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Abstra
t. The existen
e of se
ure indistinguishability obfus
ators (iO)

has far-rea
hing impli
ations, signi�
antly expanding the s
ope of prob-

lems amenable to 
ryptographi
 study. All known approa
hes to 
on-

stru
ting iO rely on d-linear maps. While se
ure bilinear maps are well es-

tablished in 
ryptographi
 literature, the se
urity of 
andidates for d > 2
is poorly understood.

We propose a new approa
h to 
onstru
ting iO for general 
ir
uits. Unlike

all previously known realizations of iO, we avoid the use of d-linear maps

of degree d ≥ 3.

At the heart of our approa
h is the assumption that a new weak pseudo-

random obje
t exists. We 
onsider two related variants of these obje
ts,

whi
h we 
all perturbation resilient generator (∆RG) and pseudo �awed-

smudging generator (PFG), respe
tively. At a high level, both obje
ts

are polynomially expanding fun
tions whose outputs partially hide (or

smudge) small noise ve
tors when added to them. We further require that

they are 
omputable by a family of degree-3 polynomials over Z. We show

how they 
an be used to 
onstru
t fun
tional en
ryption s
hemes with

weak se
urity guarantees. Finally, we use novel ampli�
ation te
hniques

to obtain full se
urity.

As a result, we obtain iO for general 
ir
uits assuming:

� Subexponentially se
ure LWE

� Bilinear Maps

� poly(λ)-se
ure 3-blo
k-lo
al PRGs

� ∆RGs or PFGs

⋆

This paper is a merge of two independent works, one by Ananth, Jain, and Sa-

hai [AJS18℄, and the other by Lin and Matt [LM18℄.



1 Introdu
tion

Program obfus
ation 
onsiders the problem of building an e�
ient randomized


ompiler that takes as input a 
omputer program P and outputs an equivalent

program O(P ) su
h that any se
rets present within P are �as hard as possible�

to extra
t from O(P ). This property 
an be formalized by the notion of indistin-

guishability obfus
ation (iO) [BGI+01, GR07℄. Formally, iO requires that given

any two equivalent programs P1 and P2 of the same size, it is not possible for a


omputationally bounded adversary to distinguish between the obfus
ated ver-

sions of these programs. Re
ently, starting with the works of [GGH

+
13b, SW14℄,

it has been shown that iO would have far-rea
hing appli
ations, signi�
antly

expanding the s
ope of problems to whi
h 
ryptography 
an be

The work of [GGH

+
13b℄ gave the �rst mathemati
al 
andidate iO 
onstru
-

tion, and sin
e then more than a dozen 
andidates have been proposed and stud-

ied more re
ent 
andidates [Lin16a, LV16, AS17, LT17℄ based iO on simple prim-

tives and assumptions. However, all these iO 
onstru
tions rely on multi-linear

maps with degree at least 3. Unfortunately, all known 
andidates for degree-3

multilinear maps [GGH13a, CLT13a, GGH15a℄ have poorly understood se
urity

properties, and even se
urity models [MSZ16, BGMZ18, MZ18℄.

Our results in a nutshell. Se
urely building iO remains a 
entral 
hallenge in


ryptography. In this paper, we report on the works of [AJS18, LM18℄, in whi
h

we develop new te
hniques that enables building iO without multilinear maps

of degree ≥ 3. Instead, we rely on (relatively) standard assumptions in
luding

(subexponentnailly se
ure) bilinear maps, LWE, and blo
k-lo
al PRGs [LT17℄

(a relaxation of lo
al PRGs, a.k.a. Goldrei
h's PRGs [Gol00℄), as well as new

types of �weak� pseudo-randomness generators with 
ertain �simple� stru
tures

� either perturbation resilient generators [AJS18℄ or pseudo �awed-smudging

generators [LM18℄.

Along the way, we study the notion of Fun
tional En
ryption, whi
h was

introdu
ed by [SW05℄, and formalized by [BSW11, O'N10℄. We provide new

general se
urity ampli�
ation theorems for amplifying Fun
tional En
ryption

with (1/λc)-indistinguishability-based se
urity to Fun
tional En
ryption with

standard se
urity [AJS18℄, and se
urity ampli�
ation for amplifying 
ertain leaky

forms of Fun
tional En
ryption to standard se
urity [LM18℄. We now elaborate.

Prior iO from multilinear maps with degree ≥ 3. The �rst-generation iO 
on-

stru
tions [GGH

+
13b, BR14, BGK

+
14, PST14, AGIS14, GLSW14, Zim15, AB15,

GMM

+
16a, DGG

+
16℄ rely on polynomial-degree multilinear maps or graded en-


odings. An L-linear map [BS02℄ essentially allows to evaluate degree-L polyno-

mials on se
ret en
oded values, and to test whether the output of su
h poly-

nomials is zero or not. While bilinear maps (i.e., L = 2) 
an be e�
iently in-

stantiated from ellipti
 
urves, instantiation of L-linear maps for L ≥ 3 has re-

mained elusive�While 
andidate 
onstru
tions of su
h graded en
oding s
hemes

exist [CLT13b, LSS14, GGH15b, CLT15℄, their se
urity is poorly understood
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due to several known expli
it atta
ks on 
ertain distributions of en
oded val-

ues [CHL

+
15, BWZ14, CGH

+
15, HJ15, BGH

+
15, Hal15, CLR15, MF15, MSZ16℄

5

.

A line of re
ent works [Lin16b, LV16, Lin17, AS17℄ aimed at �nding the

minimal degree of multilinear maps su�
ient for 
onstru
ting iO, and has su
-


essfully redu
ed the required degree to L = 3. A key ingredient in these se
ond-

generation 
onstru
tions are PRGs with small lo
ality

6

. They showed that to


onstru
t iO, it su�
es to have multilinear maps with degree mat
hing exa
tly

the lo
ality of the PRG [Lin16b, AS17℄, or even the relaxed notion of blo
k lo-


ality [LT17℄. These 
onstru
tions essentially use degree-L multilinear maps to

evaluate a PRG with (blo
k-)lo
ality L, and then bootstrap from there to hide

arbitrary 
omplex 
omputation. Unfortunately, the lo
ality of a PRG 
annot

be smaller than 5 [CM01, MST03℄, and re
ent atta
ks [LV17, BBKK18℄ showed

that blo
k-lo
ality 
annot be smaller than 3.

7

This raises the following natural

question:

Can we build iO without 
ryptographi
 multilinear maps of degree ≥ 3?
Are there new types of simple and weak pseudo-randomness generators

that 
an help?

Our simple and weak pseudorandomness generators. We answer the above ques-

tions positively, relying on either the new notion of perturbation-resilient gen-

erators, ∆RG for short, proposed by [AJS18℄ (AJS), or pseudo �awed-smuding

generators, PFG for short, proposed by [LM18℄ (LM). They are weak pseudo-

randomness generators with the same simple stru
ture, and similar intuitive

se
urity guarantees. However, their 
on
rete se
urity formalizations are very dif-

ferent, requiring di�erent te
hniques of using them in iO 
onstru
tions as done

in [AJS18, LM18℄.

We start with explaining their shared simple stru
ture. A ∆RG/PFG is given

by a polynomially expanding fun
tion G from n input (or seed) elements to

m = n1+α
output elements in Zp, together with a seed distribution S over Z

n
p

that samples a pair s = (s1, s2) of publi
 and private seeds

8

. G has the simple

stru
ture that 1) it is a degree 3 polynomial over Zp with degree 1 in the publi


seed s1 and degree 2 in the private seed s2, and 2) its output distribution G(S)
is polynomially bounded. At a very high-level, these two stru
tural properties

ensure that we 
an essentially 
ompute G in the exponent of bilinear pairing

groups (property 1) and extra
t the output in the 
lear via brute for
e dis
rete

5

Note that this does not ne
essarily mean that the resulting iO 
onstru
tions are

inse
ure; in parti
ular, there have been e�orts (e.g., [GMM

+
16b℄) in 
onstru
ting

iO in more 
omplex se
urity models for multilinear maps (e.g. [MSZ16℄) that have

resisted polynomial-time atta
ks. There have also been several other iO 
andidates

proposed whi
h are not known to polynomial-time broken (e.g. [CVW18, BGMZ18℄).

6

A fun
tion has lo
ality ℓ if every output element depends on at most ℓ input elements.

7

The atta
ks a
tually leave open a very small window of expansion. Nevertheless,

they have weakened our 
on�den
e on the se
urity of PRGs with blo
k-lo
ality 2.

8 n,m, p are parameterized by the se
urity parameter λ

3



logarithm (property 2). An a
ute reader may be 
urious about the purpose of

the publi
 seed s1. In short, it is a relaxation to requiring G having total degree

2, and as we shall see later, is 
ru
ial for the se
urity of the instantiation of G.
Intuitively, the se
urity of ∆RG/PFG guarantees that its output when added

to a small noise ve
tor, produ
ing G(s) + e, weakly �smudge� or �hide� e. In the

literature, noise smudging (or noise �ooding) is a 
ommonly used te
hnique for

hiding small noises in LWE samples, whi
h is also our purpose. However, to 
om-

pletely hide the noise ve
tor e, the smudging noises must be super-polynomially

large. This stands in 
ontrast with the fa
t that G(s) is polynomially bounded.

To 
ir
umvent this, ∆RG and PFG formalizes di�erent weakly hiding require-

ments:

� ∆RG guarantees that the distributions ∆RG(s) and (∆RG(s)+e) are some-

what hard to distinguish as long as the perturbation e is relatively small.

More spe
i�
ally, it su�
es if e�
ient adversaries fail to distinguish these

two distributions with at least some �xed 1/poly(λ) probability. Thus, a 
an-
didate ∆RG would be se
ure, for instan
e, if an adversary 
ould distinguish

between ∆RG(s) and (∆RG(s)+e) with probability 99%, but no adversary


ould distinguish with probability over 99.5%.

� PFG guarantees thatG(s) is 
omputationally indistinguishable to a so-
alled,

�awed-smudging distribution Y ← Y, satisfying that given Y+e, the values

of e at a few o(λ) 
oordinates are revealed, while the values at the rest


oordinates are hidden.

We elaborate on the se
urity de�nitions of these generators, and possible instan-

tiations, in Se
tion 2.

Hardness of polynomials over the reals. The se
urity of our 
andidate∆RGs/PFGs


ru
ially relies on the hardness of solving 
ertain over-determinined systems of

degree-3 polynomial equations over the reals, and a LWE leakage assumption.

Solving systems of polynomials over the reals has been studied by mathemati-


ians, s
ientists, and engineers for hundreds of years. This is pre
isely why we are

taking this approa
h: we want to relate iO to simple-to-state problems related

to areas of mathemati
s with long histories of study. Aside from that, our work

also fundamentally diversi�es the kinds of assumptions from whi
h iO 
an be


onstru
ted.

In Se
tion 2.4, we des
ribe spe
i�
 
andidates suggested in follow-up work

by [BHJ

+
19℄ that were inspired by the hardness of RANDOM 3-SAT. We hope

that our work will motivate further 
ryptanalyti
 study of simple pseudorandom

obje
ts.

Using respe
itively ∆RG and PFG, we show how to 
onstru
t iO without

multilinear maps of degree ≥ 3 in two 
on
urrent works [AJS18, LM18℄. Next,

we des
ribe the results in ea
h work slightly more formally.

Results in AJS in more detail. AJS 
onstru
ts iO based on bilinear maps, LWE,

∆RG, and blo
k-lo
ality 3 PRG. For the latter, in fa
t AJS require only a weak-

ened forms of 3-blo
kwise-lo
al PRGs [LT17℄ where e�
ient adversaries fail to

4



distinguish the the PRG output distribution from the uniformly random distri-

bution with some polynomial probability

9

.

Theorem 1 (AJS Main Theorem, Informal). For every 
onstants c, there
is a 
onstru
tion of indistinguishability obfus
ation for all polynomial-sized 
ir-


uits from,

�

(

1− 1
λc

)

-indistinguishable perturbation-resilient generators with aforemen-

tioned stru
ture and se
urity against sub-exponential size adversaries,

�

1
2λc -indistinguishable three-blo
k-lo
al pseudorandom generators [LT17℄ with

polynomial stret
h and se
urity against sub-exponential size adversaries,

� learning with errors se
ure against sub-exponential size adversaries, and

� assumptions on bilinear maps se
ure against sub-exponential size adversaries

(that hold un
onditionally in the generi
 bilinear map model).

Here κ-indistinguishability refers to se
urity where the distinguishing advantage

of su
h adversaries is bounded by κ. Thus, standard se
urity would be negl(λ)-
se
urity, where negl is a negligible fun
tion. In 
ontrast (1 − p)-se
urity allows

for an adversary that fails to distinguish only with probability p.
Along the way to proving the result above, AJS also obtains a se
urty ampli-

�
ation theorem for fun
tional en
ryption:

Theorem 2 (AJS se
urity ampli�
ation theorem, informal). Assume

there exists a 
onstant c > 0, and

� (1 − 1/λc)-indistinguishable sublinearly 
ompa
t se
ret key FE s
hemes for

polynomial size 
ir
uits of depth λ, and
� learning with errors se
ure against sub-exponential size adversaries.

There exists sublinearly 
ompa
t se
ret key FE s
hemes for polynomial size 
ir-


uits of depth λ with negl(λ)-indistinguishability.

Note that the ampli�
ation theorem above relies only on subexponential LWE,

and no new assumptions. Moreover, if we assume the underlying FE s
hemes to

be se
ure against subexponential size, then the resulting s
hemes satisfy subex-

ponential se
urity. Please refer [AJS18℄ for a 
omplete formulation.

Results in LM in more detail. LM 
onstru
ts iO based on bilinear maps, LWE,

PFGs, and 
onstant blo
k-lo
al PRGs.

Theorem 3 (LM Main Theorem, informal). There is a 
onstru
tion of

indistinguishability obfus
ation for all polynomial-sized 
ir
uits from,

� pseudo �awed-smudging generators with aforementioned stru
ture and se
u-

rity against sub-exponential size adversaries,

9

There is be a tradeo� between how mu
h AJS 
an weaken the indistinguishability

requirements of the ∆RG and the 3-blo
k-lo
al PRG.

5



� 
onstant-blo
k-lo
al pseudorandom generators [LT17℄ with mild stru
tural

properties des
ribed in Remark 1, and se
urity against sub-exponential size

adversaries,

� learning with errors se
ure against sub-exponential size adversaries, and

� the SXDH assumption on bilinear maps se
ure against sub-exponential size

adversaries.

Remark 1. The blo
k-lo
al PRGs used in LM map n bits to n1+α
bits for an

arbitrarily small 
onstant α, where every PRG is de�ned by a predi
ate P and an

input-output dependen
y graph G, su
h that the i'th output bit yi = P (SeedG(i))
is 
omputed by evaluating the predi
ate P on a subset of seed bits SeedG(i)

spe
i�ed by G(i). LM requires the output lo
ality (i.e., maxi |G(i)|) to be a


onstant, and the input lo
ality (i.e., the maximal number of output bits that

an input bit in�uen
es) to be bounded by o(n1−α). Most 
andidate 
onstant-

lo
ality PRGs [Gol00, MST03, OW14, AL16℄ satisfy these stru
tural properties.

