
Adaptively Secure MPC
with Sublinear Communication Complexity

Ran Cohen1∗, abhi shelat2†, and Daniel Wichs3‡

1 Boston University and Northeastern University
rancohen@ccs.neu.edu

2 Northeastern University
abhi@neu.edu

3 Northeastern University
wichs@ccs.neu.edu

Abstract. A central challenge in the study of MPC is to balance be-
tween security guarantees, hardness assumptions, and resources required
for the protocol. In this work, we study the cost of tolerating adaptive
corruptions in MPC protocols under various corruption thresholds.
In the strongest setting, we consider adaptive corruptions of an arbitrary
number of parties (potentially all) and achieve the following results:
– A two-round secure function evaluation (SFE) protocol in the CRS

model, assuming LWE and indistinguishability obfuscation (iO). The
communication, the CRS size, and the online-computation are sub-
linear in the size of the function. The iO assumption can be replaced
by secure erasures. Previous results required either the communica-
tion or the CRS size to be polynomial in the function size.

– Under the same assumptions, we construct a “Bob-optimized” 2PC
(where Alice talks first, Bob second, and Alice learns the output).
That is, the communication complexity and total computation of
Bob are sublinear in the function size and in Alice’s input size. We
prove impossibility of “Alice-optimized” protocols.

– Assuming LWE, we bootstrap adaptively secure NIZK arguments to
achieve proof size sublinear in the circuit size of the NP-relation.

On a technical level, our results are based on laconic function evalua-
tion (LFE) (Quach, Wee, and Wichs, FOCS’18) and shed light on an
interesting duality between LFE and FHE.
Next, we analyze adaptive corruptions of all-but-one of the parties and
show a two-round SFE protocol in the threshold PKI model (where keys
of a threshold FHE scheme are pre-shared among the parties) with com-
munication complexity sublinear in the circuit size, assuming LWE and
NIZK. Finally, we consider the honest-majority setting, and show a two-
round SFE protocol with guaranteed output delivery under the same
constraints.

∗Research supported by the Northeastern University Cybersecurity and Privacy
Institute Post-doctoral fellowship, NSF grant TWC-1664445, NSF grant 1422965, and
by the NSF MACS project.
†Research supported by NSF grant TWC-1664445 and a Google Faculty fellowship.
‡Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795 and

the Alfred P. Sloan Research Fellowship.

1 Introduction

After establishing feasibility in the 1980’s [79, 52, 8, 28, 76], the rich literature of
multi-party computation (MPC) has focused on several performance aspects of
the problem. These aspects include: (a) studying the resources required in terms
of communication rounds, total amount of communication, and total amount
of computation, (b) minimizing the required complexity assumptions under the
various notions, and most importantly, (c) enhancing the notion of security, start-
ing from the simplest notion of static corruptions with semi-honest adversaries
in a stand-alone model, to sequential, and concurrent composition, to adaptive
corruptions of parties by a malicious adversary.

Recent results have considered a few of these questions simultaneously. De-
spite several decades of progress, many basic questions about feasibility and
asymptotic optimality of MPC protocols remain. The focus of this paper is to
study the price of adaptive security in light of recent round-optimal and low-
communication protocols for the static-security setting.

Recall that adaptive security [7, 20] for an MPC protocol models the real-
istic threat in which the adversary can corrupt a party during the execution of
a protocol—in particular, after seeing some of the transcript of a protocol. In
contrast, with static corruptions, the adversary must choose which parties to
corrupt before the protocol begins. In this simpler static case, the security argu-
ment relies on the fact that the inputs of the corrupted parties are known, and
thus the simulator can “work around” these parties to generate a reasonable,
and consistent transcript for the remaining parties. Indeed, adaptive security is
known to be strictly stronger than static security [20, 22].

While the idea of allowing an adversary to corrupt parties at anytime dur-
ing protocol executions seems natural, its technical formulation is captured by
obliging the simulator in the security definition to support some specific tasks.
In particular, the technical difficulty in achieving adaptive security is that the
simulator must produce a transcript for the execution before knowing which par-
ties are corrupted. In an extreme case, the protocol can already be completed,
and the adversary can then begin to corrupt all of the parties, one by one.

Two main models are considered for adaptive corruptions. In the first and
simpler one, it is assumed that parties can securely erase certain parts (and
even all) of their random tapes.4 In this setting, when simulating a party who
gets corrupted, the simulator may not be required to provide random coins
explaining all the messages previously sent by that party. In the second, erasures-
free model, there are no assumptions about the ability to erase local information.
When a party is corrupted in this adaptive security notion, the adversary can
learn all of that party’s inputs and internal random coins. In this case, a secure

4We note that in certain cases it is reasonable to erase the random coins, e.g.,
when encrypting a message it is normally fine not to store the encryption randomness;
however, is some cases one cannot erase all of its random tape, e.g., when sending a
public encryption key it is normally essential to store the decryption key. We refer the
reader to [20, 18] for further discussion on secure erasures.

2

protocol requires a simulator that, after producing the transcript, can “explain”
the transcript by generating the coins and inputs for a given party after they
are corrupted. In particular, the simulator only learns the input of that party
after the corruption (e.g., after the entire execution), and then must “explain”
the transcript it produced beforehand in a way that is consistent with the given
input.

As a result of these difficulties, most of the literature shows that achieving
adaptive security is notoriously harder than achieving static security; in some
cases there are outright impossibility results such as the case of fully homo-
morphic encryption [68], public-key encryption which cannot exist for arbitrary
messages [72], constant-round MPC in the plain model (under black-box simu-
lation) [47], MPC protocols with non-expander communication graphs [17], and
composable broadcast protocols without an honest majority [62]. All of these
lower bounds, with the exception of [47], hold also for the weaker adaptive set-
ting with secure erasures.

1.1 Full Adaptivity: Adaptive Corruptions of All the Parties

We start by considering the strongest adversary that can adaptively corrupt,
and arbitrarily control, any subset of the participating parties. We will focus on
the resources required for securely evaluating a function, balancing between the
number of rounds, the communication complexity, and the online-computational
complexity (the work performed between the first and last messages).

The feasibility of adaptively secure MPC was established in the seminal CLOS
protocol [21] in a resoundingly strong manner in the UC framework [19]. This
paper established the notion of fully adaptive security as described above, in
the stronger, erasures-free setting, when the adversary can corrupt all protocol
parties after execution. They then achieved this notion with a brilliant, yet com-
plicated protocol that worked in the common random string model.5 However,
that protocol’s round complexity depended on the circuit depth, and its com-
munication was polynomially larger than the size of the circuit being computed.
Roughly 15 years later, Canetti et al. [27] constructed a constant-round protocol
under standard assumptions, and recently Benhamouda et al. [10] constructed
a 2-round protocol assuming 2-round adaptively secure oblivious transfer (OT).
But again, both of these recent results require communication that is larger than
the circuit size, and thus come at a larger cost than recent protocols for static
corruptions that require two rounds and sublinear communication in the circuit
size [71].

Another line of recent work overcomes the communication bottleneck, but at
the cost of stronger assumptions and a large common reference string. Constant-
round [38, 24] and 2-round [46, 26] protocols for adaptively secure MPC are
known assuming indistinguishability obfuscation (iO) for circuits and one-way

5In the common random string model, all parties receive a uniformly random string
generated in a trusted setup phase. In the common reference string model, the common
string is sampled according to some pre-defined distribution.

3

functions (OWF). These protocols have sublinear communication ([38, 24] in the
semi-honest model, [46, 26] in the malicious setting6), but require a large CRS
(at least linear in the circuit size). In particular, the approach of these results
is to place an obfuscated universal circuit into the common reference string
which can compute any function of a given size. Thus, these results are more
aptly described as bounded-circuit-size adaptively secure MPC. In contrast, we
aim to study a setup model in which the reference string is smaller (preferably
independent) of the size of the evaluated function.

Lastly, recent advances in the static setting [75, 1] presented protocols with
online-computation that only depends on the function’s depth but not on its size.
In the adaptive setting, on the contrary, all known protocols require computing
the function during the online part of the computation.

We now present three results in the fully adaptive setting: a resource-efficient
MPC protocol; feasibility and infeasibility results regarding one-sided-optimized
two-party protocols; and NIZK protocols with a short proof.

Two-Round MPC with Low Communication and Online-
Computation. Thus, the first result of this paper is to present a 2-round
fully adaptively secure MPC that requires only sublinear communication (i.e.,
depends only on the inputs, outputs, and depth of the function), sublinear
online-computation, and that uses a sublinear common reference string. To
achieve our result, we combine the techniques from the recent work on Laconic
Function Evaluation (LFE) [75] (that can be instantiated under a natural
variant of the learning with errors assumption, called adaptive LWE (ALWE).7)
and explainability compilers [38]. In this sense, our answer to the main question
regarding the cost of adaptive security versus static security shows a minimal
cost to the communication complexity in the secure-erasures model, and the
addition of complexity assumptions in the erasures-free setting: namely the
need for sub-exponentially secure iO in order to implement the explainability
compiler. Table 1 summarizes the performance characteristics of prior work in
comparison to our new result.

Theorem 1 (adaptively secure MPC with sublinear communication,
informal). Assuming ALWE and secure erasures (alternatively, sub-exponential
iO), every function can be securely computed by a 2-round protocol tolerating a
malicious adversary that can adaptively corrupt all of the parties, such that the
communication complexity, the online-computation complexity, and the size of
the common reference string are sublinear in the function size.

6The protocols in [38, 24] use the CLOS compiler [21] to get malicious security.
Since the communication of previously known adaptively secure ZK protocols depends
on the NP relation (see [70, 58, 44] and references therein), the communication of the
maliciously secure protocols depended on the CRS. Our short NIZK (Theorem 3) can
be used to reduce the communication of [38, 24] in the malicious setting as well.

