17), we identify a trail of MORUS-640 with correlation 2−34, mean-
ing that under our current cryptanalysis technique, this version is weaker than
the original design.

5.1 Distinguishing Attack and Message-recovery Attack on MORUS

So far, for the sake of simplicity, we have assumed that all message blocks are
zero. As already pointed out in [2], message variables only contribute linearly to
the trails.

Therefore, under the condition that the involved message bits are kept con-
stants, the trails we identified can be employed to mount two types of attacks.
The first one is a (partially) known-plaintext distinguishing attack, where a large
number of partially known plaintexts are encrypted, and then we can detect the
bias from the ciphertexts. The second one is a message-recovery attack, in which
we can recover some unknown plaintext bits if the same plaintext is encrypted
for many times. The scenario in which the message-recovery attack can be ap-
plied does happen in practice. For example, the same message can be encrypted
with different IVs and potentially different keys in the so-called broadcast set-
ting [20,1].
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For the message-recovery attacks, we rely on the approach proposed by Mat-
sui [22]. For example, if the correlation of the trail employed in our message-
recovery attack is 2ρ, we would encrypt a (unknown) message approximately n
times with different nonces or keys. Let Tb be the number of encryptions such
that the linear combination (derived from the trail) of the ciphertext bits is equal
to b ∈ {0, 1}. Then we guess the value of the linear combination L(M) of the
message M according to the following rule:

L(M) =


0, if T0 > T1 and ρ > 0,

1, if T0 > T1 and ρ < 0,

1, if T1 > T0 and ρ > 0,

0, if T1 > T0 and ρ < 0.

The success probability of the procedure can be estimated as
∫∞
−2√n|ρ|

1√
2π
e−x

2/2dx,

which would be greater than 84.1% if we set n > 1
4 |ρ|−2 [22]. Therefore, if the

correlation of the underlying approximation is 2−c, we need about 22c encryp-
tions to mount the attack.

On the data complexity. As pointed out by Ashur et al. [2], the data complexi-
ties of the attacks could be slightly lowered by using multiple linear trails [16,15,6].
Actually, given any trail found in this paper, we can derive another trail with
the same correlation by rotating the masks within words by a common offset. If
we assume independency, we could run q/4 (the word size) copies of the trail in
parallel on the same encrypted blocks, which would save a factor of 25 on the
data complexity for MORUS-640, and 26 for MORUS-1280.

5.2 Verification of the Attacks

To confirm the validity of our analysis, we experimentally verify the trails or
trail fragments. For MiniMORUS, we are able to fully verify the correlations.
Experiments show that the weights of the correlations of

C0
28 ⊕ C1

27 ⊕ C1
9 ⊕ C1

1 ⊕ C2
14 ⊕ C2

8 ⊕ C2
1 ⊕ C2

0 ⊕ C3
13

and
C0

16 ⊕ C1
62 ⊕ C1

29 ⊕ C1
20 ⊕ C2

33 ⊕ C2
29 ⊕ C2

11 ⊕ C2
2 ⊕ C3

15

for MiniMORUS-640 and MiniMORUS-1280 are 7.7919 and 8.1528 respectively,
which are quite close to 8, the theoretically predicted correlation.

For MORUS, the correlation of the best trails we find is 2−38, indicating
that about 276 encryptions have to be performed to verify the full trail, which
is out of our reach. Following the approach presented in [2], we decompose the
full trail into trail fragments according to Fig. 7, and every fragment is verified
independently.

For MORUS-640 and MORUS-1280, the full trails can be divided into five
trail fragments shown in Table 7 and Table 8, respectively. We independently
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verify these trail fragments and the results are given in Fig. 8a and Fig. 8b.
Again, the results fit the theoretical analysis very well.