In parti
ular, the input-output dependen
y graph is often 
hosen at random in

whi
h 
ase the input lo
ality is indeed bounded by o(n1−α). The se
urity of lo
al
PRGs, espe
ially ones with large 
onstant lo
ality, has been studied extensively,

for instan
e in [CM01, MST03, CEMT09, BQ12, OW14, AL16℄.

Partially Hiding Fun
tional En
ryption. In order to evaluate ∆RGs/PFGs using

bilinear map, we develop the primitive of Partially Hiding Fun
tional En
ryption

s
hemes (PHFE), introdu
ed under the name 3-restri
ted FE by [AJS18℄. The

notion of PHFE is a natural modi�
ation of partially-hiding Predi
ate En
ryp-

tion (PE) of [GVW15℄ by strengthening the se
urity requirement from that of PE

to FE. PHFE s
hemes 
an evaluate fun
tions of the form g(x,y) and guarantee

that 
iphertexts and se
ret keys reveal only the outputs and part of its input x,

referred to as the publi
 input, while hiding the remaining part y, referred to

as the private input. Partially-hiding FE naturally interpolates attribute-based

en
ryption and fun
tional en
ryption: if the publi
 input x is empty, it is equiv-

alent to fun
tional en
ryption, and if g is su
h that it outputs y when some

predi
ate on x evaluates to 1, then it 
orresponds to attribute-based en
ryption.

In the literature, there are 
onstru
tions of se
ret-key FE s
hemes for quadrati


polynomials from bilinear map groups [Lin17, BCFG17℄. In AJS and LM, we ex-

tend these 
onstru
tions to allow for additional linear 
omputation on a publi


input.

Theorem 4 (PHFE in AJS and LM, Informal). There are 
onstru
tions

of se
ret-key partially-hiding FE s
hemes for 
omputing multilinear 
ubi
 poly-

nomials g(x, (y, z)) over Zp with polynomially bounded outputs and x as the

publi
 input, from bilinear pairing groups of order p. The s
hemes have linear

en
ryption time poly(λ)N in the input length N = max(|x|, |y|, |z|).

The 
onstru
tions of PHFE in AJS and LM di�er in details. The s
heme orig-

inally developed in AJS, referred to as 3-restri
ted FE there, follows the semi-

fun
tional FE framework and is based on assumptions over bilinear maps that

hold un
onditionally in the generi
 bilinear map model. The s
heme subsequently

6



developed in LM, referred to as degree-(1,2) PHFE there, satis�es simulation se-


urity for one 
iphertext (meaning that the outputs evaluated on one en
ryption

input 
an be programmed) and is based on SXDH.

Finally, we mention that in followup works, our approa
h has been extended

to i) use∆RGs/PFGs implementable by polynomials of any 
onstant-degree [JLMS19℄,

ii) remove the need for blo
k-lo
al PRGs 
ompletely [JLS19℄, and iii) 
onstru
t

PHFE supporting NC1 publi
 
omputation and degree 2 private 
omptuation [JLS19℄.

1.1 History

We provide a timeline des
ribing how the results were 
on
eived, to 
larify how

this line of work has developed.

06/17/2018: [AJS18℄ re
eived by Eprint (2018/615).

[AJS18℄ introdu
ed ∆RGs, 3-restri
ted FE, and a new general FE ampli�
ation

theorem.

Histori
al notes: Earlier weaker versions of [AJS18℄ were submitted to EC

2018 (on 9/19/2017) and Crypto 2018 (on 2/13/2018). These earlier versions


ontained the notions of 3-restri
ted FE, and Tempered Cubi
 En
oding. How-

ever, they did not 
ontain either the notion of ∆RG nor the FE ampli�
ation

theorem. The authors of [AJS18℄ were not aware of the relevant 
on
urrent work

by [Agr18a℄ or [LM18℄ until seeing Eprint papers appear.

06/17/2018: [Agr18a℄ re
eived by Eprint (2018/633).

To hide de
ryption noises, [Agr18a℄ introdu
ed di�erent notions of (smudging)

noise generators, whi
h all *perfe
tly* hides the noises. Hen
e [Agr18a℄ did

not develop any FE se
urity ampli�
ation te
hnique. In terms of instantiation,

[Agr18a℄ proposed using MQ or 2 blo
k-lo
al PRG as degree 2 
andidates and

used o�-the-shelf deg 2 FE to evaluate them. [Agr18a℄ 
ontains a gap in the


onstru
tion: It proposes to use known deg 2 FE to 
ompute the noise generator.

Known deg 2 FE restri
ts the outputs of the noise generator to be poly-large.

On the other hand, [Agr18a℄ needs the noise generator to perfe
tly hide the HE

de
ryption noise e, whi
h requires the outputs to be super-poly large. (Note: this

is why [AJS18℄'s ∆RG and [LM18℄'s PFG only provide weak guarantees. This

allows for having poly-large outputs, but opens many 
hallenges in order to deal

with the weak guarantees.)

07/02/2018: [LM18℄ re
eived by Eprint (2018/646).

In Aug 2017, Lin dis
ussed with Agrawal about her ideas and Agrawal shared

a manus
ript. After the dis
ussion, Agrawal and Lin pro
eeded independently.

Sin
e the shared manus
ript has large overlap with the later posted [Agr18a℄,

[LM18℄ simply treats entire [Agr18a℄ as prior work for 
larity.

Prior to posting, [LM18℄ has developed for over a year. [LM18℄ introdu
ed

the notion of Pseudo Flawed-smudging Generator (PFG) and the leakage-based

se
urity ampli�
ation te
hnique. They analyzed PFG properties and proposed

7



using deg 2 polynomials sampled from a spe
ial distribution as the 
andidates.

07/08/2018: [AJS18℄ updated on Eprint (2018/615).

Added expli
it degree 3 ∆RG 
andidate and asso
iated expli
it ∆RG assump-

tion.

08/17/2018: [Agr18a℄ updated on Eprint (2018/633).

[Agr18a℄ 
ites [AJS18℄ for �xing the aforementioned gap. This means using the

notion of ∆RG and the FE se
urity ampli�
ation theorem of [AJS18℄.

08/19/2018: [BHJ

+
19℄ announ
ed at �Beyond Crypto� workshop at

CRYPTO 2018.

This work gave empiri
al and theoreti
al eviden
e of polynomial-time atta
ks on

all known expli
it degree-2 
andidates 
onsidered in [AJS18, Agr18a, LM18℄. It

is expli
itly noted that the atta
ks do not extend to the degree 3 ∆RG 
andidate

of [AJS18℄.

10/4/2018: [JS18℄, [BHJ

+
19℄ submitted to Euro
rypt 2019.

[JS18℄ showed how to 
onstru
t 
onstant-restri
ted FE for any 
onstant (i.e.,

(deg-O(1), deg 2)-PHFE) assuming SXDH. This enables using 
onstant degree


andidates, for any 
onstant. [JS18℄ is 
learly marked as a follow-up work to

[AJS18, Agr18a, LM18℄.

10/9/2018: The se
ond version of [LM18℄ was updated on Eprint

(2018/646). Added 
onstru
tion of (deg 1, deg 2)-PHFE, whi
h is a variant

of 3-restri
ted FE, and proposed to use the degree 3 
andidate of [AJS18℄ as


andidate PFGs, whi
h are not subje
t to [BHJ

+
19℄ atta
ks. This updated

[LM18℄ 
learly 
ites [AJS18℄ for this 
andidate and the idea of using weak deg-3

FE to evaluate it. However, note that this just repla
es the previous deg 2 
andi-

date and deg 2 FE in [LM18℄, whi
h are very simple and not the main te
hni
al


ontributions of [LM18℄.

In this update, there is also a 
onstru
tion of PHFE able to handle publi



omputation of poly degree, but subje
t to 
ertain size 
onstraints. This 
on-

stru
tion does not appear in this 
urrent paper for two reasons: 1) Lin and Matt

were added as authors to [JS18℄ in 
redit for this 
on
urrent PHFE 
onstru
-

tion, and 2) it is later superseded by a full (NC1, deg 2) PHFE 
onstru
tion in

a follow-up [JLS19℄.

10/11/2018: [JS18℄ re
eived by Eprint (2018/973).

02/01/2019: [JS18℄, [BHJ

+
19℄ a

epted at Euro
rypt 2019.

The authors of [JS18℄ emailed Chairs to add Lin and Matt as authors, resulting

in publi
ation [JLMS19℄. The paper [JLMS19℄ is 
learly marked as a follow-up

work to [AJS18, Agr18a, LM18℄.

8



1.2 Comparison of Te
hniques

We provide a detailed 
omparison of the works of [AJS18, LM18, Agr18b, BHJ

+
19,

JLMS19℄.

Comparison of the works of [AJS18℄ and [LM18℄. We �rst start by 
omparing

the notions of PFGs and ∆RGs. Both notions are geared for the purpose of

generating a smudging noise Y to hide a small polynomially bounded noise e,

however, with di�erent guarantees. The output O of PFGs is 
omputationally

indistinguishable to �awed smudging noisesY su
h that (e,Y+e) and (e′,Y+e)
are statisti
ally 
lose with probability δ. On the other hand, the output O of

∆RGs dire
tly guarantees that (e,O + e) and (e′,O + e) are 
omputationally

indistinguishable up to advantage 1−δ. Furthermore, in the good 
ase with prob-

ability δ, the output of PFGs may still reveal e at a few 
oordinates (i.e., e and

e′ agree at a few 
oordinates), whereas ∆RG ask for weak indistinguishability

between the two 
ases (i.e. e and e′).

Besides the use of di�erent weak notions of randomness generators, other

di�eren
es between [AJS18℄ and [LM18℄ in
lude: i) [LM18℄ rely on 
onstant-

lo
ality PRGs with mild stru
tural properties, while [AJS18℄ use blo
k-lo
ality 3

PRGs. ii) [AJS18℄ �rst showed se
urity in the generi
 bilinear map model, sub-

sequently [LM18℄ relied on the SXDH assumption over bilinear pairing groups.

In terms of te
hniques, both works start with 
onstru
ting some weak no-

tions of FE: [LM18℄ 
onstru
t FE for 
onstant-degree polynomials that may leak

a small portion of the input, whereas [AJS18℄ 
onstru
t FE for degree 3 polyno-

mials that bounds the adversarial advantage only by 1− 1/poly(λ). Both works

then design di�erent methods to amplify their respe
tive weak FE to full-�edged

FE. The ampli�
ation te
hniques are similar in parts, for instan
e, both works

use threshold FHE, but also have di�eren
es, for instan
e, while [LM18℄ relies

on the use of random permutations and a 
areful analysis to ensure that the

e�e
t of 
ompromising a few bits of the seed of a 
onstant-lo
ality PRG 
an be

�
ontrolled�. On the other hand, [AJS18℄ use te
hniques from the dense model

theorem to give a general se
urity ampli�
ation for Fun
tional En
ryption with

weak distinguishing advantage, into Fun
tional En
ryption satisfying the stan-

dard notion of se
urity.

Comparison of [AJS18, LM18℄ with the work of Agrawal [Agr18a℄. Following [AR17℄,

to obtain 
ompa
t 
iphertexts, Agrawal [Agr18b℄ (as mentioned in the timeline,

an early version of [Agr18a℄ was shared by the author of [Agr18b℄ with the au-

thors of [LM18℄) proposed the approa
h of using a noise generator to generate Y.

As an abstra
tion of that, they introdu
ed the notion of noisy linear fun
tional

en
ryption that adds the smudging noises Y to the outputs. The noise gener-

ator in [Agr18b℄ is able to produ
e super-polynomially large smudging noises,

and they propose a 
onstant degree FE s
heme supporting super-polynomially

large outputs from a new assumption on NTRU Rings. The works of [AJS18℄

and [LM18℄ explore what happens when Y is polynomially bounded and e may

be leaked, whi
h allows us to use FE s
hemes supporting only polynomially large

outputs from multilinear maps.

9



Subsequent to [AJS18℄, Agrawal notes that their 
onstru
tion is 
ompatible

with the approa
h of [AJS18℄ using ∆RG with polynomially large outputs and

weak se
urity, and later amplifying the se
urity of FE in a bla
k-box way. Thus,

the 
onstru
tion in the updated version 
an use known 
onstru
tions of FE

s
hemes with restri
ted output size.

Comparison with the work by Jain, Lin, Matt and Sahai [JLMS19℄. As a follow-

up to [AJS18, LM18, Agr18a℄, Jain, Lin, Matt and Sahai [JLMS19℄ 
onstru
t

FE s
hemes for degree d+2 fun
tions multilinear in their inputs x1, . . . ,xd, y, z,

where x1, . . . ,xd are publi
, y and z are private, and d 
an be any 
onstant. They

further improve upon [AJS18℄ by only relying on the SXDH assumption instead

of the generi
 bilinear map model. Moreover, their work provides new 
andidates

of ∆RGs that 
an be 
omputed by their FE s
hemes. Similar to [AJS18, LM18℄,

their 
andidates hide the publi
 inputs as noises in LWE samples.

Comparison of [AJS18, LM18℄ and [GKP

+
13, GVW15, BTVW17, AR17℄. Both

the works of [AJS18, LM18℄ use a homomorphi
 en
ryption s
heme (HE) in


onjun
tion with the newly introdu
ed pseudorandom generators to 
onstru
t

FE. This approa
h of using a homomorphi
 en
ryption s
heme to 
onstru
t FE is

not new has already been explored in several works [GVW12, GKP

+
13, GVW15,

BTVW17, AR17, Agr18a℄. The 
hallenges to build FE from HE are twofold: 1)

priva
y�de
rypt a 
iphertext CTf,x en
rypting an output f(x) = y se
urely

revealing only y, and 2) integrity�enfor
e that only 
iphertexts for �legitimate�

fun
tions f (ones for whi
h se
ret keys are generated) 
an be de
rypted. Below,

we brie�y dis
uss how this approa
h was adopted in previous works.

The work of Goldwasser et al. [GKP

+
13℄ use the above template to build

a single-fun
tional en
ryption s
heme. They use an attribute-based en
ryption

s
heme to ensure integrity and garbled 
ir
uits to ensure priva
y. Then they


ombine both these tools along with HE to a
hieve their result.