7The basic construction in [75] holds under the standard LWE assumption; however,
for the purpose of (semi-)malicious MPC, in which the inputs to the protocol can be
chosen adaptively, after the CRS is published, we require the stronger variant.

4

To explain the key bottleneck in achieving our result, note that almost all
known methods for succinct MPC in the static setting rely on fully homomor-
phic encryption [49].8 The general template is for parties to encrypt and broad-
cast their inputs, independently evaluate the function on said inputs, and then
jointly decrypt the output. The problem in the case of adaptive security is that
the simulator must produce a transcript for such a protocol, consisting of the
input ciphertexts and the output ciphertext, without knowing the inputs of any
parties; later after corruption, the simulator would need to provide a decryption
key that explains the ciphertexts for any given input and for the final output.
Unfortunately, Katz et al. [68] showed that this exact task is not possible for all
functions, even assuming secure erasures, since the existence of such a simulator
would imply a compact circuit that can be used to compute the function.

To get around the impossibility of adaptively secure FHE, the key insight of
our approach is to instead use a recent technique of laconic function evaluation
(LFE) [75], itself an extension of the idea of laconic OT [29]. At a high level,
LFE allows a party to publish a short digest of a function; later any party
can encrypt an input to that function such that the resulting ciphertext is still
small with respect to the size of the function. In particular, both the digest and
the ciphertext size are proportional to the depth of the function. Because the
computational cost of the decryption algorithm is proportional to evaluating the
function, LFE avoids the impossibility argument for adaptive security from [68],
while preserving the succinct communication pattern. LFE is in some sense a
dual notion to FHE. We extend on this duality in the discussion on the two-party
case below.

Our starting point follows the statically secure protocol from [75]. The idea
is for the parties to each locally compute a digest of the function f (this is done
deterministically, using a CRS for LFE parameters), and then use an MPC pro-
tocol (possibly not communication efficient) to jointly compute the encryption
of the inputs (x1, . . . , xn). The communication and online-computation required
are naturally proportional only to the encryption algorithm, which depends on
the depth of the original function but not on its size. Finally, each of the parties
can then locally decrypt the ciphertext with respect to the digest to recover the
output.

Nonetheless, for adaptive security, it is unclear how to simulate the output
ciphertext when possibly all n parties can be corrupted. To circumvent this bar-
rier, we first observe that the protocol from [75] achieves adaptive security in
the erasures model, without any additional assumptions, and then remove the
erasures using the explainability compiler technique from [38]. Loosely speaking,
an explainability compiler takes a randomized circuit C and compiles it to a cir-
cuit C̃, computing the same function, along with an additional program Explain,
such that given any input/output pair (x, y) the program Explain can produce
coins r satisfying y = C̃(x; r).

8Another approach for compact MPC is using function secret sharing (FSS) [15, 16].
This approach does not seem to support adaptive corruptions.

5

Overall, this framework achieves all of the round, communication, and online-
computation complexity goals, but it still requires a common reference string
whose size is related to the depth of the function being computed, and further
in the erasures-free setting, it relies on iO. In contrast, in the static corruption
setting, only LWE is required.

Protocol (erasures)
Security Rounds Communication Computation

Online Setup size type
Setup Assumption

MW [71] static 2 poly(`in, `out, d, κ, n) poly(|C|, κ) poly(κ, d) CRS LWE, NIZK

ABJMS [1]
QWW [75] static 2 poly(`in, `out, d, κ, n) poly(`in, `out, d, κ, n) poly(κ, d) CRS LWE

ALWE

CLOS [21] adaptive(no) O(d) |C| · poly(κ, n) poly(|C|, κ) poly(κ) CRS dense-crypto
TDP, NCE

GS [47]∗ adaptive(no) O(d) |C| · poly(κ, n) poly(|C|, κ) - -
dense-crypto
TDP, NCE
CRH

CGP [24]
DKR [38] adaptive(no) O(1) |C| · poly(κ, n) poly(|C|, κ) poly(|C|, κ) Ref OWF, iO

GP [46] adaptive(no) 2 poly(`in, `out, κ, n) poly(|C|, κ) poly(|C|, κ) Ref OWF, iO

CPV [27] adaptive(no) O(1) |C| · poly(κ, n) poly(|C|, κ) poly(κ) CRS dense-crypto
NCE

BLPV [10] adaptive(no) 2 |C| · poly(κ, n) poly(|C|, κ) poly(κ) Ref 2-round OT
adaptive

This work adaptive(no)
adaptive(yes) 2 poly(`in, `out, d, κ, n) poly(`in, `out, d, κ, n) poly(`in, `out, d, κ, n)

poly(κ, d)
Ref
CRS

ALWE, iO
ALWE

Table 1: Round, communication, and online-computation of MPC tolerating any number
of corruptions, for f : ({0, 1}`in)n → {0, 1}`out represented by a circuit C of depth d. CRS
refers to a common random string, whereas Ref refers to a common reference string whose
sampling coins are secret. (∗) The results in [47] only hold in the stand-alone setting.

Alice/Bob-Optimized protocols. Consider a two-message protocol for two
parties, where Alice sends the first message, Bob replies with the second, and
only Alice learns the output. In this setting, it is possible for one party’s total
computation (and thus also total communication) to be proportional to the size
of their input and output, while the other party “does all of the work” of securely
evaluating the function. These protocol variants are designated as “optimized for
Alice” or “optimized for Bob,” depending on which party saves the work.

In the static-corruption setting, Alice-optimized protocols can be constructed
assuming FHE, where Alice encrypts her input, Bob homomorphically evaluates
the circuit and returns the encrypted result. Quach et al. [75] showed that Bob-
optimized protocols can be constructed from LFE, where Alice compresses the
function with her input hard-wired, sends the digest to Bob who replies with
the encryption of his input. Therefore, in the static setting, FHE and LFE are
dual notions with respect to the work-load of the computation. We next show

6

that in the adaptive setting this duality breaks. On the one hand, we extend
the impossibility result of FHE [68] to rule out adaptively secure 2-round Alice-
optimized protocols (even assuming secure erasures). On the other hand, we
construct an adaptively secure, semi-malicious,9 Bob-optimized protocol from
LFE and explainability compilers (alternatively, just from LFE assuming secure
erasures). We note that any 2-round Bob-optimized protocol can be converted
into a 3-round Alice-optimized protocol, which is the best one could hope for.
Table 2 summarizes our results vis a vis prior work.

Theorem 2 (Alice/Bob-optimized protocols, informal).

1. Assuming ALWE and secure erasures (alternatively, sub-exponential iO),
there exists an adaptively secure semi-malicious 2PC, where the total com-
munication and Bob’s computation are sublinear in the function size and in
Alice’s input size.

2. There exists 2-party functions such that in any adaptively secure, semi-
honest, 2-round protocol realizing them, Bob’s message must grow linearly
in his input, even assuming secure erasures.

Approach Security CRS Communication Computation Assumptions
(erasures) Alice Bob Alice Bob

GC [79] static - `A |f | |f | |f | static OT
LOT [29] static O(1) O(1) |f | |f | |f | DDH, etc.
FHE [49] static - `A `out `A + `out |f | LWE
LFE [75] static O(1) O(1) `B + `out |f | `B + `out ALWE

GC [27]
equivocal adaptive (no) - `A |f | |f | |f | adaptive OT

This work
adaptive (yes) O(1) O(1) `B + `out |f | `B + `out ALWE
adaptive (no) `B + `out O(1) `B + `out |f | `B + `out ALWE and iO
adaptive (yes) |f | |f | `out + o(`B) |f | |f | impossible

Table 2: Comparison of two-message semi-honest protocols for f : {0, 1}`A ×
{0, 1}`B → {0, 1}`out . Alice talks first, Bob the second, and only Alice learns the
output. For simplicity, multiplicative factors that are polynomial in the security
parameter κ or the circuit depth d are suppressed.

The key idea behind our Bob-optimized protocol is to use the same LFE
approach put forth in [75] for static security, and strengthen it to tolerate adap-
tive corruptions. To support an adaptive corruption of Alice, the simulator will
need to produce an equivocal first message, i.e., to simulate the digest without
knowing the input value of Alice, and upon a later corruption of Alice generate

9In the semi-malicious setting, the adversary follows the protocol as in the semi-
honest case, but he can choose arbitrary random coins for corrupted parties.

7

appropriate random coins explaining the message. Our first technical contribu-
tion is to create an equivocal version of the LFE scheme of [75]. Similarly, to
support an adaptive corruption of Bob, the simulator should be able to generate
an equivocal second message, i.e., generate the ciphertext without knowing the
input of Bob, and upon a later corruption of Bob provide appropriate random
coins. This can be handled either assuming secure erasures, or using explainabil-
ity compilers.

Succinct Adaptively Secure NIZK. Next, we consider the problem of con-
structing an adaptively secure non-interactive zero-knowledge protocol (NIZK)
that is “succinct,” i.e., the size of the proof and of the common reference string
should be smaller than the size of the circuit relation. The best we can hope
for is for the proof to be the size of the witness (as otherwise, the lower-bound
of Gentry and Wichs [50] requires a non-standard complexity assumption). The
first adaptively secure NIZK was constructed by Groth et al. [56], however it
was not succinct. Gentry [49] and later Gentry et al. [51] combined FHE with a
standard NIZK system to construct such schemes that are secure against static
corruptions, and as observed in [51] also against adaptive corruptions in the
secure-erasures setting. However, these schemes are not secure against adaptive
corruptions in the erasure-free setting. In particular, they run into the FHE
bottleneck for adaptive security by Katz et al. [68] described above.