Table 7: The five trail fragments of MORUS-640

Trail fragment Weight

χ1 C0
{124,92,60,28} ⊕ C1

{97,65,33,1} = S1
4,{97,65,33,1} ⊕ S2

1,{96,64,32,0} 7

χ2 C1
{123,91,59,27} ⊕ C2

{96,64,32,0} = S2
1,{96,64,32,0} 8

χ3 C2
{104,72,40,8} ⊕ C3

{109,77,45,13} = S3
1,{109,77,45,13} 8

χ4 C1
{105,73,41,9} ⊕ C2

{110,78,46,14} = S3
1,{109,77,45,13} ⊕ S2

4,{110,78,46,14} 7

χ5 C2
{97,65,33,1} = S1

4,{97,65,33,1} ⊕ S2
4,{110,78,46,14} 8

Table 8: The five trail fragments of MORUS-1280

Trail fragment Weight

χ1 C0
{208,144,80,16} ⊕ C1

{221,157,93,29} = S1
4,{221,157,93,29} ⊕ S2

1,{203,139,75,11} 7

χ2 C1
{254,190,126,62} ⊕ C2

{203,139,75,11} = S2
1,{203,139,75,11} 8

χ3 C2
{194,130,66,2} ⊕ C3

{207,143,79,15} = S3
1,{207,143,79,15} 8

χ4 C1
{212,148,84,20} ⊕ C2

{225,161,97,33} = S3
1,{207,143,79,15} ⊕ S2

4,{225,161,97,33} 7

χ5 C2
{221,157,93,29} = S1

4,{221,157,93,29} ⊕ S2
4,{225,161,97,33} 8

χ1 χ2 χ3 χ4 χ5

0

2

4

6

8

1

3

5

7

W
ei
gh

t
of

th
e
co
rr
el
at
io
n

Predicted Measured

(a) MORUS-640

χ1 χ2 χ3 χ4 χ5

0

2

4

6

8

1

3

5

7

Predicted Measured

(b) MORUS-1280

Fig. 8: Experimental verification of the trail fragments of MORUS-640 and
MORUS-1280

6 Searching for Trails with Smaller Spans

In [2], it is said that ciphertext correlations like those presented in previous
sections can be exploited only when the same message is encrypted enough times:
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“ ... they can be leveraged to mount an attack in the broadcast setting,
where the same message is encrypted multiple times with different IVs
and potentially different keys [21]. In particular, the broadcast setting
appears in practice in man-in-the-browser attacks against HTTPS con-
nections following the BEAST model [10]. ”

However, we find that this strong condition can be relaxed. Let us recall Fig. 4,
and consider a trail with a 4-block span. If we encrypt a set of n-block (n > 4)
messages sharing a common 4-block prefix M0 ‖M1 ‖M2 ‖M3, then our anal-
ysis presented in previous sections is completely irrelevant with those message
blocks beyond this common prefix. In fact, if we encrypt M0 ‖ M1 ‖ M2 ‖ M3

and M0 ‖ M1 ‖ M2 ‖ M3 ‖ · · · ‖ Mn−1 with the same key, nonce, and as-
sociated data, the same intermediate values and ciphertexts will be produced
within the 4-block span. Therefore, we can draw the conclusion that the correla-
tions involving k-block ciphertext can be leveraged to mount an attack if enough
messages with a k-block common prefix are encrypted with different IV ‖ key.

Note that the above condition is strictly weaker than that presented in ASI-
ACRYPT 2018 [2], and this setting does occur in practice. For example, when
ARP packets are encrypted in WPA2-AES enabled WIFI networks, they share a
16-byte common prefix (8-byte LLC header and 8-byte ARP request header) [9].
This 16-byte common prefix extends to 22 bytes if the attacker is able to con-
trol the following 6-byte MAC address, which is not difficult to carry out [33].
Therefore, trails with smaller spans are more preferable, which motivates us to
search for linear trails with smaller spans. The best trail with respect to the
number of ciphertext blocks involved (span) we find is a trail of MORUS-640
with correlation 2−79, whose span is 3 (see Table 9). However, the correlation is
too low to be used in an attack.

Table 9: A linear trail of MORUS-640 with correlation 2−79 whose span is 3

Round Linear masks

0

α0 00002520*4 00002520*4 00002020*4 00002520*4 00000000*4
0004a400*4 00000000*4 00002020*4 00000000*4 00000000*4
0004a400*4 00000000*4 00002020*4 00000000*4 00000000*4
00048420*4 00000000*4 00101000*4 00000020*4 00000020*4
00048400*4 00000020*4 00101000*4 08000000*4 00000020*4

β0 00048420*4 00000000*4 00101020*4 08000000*4 00040000*4
γ0 00002520*4 00002520*4 00002020*4 00002520*4 00000000*4
λ0 00002520*4