Gorbunov, Vaikuntanathan, and Wee [GVW15℄, also using the above ap-

proa
h, 
onstru
t a predi
ate en
ryption s
heme based on learning with errors;

re
all that predi
ate en
ryption is a weaker form of fun
tional en
ryption. They

propose a novel primitive, 
alled partial-hiding predi
ate en
ryption s
heme and

then 
ombine it with HE to obtain a predi
ate en
ryption s
heme. Their notion of

partial-hiding predi
ate en
ryption s
heme in
orporates both the priva
y and the

integrity properties. In terms of te
hniques, the starting point to their 
onstru
-

tion of partial-hiding predi
ate en
ryption s
heme is the observation that the HE

de
ryption 
orresponds to 
omputing an inner produ
t followed by a threshold

fun
tion. Moreover, there are latti
e-based 
onstru
tions of predi
ate en
ryp-

tion s
hemes for threshold of inner produ
t [AFV11, GMW15℄. They then pro-

pose a novel method to 
ombine a latti
e-based predi
ate en
ryption for thresh-

old of inner produ
t with a latti
e-based attribute-based en
ryption s
heme to

a
hieve a partial-hiding predi
ate en
ryption s
heme. Natural attempts to ex-

tend their 
onstru
tion to a
hieve fun
tional en
ryption have been shown to be

broken [Agr17a℄.
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In [AR17℄, to ensure priva
y of HE de
ryption, they use an FE s
heme to

perform linear HE half-de
ryption and add super-polynomially large smudging

noises Y to hide the de
ryption noise e. In their s
heme, the smudging noises

Y are sampled and en
oded into the 
iphertext. As a result, the 
iphertext size

grows with the output length of the 
omputation, whi
h is non-
ompa
t. In

addition, they also developed a new approa
h to ensure integrity. Instead of re-

lying on primitives like attribute based en
ryption or PHFE to ensure integrity

as in [GVW12, GKP

+
13, GVW15℄, they employ a spe
ial HE s
heme whose de-


ryption equation has the form y+e = cf −Afs, where Af depends only on the

publi
 and reusable random matrix A in LWE samples and the evaluated fun
-

tion f . Thus, to ensure integrity, it su�
es to enfor
e that only linear fun
tions

Afs for legitimate f 
an be evaluated on s. The work of [LM18℄ follows their

approa
h for integrity. The work of [AJS18℄, however, takes a di�erent path, by

introdu
ing the notion of 3-restri
ted FE (that we 
all partially hiding fun
tional

en
ryption here).

1.3 Open Questions

Our work opens many interesting questions. First, we 
all for more study of the


andidate ∆RGs/PFGs. Studying their se
urity as well as �nding new 
andi-

dates may build interesting 
onne
tion with algorithm and 
omplexity theory as

already demonstrated in the atta
k by [BHJ

+
19℄ using SOS algorithms.

Se
ondly, 
an we further strengthen the 
onstru
tion of FE or iO in order to

further weaken the requirements on the stru
ture and se
urity of ∆RGs/PFGs?

Follow-up works show how to 
onstru
t PHFE s
hemes that 
an perform 
onstant-

degree [JLMS19℄ 
omputation or even up to NC1 
omputation [JLS19℄ in the

publi
 input, instead of just linear (still quadrati
 in the private input). Su
h

s
heme allows for having more 
andidate ∆RGs/PFGs.

Thirdly, the reason that we 
an only work with polynomially bounded smudg-

ing noises is be
ause we do not have 
onstant-degree FE s
hemes that support

super-polynomially large outputs from multilinear maps and/or standard as-

sumptions. For instan
e, 
an we build a quadrati
 FE s
heme for super-polynomially

large outputs from standard assumptions? That would lead to a signi�
ant sim-

pli�
ation of our 
onstru
tion of NC
1
-FE as there would be no more leakage.

2 New PRG Assumptions

This se
tion is organized as follows. In Se
tion 2.1 we de�ne the notion of per-

turbation resilient generator ∆RG proposed by [AJS18℄. In Se
tion 2.2 we de�ne

pseudo-�awed smudging generators (PFGs) proposed by [LM18℄. Then, in Se
-

tion 2.3 we give an algorithmi
 framework to realise ∆RG and PFG. Both of

them are PRGs whi
h has seed 
onsisting of one publi
 input and two se
ret in-

put. These PRGs evaluate degree-3 multilinear polynomials over Zp over these

inputs. In the same se
tion, we give an intuition as to why this stru
ture 
an

be realised using bilinear maps. In Se
tion 2.4 we give 
andidate polynomials

11



whi
h 
an be used to instantiate these primitives. In Se
tion 2.5, we illustrate a

single assumption whi
h will imply the notion of a perturbation resilient gener-

ator su�
ient to build iO [AJS18℄. In Se
tion 2.6 we present the state of art in


ryptanalysis of the 
andidate polynomials.

2.1 Perturbation Resilient Generator

A perturbation-resilient generator, denoted by ∆RG, 
onsists of the following

algorithms:

� Setup, Setup(1λ, 1n, B): On input se
urity parameter λ, the length parame-

ter n and a polynomial B = B(λ), it outputs a seed Seed and publi
 param-

eters pp.

� Evaluation, Eval(pp, Seed): It takes as input publi
 parameters pp, seed

Seed and outputs a ve
tor (h1, ..., hℓ) ∈ Z
ℓ
. The parameter ℓ is de�ned to be

the stret
h of ∆RG.

The following properties are asso
iated with a ∆RG s
heme.

E�
ien
y: The following 
onditions need to be satis�ed.

� The time taken to 
ompute Setup(1λ, 1n, B) is n · poly(λ) for some �xed

polynomial poly.

� For all i ∈ [ℓ], |hi| = poly(λ, n). That is, the norm of ea
h 
omponent hi in

Z is bounded by some polynomial in λ and n.

Perturbation Resilien
e: For every polynomial B(λ), for every large enough poly-

nomial n = n(λ) and for all large enough λ, the following holds: for every

a1, ..., aℓ ∈ Z, with |ai| ≤ B(λ), we have that for any distinguisher D of size

2λ,

∣

∣

∣

∣

∣

Pr
x

$
←−D1

[1← D(x)]− Pr
x

$
←−D2

[1← D(x)]

∣

∣

∣

∣

∣

< 1− 1/λ,

where the sampling algorithms of D1 and D2 are de�ned as follows:

� Distribution D1: Compute (pp, Seed) ← Setup(1λ, 1n, B) and (h1, ..., hℓ) ←
Eval(pp, Seed). Output (pp, h1, ..., hℓ).

� Distribution D2: Compute (pp, Seed) ← Setup(1λ, 1n, B) and (h1, ..., hℓ) ←
Eval(pp, Seed). Output (pp, h1 + a1, ..., hℓ + aℓ).

Note that as is, we are not able to use the notion of a ∆RG to 
onstru
t iO. We

now de�ne the notion of a perturbation-resilient generator implementable by a

three-restri
ted FE s
heme (3∆RG for short). This notion turns out to be useful

for our 
onstru
tion of iO.
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∆RG implementable by Three-Restri
ted FE. A ∆RG s
heme imple-

mentable by Three-Restri
ted FE (3∆RG for short) is a perturbation resilient

generator with some additional stru
tural properties. We des
ribe syntax again

for a 
omplete spe
i�
ation.

� Setup(1λ, 1n, B) → (pp, Seed). The setup algorithm takes as input a se
u-

rity parameter λ, the length parameter 1n and a polynomial B = B(λ) and
outputs a seed Seed and publi
 parameters pp. Here, Seed = (Seed.pub,
Seed.priv(1), Seed.priv(2)) is a ve
tor on Zp for a modulus p, whi
h is also

the modulus used in three-restri
ted FE s
heme. There are three 
omponents

of this ve
tor, where one of the 
omponent is publi
 and two 
omponents

are private, ea
h in Z
npoly(λ)
p . Also ea
h part 
an be partitioned into sub-


omponents as follows. Seed.pub = (Seedpub,1, ..., Seedpub,n), Seed.priv(1) =
(Seedpriv(1),1, ..., Seedpriv(1),n) and Seed.priv(2) = (Seedpriv(2),1, ..., Seedpriv(2),n).

Here, ea
h sub 
omponent is in Z
poly(λ)
p for some �xed polynomial poly in-

dependent of n. Also, pp = (Seed.pub, q1, .., qℓ) where ea
h qi is a 
ubi


multilinear polynomial des
ribed in the next algorithm. We require synta
-

ti
ally there exists two algorithms SetupSeed and SetupPoly su
h that Setup


an be de
omposed follows:

1. SetupSeed(1λ, 1n, B)→ Seed. The SetupSeed algorithm outputs the seed.

2. SetupPoly(1λ, 1n, B)→ q1, ..., qℓ. The SetupPoly algorithm outputs q1, .., qℓ.

� Eval(pp, Seed)→ (h1, ..., hℓ), evaluation algorithm output a ve
tor (h1, ..., hℓ) ∈
Z
ℓ
. Here for i ∈ [ℓ], hi = qi(Seed) and ℓ is the stret
h of 3∆RG. Here qi is a


ubi
 polynomial whi
h is multilinear in publi
 and private 
omponents of

the seed.

The se
urity and e�
ien
y requirements are same as before.

Remark 2. To 
onstru
t iO we need the stret
h of 3∆RG to be equal to ℓ = n1+ǫ

for some 
onstant ǫ > 0.

We 
an 
onstru
t 3∆RG from a su

intly stated, instan
e independent and

a falsi�able assumption stated in Se
tion 2.5.

2.2 Pseudo-Flawed Smudging Generators

In this se
tion, we �rst de�ne what it means for a distribution over Z
ℓ
to be

smudging and �awed-smudging, and then introdu
e pseudo �awed-smudging gen-

erators.

First, the distribution of a random variable X is smudging if the statisti
al

distan
e between X and X + e is small for all e with bounded magnitude.

De�nition 1 (Smudging distributions). Let ℓ be a positive integer, let ε ∈
[0, 1], and let B either be a positive integer or an ℓ-dimensional ve
tor of positive

integers. We say a distribution X over Z
ℓ
is (B, ε)-smudging if for X ← X and

for all B-bounded e ∈ Z
ℓ
, we have δ(X,X + e) ≤ ε.
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We next de�ne distributions obtained by �xing some positions in the output

of a distribution. This will be used for de�ning �awed-smudging distributions.

De�nition 2 (Bit-�xing distributions). Let D be a distribution over strings

in ∆ℓ
for some set ∆ and some integer ℓ. Let I ⊆ [ℓ] be a set of indi
es, and

x an arbitrary string in ∆|I|
. De�ne D|x,I to be the distribution of sampling x

from D 
onditioned on xI = x. For 
onvenien
e, we sometimes also write I as

its 
hara
teristi
 ve
tor v, where vi = 1 i� i ∈ I.
We say that D is bit-�xing e�
iently samplable if D|x,I is e�
iently samplable

for any x, I.

We now de�ne �awed-smudging distributions. On a high level, the distribu-

tion of X is �awed-smudging for a random variable E if there are a few �bad�


oordinates su
h that X +E �hides� E at all 
oordinates that are not bad. This

means, given X + E and whi
h 
oordinates are bad, one 
annot distinguish E
from E, where E is a fresh sample 
onditioned on agreeing with E on the bad


oordinates.

De�nition 3 (Flawed-smudging distributions). Let ℓ be a positive integer

and let X and E be distributions over Z
ℓ
. Further let K ∈ N and µ ∈ [0, 1].

We say that X is (K,µ)-�awed-smudging for E if there exist randomized pred-

i
ates

{

BADi : Z
ℓ+1 → {0, 1}

}

i∈[ℓ]
su
h that the following two distributions are

identi
al:

D1 =







E ← E
X ← X

bad =
(

badi ← BADi(Ei, X)
)

i∈[ℓ]

: (E, X + E, bad)







,

D2 =















E ← E
X ← X

bad =
(

badi ← BADi(Ei, X)
)

i∈[ℓ]

E ← E|Ebad,bad

:
(

E, X + E, bad
)















,

and in addition, with probability at least 1− µ, the 1-norm of bad is bounded by

|bad|1 ≤ K.

We say the distribution X is (K,µ)-�awed-smudging for B-bounded distribu-

tions if it is (K,µ)-�awed-smudging for every B-bounded distribution E, where
B 
an either be a positive integer or a ve
tor in Z

ℓ
.

Remark 3. A more dire
t generalization of the de�nition of smudging distribu-

tions (see De�nition 1) would be that for all e, the distribution of X + e is equal

(or statisti
ally 
lose) to the distribution of Y , where Yi = Xi + ei for all bad i,
and Yi = Xi for non-bad i. This is, however, not su�
ient for our purposes: We

need that no information about the non-bad 
oordinates is leaked. While Xi

itself does not leak anything about ei, the fa
t that i is not a bad 
oordinate 
an

leak something about ei, sin
e the predi
ate BAD depends on ei. De�nition 3

resolves this issue by sampling the non-bad 
oordinates freshly after sampling

bad.
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Pseudo �awed-smudging generators. We now de�ne pseudo �awed-smudging

generators (PFGs). A PFG is a distribution of e�
iently 
omputable fun
tions

and seeds for whi
h the output of the fun
tions is indistinguishable from a �awed-

smudging distribution.

De�nition 4. (Pseudo Flawed-Smudging Generator) Let n,m,K,B be polyno-

mials. A family of (K,µ)-pseudo �awed-smudging generators ((K,µ)-PFG) for

B-bounded distributions is an ensemble of distributions PFG = {PFGλ}λ∈N

satisfying the following properties:

Syntax: For every λ ∈ N, every (PFG,Dsd) in the support of PFGλ de�nes a

fun
tion PFG: Zn(λ) → Z
m(λ)

and a distribution Dsd
over seeds.

E�
ien
y: There is a uniform Turing ma
hine M satisfying that for every

λ ∈ N, every (PFG,Dsd) ∈ Support(PFGλ) and Seed ∈ Support(Dsd),
M(PFG, Seed) runs in time poly(λ) and we have M(PFG, Seed) = PFG(Seed).
Furthermore, PFG and all Dsd

in the support of PFGλ are e�
iently sam-

plable.

(K,µ)-pseudo-�awed-smudging for B-bounded distributions: There exists

an ensemble {Xλ} of distributions, su
h that the distribution Xλ is (K(λ), µ(λ))-
�awed-smudging for all B(λ)-bounded distributions, and the following ensem-

bles are µ-indistinguishable:

{

(PFG,Dsd)← PFGλ; Seed← D
sd : (PFG,PFG(Seed))

}

λ∈N

,
{

(PFG,Dsd)← PFGλ;X ← Xλ : (PFG, X)
}

λ∈N

.

Degree 3 PFG with Partial Publi
 Input: As mentioned in the introdu
tion

and as des
ribed w.r.t. ∆RG, it su�
es if our PFG has the simple stru
ture that

every funtion PFG sampled from PFGλ is a degree 2 polynomial over Zp, where

p is a modulus that eventually mat
hes the modulus that our PHFE supports,

whi
h in turn is the modulus asso
iated with the bilinear maps. However, so

far, we do not know how to instantiate a truly degree 2 PFG. Instead, we 
an

work with the following slightly weaker stru
ture, where the PFG is a degree

3 multilinear polynomial, and the �rst input ve
tor 
an be made publi
, more

spe
i�
ally:

Stru
ture: For every λ, every (PFG,Dsd) ∈ PFGλ satis�es that Dsd
is a dis-

tribution over (x,y, z) ∈ Z
3
p for some modulus p, and PFG(x,y, z) is a

multilinear degree 3 polynomial over Z
3
p.