Our main technique to overcome this lower bound is to use homomorphic
trapdoor functions (HTDF) [53]. HTDF schemes are a primitive that conceptu-
ally unites homomorphic encryption and homomorphic signatures. In our usage,
HTDF can be thought of as fully homomorphic commitment schemes which are
equivocal (hence, statistically hiding), where a trapdoor can be used to open any
commitment to any desired value. Using HTDF, the prover can commit to the
witness (instead of encrypting it), evaluate the circuit over the commitments,
and use adaptive but non-succinct NIZK (e.g., from [56]) to prove knowledge of
the witness and that the result commits to 1. The verifier evaluates the circuits
over the committed witness, and verifies the NIZK to ensure that the result is a
commitment to 1. A summary of our results in comparison to prior work appears
in Table 3.

Theorem 3 (short NIZK, informal). Assuming LWE, if there exists adap-
tively secure NIZK arguments for NP, there exists adaptively secure NIZK argu-
ments for NP with proof size sublinear in the circuit size of the NP relation.

1.2 Adaptive Corruptions of a Strict Subset of the parties

Recall that the notion of fully adaptive security allows the adversary to corrupt
all of the parties in the execution—in which case the protocol offers no privacy
of inputs. A criticism of this notion is that it may be too strong for certain
applications. In fact, the motivation behind this strong notion arises mainly
from its application to composition of protocols. Namely, in a larger protocol
that involves more parties, participants of a sub-protocol may eventually all

8

Protocol (erasures)
Security CRS size Proof size Assumptions

Groth [55] static |C| · poly(κ) |C| · poly(κ) TDP
Groth [55] static |C| · polylog(κ) + poly(κ) |C| · poly(κ) Naccache-Stern
GOS [56] adaptive (no) poly(κ) |C| · poly(κ) pairing based
Gentry [49] adaptive (yes) poly(κ) |w| · poly(κ, d) LWE, NIZK
GGIPSS [51] adaptive (yes) poly(κ) |w|+ poly(κ, d) LWE, NIZK
This work adaptive (no) poly(κ) |w| · poly(κ, d) LWE, NIZK

Table 3: NIZK arguments with security parameter κ, for circuit size |C|, depth
d, and witness size |w|.

become corrupted, and thus security of the larger protocol will depend on the
fully adaptive security of the subprotocol.

It is equally justifiable, however, to consider other protocol-design tasks in
which the protocol needs only withstand a weaker adversary who can corrupt
either all-but-one of the participants, or—weaker still—only a minority of the
players. We next consider adaptive security in these two settings.

All-but-one Corruptions. When considering adaptive security for all-but-
one corruptions, Ishai et al. [63] constructed a constant-round, information-
theoretically secure protocol in the OT-hybrid model. Garg and Sahai [47]
showed an elegant way to instantiate the trusted setup required for [63] using
non-black-box techniques and thus constructed a constant-round MPC protocol
in the plain model, under standard cryptographic assumptions. The communi-
cation in both of these protocols is super-linear in the circuit size.

In contrast, for the weaker notion of static security, Asharov et al. [3] pre-
sented a 2-round protocol with sublinear communication, albeit in the threshold-
PKI model. The threshold-PKI model is a setup in which all the participants
of the protocol are privately given individualized key shares corresponding to
a public key. A single-round protocol for threshold PKI was also given in [3],
yielding a 3-round protocol in a standard CRS setup. Mukherjee and Wichs [71]
removed the need for this extra round, thereby presented a 2-round MPC with
sublinear communication in the common random string model.

We can thus pose our main question regarding the cost of adaptive security
for communication-optimal protocols. Recently, Damgård et al. [43] constructed
an adaptively secure 3-round MPC protocol with sublinear communication com-
plexity in the threshold-PKI model assuming LWE. Their main idea is to use a
special threshold FHE scheme that enables equivocating encryptions of 0 to en-
cryptions of 1. Initially, the parties broadcast encryptions of their inputs. Next,
each party locally evaluates the circuit, and the parties re-randomize the evalu-
ated ciphertext in the second round by broadcasting (special) encryptions of 0.
The third round is a single-round threshold decryption protocol.

9

To simulate this protocol, the simulator uses the equivocal mode of the public
key. This way, all ciphertexts in the first round are simulated as encryptions of 0.
After extracting corrupted parties’ inputs, and obtaining the output value, the
simulator uses the re-randomizing round to carefully add non-zero encryptions,
and force the joint ciphertext to be an encryption of the output. Finally, the
threshold decryption protocol is simulated. We note that using the approach of
[43] (which is based on [41]), the re-randomization round seems to be inherent,
and so it is unclear how to obtain optimal two rounds using this technique.

Our result in this setting is to construct an adaptively secure 2-round MPC
assuming non-committing encryption (NCE) and threshold equivocal FHE in
the threshold-PKI setup model. The setup assumption can be instantiated using
the recent 2-round protocol of [10], assuming 2-round adaptively secure OT,
resulting in a 4-round variant in the CRS model. All of the necessary primitives
can be instantiated from LWE in the semi-malicious setting, and security in the
malicious case follows using NIZK. Table 4 summarizes the prior work and our
contribution in this model.

Theorem 4 (all-but-one corruptions, informal). Assuming LWE and
adaptively secure NIZK, every function can be securely computed by a 2-round
protocol in the threshold-PKI model tolerating a malicious adversary that can
adaptively corrupt all-but-one of the parties such that the communication com-
plexity is sublinear in the function size.

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [3] static 3
2 poly(`in, `out, d, κ, n) LWE, NIZK CRS

threshold PKI

MW [71] static 2 poly(`in, `out, d, κ, n) LWE, NIZK CRS

IPS [63] adaptive O(1) |C|+ poly(d, log |C|, κ, n) OT-hybrid -

GS [47] adaptive O(1) |C|+ poly(d, log |C|, κ, n) dense crypto
CRH, TDP, NCE -

DPR [43] adaptive 3 poly(`in, `out, d, κ, n) LWE, NIZK threshold PKI

This work adaptive 4
2 poly(`in, `out, d, κ, n) LWE, NIZK CRS

threshold PKI

Table 4: Comparison of maliciously secure MPC for f : ({0, 1}`in)n → {0, 1}`out

represented by a circuit C of depth d, tolerating n−1 corruptions. (∗) The results
in [47] only hold in the stand-alone model.

Our protocol follows the template of [3], where every party encrypts his input
in the first round, locally evaluates the circuit over the ciphertexts, uses its key-
share to partially decrypt the result, and broadcasts the decrypted share (some
additional “smudging” noise is sometimes required to protect the decryption
share). The technical challenges are: (1) the ciphertexts in the first round must

10

be created in an equivocal way, and (2) the simulation strategy used for the
threshold decryption in [3] (and similarly in [71]) is inherently static, and does
not translate in a straightforward way to the adaptive setting.

We overcome the first challenge by constructing a novel threshold equivocal
FHE scheme. The scheme is equipped with an equivocal key-generation algo-
rithm. All ciphertexts encrypted in this mode are “meaningless” and carry no
information about the plaintext; a trapdoor can be used to equivocate any ci-
phertext to any message. We instantiate this FHE scheme using the dual-mode
HTDF scheme of Gorbunov et al. [53] that can generate the homomorphic trap-
door functions in an extractable mode, corresponding to the standard (meaning-
ful) mode of the FHE, and an equivocal mode, corresponding to the meaningless
mode.

We proceed to explain the second challenge. As observed in [3, 71], the thresh-
old decryption protocol may leak some information about the shares of the secret
key, and the simulator for the decryption protocol can be used to protect ex-
actly one party. In the static setting, when the set of corrupted parties is known
ahead of time, the simulator can choose one of the honest parties Ph as a special
party for simulating the threshold decryption. This approach does not work in
the adaptive setting since the party Ph may get corrupted after simulating the
decryption protocol. The simulator cannot know in advance which party will be
the last to remain honest. For this reason, we use a different simulation strategy
which allows the simulator to “correct” his choice of the party that is simulated
as honest for the decryption protocol. Technically, this is done by having each
party send shares of zero to each other party over a secure channel (that can
be instantiated via NCE). These shares are used to hide the partial decryptions
without changing their values. Since shares exchanged between pairs of honest
parties remain hidden from the eyes of the adversary, the simulator has more
freedom to replace the special party Ph upon corruption, by another honest
party, even after simulating the decryption protocol.

Thus, as it stands, the cost of adaptive security with respect to the best
statically secure protocols is either the threshold-PKI setup assumption, or the
requirement of 2 additional rounds. Removing either of these costs remains an
interesting open question.

Honest-Majority Setting. In the honest-majority setting, it is possible to
guarantee output delivery to all honest parties. Damgård and Ishai [39] demon-
strated the feasibility of constructing adaptively secure protocols that use a
constant number of rounds and only require one-way functions. However, the
communication of their protocol is super-linear in the circuit size.

In the static-corruption setting, Asharov et al. [3] constructed the first proto-
col with sublinear communication using threshold FHE; their protocol requires 4
rounds in the threshold-PKI model and 5 rounds in the CRS model. Gordon et al.
[54] reduced the round complexity to 2 in the threshold-PKI model or 3 in the
CRS model. Recently, Ananth et al. [2] showed a 3-round protocol in the plain
model with communication polynomial in the circuit size, and Badrinarayanan

11

et al. [4] showed a similar result with sublinear communication. Moreover, this
round complexity is tight because it is known that 2-round fair protocols are
impossible in the CRS model [48, 54, 74].10

Our result in this setting is to construct an adaptively secure analogue of [3,
4]. In particular, we construct a 2-round adaptively secure MPC with guaranteed
output delivery and the same communication complexity as in the static case,
assuming NCE and threshold equivocal FHE in the threshold-PKI model in the
semi-malicious setting (all assumptions can be based on LWE). Security in the
malicious case follows using NIZK. We can compile our 2-round protocol into a
constant-round protocol in the plain with the same communication complexity
by computing the threshold-PKI setup using the protocol of Damgård and Ishai
[39].