1

α1 00009420*4 00041000*4 00140020*4 08041000*4 00040000*4
00128400*4 00040000*4 00140400*4 08048420*4 00040000*4
00128400*4 00020000*4 00100400*4 08008420*4 00000000*4
00028000*4 00020000*4 08020000*4 08008020*4 00000000*4
08028020*4 08028020*4 08020000*4 08020020*4 00000000*4

β1 08028020*4 08028020*4 08020000*4 08020020*4 00000000*4
γ1 00041000*4 00041000*4 00041000*4 00041000*4 00000000*4
λ1 00041000*4

2
γ2 08028020*4 08028020*4 08020000*4 08020020*4 00000000*4
λ2 08028020*4
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The discussion of this section also indicates that the trails we find are superior
to the ones presented in [2] in terms of both correlation and span. Moreover,
since given a trail found in this paper, we can derive another trail with the same
correlation by rotationally shift the masks within words by a common offset,
we can identify the shifting offset minimizing the number of trailing zeros in
the masks of the last block, which may further reduce the size of the common
prefix. For example, by shifting the trail of MORUS-640-1280 shown in Table 6,
we obtain a trail shown in Table 10 requiring only 481-bit common prefix when
used in an attack.

To take it one step further, the positions of the identical message blocks
required in the attack do not need to be located at the beginning. A common
suffix works as well as a common prefix, and any four consecutive common blocks
work.

Table 10: A linear trail of MORUS-640 with correlation 2−38

Round Linear masks

0

α0 00004000*4 00004000*4 00000000*4 00004000*4 00000000*4
00080000*4 00000000*4 00000000*4 00000000*4 00000000*4
00080000*4 00000000*4 00000000*4 00000000*4 00000000*4
00080000*4 00000000*4 00000000*4 00000000*4 00000000*4
00080000*4 00000000*4 00000000*4 00000000*4 00000000*4

β0 00080000*4 00000000*4 00000000*4 00000000*4 00000000*4
γ0 00004000*4 00004000*4 00000000*4 00004000*4 00000000*4
λ0 00004000*4

1

α1 08002000*4 08082000*4 00000000*4 08082000*4 00000000*4
00040001*4 00080000*4 00000000*4 00080000*4 00000000*4
00040001*4 00040000*4 00000000*4 00000000*4 00080000*4
00040001*4 00040000*4 00000000*4 00000000*4 00080000*4
00040001*4 00040000*4 00000000*4 00000000*4 00080000*4

β1 000c0001*4 000c0000*4 00080000*4 00000000*4 00000001*4
γ1 08082000*4 08082000*4 00000000*4 08082000*4 00000000*4
λ1 08082000*4

2

α2 04000000*4 04000001*4 00000000*4 04000000*4 00000001*4
80000000*4 00000001*4 00000000*4 00000000*4 00000001*4
80000000*4 80000000*4 00000000*4 00000000*4 00000000*4
80000000*4 80000000*4 00000000*4 00000000*4 00000000*4
80000000*4 80000000*4 00000000*4 00000000*4 00000000*4

β2 80000000*4 80000000*4 00000000*4 00000000*4 00000000*4
γ2 040c0001*4 040c0001*4 00080000*4 04000000*4 00000000*4
λ2 040c0001*4

3
γ3 80000000*4 80000000*4 00000000*4 00000000*4 00000000*4
λ3 80000000*4

7 Conclusion and Open Problems

In this work, we propose a polynomial-time algorithm for computing the cor-
relation of a quadratic Boolean function based on its disjoint quadratic form.
This method is employed to determine the correlations of the linear trails of
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MiniMORUS and MORUS we find by solving MILP problems derived from a
generic helper model for MORUS-like key-stream generators.

As a result, a set of trails involving four blocks of ciphertext with correla-
tion 2−38 is identified for all versions of full MORUS, which leads to the first
distinguishing and message-recovery attacks on MORUS-640-128 and MORUS-
1280-128. We also observe that the condition specified in [2] to launch the attacks
can be relaxed, and this relaxation shows that our trails are superior to those
presented in previous work not only in terms of correlation, but also in terms of
the numbers of ciphertext blocks involved.

At this point, it is natural to ask some open questions. Firstly, is it possible
to compute the correlation of Boolean functions with degrees higher than two
efficiently? We believe that an efficient algorithm solving this problem would
have a significant effect for cryptanalysis. Secondly, can we find good trails for
MORUS which are not rotationally invariant?
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