Se
urity with partial publi
 input: The se
urity in De�nition 4 is strength-

ened so that the following distributions are indistinguishable:

{

(PFG,Dsd)← PFGλ; Seed = (x,y, z)← Dsd : (PFG,x,PFG(Seed))
}

λ∈N

,
{

(PFG,Dsd)← PFGλ; Seed = (x,y, z)← Dsd;X ← Xλ : (PFG,x, X)
}

λ∈N

.
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Weaker variant: Flawed-smudging with 1/poly(λ) probability. In the

full version [LM18℄, we show how to further weaken the requirements on PFGs.

Roughly speaking, the PFG outputs are indistinguishable to a �awed-smudging

distribution only with some 1/poly(λ) probability. We show that using essentially

the same te
hnique for handling the partial hiding guarantee of PFG 
an also

be used to handle this weakening. We omit details here; see [LM18℄ for more

details.

Properties of (Flawed-)Smudging Distributions In the full version [LM18℄,

we prove some properties of smudging and of �awed-smudging distributions.

More spe
i�
ally, we show the following:

� Polynomially bounded distributions 
annot be smudging with negligible ε.
More pre
isely, if X is B-bounded and (B′, ε)-smudging, then ε ≥ 1

2B+1 .

� Adding independent values preserves the (�awed-)smudging property, i.e., if

X and Y are independent and the distribution of X is (�awed-)smudging,

then the distribution of X + Y is (�awed-)smudging with the same parame-

ters.

� Probabilisti
ally mixing (�awed-)smudging distributions yields a (�awed-)

smudging distribution. That is, if the distributions ofXi are (B, εi)-smudging

(or (K,µi)-�awed-smudging) and αi ∈ [0, 1] su
h that

∑

i αi = 1, then the

distribution of X with Pr[X = x] =
∑

i αi Pr[Xi = x] is
(

B,
∑

i αiεi
)

-

smudging (or

(

K,
∑

i αiµi

)

-�awed-smudging).

� The joint distribution of mutually independent smudging distributions is

�awed-smudging. More pre
isely, we show that if X is a distribution over Z
ℓ

su
h that for (X1, . . . , Xℓ) ← X , X1, . . . , Xℓ are mutually independent and

the distribution of ea
h Xi is (B, ε)-smudging for ε ≤ K+1
22ℓ·(2B+1) , then X is

(K, 2−K)-�awed-smudging for B-bounded distributions.

� The produ
t of �awed-smudging distributions is �awed-smudging. That is,

for distributions X (1)
and X (2)

su
h that X (i)
is

(

K(i), µ(i)
)

-�awed-smudging,

we have that X (1) ×X (2)
is

(

K(1) +K(2), µ(1) + µ(2)
)

-�awed-smudging.

� If the distribution of X is �awed-smudging for the distribution of E and

E = E(V ) is a fun
tion of some random ve
tor V su
h that ea
h 
oordinate

of E(V ) depends only on a few 
oordinates of V , then E(V )+X hides V at

all but a few lo
ations.

2.3 Framework for Algorithms of 3∆RG and PFG

We now des
ribe a framework of algorithms that 
an be used to instantiate

∆RG and PFG. However for the sake of su

in
tness and 
larity we des
ribe it

in terms of a perturbation resilient generator 3∆RG. For 
on
reteness, we use a

large enough prime modulus p = O(2λ), whi
h is the same as the modulus used

by 3−restri
ted FE/(1,2)-PHFE. Then, let χ be a distribution used to sample

input elements over Z. Let Q denote a polynomial sampler. Next we des
ribe the

algorithms in terms of χ and Q but give 
on
rete instantiations later in Se
tion

2.4.
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� Setup(1λ, 1n, B) → (pp, Seed). Sample a se
ret s ← Z
1×d
p for d = poly(λ)

su
h that LWEd,n·d,p,χ holds. Here χ is a bounded distribution with bound

poly(λ). Let Q denote an e�
iently samplable distribution of homogeneous

degree 3 polynomials (instantiated later). Then pro
eed with SetupSeed as

follows:

1. Sample ai ← Z
1×d
p for i ∈ [n] along with ei, yi, zi ← χ for i ∈ [n].

2. Compute LWE samples wi = (ai, ri = 〈ai, s〉+ ei mod p) for i ∈ [n].
3. Output Seed.pub(i) = wi for i ∈ [n], Seed.priv(1, j) = yi ⊗ (−s, 1) for

j ∈ [n] and Seed.priv(2, k) = zk for k ∈ [n].
� SetupPoly : Now we des
ribe SetupPoly. Fix η = n1+ǫ

.

1. Sample polynomials q′ℓ for ℓ ∈ [η] as follows. q′ℓ(e1, ..., en, y1, ..., yn, z1, ..., zn) =
ΣI=(i,j,k)cIei · yj · zk where 
oe�
ients cI are bounded by poly(λ). These
polynomials {q′ℓ} are sampled a

ording to Q

2. De�ne qi be a multilinear homogeneous degree 3 polynomial takes as

input Seed = ({wi}i∈[n],y
′
1, . . . ,y

′
n, z). Then it 
omputes ea
h monomial

cIeiyj · zk as follows and then adds all the results:

• Compute cI〈wi, (−s, 1)〉 · yj · zk. This step requires y′
i = yi ⊗ (−s, 1)

to perform this 
omputation.

3. Output q1, ..., qη. Observe that qi(Seed) = q′i(e,y, z) for all i.
� Eval(pp, Seed)→ (h1, ..., hη), evaluation algorithm output a ve
tor (h1, ..., hη) ∈

Z
η
. Here for i ∈ [η], hi = qi(Seed) and η is the stret
h of 3∆RG. Here qi is

a degree 3 homogenenous multilinear polynomial (de�ned above) whi
h is

degree 1 in publi
 and 2 in private 
omponents of the seed.

We prove that the above 
andidate satis�es the e�
ien
y property of a perturbation-

resilient generator.

E�
ien
y:

1. Note that Seed 
ontains n LWE samples wi for i ∈ [n] of dimension d. Along

with the samples, it 
ontains elements y′
i = yi⊗ t for i ∈ [n] and elements zi

for i ∈ [n]. Note that the size of these elements are bounded by poly(λ) and
is independent of n.

2. The values hi = qi(Seed) = ΣI=(i,j,k)cIei · yj · zk. Sin
e χ is a bounded

distribution, bounded by poly(λ, n), and 
oe�
ients cI are also polynomially

bounded, ea
h |hi| < poly(λ, n) for i ∈ [m].

Intuition behind 
andidate with partially-publi
 inputs. Starting from

a 
ubi
 multilinear 
andidate g(x,y, z) where all inputs are private, and the �rst

input x is from a distribution that 
an be used as LWE noises, we transform

it into another fun
tion h(C,y′, z) where the �rst input 
an be made publi
.

The key idea is hiding x in LWE samples C = (A,As′ + x) mod p as the noise

terms. Then 
omputing g translates into 
omputing another fun
tion h where x
is repla
ed with Cs mod p for s = (−s′||1),

h(C, y′ = (y⊗s), z) :=
∑

j

g(C[⋆, j], sjy, z) = g (Cs,y, z) = g(x,y, z) (mod p) ,
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whereC[⋆, j] is the ve
tor 
ontaining the j'th element of all LWE samples. NowC

is the publi
 input of h. By providing the tensor y⊗s as input, the polynomial h
is multilinear. For h to be se
ure when C is publi
, the output of g needs to be

indistinguishable from a pseudo �awed-smudging distribution, say D, even when

its �rst input is hidden in some LWE samples,

{ g(x,y, z), C = (A,As′ + x) } ≈ { ∆← D, C = (A,As′ + x) } .

The family of 
ubi
 polynomials with partially-publi
 input of [AJS18℄ 
orre-

sponds exa
tly to h obtained by applying the above transformation to the de-

gree d = 3 
andidates g(x,y, z) =
∑

i1,i2,i3
ci1,i2,i3xi1yi2zi3 with small inputs

and 
oe�
ients des
ribed in Instantiation 1. We observe that for every �xed

publi
 input C, the fun
tion h is quadrati
 in y and z, but its 
omputation over

Zp does not degenerate to 
omputation over Z, as it does trigger wrap-around

modulo p due to LWE �de
ryption�.

2.4 Our Instantiation of Polynomials for ∆RG and PFG.

We now give various instantiations of Q. Let χ be the dis
rete gaussian distribu-

tion with 0 mean and standard deviation n. The following 
andidate is proposed
by [BHJ

+
19℄ and [AJS18℄ based on the investigation of the hardness of families

of expanding polynomials over the reals. For any ve
tor v, denote by v[i], the
ith 
omponent of the ve
tor.

Instantiation: 3XOR Based Candidate. Let t = B2λ. Sample ea
h polynomial q′i
for i ∈ [η] as follows. q′i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . , zt) = Σj∈[t]q

′
i,j(xj,yj, zj).

Here xj ∈ χd×n
and yj , zj ∈ χn

for j ∈ [t]. In other words, q′i is a sum of t
polynomials q′i,j over t disjoint set of variables.

Now we des
ribe how to sample q′i,j for j ∈ [η].

1. To sample q′i,j do the following. Sample three indi
es randomly and indepen-

dently i1, i2, i3 ← [n].
2. Set q′i,j(xj,yj, zj) = xj[i1] · yj [i2] · zj [i3]

Remark: The 
andidate above was generalised to have a 
onstant degree d
in a followup. This 
an be found in [JLMS19℄. One 
ould also 
onsider arithmeti


versions of various boolean predi
ates. For example, any 
lause of the form a1 ∨
a2∨a3 
an be written as 1−(1−a1)(1−a2)(1−a3) over integers where a1, a2, a3
are literals in �rst 
ase and take values in {0, 1}, and thus any random satis�able

3SAT formula 
an be 
onverted to polynomials in this manner.

2.5 Pseudorandomness Assumption in Ananth-Jain-Sahai

Below we des
ribe the a
tual hardness assumption needed by [AJS18℄, when


ombined with subexponentially se
ure LWE, bilinear maps, and 3-blo
k-lo
al

PRGs, to imply iO.
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The AJS Assumption. This assumption states the following. There exists a poly-

nomially bounded distribution χ over the integers, and there exists a polynomial

samplerQ over families of multilinear degree-3 polynomials. Let δi ∈ Z be output

by the adversary given only the parameters (1λ, 1n), su
h that for all i ∈ [n1+ǫ],
we have that |δi| < λc

for some 
onstant c. Then 
onsider the following two

distributions:

Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n, λc, ǫ) to obtain

polynomials (q1, ..., q⌊n1+ǫ⌋). Sample a se
ret s ← Z
λ
p and sample ai ← Z

λ
p for

i ∈ [n]. Finally, for every i ∈ [n], sample ei, yi, zi ← χ, and write e = (e1, . . . , en),
y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with

{qk, qk(e,y, z)}k∈[n1+ǫ]

Distribution D2 is the same as D1, ex
ept that we 
onsider polynomial eval-

uations perturbed with δi. The output is now

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with

{qk, qk(e,y, z) + δk}k∈[n1+ǫ]

Then we require that for all subexponential-time adversary A it holds that:

| Pr
Z

$
←−D1

[A(Z) = 1]− Pr
Z

$
←−D2

[A(Z) = 1]| ≤ 1− 1/λ

Remark 4. For 
on
reteness, the 
andidate for the sampler Q 
an be found in

Se
tion 2.4.

De
omposing the assumption into two parts. To help understand the assumption

above, next we make the following observation. The assumption des
ribed above

is su�
ient to build iO and it turns out the assumption above is true if the

following two simpler assumptions are true. This impli
ation is one sided and

indeed it may be true that one of the two assumptions below is false but the

assumption above still holds. We present the assumptions below only to help

the reader 
on
eptually understand the assumption above. The �rst assumption


alled �Weak LWE with Leakage" states that given the polynomial samples,

it is 
omputationally hard to determine whether the LWE sample is 
hosen

with the same error over whi
h the polynomials are evaluated or a 
ompletely

independently 
hosen error.

Explaining the AJS Assumption, Part 1. Weak LWE with leakage. This assump-

tion states that there exists a polynomially bounded distribution χ over the

integers, and there exists a polynomial sampler Q over families of multilinear

degree-3 polynomials su
h that the following two distributions are weakly indis-

tinguishable (spe
i�ed later).
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Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n, λc, ǫ) to obtain

polynomials (q1, ..., q⌊n1+ǫ⌋) for some 
onstant c > 0. Sample a se
ret s ← Z
λ
p

and sample ai ← Z
λ
p for i ∈ [n]. Finally, for every i ∈ [n], sample ei, yi, zi ← χ,

and write e = (e1, . . . , en), y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with

{qk, qk(e,y, z)}k∈[n1+ǫ]

Distribution D2 is the same as D1, ex
ept that we additionally sample e′j ← χ
for i ∈ [n]. The output is now

{ai, 〈ai, s〉+ e′i mod p}i∈[n]

along with

{qk, qk(e,y, z)}k∈[n1+ǫ]

Then it holds that for any adversary A of subexponential size:

| Pr
Z

$
←−D1

[A(Z) = 1]− Pr
Z

$
←−D2

[A(Z) = 1]| ≤ 1/λ

We 
an think of the polynomials qk(e,y, z) as �leaking� some information

about the LWE errors ei. The assumption above states that su
h leakage provides

only a limited advantage to the adversary. Criti
ally, the fa
t that there are

n2 > n1+ǫ
quadrati
 monomials involving just y and z above, whi
h are not

used in the LWE samples at all, is 
ru
ial to avoiding linearization atta
ks over

Zp in the spirit of Arora-Ge [AG11℄. For more dis
ussion of the se
urity of the

above assumption in the 
ontext of D = 3, see [BHJ+19℄.
The se
ond assumption deals only with expanding degree-3 polynomials over

the reals, and requires that these polynomials are weakly perturbation resilient.

Explaining the AJS Assumption, Part 2. Weak Perturbation-Resilien
e. This as-

sumption states that for the same distribution of polynomials and inputs as above

the following distributions are weakly indistinguishable. Let δi ∈ Z be output by

the adversary given only the parameters (1λ, 1n), su
h that for all i ∈ [n1+ǫ], we
have that |δi| < λc

for some 
onstant c. Consider the following two distributions:

Distribution D1 
onsists of the evaluated polynomial samples. That is, we output:

{qk, qk(e,y, z)}k∈[n1+ǫ]

Distribution D2 
onsists of the evaluated polynomial samples with added per-

turbations δi for i ∈ [n1+ǫ]. That is, we output:

{qk, qk(e,y, z) + δk}k∈[n1+ǫ]

Then it holds that for any adversary A of subexponential size:

| Pr
Z

$
←−D1

[A(Z) = 1]− Pr
Z

$
←−D2

[A(Z) = 1]| ≤ 1− 3/λ
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2.6 Known Cryptanalysis

Now, we dis
uss various preliminary 
ryptanalysis attempts made on these 
an-

didates. These atta
ks 
an be 
ategorised in the following 
ategories:

Linearisation Atta
ks: The system of degree-3 polynomials des
ribed above 
an

be 
onverted to a degree-2 system over Zp by performing ba
k substitution of

ei, from the LWE sample (ai, 〈ai, s〉+ei mod p). However, the resulting system
has about Ω(n) variables y⊗ s and z, but only about n1+ǫ

equations. Thus, all

known linearization atta
k fail. This was 
onsidered in the work of [BHJ

+
19℄.