Theorem 5 (honest majority, informal). Assuming LWE and adaptively
secure NIZK, every function can be securely computed with guaranteed output
delivery by a 2-round protocol in the threshold-PKI model tolerating a malicious
adversary that can adaptively corrupt a minority of the parties such that the
communication complexity is sublinear in the function size.

The 2-round protocol is based on the protocol from the all-but-one case, de-
scribed in Section 1.2. The challenge lies in overcoming aborting parties to guar-
antee output delivery. We combine techniques from the threshold FHE of [54]
that required n/2 decryption shares to reconstruct the output into our thresh-
old equivocal FHE. The main idea is to share the decryption key using Shamir’s
secret sharing instead of additive secret sharing. Both Shamir’s reconstruction
and the decryption algorithm consist of linear operations, which make them com-
patible with each other. As observed by Gordon et al. [54] (see also [14]), the
problem with a naïve use of this technique is that the “smudging noise” (used
to protect partial decryptions from leakage) is multiplied by the Lagrange coef-
ficients, which may cause an incorrect decryption. Following [54], we have each
party secret shares his smudging noise using Shamir’s scheme, in a way that is
compatible with the reconstruction procedure. We show that this technique can
support adaptive corruptions.

To conclude, in the threshold-PKI model, the price of adaptive security is
the same as of static security in terms of assumptions, number of rounds, and
communication complexity. In the plain model, the cost is an additional constant
number of rounds. Table 5 summarizes prior work and our results.

1.3 Additional Related Work

Adaptive security tolerating an arbitrary number of corruptions has been con-
sidered in various models, including protocols in the CRS model [21, 27, 10], the
sunspot model [23], the key-registration model [6], the temper-proof hardware

10We emphasize that the lower bounds hold given a public-coin setup, where all
parties get the same information, and does not hold given a private-coin setup such as
threshold PKI.

12

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [3] static 5
4 poly(`in, `out, d, κ, n) LWE, NIZK CRS

threshold PKI

GLS [54] static 3
2 poly(`in, `out, d, κ, n) LWE, NIZK CRS

threshold PKI

ACGJ [2] static 3 |C| · poly(κ, n) PKE and zaps -

BJMS [4] static 3
2 poly(`in, `out, d, κ, n) dense crypto

LWE, zaps,
-
threshold PKI

DI [39] adaptive O(1) |C| · poly(κ, n) OWF -

This work adaptive
O(1)
2 poly(`in, `out, d, κ, n) LWE, NIZK -

threshold PKI

Table 5: Comparison of maliciously secure MPC for f : ({0, 1}`in)n → {0, 1}`out

represented by a circuit C of depth d, in the honest-majority setting.

model [61], the super-polynomial simulation model [5, 59], and more generally,
based on UC-puzzles [37, 78]. All of these protocols require super-linear commu-
nication complexity.

Adaptive security in the secure-erasures model was considered in [7, 69, 64,
9, 73, 42, 60], and in the erasures-free model tolerating all-but-one corruptions
in [66, 63, 57, 43] as well as in the honest-majority setting [36, 41, 39]. With the
exception of [43], all of these protocols also require super-linear communication
complexity.

Garay et al. [45] considered information-theoretic MPC in the client-server
setting, where a constant number of clients uses n servers that assist with the
computation, and studied sublinear communication in the number of servers.
They gave a complete characterization for semi-honest security with static cor-
ruptions and adaptive corruptions with or without erasures.

In the static setting, MPC with sublinear communication complexity over
eventual-delivery asynchronous channels was constructed in [32]. We conjecture
that our techniques can also be applied in the asynchronous setting to obtain
adaptive security with low communication.

We note that since the protocol of Garg and Polychroniadou [46] has low
communication complexity, and its CRS size depends on the circuit size, it is
possible to use a more compact representation of the function, e.g., by a Turing
machine (TM) (or a RAM program as considered in [26]), and obfuscate it
using iO for Turing machines. Nonetheless, the solution provided in this paper
is different in several qualitative aspects. First, to make the CRS independent
of the computation at hand, it is preferred to obfuscate a universal TM, which
receives the description of the concrete TM on its input tape; while iO for TM
with bounded inputs exists under the same assumptions as iO for circuits [11,
25, 12], iO for TM with unbounded inputs is only known under the stronger
assumptions of public-coin differing-inputs obfuscation [65]. Second, it is not
clear how to replace the iO for TM assumption by secure erasures. Third, the

13

computation may require a large auxiliary information, e.g., access to a large
database, whose description is independent of the TM; this may result with
a large description of the function. In our solution, the obfuscated circuit is
sublinear in the computation size even when a large auxiliary information is
used.

1.4 Open Questions

Our main question is to study the price of adaptive security. Dramatic improve-
ments in the answer to this question have emerged over the past 15 years, and
this paper is able to establish almost zero cost in terms of round or communica-
tion. Our results, however, leave the following questions as future work.

– Reducing setup assumptions. Our results for fully adaptive, 2-round,
protocols without erasures require a common reference string. Are there fully
adaptively secure protocols with sublinear communication complexity in the
common random string (even with super-constant number of rounds)?

– Reducing hardness assumptions. Are there fully adaptively secure pro-
tocols with sublinear communication without assuming secure erasures or
explainability compilers/iO?

– Improving setup assumptions/round complexity for all-but-one.
Our optimal-round protocol requires a pre-distribution of the FHE keys.
We show a 4-round protocol in the CRS model (equivalently, in the plain
model for semi-honest). Are there 2 or 3 round protocols with sublinear
communication in the CRS model to match the results for static adversaries?

Paper Organization

In §3, we present our results on fully adaptive security, and in §4.1 and §4.2, we
present our results on Bob- and Alice-optimized protocols. In §5, we consider the
all-but-one corruption case, and in §6, the honest-majority case. We refer the
reader to the full version of the paper [35] for formal definitions and complete
proofs.

2 Preliminaries

Basic notations. For n ∈ N let [n] = {1, · · · , n}. We denote by κ the secu-
rity parameter. Let poly denote the set all positive polynomials and let PPT
denote a probabilistic algorithm that runs in strictly polynomial time. A func-
tion ν : N → R is negligible if ν(κ) < 1/p(κ) for every p ∈ poly and suf-
ficiently large κ. Two distribution ensembles X = {X(a, κ)}a∈{0,1}∗,κ∈N and
Y = {Y (a, κ)}a∈{0,1}∗,κ∈N are computationally indistinguishable (denoted X c≡ Y)
if no ppt algorithm can tell the difference between them except with negligible
probability (in κ).

14

Cryptographic primitives. In this work, we consider secure protocols in various
security settings that require different cryptographic primitives. We present for-
mal definitions for all primitives in the full version [35]. An informal description
of every primitive is given before it is used in the main body.

Security model. We present our results in the UC framework. We refer the reader
to [19] for a detailed description of the framework.

In our secure function evaluation protocols, we will consider two security
notions. In the honest-majority setting, we will consider security with guaranteed
output delivery [33], informally meaning that all honest parties will receive the
correct output from the computation. In general, when an honest majority is
not assumed this cannot be achieved [31], and the standard requirement is for
security with abort, informally meaning that the adversary has the capability to
first learn the output from the computation and later force all honest parties to
output ⊥.

Guaranteed output delivery and security with abort are not to be confused
with guaranteed termination, which means that the honest parties actually finish
the protocol. We emphasize that UC protocols cannot provide guaranteed ter-
mination since the adversary has full control over the communication channels,
and he can simply “hang” the computation. Therefore, following the convention
of Canetti et al. [21], we exclude trivial protocols, and require that the prop-
erties of guaranteed output delivery or security with abort will hold when the
environment provides sufficiently many activations to the parties, and the ad-
versary delivers all messages.11 In particular, unlike the stand-alone model, in
the UC model even when a protocol guarantees output delivery, we allow the
adversary to learn the output from the computation while the honest parties
do not; however, if an honest party terminates it is guaranteed to receive the
output. An alternative, is to work in the Fsync-hybrid model [31] or to consider
the framework of [67], which ensures guaranteed termination regardless of the
adversary’s actions (but, still, as long as the environment provides sufficiently
many activations to the parties).

3 Sublinear Communication in the Fully Adaptive
Setting

In this section, we consider the fully adaptive setting (where the adversary can
corrupt all parties) and construct two-round secure protocols with sublinear
communication and online-computation complexity (in the circuit size). Our
starting point is the protocol of Quach et al. [75] that is based on laconic function
evaluation (LFE).

11Other properties such as privacy and independence of inputs are always required
to hold.

15

3.1 Cryptographic Primitives used in the Protocol

Laconic function evaluation. Informally, an LFE scheme consists of 4 algorithms.
The CRS generation algorithm generates a common random string given the se-
curity parameter and function parameters (e.g., function depth and input length)
crs ← LFE.crsGen(1κ, params). The compression algorithm produces a small di-
gest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm
encrypts the input based on the digest ct ← LFE.Enc(crs, digestC , x). The de-
cryption algorithm decrypts the ciphertext using the random coins used in the
compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that
y = C(x), and secure, meaning that the ciphertext can be simulated given the
output value y without knowing the input x. LFE can be constructed with the
function-hiding property, which ensures that the digest can be simulated based on
the function parameters without knowing the function itself. If function hiding
is not required (as is the case in this section) the compression algorithm can
be made deterministic. We consider the “adaptive” version of LFE, where the
inputs to the computation can be chosen after the CRS has been sampled. Quach
et al. [75] constructed LFE schemes satisfying this property assuming adaptive
LWE.

Explainability compilers. Informally, an explainability compiler takes as input
a description of a randomized algorithm Alg, and outputs two algorithms: Ãlg
and Explain. The first algorithm Ãlg computes the same functionality as Alg.
The second algorithm Explain takes an input/output pair (x, y) and produces
random coins r such that y = Ãlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [38] constructed
explainability compilers with selective security, where the challenge input is
selected independently of the compiled circuit. Explainability compilers with
adaptive security, where the challenge input is selected based on the compiled
circuit follows via complexity leveraging [13] assuming iO and OWF with sub-
exponential security (see also [24]). Looking ahead, to support adaptive inputs
from the environment, our protocol requires the latter variant.

3.2 Adaptive Security with Sublinear Communication:
Secure-Erasures Setting

We will show that assuming LFE every function can be securely realized in
the common random string model with secure erasures, by a 2-round protocol
tolerating an arbitrary number of adaptive corruptions with sublinear commu-
nication, online-computation, and CRS size. In Section 3.3, we will show how to
replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [75, Thm.
6.2] in the common random string model, that is secure against n − 1 static

16

corruptions and achieves sublinear communication and online-computation as-
suming the existence of LFE. The protocol from [75] is specified in a hy-
brid model with an ideally secure computation (with abort) of the function
LFE.Enc (i.e., the FLFE.Enc

sfe-abort-hybrid model). That is, the ideal functionality re-
ceives (crs, digestf , xi, ri) from each party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn;⊕i∈[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality
outputs ⊥.

Given a circuit Cf computing f , the protocol of [75] is defined as follows:

– The common random string is computed as crs← LFE.crsGen(1κ, f.params).
– Upon receiving (input, sid, xi), every party Pi computes digestf =

LFE.Compress(crs, Cf), samples a uniformly random ri ← {0, 1}∗, and in-
vokes the ideal functionality FLFE.Enc

sfe-abort with (input, sid, (crs, digestf , xi, ri)).
– Upon receiving (output, sid, ct) from the ideal functionality, party Pi checks

that ct 6= ⊥ (otherwise, Pi outputs (output, sid,⊥)), computes y =
LFE.Dec(crs, Cf , ct), and outputs (output, sid, y).

Proving security of the protocol against a static adversary corrupting all-but-one
of the parties is straightforward. Namely, by definition of LFE schemes, the simu-
lator can simulate the ciphertext ct based on the output y, and without knowing
the input values, as ct ← Simlfe(crs, Cf , digestf , y). Furthermore, by the prop-
erties of LFE, the size of the circuit computing LFE.Enc is poly(κ, `in, `out, d, n).
By instantiating the ideal functionality using a statically secure 2-round protocol
(e.g., the one from [71]), Quach et al. [75] achieved a statically secure protocol
with sublinear communication and online-computational complexity.

A closer look at the protocol of [75] shows that it remains secure even facing
adaptive corruptions of all-but-one of the parties, since a single honest party
suffices to keep the randomness used for LFE.Enc hidden from the adversary.
Furthermore, under the additional assumption of secure erasures, each party
can erase his random coins ri immediately after invoking FLFE.Enc

sfe-abort, and the pro-
tocol can satisfy adaptive corruptions of all the parties. By instantiating the
functionality FLFE.Enc

sfe-abort with the 2-round adaptively secure MPC from [10], we
obtain the following theorem.

Theorem 6 (Theorem 1, secure-erasures version, restated). Assume the
existence of LFE schemes for P/poly, of 2-round adaptively and maliciously se-
cure OT, and of secure erasures, and let f : ({0, 1}`in)n → {0, 1}`out be an n-party
function of depth d.

Then, Ffsfe-abort can be UC-realized tolerating a malicious, adaptive PPT ad-
versary by a 2-round protocol in the common random string model. The size of
the common random string is poly(κ, d), whereas the communication and online-
computational complexity of the protocol are poly(κ, `in, `out, d, n).

Note that following [75, 10], the assumptions in Theorem 6 hold under the
adaptive LWE assumption.

17

3.3 Adaptive Security with Sublinear Communication:
Erasures-Free Setting

In the erasures-free setting, it is unclear how to simulate the output ciphertext,
and later upon learning all of the inputs values of the parties, explain the ran-
dom coins that are used to generate it. We get around this barrier by using
explainability compilers.

Two-Round Protocol Assuming Adaptive Explainability Compilers.
We consider explainability compilers with adaptive security (where the challenge
ciphertext is dynamically chosen) that can be realized by sub-exponentially se-
cure iO and OWF. To define the common reference string for the protocol, we
define the distribution Dlfe(params) that is parametrized by an LFE scheme
and by the parameters of the function to be computed params. The distri-
bution Dlfe computes crs ← LFE.crsGen(1κ, params) and (˜LFE.Enc,Explain) ←
Comp(1κ, LFE.Enc), and outputs the reference string (crs, ˜LFE.Enc).

We would like to define the protocol in the ˜LFE.Enc-hybrid model; how-
ever, the function ˜LFE.Enc is only given in the CRS and is not known be-
fore the protocol begins. To get around this technicality, we define the func-
tion fC((C1, x1, r1), . . . , (Cn, xn, rn)) that receives a circuit Ci, a value xi,
and random coins ri from each party, and outputs C1(x1, . . . , xn;⊕ri) in case
C1 = . . . = Cn, or ⊥ otherwise.

Protocol πfull

– Common Input: An LFE scheme and a circuit Cf computing the function f .
– Hybrid model: The parties have access to the CRS functionality FDlfe(f.params)

crs

that outputs a crs for the LFE scheme and a circuit ˜LFE.Enc, and to the SFE
functionality FfC

sfe-abort.
– The Protocol:

1. Upon receiving (input, sid, xi), every party Pi invokes FDlfe(f.params)
crs to

get (crs, ˜LFE.Enc), computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri ← {0, 1}∗, and invokes FfC

sfe-abort with
(input, sid, (˜LFE.Enc, (crs, digestf , xi), ri)).

2. Upon receiving ct from the ideal functionality, party Pi checks that ct 6= ⊥ (if
so Pi outputs (output, sid,⊥)), computes y = LFE.Dec(crs, Cf , ct), and outputs
(output, sid, y).

Fig. 1: Two-round SFE with adaptive, malicious security

Theorem 7 (Theorem 1, erasures-free version, restated). Assume the
existence of LFE schemes for P/poly, of explainability compilers with adaptive
security for P/poly, and of 2-round adaptively and maliciously secure OT, and
let f : ({0, 1}`in)n → {0, 1}`out be a deterministic n-party function of depth d.

18

Then, Ffsfe-abort can be UC-realized in the FDlfe
crs -hybrid model tolerating a ma-

licious, adaptive PPT adversary by a 2-round protocol. The size of the common
reference string, the communication complexity, and online-computational com-
plexity of the protocol are poly(κ, `in, `out, d, n).

The proof of the theorem follows from Lemma 1 (proven in the full version [35])
by instantiating the functionality FfC

sfe-abort, that is used to compute ˜LFE.Enc,
using the 2-round protocol from [10] that requires 2-round adaptively and mali-
ciously secure OT.

Lemma 1. Assume the existence of LFE schemes for P/poly, and of explain-
ability compilers with adaptive security for P/poly, and let f be a deterministic
n-party function. Then, the protocol πfull UC-realizes Ffsfe-abort tolerating a mali-
cious, adaptive PPT adversary in the (FDlfe

crs ,F
fC

sfe-abort)-hybrid model.

4 Adaptively Secure Alice/Bob-Optimized Protocols

In this section, we consider 2-message protocols between Alice and Bob, with
respective inputs xA ∈ {0, 1}`A and xB ∈ {0, 1}`B , where only Alice learns the
output y = f(xA, xB). We say that a protocol is “Alice-optimized” if Alice’s
computation and the total communication of the protocol are proportional to
|xA| + |y|, while the computation complexity of Bob is proportional to |f |. We
say that a protocol is “Bob-optimized” if Bob’s computation and the total com-
munication are proportional to |xB |+ |y|, while the computation complexity of
Alice is proportional to |f |.

There exist insecure protocols which are Alice-optimized, where Alice sends
her input to Bob who computes the function and returns the output to Alice.
Similarly, there exist insecure protocols which are Bob-optimized, where Bob
sends his input to Alice when she asks for it, and Alice computes the function
on her own.

Assuming FHE [49], there exist statically secure Alice-optimized protocols,
where Alice sends her encrypted input to Bob who homomorphically evaluates
the function and returns the encrypted output to Alice. Alice’s computation
and the total communication of the protocol are (|xA|+ |y|) · poly(κ). Assuming
function-hiding LFE [75], there exist statically secure Bob-optimized protocols,
where Alice sends digest ← LFE.Compress(crs, fxA

(·)) to Bob, who replies with
his encrypted input ct ← LFE.Enc(digest, xB), and finally Alice recovers the
output. Bob’s computation and the total communication of the protocol are
(|xB |+ |y|) · poly(κ, d), where d is the depth of the function f .

The question we consider is whether there exist adaptively secure protocols
which are Alice-optimized or Bob-optimized.

4.1 Adaptively Secure Bob-Optimized Protocol

The elegant protocol from [75] is secure in the common random string model
tolerating a static corruption of one of the parties by a semi-malicious adver-

19

sary (that can choose arbitrary random coins for the corrupted party, but acts
honestly otherwise).