Sum-of-Squares Atta
ks: [BHJ

+
19℄ systemati
ally studies SDP atta
ks on su
h

system and they gave an eviden
e why the assumptions above instantiated using

degree-2 polynomials over reals is unlikely to be true. However, they also 
onje
-

ture that for degree-3 and higher, these systems exhibit SoS lower bounds (at

least, the lower bounds are known to hold in the 
ase when inputs are 
hosen

from {−1, 1} [Gri01, S
h08℄). The lower bounds hold when number of equations

m ≤ nd/2
for a general degree d ≥ 3. Thus for our 
ase when m = n1+ǫ

for any

ǫ > 0, the SoS algorithm is unlikely to atta
k su
h systems in polynomial time.

Please refer [BHJ

+
19℄ for further details.

Gradient Des
ent: We implemented gradient des
ent to 
ryptanalyze all our 
an-

didates. It seems like given the signs of the planted inputs, gradient des
ent was

able to re
over the planted inputs in most 
ases. For degree-2 
andidates, gra-

dient des
ent was able to re
over the planted inputs even with random starting

points (even with no information on the signs). For degree-3 and higher, our im-

plementation of gradient des
ent did not yield any atta
k starting from random

signs. This mat
hes our intuition developed in SoS literature, sin
e the lower

bounds hold when inputs are sampled from {+1,−1} (thus implying �nding

signs is hard).

3 Te
hni
al Overview of Ananth-Jain-Sahai 18

We now begin with a very high-level overview of our te
hniques in [AJS18℄.

The story so far. Prior work, 
ulminating in the most re
ent works of [AS17,

Lin17, LT17℄ showed us that the powerful primitive of indistinguishability obfus-


ation 
an be based on trilinear maps and (sub-exponential) 3-blo
k-lo
al pseudo-
random generators. Importantly for us, these works also (impli
itly) demonstrate

that in order to a
hieve indistinguishability obfus
ation, it su�
es to 
onstru
t

(sub-exponentially se
ure) se
ret-key sublinear FE for 
ubi
 polynomials, satis-

fying semi-fun
tional se
urity. Unfortunately, these prior approa
hes ne
essarily

relied on multilinear maps with degree at least 3 to build su
h a 
ubi
 FE s
heme.

That is be
ause intuitively su
h a 
ubi
 FE s
heme guarantees a way to eval-

uate a 
ubi
 polynomial on en
rypted inputs without revealing any information

about the input ex
ept the evaluation of the polynomial. In other words, su
h a
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s
heme provides a way to output the de
ryption of a degree-3 polynomial evalu-

ated �homomorphi
ally� on en
oded inputs. However, we seek to a

omplish this

without the use of degree-3 maps.

Sin
e we seek to operate homomorphi
ally on en
oded values, a natural start-

ing idea is to use fully homomorphi
 en
ryption (for 
on
reteness and simpli
ity,

in this paper we rely on the GSW fully homomorphi
 en
ryption s
heme [GSW13℄)

with polynomially bounded error in order to perform 
ubi
 evaluations on en-


rypted inputs. The main 
hallenge, however, is to reveal the output of 
ubi


evaluation without 
ompromising se
urity.

Initial approa
h. Our �rst observation is that 
omputing the inner produ
t

〈GSW.sk,GSW.CT〉 of a GSW se
ret key with a GSW 
iphertext en
rypting

message M , outputs (M · ⌊q/2⌋ + e) where the LWE modulus is q and e is a

small error. With the assistan
e of a bilinear map, this inner produ
t 
an be


arried out via pairings, su
h that the output (M · ⌊q/2⌋ + e) appears as an

exponent in the target group. Next, one 
an hope to test whether the message

M is zero by 
omputing a dis
rete logarithm by brute-for
e 
he
king all possible

values, provided the output range is polynomial, whi
h would happen if M = 0.
A reader familiar with GSW will observe that this approa
h already runs

into major hurdles. The �rst problem is that brute-for
e 
omputing the message

M also reveals the error e to a potential adversary, whi
h is problemati
 when

we try to invoke the semanti
 se
urity of GSW. In fa
t, re
ent work shows how

knowledge of su
h error 
an be used to build devastating atta
ks [Agr17b℄. We

will 
ru
ially deal with this issue, but before we ta
kle this, let us �rst 
onsider

how we 
an for
e the adversary to obtain only inner produ
ts 〈GSW.sk,GSW.CT〉
where the messages 
orrespond to 
ubi
 
omputations that the adversary is

allowed to obtain.

3-Restri
ted FE. To a

omplish this, we �rst de�ne a restri
ted version of fun
-

tional en
ryption (FE) � whi
h allows for the 
omputation of multilinear 
ubi


polynomials of three inputs, where one remains unen
oded and is 
alled the pub-

li
 
omponent and the other two are en
oded; these are the private 
omponents.

In other words, our restri
ted FE is a partially hiding FE, or PHFE for short.

The input to the en
ryption algorithm is split into three parts x,y, and z, where

x is not hidden by the en
ryption, but y and z are kept hidden.

One of our key te
hni
al 
ontributions is to a
hieve a new way of (indistin-

guishably) enfor
ing the output of su
h a 3-restri
ted FE s
heme, despite the

fa
t that one of the en
odings is publi
ly known to the adversary. We use these

te
hniques to a
hieve se
urity for this 3-restri
ted variant of FE relying solely

on asymmetri
 bilinear maps. While we only need the resulting 3-restri
ted FE

to be sublinear, our 
onstru
tion in fa
t a
hieves 
ompa
tness, where the size of

en
oding is only linear in the input length.

Constru
ting Three-Restri
ted FE. Before getting to 3 restri
ted FE, let's �rst

re
ap how se
ret key quadrati
 fun
tional en
ryption s
hemes [AS17, Lin17℄ work

at a high level. Let's say that the en
ryptor wants to en
rypt y, z ∈ Z
n
p. The
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master se
ret key 
onsists of two se
ret random ve
tors β, γ ∈ Z
n
p that are used

for enfor
ement of 
omputations done on y and z respe
tively. The idea is that

the en
ryptor en
odes y and β using some randomness r, and similarly en
odes

z and γ together as well. These en
odings are 
reated using bilinear maps in one

of the two base groups. These en
odings are 
onstru
ted so that the de
ryptor


an 
ompute an en
oding of [g(y, z) − rg(β, γ)]t in the target group for any

quadrati
 fun
tion g. The fun
tion key for the given fun
tion f is 
onstru
ted in

su
h a manner that it allows the de
ryptor to 
ompute the en
oding [rf(β, γ)]t
in the target group. Thus the output [f(y, z)]t 
an be re
overed in the exponent

by 
omputing the sum of [rf(β, γ)]t and [f(y, z)−rf(β, γ)]t in the exponent. As

long as f(y, z) is polynomially small, this value 
an then be re
overed e�
iently.

Clearly the idea above only works for degree-2 
omputations, if we use bilinear

maps. However, we build upon this idea nevertheless to 
onstru
t a 3-restri
ted
FE s
heme. Re
all, in a 3-restri
ted FE one wants to en
rypt three ve
tors

x,y, z ∈ Z
n
p. While y and z are required to be hidden, x is not required to be

hidden.

Now, in addition to β, γ ∈ Z
n
p in 
ase of a quadrati
 FE, another ve
tor

α ∈ Z
n
p is also sampled that is used to enfor
e the 
orre
tness of the x part of

the 
omputation. As before, given the 
iphertext one 
an 
ompute [y[j]z[k] −
rβ[j]γ[k]]t for j, k ∈ [n]. But this is 
learly not enough, as these en
odings do not

involve x in any way. Thus, in addition, an en
oding of r(x[i]−α[i]) is also given
in the 
iphertext for i ∈ [n]. Inside the fun
tion key, there are 
orresponding

en
odings of β[j]γ[k] for j, k ∈ [n] whi
h the de
ryptor 
an pair with en
oding

of r(x[i]−α[i]) to form the en
oding [r(x[i]−α[i])β[j]γ[k]]t in the target group.

Now observe that,

x[i] ·
(

y[j]z[k]− rβ[j]γ[k]
)

+ r(x[i]− α[i]) · β[j]γ[k]

=x[i]y[j]z[k]− rα[i]β[j]γ[k]

Above, sin
e x[i] is publi
, the de
ryptor 
an herself take (y[j]z[k]−rβ[j]γ[k]),
whi
h she already has, and multiply it with x[i] in the exponent. This allows her

to 
ompute en
oding of [x[i]y[j]z[k]−rα[i]β[j]γ[k]]t. Combining these en
odings

appropriately, she 
an obtain [g(x,y, z)−rg(α, β, γ)]t for any degree-3 multilinear

fun
tion g. Given the fun
tion key for f and the 
iphertext, one 
an 
ompute

[rf(α, β, γ)]t whi
h 
an be used to unmask the output. This is be
ause the


iphertext 
ontains an en
oding of r in one of the base groups and the fun
tion

key 
ontains an en
oding of f(α, β, γ) in the other group and pairing them results

in [rf(α, β, γ)]t.
In full version [AJS18℄, we provide details of our 3-restri
ted FE; spe
i�
ally,

we de�ne a notion of semi-fun
tional se
urity [AS17℄ (variant of fun
tion-hiding)

asso
iated with a three-restri
ted FE s
heme. On
e we have su
h a restri
ted FE,

making the leap to 
ubi
 FE would require us to also keep the publi
 en
oding

hidden. Therefore, it is not 
lear whether we have a
hieved anything meaningful

yet.

Applying Three-Restri
ted FE. One way that we 
an hope to prote
t or hide the

input that goes into the publi
 
omponent of the 3-restri
ted FE, is to let this
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omponent itself be a GSW-based fully homomorphi
 en
ryption of the input. We


an then rely on 3-restri
ted FE to homomorphi
ally evaluate the 
ubi
 fun
tion

itself and obtain a GSW en
ryption of the output of 
ubi
 evaluation. Note,

however, that releasing su
h a GSW en
ryption by itself is useless, be
ause it

does not allow even an honest evaluator to re
over the output of 
ubi
 evaluation.

At this point, let us go ba
k to the initial approa
h des
ribed at the begin-

ning of this se
tion. Noti
e that instead of relying on 3-restri
ted FE to only

homomorphi
ally evaluate the 
ubi
 fun
tion itself, we 
an also perform a GSW

de
ryption via 3-restri
ted FE. The se
ret key for GSW de
ryption 
an be embed-

ded as input into one of the private 
omponents of the 3-restri
ted FE. We show

how this 
an be 
arefully done via degree three operations only, to obtain output

the GSW plaintext with some added error, that is, we obtain out = µ⌊ q2⌋+e. Our
a
tual method of bootstrapping three-restri
ted FE to sublinear FE for 
ubi


polynomials involves additional subtleties, and in parti
ular, we de�ne and 
on-

stru
t what we 
all tempered 
ubi
 en
odings that serve as a useful abstra
tion

in this pro
ess. We now further dis
uss one of the main te
hni
al issues that

arises in this pro
ess.

Be
ause the error e is sampled from a (bounded) polynomial-sized domain,

it is possible to iterate, in polynomial time, over all possible values of out 
or-

responding to µ = 0 and µ = 1, and therefore re
over µ. Unfortunately, this
pro
ess also reveals the error e, whi
h 
an be devastating as we noted before.

Preventing the revelation of error terms. To prevent this issue, we will reveal

the value out = µ⌊ q2⌋+e but with some added noise, so as to hide the error e via
noise �ooding. Unfortunately, this idea still su�ers from two major drawba
ks:

� How should we generate su
h noise? A natural idea is to rely a pseudorandom

generator that 
an be 
omputed via quadrati
 operations only. However, this

is exa
tly the reason why previous approa
hes from the literature 
ould not

rely on bilinear maps � in fa
t, the re
ent works of [LV17, BBKK17℄ showed

that su
h PRGs are quite di�
ult to 
onstru
t. To over
ome this problem,

we introdu
e and rely on a very weak variant of a pseudorandom obje
t,

that instead of guaranteeing pseudorandomness, only guarantees perturba-

tion resilien
e. Furthermore, we will implement this obje
t with degree-3

polynomials. We will soon explain this obje
t in more detail.

� For an honest evaluator to re
over µ by iterating over all possible values

of out = µ⌊ q2⌋ + e, we 
ru
ially require the added noise be sampled from

a polynomial-sized domain. But su
h noise appears to be insu�
ient for

se
urity, in parti
ular, an adversary would have advantage at least

1
poly(λ)

in distinguishing a message with added noise from a message without noise.

Another key te
hni
al 
ontribution of our work is to �nd a way to amplify

se
urity, via tools inspired by the dense model theorem. In the next two

bullets, we des
ribe these ideas in additional detail.

The 
hallenge of 
onstru
ting degree-3 pseudorandomness: a barrier at degree 2.

As we've outlined above, we need a way to 
reate pseudorandomness to (at least
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partially) hide noise values. The most straightforward way to do this would be

to build a degree-2 pseudorandom generator (PRG) whose output is indistin-

guishable from some ni
e m-dimensional distribution, like a dis
rete gaussian.

Intuitively, if su
h a degree-2 obje
t existed, a bilinear map would be su�
ient

to implement it. However, the works of [BBKK17, LV17℄ showed that there are

fundamental barriers to 
onstru
ting su
h PRGs due to atta
ks arising from the

Sum of Squares paradigm. Be
ause we will propose a dire
tion to over
ome this

barrier, we now review how these atta
ks work at a high level.

For simpli
ity, let's restri
t our attention to polynomials where every mono-

mial is of degree exa
tly 2. We 
an represent any su
h polynomial p as a sym-

metri
 n-by-n matrix P , where Pi,j = Pj,i is equal to half the 
oe�
ient of the

monomial xixj if i 6= j, and Pi,i is equal to the 
oe�
ient of the monomial x2
i .

Then we observe that p(x) = x⊤Px. Suppose, then, we have a 
andidate PRG


onsisting of m degree-2 polynomials that we represent by matri
es M1, . . . ,Mm.

Thus, to sample from this PRG, we sample a seed ve
tor x from a bounded-norm

distribution, and obtain the outputs yi = x⊤Mix. The goal of an atta
k would be

to distinguish su
h outputs from a set of independent random values r1, . . . , rm,

say from a dis
rete gaussian distribution 
entered around zero.

The works of [BBKK17, LV17℄ suggest the following atta
k approa
h: Sup-

pose we re
eive values z1, . . . , zm. Then we 
onstru
t the matrix

M =

m
∑

i=1

ziMi

Observe now, that if zi = yi 
orresponding to some seed ve
tor x, then we have:

x⊤Mx =
m
∑

i=1

yix
⊤Mix =

m
∑

i=1

y2i

Intuitively, be
ause the above sum is a sum of squares, this will be a quite large

positive value, showing that there exists x of bounded norm su
h that x⊤Mx

an be quite large.