Adjusting this protocol to the adaptive setting requires overcoming a few
obstacles. Namely, the simulator should be able to generate an equivocal first
message, i.e., to simulate the digest without knowing the input value of Alice, and
upon a later corruption of Alice generate appropriate random coins explaining
the message. Similarly, the simulator should be able to generate an equivocal
second message, i.e., generate the ciphertext without knowing the input of Bob,
and upon a later corruption of Bob provide appropriate random coins.

To support an adaptive corruption of Alice, we enhance the LFE scheme to
support an equivocal mode (see Section 4.1). In this mode, the CRS is generated
along with a trapdoor information. The trapdoor can be used to explain a sim-
ulated digest as a compression of any circuit with the appropriate parameters.
Similarly to Section 3, to support an adaptive corruption of Bob, we can use
either secure erasures or explainability compilers.

Theorem 8 (Part 1 of Theorem 2, restated). Assume the existence of
equivocal, function-hiding LFE schemes for P/poly and of explainability compil-
ers with adaptive security for P/poly, and let f : {0, 1}`A × {0, 1}`B → {0, 1}`out

be a deterministic two-party function computable by a depth-d circuit.
Then, Ffsfe can be UC-realized tolerating a semi-malicious, adaptive PPT

adversary by a 2-message protocol in the common reference string model with
secure channels. The size of the common reference string, the communica-
tion complexity (of both parties), and the computational complexity of Bob are
(`B + `out) · poly(κ, d).

The proof of Theorem 8 follows from Lemma 3 below. In the secure-erasures
setting, we can remove the explainability compilers assumption, and get the
following corollary.

Corollary 1. Assume the existence of equivocal, function-hiding LFE schemes
for P/poly and let f be a two-party function as above. Then, Ffsfe can be UC-
realized in the secure-erasures model tolerating a semi-malicious, adaptive PPT
adversary by a 2-message protocol in the common random string model with
secure channels. The size of the common random string is poly(κ, d), and the
communication complexity and computational complexity of Bob are (`B + `out) ·
poly(κ, d).

The secure channels can be instantiated over authenticated channels assum-
ing NCE [20, 40, 30, 34]; however, delivering Bob’s public key to Alice requires
either an additional communication round or a trusted setup.

Equivocal LFE. We start by extending the notion of LFE to support an equiv-
ocal mode.

Definition 1 (equivocal LFE). A function-hiding LFE scheme Π is equivocal
if there exists a PPT simulator (Sim1

equiv-fh,Sim2
equiv-fh) for the scheme Π such

20

that for all stateful PPT adversary A, it holds that∣∣∣Pr
[
ExptEquivFH-real

Π,A (κ) = 1
]
− Pr

[
ExptEquivFH-ideal

Π,A (κ) = 1
]∣∣∣ ≤ negl(κ),

for the experiments ExptEquivFH-real and ExptEquivFH-ideal defined below:

ExptEquivFH-real
Π,A (κ) ExptEquivFH-ideal

Π,A (κ)

Output A(crs, digest, r)
digest = LFE.Compress(crs, C; r)
r ← {0, 1}∗

s.t. C ∈ C and C.params = params
C ← A(crs)
crs← LFE.crsGen(1κ, params)
params← A(1κ)

Output A(crs, digest, r)
r ← Sim2

equiv-fh(C, state)
s.t. C ∈ C and C.params = params

C ← A(crs)
(crs, digest, state)← Sim1

equiv-fh(1κ, params)
params← A(1κ)

In the following lemma (proven in the full version [35] We show that the
generic construction of function-hiding LFE from standard LFE presented in [75]
can be adjusted to provide equivocality.

Lemma 2. Assuming the existence of standard LFE schemes and semi-
malicious, adaptively secure, 2-round OT, there exists a function-hiding, equiv-
ocal LFE scheme.

We note that both LFE [75] and adaptively and maliciously (hence, also semi-
maliciously) secure 2-round OT [10] can be instantiated assuming adaptive LWE.
Hence, also equivocal FH-LFE can be instantiated assuming adaptive LWE.

Protocol πbob

– Common Input: An LFE scheme and a circuit Cf computing the function f .
– Notation: Define the algorithm LFE.Compresscrs,Cf

(x) by hard-wiring crs and
the circuit Cf to the compression algorithm LFE.Compress(crs, Cf (x, ·)), and
given input x compress the circuit Cf (x, ·) with the input x hard-wired.

– The Protocol:

1. Upon receiving (input, sid, xA), Alice samples uniformly at random rA ← {0, 1}∗,
computes digest = LFE.Compresscrs,Cf

(xA; rA), and sends (sid, digest) to Bob.
2. Upon receiving (sid, digest) from Alice, and having received (input, sid, xB), Bob

computes ct← ˜LFE.Enc(crs, digest, xB), and sends (sid, ct) to Alice.
3. Upon receiving a message (sid, ct) from Bob, Alice computes y =

LFE.Dec(crs, C, rA, ct) and outputs (output, sid, y).

Fig. 2: 2-round, Bob-optimized protocol with adaptive, semi-malicious security

Semi-Malicious Bob-optimized Protocol. We proceed to our Bob-
optimized protocol. Recall that the distribution Dlfe(params) samples a crs for
the LFE scheme, computes (˜LFE.Enc,Explain) ← Comp(1κ, LFE.Enc), and out-
puts (crs, ˜LFE.Enc).

21

Lemma 3. Consider the notations and assumptions in Theorem 8. Then, proto-
col πbob securely realizes the functionality Ffsfe tolerating a semi-malicious, adap-
tive PPT adversary in the (Fsmt,FDlfe(f.params)

crs)-hybrid model.

The proof of Lemma 3 can be found in full version [35].

4.2 Impossibility of Adaptively Secure Alice-Optimized Protocol

We now turn to show that the impossibility of adaptively secure FHE from [68]
can be extended to rule out adaptively secure Alice-optimized protocols. In fact,
we prove a stronger impossibility showing that for some functions the size of
Bob’s message cannot be smaller than his input, even if Alice’s message and the
CRS are long. Intuitively, if the output of the function is simply Bob’s input,
then clearly Bob’s message cannot be compressing. We show that this is the case
even if the output is short.

For n ∈ N, we define the two-party functionality fn(xA, gB) = (gB(xA), λ),
where Alice has input xA ∈ {0, 1}logn, Bob has input a function gB : {0, 1}logn →
{0, 1}, represented by its truth table as an n-bit string, and Alice learns the
output gB(xA).

Theorem 9 (Part 2 of Theorem 2, restated). Let πn be a 2-message pro-
tocol in the common reference string model for computing fn, where Alice sends
first the message m1 and Bob replies with the message m2. If the protocol
tolerates a semi-honest, adaptive adversary in the secure-erasures model, then
|m2| ≥ n.

Intuitively, by adaptively corrupting Alice and equivocating her input, we can
essentially recover gB(xA) in any choice of xA from the protocol transcript. This
means that the Bob’s response must encode the entire truth table of gB , which
is of size n. The formal proof of Theorem 9 can be found in the full version [35].

5 Adaptive Corruptions of All-But-One of the Parties

In this section, we prove an analogue result in the adaptive setting to the result
of Asharov et al. [3], who showed how to compute any function tolerating all-but-
one corruptions using a two-round protocol in the threshold-PKI model assuming
threshold FHE, which in turn can be instantiated using LWE. Our construction
relies on threshold equivocal FHE (defined in the full version [35]) that allows
simulating ciphertexts for honest parties and explaining them properly upon
later corruptions.

We note that the simulation technique used in [3] (and similarly in [71])
does not translate to the adaptive setting. As observed in [3, 71], the threshold
decryption protocol may leak some information about the shares of the secret
key, and the simulator for the decryption protocol can be used to protect exactly
one party. Since [3, 71] considered static corruptions, the set of corrupted parties
was known ahead of time, and the simulator could choose one of the honest

22

parties Ph as a special party for the simulation. The decryption protocol was
simulated with respect to Ph, as if he is the only honest party. For this reason,
proving security of exactly n − 1 corruptions in [71] was considerably simpler
than proving security of up to n− 1 corruptions.12

The simulation strategy that was used in [3, 71] does not translate to the
adaptive setting, since the party Ph that is chosen by the simulator may get
corrupted after simulating the decryption protocol. The simulator cannot know
in advance which party will be the last to remain honest. For this reason, we use
a different simulation strategy, which allows the simulator to “correct” his choice
of the party that is simulated as honest for the decryption protocol. Technically,
this is done by having each party send shares of zero to each other party over
a secure channel (that can be instantiated via NCE). These shares are used to
hide the partial decryptions without changing their value. Since shares exchanged
between pairs of honest parties remain hidden from the eyes of the adversary,
the simulator has more freedom to replace the special party Ph upon corruption,
by another honest party, even after simulating the decryption protocol.

5.1 Threshold Equivocal FHE

In the full version [35], we define equivocal FHE as an FHE scheme that is
augmented with the capability to generate a public key in an “equivocal mode,”
allowing to explain any ciphertext as an encryption of any value. We show how
to construct equivocal FHE from an HTDF scheme, which in turn can be based
on LWE. This serves as a stepping stone for threshold equivocal FHE which is
used in the construction below.

In a threshold FHE scheme, the key-generation and the decryption algorithms
are in fact n-party protocols. We consider the simplest case of n-out-of-n thresh-
old FHE and require a single round decryption protocol (following [3, 54, 71, 43]).
We note that threshold FHE for more general access structures are also known
assuming LWE [14].

Definition 2 (TEFHE). A threshold equivocal fully homomorphic encryption
(TEFHE) is a seven-tuple of algorithms (TEFHE.Gen, TEFHE.Enc, TEFHE.Eval,
TEFHE.PartDec, TEFHE.FinDec, TEFHE.GenEquiv, TEFHE.Equiv) satisfying the
following properties:
– TEFHE.Gen(1κ, 1d) → (pk, sk1, . . . , skn): on input the security parameter κ

and a depth bound d, the key-generation algorithm outputs a public key pk
and n secret key shares sk1, . . . , skn.