However, if the zi = ri, then the entries of the matrixM arise from a �random

walk,� and thus intuitively, the matrix M should behave a lot like a random

matrix. However a random matrix has bounded eigenvalues, and thus we expe
t

that there should not exist any x of bounded norm su
h that x⊤Mx is large.

Indeed, this intuition 
an be made formal and gives rise to a
tual atta
ks on many

degree-2 PRGs [BBKK17, LV17℄. The atta
k above was generalized further in a

followup work to this paper [BHJ

+
19℄, showing that several families of degree-2

pseudorandom obje
ts 
annot exist. While there are still potential 
aveats to

known degree-2 atta
ks, we propose a di�erent, more 
onservative, way forward:

Perturbation-Resilient Generators (∆RG). We observe that even though the

most natural way to �drown out� the GSW error term above is by adding

some ni
e noise distribution, all we a
tually need is something we will 
all a

perturbation-resilient generator (∆RG): Informally speaking, we want that for
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every polynomial bound B(λ), there should exist a low-degree10 ∆RG using poly-

nomially bounded seeds and 
oe�
ients, su
h that for any perturbation ve
tor

a ∈ [−B,B]m, it should be true that all e�
ient adversaries must fail to distin-

guish between the distributions ∆RG(x) and (∆RG(x) + a) with probability at

least 1/poly(λ), whi
h is a �xed inverse polynomial in the se
urity parameter.

We stress again that we are not seeking a ∆RG with standard negligible se
urity,

but only some low level of se
urity. Indeed, even if an e�
ient adversary 
ould

distinguish between ∆RG(x) and (∆RG(x) + a) with probability 1− 1/poly(λ),
but still fail to distinguish on at least 1/poly(λ) probability mass, our approa
h

will su

eed due to ampli�
ation (see below).

Cru
ially, instead of requiring the ∆RG to be 
omputable via polynomials

of degree two, we de�ne a notion of ∆RG implementable by degree three poly-

nomials via our notion of 3-restri
ted FE.

The seed for a ∆RG 
onsists of one publi
 and two private 
omponents,

and perturbation-resilien
e is required even when the adversary has a

ess to

the publi
 
omponent of the seed. Furthermore, the use of 
ubi
 (as opposed

to quadrati
) polynomials gives reason to hope that our ∆RGs do not su�er

from inversion atta
ks and a
hieve the weak form of se
urity des
ribed above.

Further in-depth resear
h is 
ertainly needed to explore our new assumptions.

Indeed, we see our work as strongly motivating the systemati
 exploration of

the limits of various types of low degree pseudorandom obje
ts over Z using the

Sum of Squares paradigm and beyond. Indeed, our work reveals a fas
inating


onne
tion between a
hieving iO and studying distributions of expanding low-

degree polynomials over the reals that are hard to solve. We refer the reader

to [BHJ

+
19℄ for further dis
ussion on this topi
.

Implementing Degree-3 ∆RGs. Having 
onstru
ted a three-restri
ted FE s
heme,

we now des
ribe how to implement the degree-3 ∆RG as des
ribed above. Let

e = (e1, . . . , en), y = (y1, . . . , yn) and z = (z1, ..., zn) and we want to 
ompute

degree three polynomials of the form qℓ(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk where

ℓ ∈ [η] is the stret
h. Here all variables and 
oe�
ients are polynomially bounded

in absolute value.

At �rst glan
e, one 
ould think to 
ould en
rypt e in the publi
 
omponent

and y, z in the private 
omponent of the three restri
ted FE s
heme. Then, one


ould issue fun
tion keys for polynomials qℓ for ℓ ∈ [η]. However, su
h a s
heme

would essentially yield a degree 2 system of polynomials in y and z as e is publi
,

and not provide any additional se
urity beyond using degree-2 polynomials. In

order to �x this issue, we take a di�erent approa
h.

En
rypting e as an LWE-style error. Instead, we sample a se
ret s ∈ Z
d
p where

d is some polynomial in the se
urity parameter. We also sample ve
tors ai ← Z
d
p

for i ∈ [n]. Then we 
ompute ri = 〈ai, s〉+ ei. Let wi = (ai, ri) for i ∈ [n]. Thus

10

In an earlier version of this paper, this overview fo
used on 
onstru
ting degree-2

∆RGs. However, as we des
ribe now, our te
hni
al approa
h is more general, and

we des
ribe it in greater generality here.

26



we have en
rypted e using the se
ret s. Now to implement degree-3 randomness

generator we 
onsider the polynomial:

qℓ(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk

This polynomial 
an be re-written as:

qℓ(e,y, z) = ΣI=(i,j,k)cI · (ri − 〈ai, s〉) · yj · zk

Now suppose in the private 
omponent that 
ontained y, we also put y ⊗ s

(where ⊗ denotes the tensor operation). Then observe that if wi for i ∈ [n]
are all publi
 values, then the entire polynomial 
an now be 
omputed using a

three-restri
ted FE s
heme.

For this approa
h to be se
ure, intuitively we want that e is sampled from

an �error� distribution with respe
t to whi
h the LWE assumption holds. (For

simpli
ity, we 
an think of y and z also being sampled from su
h a distribution.)

The se
urity of our ∆RG would then rely on a variant of the LWE assumption.

Experien
e tea
hes that one should be 
autious when 
onsidering the se
urity

of variants of LWE, and our 
ase is no ex
eption. This variant was studied in a

follow-up work of [BHJ

+
19℄, where several unsu

essful atta
ks were 
onsidered.

We brie�y review one of these now. The most 
ommon sour
e of devastating

atta
ks to LWE variants is linearization. However, a key barrier to su
h atta
ks

in our setting is the fa
t that the LWE-based publi
 values wi 
ontain no in-

formation whatsoever about y and z. Thus, over Zp, we would obtain a set of

roughly n1+ǫ
quadrati
 equations in y ⊗ s and z, but 
ru
ially with large 
o-

e�
ients in Zp. These large 
oe�
ients would arise from the fa
t that ri and
ai are large values. Su
h systems, 
alled MQ systems, have been widely studied


ryptanalyti
ally and are widely believed to be hard to solve [Wol02, KS99℄ in

general. We again refer the reader to [BHJ

+
19℄ for further dis
ussion. Spe
i�



andidates for the degree-3 polynomials qℓ above, inspired by the hardness of

RANDOM 3-SAT and suggested by [BHJ

+
19℄, are also given in Se
tion 2.

Se
urity Ampli�
ation. Cru
ially, we want allow an adversary to have a very

large distinguishing advantage when attempting to distinguish between ∆RG(x)
and (∆RG(x) + a), sin
e this is a new assumption. For simpli
ity for this te
h-

ni
al overview, we will assume that the ∆RG we introdu
e above is

1
λ
-se
ure.

(More generally, we 
an tolerate any �xed inverse polynomial in the se
urity

parameter.)

Using ideas already dis
ussed above, it is possible to show (as we do in our

te
hni
al se
tions) that relying on

1
λ
-se
ure ∆RG in the approa
h outlined above,

allows us to a
hieve a �weak� form of sublinear FE (sFE), that only bounds

adversarial advantage by

1
λ
. Unfortunately, su
h an FE s
heme it not known to

yield iO, and for our approa
h to su

eed, we must �nd a way to amplify se
urity

of sublinear FE.

How should we amplify se
urity? An initial idea is to implement a dire
t-

produ
t type theorem for fun
tional en
ryption. However, a simple XOR tri
k

does not su�
e: sin
e we are trying to amplify se
urity of a 
omplex primitive
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like FE while retaining 
orre
tness, we will additionally need to rely on a spe
ial

kind of se
ure 
omputation. More pre
isely, we will use (subexponentially se
ure)

n-out-of-n threshold fully homomorphi
 en
ryption (TFHE [MW16, BGG

+
18℄),

that is known to exist based on LWE [Reg05℄. Re
all that su
h a threshold (publi


key) fully homomorphi
 en
ryption s
heme allows to en
rypt a 
iphertext in su
h

a way that all se
ret key holders 
an partially de
rypt the 
iphertext, and then


an re
over the plaintext by 
ombining these partial de
ryptions. However, any


oalition of se
ret key holders of size at most n− 1 learns no information about

the message.

A simpli�ed overview of our s
heme, that makes use of t = λ2
weak sublinear

FEs, is as follows:

� The setup algorithm outputs the master se
ret keys mski for all weak sub-

linear FEs.

� In order to generate the en
ryption of a plaintext M , generate a publi
 key

TFHE.pk and t fresh se
ret keys TFHE.ski for a threshold FHE, and en
rypt

M using the publi
 key for threshold FHE to obtain 
iphertext TFHE.ct.
Additionally, for all i, en
rypt (TFHE.ct,TFHE.ski) using the master se
ret

key mski for the ith weak sublinear FE.

� To generate a fun
tion se
ret key for 
ir
uit C, generate t fun
tion se
ret

keys for the sFEs, ea
h of whi
h 
omputes the output of the ith TFHE par-

tial de
ryption of the result of homomorphi
 evaluation of the 
ir
uit C on

TFHE.ct.

� Finally, to evaluate a fun
tional se
ret key for 
ir
uit C on a 
iphertext,


ombine the results of the TFHE threshold de
ryptions obtained via the t
outputs of sFE evaluation of the t fun
tion se
ret keys.

The 
orre
tness of our s
heme follows immediately from the 
orre
tness prop-

erties of the TFHE s
heme. Intuitively, se
urity seems to hold be
ause of the

following argument. Upon 
ombining λ2
independent, random instan
es of the

weak sFE, with overwhelming probability, at least one must remain se
ure. As

long as a single instan
e remains se
ure, the 
orresponding se
ret key for TFHE

will remain hidden from the adversary. Now, TFHE guarantees semanti
 se
u-

rity against any adversary that fails to obtain even one se
ret key, and as a

result, the resulting FE s
heme should be se
ure. While this intuition sounds

de
eptively simple, many of these intuitive leaps assume information-theoreti


se
urity. Thus, this template evades a formal proof in the 
omputational setting,

and we must work harder to obtain our proof of se
urity, as we now sket
h.

From a 
ryptographi
 point of view, one of the early hurdles when trying to

obtain su
h a proof is the following. A redu
tion must rely on an adversary that

breaks se
urity of the �nal FE s
heme with any noti
eable probability, in order

to break

1
λ
se
urity of one of the λ2

�weak� FEs. However, the redu
tion does not

know whi
h of the λ2
repetitions is se
ure, and therefore does not dire
tly know

where to embed an external 
hallenge. To deal with this, we rely on the 
on
ept

of a hard
ore measure [Imp95, MT10℄. Roughly speaking, we obtain measures of

probability mass roughly

1
λ
over the randomness of the sFE s
hemes, su
h that
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no e�
ient adversary 
an break the se
urity of the sFE s
heme even with some

inverse subexponential probability.

However, unfortunately these hard
ore measures 
an depend on other pa-

rameters in our system, su
h as the TFHE publi
 key. And unfortunately, this

dependen
e is via extreme ine�
ien
y; the hard
ore measure is not e�
iently

sampleable. This means that, for example, the hard
ore measure 
ould in prin
i-

ple 
ontain information about the TFHE master se
ret key. If this information

is leaked to the adversary, this would destroy the se
urity of our s
heme.

We over
ome this issue through the following idea, whi
h 
an be made formal

via the work on simulating auxiliary input [JP14, CCL18℄. Be
ause the hard
ore

measure has reasonable probability mass

1
λ
, it 
annot veri�ably 
ontain useful

information to the adversary. For example, even if the hard
ore distribution

revealed the �rst few bits of the TFHE master se
ret key, the adversary 
ould

not know for sure that these bits were in fa
t the 
orre
t bits. Indeed, we use the

works of [JP14, CCL18℄ to make this idea pre
ise, and show that the hard
ore

measures 
an be simulated in a way that fools all e�
ient adversaries, with a

simulation that runs in subexponential time.

Finally, using 
omplexity leveraging, we 
an set the se
urity of the TFHE

s
heme to be su
h that its se
urity holds against adversaries whose running time

ex
eeds this simulation. Thus, for example, even if the original hard
ore measure

was revealing partial information about the TFHE master se
ret key, we show

that we 
an give the adversary a

ess to a simulated hard
ore measure that

provably does not reveal any useful information about the TFHE master se
ret

key, and the adversary 
an't tell the di�eren
e!

In this way, we a

omplish se
urity ampli�
ation for sFE, whi
h allows us to

a
hieve iO for general 
ir
uits when 
ombined with previous work [AS17, LT17℄.

Along the way, our ampli�
ation te
hnique also shows that we 
an weaken the

se
urity requirement on the relatively new notion of a 3-blo
k-lo
al PRG due

to [LT17℄, in a way that still allows us to a
hieve iO. Our ampli�
ation result


an be stated as the following theorem.

Theorem 5. Assuming there exists a 
onstant c > 0 and there exists:

� (2λ
c

, adv = 1− 1/λ)−se
ure sublinear semi-fun
tional FE s
heme for Cn′,s′ .

� (2λ
c

, 2−λc

)−se
ure threshold homomorphi
 en
ryption s
heme.

� (2λ
c

, 2−λc

)−se
ure PRFs in NC1
.

� (2λ
c

, 2−λc

)−se
ure statisti
ally binding 
ommitments.

There exists a sublinear se
ret key FE s
heme for 
ir
uit 
lass Cn,s with (2λ
c′

, 2−λc′

)
se
urity for some 
onstant c′ > 0.

Combining these ideas, we obtain the following result.

Theorem 6. Assuming

� LWE se
ure against subexponential sized 
ir
uits.

� Se
ure Three restri
ted FE s
heme.

� PRGs with
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• Stret
h of k1+ǫ
(length of input being k bits) for some 
onstant ǫ > 0.

• Blo
k lo
ality three.

• Se
urity with negl distinguishing gap against adversaries of subexponen-

tial size.

� Perturbation resilient generators implementable by three restri
ted FE s
heme

with:

• Stret
h of k1+ǫ
for some ǫ > 0.

• Se
urity with distinguishing gap 1− 1/λ against adversaries of subexpo-

nential size.

there exists a se
ure iO s
heme for P/poly.

In a follow-up to our work [JLMS19℄ showed a 
onstru
tion of a d-restri
ted
FE s
heme for any 
onstant d ≥ 3 from SXDH over bilinear maps.

Theorem 7 ([JS18, LM18, JLMS19℄). Assuming SXDH over bilinear maps,

there exists a 
onstru
tion of a three-restri
ted FE s
heme.

Thus, in full generality we 
an prove the following result.

Theorem 8. Let adv1, adv2 be two distinguishing gaps su
h that adv1 + adv2 ≤

1− 1/p(λ) for any �xed polynomial p(λ) > 1. Then assuming,

� LWE se
ure against adversaries of subexponential size.

� SXDH se
ure against adversaries of subexponential size.

� PRGs with

• Stret
h of k1+ǫ
(length of input being k bits) for some 
onstant ǫ > 0.