– TEFHE.Enc(pk, µ)→ ct: on input a public key pk and a plaintext µ ∈ {0, 1},
the encryption algorithm outputs a ciphertext ct.

– TEFHE.Eval(pk, C, ct1, . . . , ct`)→ ct: on input a public key pk, a circuit C :
{0, 1}` → {0, 1}, and a tuple of ciphertexts (ct1, . . . , ct`), the homomorphic
evaluation algorithm outputs a ciphertext ct.

12We note that the same problem arises also in the threshold FHE scheme for more
general access structures [14, Def. 5.5], where the simulation is defined only for maximal
invalid party sets.

23

– TEFHE.PartDec(i, ski, ct)→ pi: on input a secret key share ski and a cipher-
text ct, the partial decryption algorithm outputs a partial decryption pi.

– TEFHE.FinDec(pk, p1, . . . , pn) → µ̃: on input a public key pk and a set
{pi}i∈[n], the final decryption algorithm outputs µ̃ ∈ {0, 1,⊥}.

– TEFHE.GenEquiv(1κ, 1d) → (pk, td): on input the security parameter κ and
a depth bound d, the equivocal key-generation algorithm outputs a public-key
pk and a trapdoor td.

– TEFHE.Equiv(td, ct,m) → r: on input a trapdoor td, a ciphertext ct, and a
plaintext m, the equivocation algorithm outputs random coins r.

We require the following properties:

1. The FHE scheme that is defined by setting the decryption key
sk = (sk1, . . . , skn) and the decryption algorithm is composed of
executing TEFHE.PartDec(i, ski, ct) for every i ∈ [n] followed by
TEFHE.FinDec(pk, p1, . . . , pn) is a correct, compact, and secure equivocal
FHE scheme for circuits of depth d.

2. Simulatability of partial decryption: there exists a PPT simulator Simtefhe such
that on input i ∈ [n], and all decryption keys except of the i’th one {skj}j 6=i
The following distributions are statistically close:

{pi | pi ← TEFHE.PartDec(i, ski, ct)} c≡ {p′i | p′i ← Simtefhe(i, ct, µ, {skj}j 6=i)} ,

where the keys are set as (pk, sk1, . . . , skn)← TEFHE.Gen(1κ, 1d), the cipher-
text is set as ct← TEFHE.Eval(pk, C, ct1, . . . , ct`) for a circuit C : {0, 1}` →
{0, 1} and for i ∈ [`] ciphertext cti ← TEFHE.Enc(pk, µi) with µi ∈ {0, 1},
and µ = C(µ1, . . . , µ`).

In the protocol, we will require some additional properties regarding the
key-generation and threshold-decryption protocols.

Definition 3 (special TEFHE). A special TEFHE is a TEFHE scheme sat-
isfying the following properties:

1. On input 1κ and 1d, the key-generation algorithm TEFHE.Gen outputs
(pk, sk1, . . . , skn) where the public key pk defines a prime number q, and
each secret key ski is uniformly distributed in Zn′q for some n′ = poly(κ, d).

2. The partial decryption algorithm pi ← TEFHE.PartDec(i, ski, ct) operates by
computing pi = 〈ct, ski〉+ e mod q.

3. For every v1, . . . , vn ∈ Zq, the final decryption algorithm
TEFHE.FinDec(pk, p1, . . . , pn) satisfies the following linearity property

TEFHE.FinDec(pk, p1+v1, . . . , pn+vn) = TEFHE.FinDec(pk, p1, . . . , pn)+
∑
i∈[n]

vi.

Lemma 4. Assuming LWE there exist special TEFHE schemes.

The lemma is proved in the full version [35].

24

5.2 The Protocol
We define the protocol in the threshold-PKI hybrid model, where a trusted party
generates the keys of the TEFHE scheme (pk, sk1, . . . , skn)← TEFHE.Gen(1κ, 1d)
and (pk, ski) to every Pi. In the full version [35], we probe the following theorem.
Theorem 10. Assume that special TEFHE exists, let t < n, and let f :
({0, 1}`in)n → {0, 1}`out be an efficiently computable function of depth d. Then,
Ffsfe-abort can be UC-realized in the (Fthresh-pki,Fsmt)-hybrid model, tolerating an
adaptive, semi-malicious, PPT t-adversary, by a two-round protocol with com-
munication complexity poly(`in, `out, d, κ, n).

Protocol πallbutone

– Private Input: Every party Pi, for i ∈ [n], has private input xi ∈ {0, 1}`in .
– Common Input: A special TEFHE scheme Π and a circuit Cf of depth d.
– The Protocol:

1. Upon receiving (input, sid, xi), party Pi proceeds as follows:
(a) Invoke Fthresh-pki(Π, d) with (init, sid) to receive (sid, pk, ski). Let q be the

prime associated with the public key pk (as per Definition 3).
(b) Encrypt the input as cti ← TEFHE.Enc(pk, xi).
(c) Sample random s1

i , . . . , sni ← Zq, conditioned on
∑n

j=1 sji = 0 mod q.
(d) Send (sid, cti, sji) to Pj over a secure channel (via Fsmt).

2. In case some party aborts, output (output, sid,⊥) and halt. Otherwise, upon
receiving (sid, ·) messages from all the parties, party Pi proceeds as follows:
(a) Compute ct = TEFHE.Eval(pk, Cf , ct1, . . . , ctn).
(b) Partially decrypt the result as pi = TEFHE.PartDec(i, ski, ct).
(c) Set mi = pi +

∑n

j=1 sij mod q and send (sid,mi) to every party.
3. In case some party aborts, output (output, sid,⊥) and halt. Otherwise, upon

receiving (sid, ·) from all the parties, party Pi runs the final decrypt as y =
TEFHE.FinDec(pk, {m1, . . . ,mn}) and outputs (output, sid, y).

Fig. 3: 2-round MPC with semi-malicious security

Malicious Security with Sublinear Communication. Asharov et al. [3]
provided a round-preserving compiler from semi-maliciously security to mali-
ciously security in the static setting assuming NIZK. In the full version [35], we
prove security of this compiler in the adaptive setting. We note that following
the GMW paradigm, it is important that the semi-malicious protocol can be
defined purely over a broadcast channel, however, the protocol in Section 5.2
uses secure channels. To resolve this issue, the secret shares of zero that were
sent over secure point-to-point channels should be encrypted and transmitted
over the broadcast channel. As we consider adaptive corruptions, we need to use
non-committing encryption and each non-committing public key should be used
to encrypt n elements in Zq. We consider the distribution of the NCE public
keys as part of the threshold-PKI functionality. Alternatively, the public keys
can be exchanged at the cost of an additional communication round.

25

Theorem 11 (Theorem 4, restated). Assume the existence of special
TEFHE schemes and NCE schemes, let t < n, and let f : ({0, 1}`in)n → {0, 1}`out

be an efficiently computable function of depth d. Then, Ffsfe-abort can be UC-
realized in the (Fthresh-pki,Fbc,Fnizk)-hybrid model, tolerating an adaptive, mali-
cious, PPT t-adversary, by a two-round protocol with communication complexity
poly(`in, `out, d, κ, n).

6 The Honest-Majority Setting

In this section, we show how to adjust the protocol from Section 5 that provides
security with abort, into guaranteeing output delivery in the honest-majority
setting. We apply some of the techniques from [54] on our adaptively secure
protocol designed for the all-but-one setting, and achieve a matching result tol-
erating adaptive corruptions.

In the all-but-one case (Section 5) the decryption key was shared using addi-
tive secret sharing. As observed in [54], since the decryption of the GSW-based
threshold FHE consists of linear operations, it is possible to use Shamir’s secret
sharing [77] instead. The problem with a naïve use of this idea is that when the
partial decryptions are reconstructed, each decryption share is multiplied by the
Lagrange coefficient, and thus also the smudging noise. This will result in blow-
ing up the noise and may end up with an incorrect decryption. Gordon et al.
[54] overcame this problem by having each party secret share (using Shamir’s
scheme) its smudging noise in the first round of the protocol, and parties added
shares of the smudging noise of non-aborting parties in a way that is compatible
with the decryption algorithm.13

In the full version [35], we adjust the definition of TEFHE to support n/2-
out-of-n secret sharing, prove existence under LWE, and use it for proving the
following theorem.

Theorem 12. Assume the existence of special n/2-out-of-n TEFHE schemes,
let t < n/2, and let f : ({0, 1}`in)n → {0, 1}`out be an efficiently computable
function of depth d. Then, Ffsfe-god can be UC-realized in the (Fthresh-pki,Fsmt)-
hybrid model, tolerating an adaptive, semi-malicious, PPT t-adversary, by a two-
round protocol with communication complexity poly(`in, `out, d, κ, n).

Similarly to the previous section, using the semi-malicious to malicious com-
piler, we obtain the following corollary.

Theorem 13. Consider the same assumptions as in Theorem 12. Then, Ffsfe-god
can be UC-realized in the (Fthresh-pki,Fbc,Fnizk)-hybrid model, tolerating an adap-
tive, malicious PPT t-adversary, by a two-round protocol with communication
complexity poly(`in, `out, d, κ, n).

13Recently, Boneh et al. [14] showed that this problem can be overcome in a different
way, by using a special secret sharing scheme that ensures the Lagrange coefficients
are binary values.

26

Bibliography

[1] P. Ananth, S. Badrinarayanan, A. Jain, N. Manohar, and A. Sahai. From FE
combiners to secure MPC and back. IACR Cryptology ePrint Archive, 2018:457,
2018.