• Blo
k lo
ality three.

• Se
urity with distinguishing gap bounded by adv1 against adversaries of

subexponential size.

� Perturbation resilient generators implementable by three restri
ted FE s
heme

with:

• Stret
h of k1+ǫ
for some ǫ > 0.

• Se
urity with distinguishing gap adv2 against adversaries of subexponen-

tial size.

there exists a se
ure iO s
heme for P/poly.

3.1 Reader's Guide

In the te
hni
al overview and the introdu
tion, we have already des
ribed our

notions of three restri
ted FE s
heme and perturbation resilient generator (∆RG).

In the sequel, for 
larity, we will denote by 3∆RG a ∆RG that is implementable

by three restri
ted FE. Below we give a high level des
ription of various terms

used above that we have not already dis
ussed.

Tempered Cubi
 En
oding: Tempered 
ubi
 en
oding is a natural abstra
tion

en
apsulating a 3∆RG and 
ubi
 homomorphi
 evaluation. This framework is


ompatible with our notion of a three restri
ted FE s
heme and is used to build

Fun
tional En
ryption for 
ubi
 polynomials.
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Semi-Fun
tional FE for 
ubi
 polynomials. A semi-fun
tional FE s
heme for


ubi
 polynomials (FE3 for short) is a se
ret key fun
tional en
ryption s
heme

supporting evaluation for 
ubi
 polynomials where the size of the 
iphertext is

linear in the number of inputs. It satis�es semi-fun
tional se
urity: where you


an hard 
ode se
ret values in the fun
tion key whi
h will be de
rypted only

using a single spe
ial 
iphertext (known as a semi-fun
tional 
iphertext). Note

that all our primitives satisfy 1− 1/poly(λ) se
urity. They are �nally ampli�ed

to 
onstru
t fully se
ure primitives.

TCE

Semi− Functional FE for Cubic Polynomials

iO

Bilinear Maps

+subexp− LWE

+subexp− LWE

+

Cubic Randomizing Polynomials

with Sublinear Complexity

(

n ! n
1+"

)

(

Single−Key; 1
poly(λ)

− Security
)

(Single−Key; negl(λ)− Security)

(

n
1+"

− Bounded Key; 1
poly(λ)

− Security
)

3− Restricted FE

[LT17]

+subexp− LWE

Semi− Functional FE for Circuits

Sublinear FE for Circuits

[BNPW16]

∆RG

Fig. 1. Steps involved in the 
onstru
tion of iO in [AJS18℄.
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NFE with

poly noise

degree-d FE

degree-d PFG

PFG with

publi
 input

PHFE

Leaky O(1)-deg FE

Bit-Fixing

Homom. Sharing

NC
1
-FE

iO

Fig. 2. Overview of 
onstru
tions in [LM18℄ leading to iO.

Semi-Fun
tional FE for Cir
uits. A semi-fun
tional FE s
heme for 
ir
uits is a

se
ret key fun
tional en
ryption s
heme supporting evaluation of 
ir
uits where

the size of the 
iphertext is sublinear in the maximum size of 
ir
uit supported.

This notion also satis�es semi-fun
tional se
urity.

We present a diagrammati
 view of 
onstru
tion of iO in Figure 3.1.

4 Te
hni
al Overview of Lin-Matt 18

We now des
ribe te
hniques in [LM18℄ in more detail. An overview is depi
ted

in Figure 2.

NC
1
-FE from PFGs and FE that 
omputes them. It is known that to


onstru
t iO, it su�
es to 
onstru
t se
ret-key FE s
hemes for 
omputing NC
1


ir
uits that have sublinearly 
ompa
t 
iphertexts of size polynomial in the se
u-

rity parameter λ and input length N , and sublinear in the size S of the 
ir
uits


omputed. Towards 
onstru
ting fun
tional en
ryption s
hemes for NC
1
, we fol-

low the same two-step approa
h as previous works [Lin16b, LV16, Lin17, AS17℄:

They showed that the task of 
onstru
ting NC
1
-FE 
an be redu
ed to the task

of 
onstru
ting FE for 
omputing NC
0
fun
tions, i.e., 
onstant-degree 
onstant-

lo
ality polynomials, by 
onverting any NC
1
fun
tion into a NC

0
fun
tion using

randomized en
oding and a low lo
ality PRG. In this work, we develop a new

te
hnique for 
onstru
ting 
onstant-degree FE and a new bootstrapping method

to NC
1
-FE that is �leakage resilient�.

Basi
 Ideas: Constant-degree FE via HE and Noisy Linear FE. Exist-

ing 
ompa
t 
onstant-degree FE s
hemes [GGHZ16, AS17, Lin17℄ use multilinear

map groups to dire
tly 
ompute the 
onstant-degree polynomial in the exponent.

We here explore a di�erent natural approa
h, that has already appeared in the

literature [GVW12, GVW15, BTVW17, GKP

+
13, AR17, Agr18b℄ and that per-

forms the 
omputation homomorphi
ally over the en
rypted input via an HE

s
heme. The output 
iphertext is eventually de
rypted using multilinear maps.
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The rough template is as follows: Let the FE s
heme en
rypt an input x

using an HE s
heme and a se
ret ve
tor s to obtain a 
iphertext c. To 
ompute

a fun
tion f on x, the de
ryptor 
an homomorphi
ally evaluate f on c and

obtain a 
iphertext CTf en
rypting the output y = f(x). The two 
hallenges

are

� priva
y�how to de
rypt CTf in a se
ure way that reveals only y and hides

all other information about x, and

� integrity�how to enfor
e that only 
iphertexts asso
iated with a �legiti-

mate� fun
tion f (ones for whi
h se
ret keys have been generated) 
an be

de
rypted.

Previous works [GVW12, GKP

+
13, GVW15, BTVW17, AR17, Agr18b℄ devel-

oped novel te
hniques for a
hieving priva
y and integrity, using various tools

from garbled 
ir
uits, partially hiding predi
ate en
ryption, to noisy linear FE.

But the resulting s
hemes either a
hieve weaker se
urity guarantees as in Predi-


ate En
ryption [GVW15, BTVW17℄, or lose 
iphertext 
ompa
tness [GKP

+
13,

AR17℄, or make use of strong primitives that are themselves hard to instanti-

ate [GVW12, Agr18b℄. Building upon their te
hniques, we propose new ones

toward solving the 
hallenges.

Observe that the de
ryption of most HE s
hemes, su
h as [BV11, BGV12℄

based on LWE, involves i) a linear operation, Ldec(CTf , s) (e.g., 〈CTf , s〉), whi
h
produ
es an approximate output, y + 2e, perturbed by a small noise ve
tor e,

referred to as �half-de
rypt�, ii) followed by a threshold fun
tion (
omplex, in

NC
1
) to remove the noise. Priva
y entails that we must hide the se
ret s and the

noise e. Hiding the se
ret is relatively easy as we have FE s
hemes for 
omputing

a linear fun
tion, here L, over a se
ret, here s, from various assumptions (e.g.,

DDH, LWE, Paillier). However, the output of the linear FE would be the approx-

imate output y + 2e, and the noise e is sensitive, revealing information about

the input x, the noises used for generating the original 
iphertext c en
rypting

x, and (indire
tly) the se
ret s. On the other hand, removing the noise e requires

a high-degree 
omputation (su
h as mod2). The works of [AR17, Agr18b℄ pro-

pose to hide e using another bigger smudging noise�
ompute instead the ap-

proximate output y + 2e + 2Y further shifted by a large noise Y that hides e.

Agrawal [Agr18b℄ further en
apsulated the task to be done in a primitive 
alled

noisy linear FE, whi
h performs a linear 
omputation, here the half-de
rypt, and

adds a fresh noise to the de
rypted output of every pair of 
iphertext and se
ret

key. Let us now delve deeper into noisy linear FE.

4.1 Noisy Linear Fun
tional En
ryption

Noisy se
ret-key FE s
hemes have the same syntax as regular se
ret-key FE

s
hemes, but de
rypting a 
iphertext nct of v with a se
ret key nskL for a linear

fun
tion L yields a perturbed output L(v) + Y (over Zp for some modulus p),
where the noise Y is distributed indistinguishably to a distribution η � we 
all

su
h a s
heme a η-noisy linear FE. We further only require weak 
orre
tness in

33



the sense that de
ryption only needs to su

eed if all 
oordinates of L(v) lie in
a polynomially sized range, and Y is polynomially bounded.

In terms of se
urity, we require a notion of 1-
iphertext simulation se
urity

in the sense that the simulator is required to be able to �program� the output of


omputation on the en
rypted input of a 
hallenge 
iphertext. More spe
i�
ally,

there exists a simulator that 
an simulate a se
ret key nskL and a 
iphertext

nct⋆ for input v⋆
given only L and L(v⋆) + Y, where Y is sampled from η.

However, in the se
ret key setting, adversaries 
annot produ
e 
iphertexts on

their own and we must dire
tly model se
urity when multiple 
iphertexts are

available. On the other hand, is well know that simulation se
urity is impossible

when the number of 
iphertexts is unbounded and 
iphertexts are sublinearly


ompa
t. Instead, we do not require the simulator to �program� the outputs for

all en
rypted input, it only needs to do so for one 
hallenge 
iphertexts, and

is given with the a
tual en
rypted inputs for all other 
iphertexts � hen
e the

name 1-
iphertext simulation se
urity. Note that this notion is not new, as many

works a
hieve indistinguishability based se
urity via showing su
h 1-
iphertext

simulation se
urity. More pre
isely, we require

{

nskL, nct
⋆, {ncti}i∈[t]

}

≈
{

e← η : Sim

(

L, L
(

x⋆
)

+ e, {xi}i∈[t]

)}

.

where nskf and nct⋆ are the 
hallenge key and 
iphertext and every ncti is an

honestly generated 
iphertext for an arbitrary input xi, whi
h is given to the

simulator.

Compared to noisy linear fun
tion en
ryption by Agrawal [Agr18a℄, our no-

tion di�ers in three points: First, we parametrize the notion by the noise distri-

bution η, while Agrawal's notion is parametrized by a bound on the de
ryption

error and distributions restri
ting the adversary's 
hallenge messages. Se
ondly,

we only require weak 
orre
tness. And thirdly, we 
onsider simulation-se
urity,

whereas Agrawal de�nes indistinguishability-based se
urity.

Constru
tion from PHFE and noise generator. There is a simple 
onstru
-

tion of an η-noisy se
ret-key linear FE s
heme if there is a PHFE s
heme for a

fun
tion 
lass G and a noise generator G in the same 
lass whose outputs are

indistinguishable to η. Take for example our PHFE s
heme from bilinear map

(Theorem 4) for 
omputing multilinear 
ubi
 polynomials g(z1, z2, z3) in Zp with

z1 publi
 and z2, z3 private. Assume there is a family of noise generators and

seed distributions (G,Dsd) ← NG observing the same stru
ture, whose output

distribution G(s1, s2, s3) (with (s1, s2, s3 ← D
sd
) is indistinguishable to η when

s1 is made publi
. We 
an 
onstru
t η-noisy linear FE as follows:

� To en
rypt a ve
tor v, the en
ryptor samples a seed (s1, s2, s3) and en
rypts

z1 = s1 as the publi
 input, and z2 = (v||s2), z3 = s3 as the private inputs.

� To generate a key for a fun
tion f , it generates a key for the fun
tion

g(z1, z2, z3) = L(v) +Y where Y = G(s1, s2, s3).
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De
ryption 
learly re
overs L(v) +Y, where by the property of the noise gener-

ator G, Y is distributed indistinguishably to η. For the 1-
iphertext simulation
se
urity to hold, we 
orrespondingly need the underlying PHFE to satisfy 1-


iphertext simulation se
urity (de�ned similarly that a simulator 
an �program�

the output for a single 
hallenge 
iphertext), whi
h our 
onstru
tion a
hieves.

Finally, observe that the 
iphertexts are sublinear 
ompa
t, as long as G has su-

perlinear stret
h. We provide a formal des
ription and proofs of the 
onstru
tion

in the full version [LM18℄.

Ba
k to Constant-Degree FE Re
all that we want to use a noisy linear

FE s
heme to perform the linear half de
ryption on the output 
iphertext CTf ,

Ldec(CTf , s), and obtain y+2e+2Y (think of η as a distribution over 2Y). We

still fa
e two 
hallenges:

� priva
y: Our PHFE from bilinear maps (and all known sublinearly 
om-

pa
t degree-d FE from degree-d multilinear maps) only allows de
ryption if

outputs reside in a polynomially sized range. (This is be
ause 
omputation

is performed in the exponent, and outputs are extra
ted via brute for
e dis-


rete logarithm.) This means y + 2e + 2Y must be polynomially bounded.

However, as argued in the introdu
tion, a polynomially-bounded Y 
annot

hide e entirely. But revealing e at even one 
oordinate potentially reveals

information about x.

� integrity: How 
an we ensure that only output 
iphertexts CTf for legiti-

mate 
onstant-degree polynomials f 
an be de
rypted? To ensure that, we

would like to give out a noisy linear FE se
ret key nsk for the fun
tion

Ldec(CTf , ⋆) and 
iphertext nct en
rypting the HE se
ret key s. However,

the key generator has no idea what CTf is.

For the priva
y problem, we weaken the requirements on the noise generators,

formulating PFG, so that outputs are polynomially bounded and e is guaranteed

to be partially hidden; then, we manage the leakage on e to still a
hieve meaning-

ful se
urity. For the integrity problem, we follow the approa
h of [AR17, Agr18a℄

of using spe
ial (1-time) HE that has a spe
ial de
ryption equation. We elaborate

in the next se
tion.

4.2 Weak and Leaky Constant-Degree FE

Let's �rst 
onsider the priva
y problem: How to manage leakage of the value ei's

at a few 
oordinates i's? Sin
e ei does depend on x, some information of x is for

sure leaked. Hen
e, we aim for what is the best possible: ensuring that revealing e

at a few 
oordinates translates to revealing x at a few 
oordinates, if the fun
tion


omputed has small lo
ality. We show that this 
an be done, and 
onstru
t


onstant-degree FE with (1-key) weak and leaky 1-
iphertext simulation se
urity.

Roughly speaking, it guarantees that for every distribution of f ← FN and

every distribution of x ← X , the se
ret key skf for f and the 
iphertext CTx

for x 
an be simulated a simulator Sim using the output y = f(x), as well as the
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value of x at a few 
oordinates. In addition, in the multi-
iphertext setting, the

adversaries also see a set of additional 
iphertexts CTxi
for arbitrary inputs xi,

and the simulator is required to simulate them given the a
tual inputs xi. More

pre
isely, there is 
orrelated random variables K and x∗
representing the set of

leaked 
oordinates and their values, su
h that |x∗| = |K| = o(λ) and

{ x, skf ,CTx, {CTxi
} } ≈ { x, Sim ( (x∗,K), f, y = f(x), {xi} )} ,

where (x∗,K)← Fix, and x← X|x∗,K .