[2] P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain. Round-optimal secure multi-
party computation with honest majority. In CRYPTO ’18, part II, pages 395–424,
2018.

[3] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs.
Multiparty computation with low communication, computation and interaction
via threshold FHE. In EUROCRYPT ’12, pages 483–501, 2012.

[4] S. Badrinarayanan, A. Jain, N. Manohar, and A. Sahai. Secure MPC: laziness
leads to GOD. IACR Cryptology ePrint Archive, 2018:580, 2018.

[5] B. Barak and A. Sahai. How to play almost any mental game over the net -
concurrent composition via super-polynomial simulation. In FOCS, pages 543–
552, 2005.

[6] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols
with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[7] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic
adversaries. In EUROCRYPT ’92, pages 307–323, 1992.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[9] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryp-
tion and multiparty computation. In EUROCRYPT ’11, pages 169–188, 2011.

[10] F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam. Two-
round adaptively secure multiparty computation from standard assumptions. In
TCC ’18, part I, pages 175–205, 2018.

[11] N. Bitansky, S. Garg, H. Lin, R. Pass, and S. Telang. Succinct randomized en-
codings and their applications. In STOC, pages 439–448, 2015.

[12] N. Bitansky, R. Canetti, S. Garg, J. Holmgren, A. Jain, H. Lin, R. Pass, S. Telang,
and V. Vaikuntanathan. Indistinguishability obfuscation for RAM programs and
succinct randomized encodings. SICOMP, 47(3):1123–1210, 2018.

[13] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In EUROCRYPT ’04, pages 223–238, 2004.

[14] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen, and
A. Sahai. Threshold cryptosystems from threshold fully homomorphic encryption.
In CRYPTO ’18, part I, pages 565–596, 2018.

[15] E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure
computation under DDH. In CRYPTO ’16, part I, pages 509–539, 2016.

[16] E. Boyle, N. Gilboa, and Y. Ishai. Group-based secure computation: Optimizing
rounds, communication, and computation. In EUROCRYPT ’17, part II, pages
163–193, 2017.

[17] E. Boyle, R. Cohen, D. Data, and P. Hubáček. Must the communication graph of
MPC protocols be an expander? In CRYPTO ’18, part III, pages 243–272, 2018.

[18] R. Canetti. Security and composition of multiparty cryptographic protocols.
JCRYPTOL, 13(1):143–202, 2000.

[19] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

[20] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party
computation. In STOC, pages 639–648, 1996.

[21] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In STOC, pages 494–503, 2002.

[22] R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin. Adaptive versus
non-adaptive security of multi-party protocols. JCRYPTOL, 17(3):153–207, 2004.

[23] R. Canetti, R. Pass, and A. Shelat. Cryptography from sunspots: How to use an
imperfect reference string. In FOCS, pages 249–259, 2007.

[24] R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party
computation from indistinguishability obfuscation. In TCC ’15, part II, pages
557–585, 2015.

[25] R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan. Succinct garbling and
indistinguishability obfuscation for RAM programs. In STOC, pages 429–437,
2015.

[26] R. Canetti, O. Poburinnaya, and M. Venkitasubramaniam. Better two-round
adaptive multi-party computation. In PKC, pages 396–427, 2017.

[27] R. Canetti, O. Poburinnaya, and M. Venkitasubramaniam. Equivocating yao:
constant-round adaptively secure multiparty computation in the plain model. In
STOC, pages 497–509, 2017.

[28] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure pro-
tocols (extended abstract). In STOC, pages 11–19, 1988.

[29] C. Cho, N. Döttling, S. Garg, D. Gupta, P. Miao, and A. Polychroniadou. Laconic
oblivious transfer and its applications. In CRYPTO ’17, part II, pages 33–65, 2017.

[30] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Improved non-committing
encryption with applications to adaptively secure protocols. In ASIACRYPT ’09,
pages 287–302, 2009.

[31] R. Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In STOC, pages 364–369, 1986.

[32] R. Cohen. Asynchronous secure multiparty computation in constant time. In
PKC, pages 183–207, 2016.

[33] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in secure
multiparty computation. JCRYPTOL, 30(4):1157–1186, 2017.

[34] R. Cohen and C. Peikert. On adaptively secure multiparty computation with a
short CRS. In SCN, pages 129–146, 2016.

[35] R. Cohen, A. Shelat, and D. Wichs. Adaptively secure MPC with sublinear com-
munication complexity, 2019. https://eprint.iacr.org/2018/1161.

[36] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multi-
party computations secure against an adaptive adversary. In EUROCRYPT ’99,
pages 311–326, 1999.

[37] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Venkitasubramaniam. Adap-
tive and concurrent secure computation from new adaptive, non-malleable com-
mitments. In ASIACRYPT ’13, part I, pages 316–336, 2013.

[38] D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally com-
posable, multiparty computation in constant rounds. In TCC ’15, part II, pages
586–613, 2015.

[39] I. Damgård and Y. Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In CRYPTO ’05, pages 378–394, 2005.

[40] I. Damgård and J. B. Nielsen. Improved non-committing encryption schemes based
on a general complexity assumption. In CRYPTO ’00, pages 432–450, 2000.

28

[41] I. Damgård and J. B. Nielsen. Universally composable efficient multiparty compu-
tation from threshold homomorphic encryption. In CRYPTO ’03, pages 247–264,
2003.

[42] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO ’12, pages 643–662, 2012.

[43] I. Damgård, A. Polychroniadou, and V. Rao. Adaptively secure multi-party com-
putation from LWE (via equivocal FHE). In PKC, pages 208–233, 2016.

[44] C. Ganesh, Y. Kondi, A. Patra, and P. Sarkar. Efficient adaptively secure zero-
knowledge from garbled circuits. In PKC, pages 499–529, 2018.

[45] J. A. Garay, Y. Ishai, R. Ostrovsky, and V. Zikas. The price of low communication
in secure multi-party computation. In CRYPTO ’17, part I, pages 420–446, 2017.

[46] S. Garg and A. Polychroniadou. Two-round adaptively secure MPC from indis-
tinguishability obfuscation. In TCC ’15, part II, pages 614–637, 2015.

[47] S. Garg and A. Sahai. Adaptively secure multi-party computation with dishonest
majority. In CRYPTO ’12, pages 105–123, 2012.

[48] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. On 2-round secure multiparty
computation. In CRYPTO ’02, pages 178–193, 2002.

[49] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[50] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC, pages 99–108, 2011.

[51] C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. D. Smith. Using
fully homomorphic hybrid encryption to minimize non-interative zero-knowledge
proofs. JCRYPTOL, 28(4):820–843, 2015.

[52] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–
229, 1987.

[53] S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic
signatures from standard lattices. In STOC, pages 469–477, 2015.

[54] S. D. Gordon, F. Liu, and E. Shi. Constant-round MPC with fairness and guar-
antee of output delivery. In CRYPTO ’15, part II, pages 63–82, 2015.

[55] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT ’10.

[56] J. Groth, R. Ostrovsky, and A. Sahai. New techniques for noninteractive zero-
knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[57] C. Hazay and A. Patra. Efficient one-sided adaptively secure computation.
JCRYPTOL, 30(1):321–371, 2017.

[58] C. Hazay and M. Venkitasubramaniam. On the power of secure two-party com-
putation. In CRYPTO ’16, part II, pages 397–429, 2016.

[59] C. Hazay and M. Venkitasubramaniam. Composable adaptive secure protocols
without setup under polytime assumptions. In TCC ’16-B, part I, pages 400–432,
2016.

[60] C. Hazay, Y. Lindell, and A. Patra. Adaptively secure computation with partial
erasures. In PODC, pages 291–300, 2015.

[61] C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam. Constant round adap-
tively secure protocols in the tamper-proof hardware model. In PKC, pages 428–
460, 2017.

[62] M. Hirt and V. Zikas. Adaptively secure broadcast. In EUROCRYPT ’10, pages
466–485, 2010.

[63] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO ’08, pages 572–591, 2008.

29

[64] Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no
honest majority. In TCC ’09, pages 294–314, 2009.

[65] Y. Ishai, O. Pandey, and A. Sahai. Public-coin differing-inputs obfuscation and
its applications. In TCC ’15, part II, pages 668–697, 2015.

[66] J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In
CRYPTO ’04, pages 335–354, 2004.

[67] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable syn-
chronous computation. In TCC ’13, pages 477–498, 2013.

[68] J. Katz, A. Thiruvengadam, and H. Zhou. Feasibility and infeasibility of adap-
tively secure fully homomorphic encryption. In PKC, pages 14–31, 2013.

[69] Y. Lindell. Adaptively secure two-party computation with erasures. In CT-RSA,
pages 117–132, 2009.

[70] Y. Lindell and H. Zarosim. Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. JCRYPTOL, 24(4):761–799, 2011.

[71] P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key
FHE. In EUROCRYPT ’16, part II, pages 735–763, 2016.

[72] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO ’02, pages 111–126, 2002.

[73] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to
practical active-secure two-party computation. In CRYPTO ’12, pages 681–700,
2012.

[74] A. Patra and D. Ravi. On the exact round complexity of secure three-party
computation. In CRYPTO ’18, part II, pages 425–458, 2018.

[75] W. Quach, H. Wee, and D. Wichs. Laconic function evaluation and applications.
In FOCS, pages 859–870, 2018.

[76] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In FOCS, pages 73–85, 1989.

[77] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[78] M. Venkitasubramaniam. On adaptively secure protocols. pages 455–475, 2014.
[79] A. C. Yao. How to generate and exchange secrets (extended abstract). In FOCS,

pages 162–167, 1986.

30

	Adaptively Secure MPC with Sublinear Communication Complexity
	Bibliography