In other words, given skf ,CTx, and many other 
iphertexts the en
rypted input

x appears random up to a few 
oordinates being �xed and the output being y.
We now give some intuition on why weak and leaky simulation se
urity is

a
hievable. Assume that Y + e reveals a few 
oordinates of e, say with index

set J , and hides all other 
oordinates. We 
arefully analyze what information eJ
depends on: if the fun
tion 
omputed has small lo
ality, output elements in J
depend only on a few input elements at 
oordinates J ′

. Suppose an ideal 
ase

where the HE s
heme satis�es the following properties:

HE properties:

1. Preserving lo
ality: the homomorphi
 evaluation preserves this lo
ality and

eJ depends only on 
iphertexts cJ ′
en
rypting xJ ′

,

2. Preserving entropy: revealing information related to a few 
iphertexts cJ ′

only redu
es the entropy of s by a small amount, and

3. Robustness: the HE s
heme used is robust to small leakage of the se
ret key.

We 
an assert that 
iphertexts en
rypting other 
oordinates of x outside J ′

remain hiding, and hen
e only a few 
oordinates of x at J ′
are leaked.

For the above argument to go through, we need a slightly stronger version

of the �awed-smudging property: For any B-bounded noise ve
tor distribution

χ = e(R), where the noise e is the output of a lo
al fun
tion over another

distributional se
ret w← R, there is a 
orrelated random variable I su
h that

{ I, w, Y + e(w) } ≈ { I, w′, Y + e(w) } , where w′ ← χ|wI ,I .

This means given Y + e(w), only a few 
oordinates of w get �xed and leaked.

In our 
onstru
tion, w depends on the input x, the HE se
ret s, and the noises

used originally for en
rypting x. The above property then allows us to bound

what information of them is leaked through e. We further show that this stronger

�awed-smudging property is in fa
t implied by the normal �awed-smudging prop-

erty that is agnosti
 of how e is generated.

Let us now 
onsider the integrity problem: How 
an we ensure only CTf for

the right f is de
rypted? The works of [AR17, Agr18b℄ presented HE s
hemes

whose 
iphertexts cx 
onsists of A, hCTx, where A is publi
 and indepenedent

of the input x (e.g., A 
ould be LWE matri
es, or RLWE s
alars) and only

hCTx depends on x. Furthermore, homomorphi
 evaluation operates on A and

(A, hCTx) respe
tively to obtain Af and hCTf , and de
ryption does:
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4. Spe
ial de
ryption equation:

sf = Ldec(Af , s), hCTf + sf = f(x) + 2e11 (mod p)

We 
an view sf as a de
ryption key for f and it is 
omputed from s independently

of hCTf ! We 
an now ensure integrity as follows:

� FixA at set-up time. This means the sameA is reused for all HE 
iphertexts.

� The key generator publishes a noisy linear FE key nsk for Ldec(Af , ⋆)
� Tne en
ryptor publishes hCTx en
rypting x using se
ret s and generates a

noisy linear FE 
iphertext nct en
rypting s.

� The de
ryptor de
rypts nct, nsk to obtain sf +2Y, and 
omputes hCTf from

hCT, from whi
h y + 2e+ 2Y is revealed.

Note that sin
e A is �xed and reused for all HE 
iphertext, ea
h se
ret key s


an only be used on
e. This is not a problem as the en
ryptor 
an sample a fresh

se
ret key s for ea
h en
ryption.

Instantiating the HE s
heme. The question now is whether there is a HE

s
heme that simultaneously has the spe
ial de
ryption equation (property 4) and

is robust to leakage (properties 1-3). The s
hemes in [AR17, Agr18a℄ unfortu-

nately are 
ompli
ated and we do not know how to analyze their robustness

to leakage. Nevertheless, we manage to 
onstru
t a HE s
heme satisfying all 4

properties, based on the simple HE s
heme by [BV11℄ from LWE. We sket
h our

design. First, it was shown in [GKPV10, AKPW13℄, that the LWE assumption

is robust, in the sense that when the LWE se
ret s 
omes from a small domain

(e.g., [−1, 0, 1]λ), the hardness of LWE holds as long as s has su�
ient entropy.

Thus, it is easy to observe that the HE s
hemes of [BV11, BGV12℄ are robust.

Furthermore, the simple BV-s
heme without relinearization, whi
h 
an already

handle 
onstant-degree 
omputations, also satis�es properties 1) and 2).

However, the simple-BV s
heme does not have the spe
ial de
ryption equa-

tion. Inspired by [AR17, Agr18a℄, we use a re
ursive 
onstru
tion to homomor-

phi
ally evaluate the BV-de
ryption itself similar to bootstrapping, but for a

di�erent purpose. In slightly more details, we 
an de
ompose the BV evaluation-

and-de
ryption pro
edure HE.Dec(s,HE.Eval(f, hCT)) into a publi
 part Pub that
does not depend on the se
ret key s and a private part Priv that depends on s.

CTf = Pub(f, hCT,A) sf = Priv(f,A, hCT, s)

CTf + sf = f(x) + 2e

A wishful thinking is giving out noisy linear FE key nsk for Priv(f,A, ⋆, ⋆) and

iphertext nct for (hCT, s), to enable 
omputing sf . This does not work as Priv

has degree d in s and degree d − 1 in hCT, where d is the degree of f . The

11

The s
hemes in [AR17, Agr18a℄ has more 
ompli
ated de
ryption equation, where

the de
ryption noise is of form

∑
i
piei where {pi} is a set of in
reasing moduli. Here

we omit this 
omplexity.
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high degree in s 
an be dealt with as the en
ryptor 
an 
ompute all degree d
monomials in s and en
rypt them, and there are only nd

of them where n =
|s| = poly(λ). But, the same 
annot be applied to hCT whi
h is long (length

S1−ǫ
, where S is the output length of L) and en
rypting even the quadrati


monomials would make the 
iphertexts non-
ompa
t. However, the good news

is that the degree in hCT is d−1 � one less than the degree of the 
omputation

f . Therefore, by re
ursively en
rypting ((hCT, 1)⊗ (s, 1)⊗ (s, 1)) in a 
iphertext

hCT′
using an independent se
ret key s′, we 
an 
ompute sf by homomorphi
ally

evaluating Priv on hCT′
in degree d − 1 and then de
rypt. The key observation

is that the new private 
omputation Priv′(Priv,A′, hCT′, s′) now has only degree

d−2 in hCT′
. Thus, we 
an re
ursively redu
e the degree of private 
omputation,

till we obtain a s
heme whose Priv is linear in its 
iphertext hCT and degree 2

in its se
ret key s. Hen
e,

Priv(f,A, hCT, s) = Lf,A((hCT, 1)⊗ (s, 1)⊗ (s, 1))

where the total the number of monomials to be en
rypted is |hCT|n2
, keeping

sublinear 
ompa
tness. In summary, our weak and leaky FE for lo
al 
onstant

degree 
omputation operates as follows:

� Fix A at set-up time.

� The key generator publishes a noisy linear FE key nsk for Lf,A.

� Tne en
ryptor publishes a 
iphertext hCT en
rypting x under se
ret key s

using our re
ursively 
onstru
ted HE s
heme, and generates a noisy linear

FE 
iphertext nct en
rypting (hCT, 1)⊗ (s, 1)⊗ (s, 1).
� The de
ryptor de
rypts nct, nsk to obtain sf + 2Y and 
omputes hCTf =

Pub(f, hCT,A), from whi
h y + 2e+ 2Y is revealed.

The above des
ription is simpli�ed; please see the full paper [LM18℄ for a formal

des
ription and analysis of our 
onstant degree FE s
heme.

4.3 New Bootstrapping to FE for NC1

We next present a new bootstrapping te
hnique to FE for NC1
from weak and

leaky 
onstant-degree FE. Our bootstrapping follows the same paradigm as pre-

vious works [Lin16b, LV16, Lin17, AS17, LV17℄: it uses a randomized en
od-

ing [IK02, AIK04℄ to transform an NC1

omputation g(v) into a simple 
onstant-

degree 
onstant-lo
ality polynomial ĝ(v; r), and uses a 
onstant lo
ality PRG to

supply pseudorandom 
oins r = PRG(Seed) needed for the randomized en
oding.

The fa
t that the underlying 
onstant-degree FE is weak and leaky means both

the input v, as well as the PRG seed Seed may be �xed and leaked at a few


oordinates. To deal with this, we introdu
e a new primitive 
alled Bit-Fixing

Homomorphi
 Sharing in order to make the original 
omputation g robust.

Our (T, t1, t2)-bit-�xing homomorphi
 sharing resembles the re
ent new 
on-


ept of Homomorphi
 Se
ret Sharing (HSS) [BGI15℄ in syntax, but di�ers in

se
urity and e�
ien
y requirements. It enables 
ompiling a single 
omputation
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g(v) into a 
olle
tion of 
omputations o1 = h1(x1), . . . , oT = hT (xT ) that oper-
ate on a se
ret sharing x1, . . . , xT of the original input v, and from the 
olle
tion

of output shares o1, . . . , oT , the original output g(v) 
an be re
onstru
ted. Se-


urity ensures that the original input v remains hidden, given all output shares

o1, . . . , oT and a subset of t2 input shares. Moreover, the se
urity is robust to a

few t1 bits in the input shares being �xed. In terms of e�
ien
y, we allow the

output share size to s
ale with the size of the 
omputation g, however, it should
not depend on the number of 
omputations to be preformed � in other words,

the shares are reusable.

In 
omparison, HSS shares need to be su

in
t and output re
onstru
tion

needs to be simple, whi
h are not required here. In terms of se
urity, HSS is

se
ure against an adversary seeing a subset of the input shares only. From these

input shares, the adversaries 
an always derive the 
orresponding output shares,

but not all output shares. In 
ontrast, our bit-�xing homomorphi
 sharing is

se
ure against adversaries seeing all output shares. Note, however, HSS with ad-

ditive re
onstru
tion i.e., o =
∑

i oi, does satisfy this stronger se
urity, sin
e the

adversaries knowing the output o 
an easily reverse sample the missing additive

output shares

12

.

We give a 
onstru
tion of bit-�xing homomorphi
 sharing BF from multi-key

FHE with threshold de
ryption as 
onstru
ted in [MW16℄, whi
h roughly works

as follows:

� BFsetup samples a CRS crs for the multi-key FHE.

� BFshare shares a string v as follow: It additively shares v into v = ss1 ⊕
. . .⊕ ssT , generates T key-pairs (PKi, ski) of the multi-key FHE s
heme, and

en
rypts the ith share ssi under PKi to obtain 
iphertext CTi. It additionally

samples a PRF key Ki. Finally, the i'th share is set to

xi =
{

{CTi,PKi}i∈[T ] , ski,Ki

}

� BFeval on input crs, xi, i, g evaluates g on the i'th share as follows: It homo-

morphi
ally evaluates the fun
tion g on all 
iphertexts CT1, . . . ,CTT obtain-

ing CTf . By properties of the multi-key FHE s
heme, this output 
iphertexts


an be de
rypted in a distributed way using ea
h se
ret key ski independently.
Hen
e, the i'th output share oi is set to the value de
rypted from CTg by

ski. (The de
ryption pro
edure of MKFHE is a
tually randomized. BFeval

uses the PRF Ki to generate the pseudorandom 
oins).

� BFdec re
onstru
ts the �nal output o from o1, · · · , oT using the re
onstru
-

tion pro
edure of the multi-key FHE.

Se
urity of this s
heme follows simply from the se
urity of the multi-key FHE

s
heme and the fa
t that less than T additive shares ssi reveal nothing about v.

Next, to 
onstru
t FE for NC1, instead of using our weak and leaky 
onstant-

degree FE to 
ompute the randomized en
odings {RE(gj , v ; PRGj(Seed))}j for

12

Thanks Yuval Ishai and Elette Boyal for pointing this out.

39



ea
h output bit gj(v) dire
tly, where PRGi(Seed) denotes the j'th 
hun
k of out-

put bits of PRG, we 
ompute the randomized en
odings {RE(BFeval, (crs, xi, i, gj);
PRGi,j(Seed))}i∈[T ],j for evaluating ea
h gj on ea
h input share xi. By the weak

and leaky se
urity of 
onstant-degree FE, only a few 
oordinates of its en
rypted

input, here {(crsxi, i, g)} and Seed, are leaked. Small leakage on {(crsxi, i, g)}
alone is harmless, as the se
urity of bit-�xing homomorphi
 sharing ensures that

the original input v would remain hidden under su
h leakage.

However, small leakage on Seed is problemati
. Consider a typi
al lo
al PRG

where every output bit depends on O(1) randomly 
hosen seed bits. Sin
e PRG

maps S1−α
bits to S bits where S is proportional the size of g, ea
h seed bit Seedk

in�uen
es a large number, Sǫ
on average, of output bits. If Seedk is leaked, all

these output bits are no longer pseudorandom� 
all them 
orrupted. In turn, all

the randomized en
odings that use these output bits are no longer hiding, whi
h

may leak all input shares xi. To 
ir
umvent this, instead of having only a single

set of shares {xi}i∈[T ], we will have M = S1−α
sets of shares {xt

i}t∈[M ],i∈[T ]. We

divide the output bits of g into M 
hunks, ea
h 
ontaining Sα
bits, and the t'th


hunk is 
omputed using the t'th set of input shares as des
ribed above. Why

does this help? Suppose that the lo
ations of the 
orrupted PRG output bits are

distributed randomly. Sin
e there are only about poly(λ)Sα

orrupted output

bits, whereas way more M = S1−α

hunks, with overwhelming probability, no


hunk ends up using more than λ 
orrupted PRG output bits. As a result, for

ea
h set of input shares {xt
i}, at most λ input shares are leaked, and the se
urity

of bit �xing homomorphi
 sharing ki
ks in again, and hen
e v is hidden. To

ensure that 
orrupted PRG output bits indeed distribute randomly, we apply

a random permutation π to the output of the PRG. In other words, the i'th
pseudorandom bit is the π(i)'th PRG output bit.

In summary, our FE s
heme for NC1
depth Dep pro
eeds as follows: DFE is

our weak and leaky FE for lo
al 
onstant degree 
omputation.

FE.Setup(1λ): Generate a DFE master se
ret key DMSK, and a CRS for the

bit-�xing homomorphi
 sharing s
heme crs. Output MSK = (DMSK, crs).

FE.KeyGen(MSK, g): g is a NC1 fun
tion with input-length N , output-length S,
and depth Dep. Assume w.l.o.g. that every output bit gi is 
omputable in some

�xed polynomial size = poly(λ).13

� Generate a polynomial f as follows:

• Divide the output bits of g into M = S1−α
(assume for 
onvenien
e that

M divides S) 
onse
utive 
hunks I1, . . . , IM , where 
hunk Ij in
ludes

output bits (j − 1)S/M + 1, . . . , jS/M . For every j ∈ [M ], let gIj =
{gk}k∈Ij denote the 
olle
tion of 
ir
uits that 
omputes output bits in


hunk Ij .

• For every j ∈ [M ] and i ∈ [λ], let Dj
i be the 
ir
uit that on input the

i'th share xj
i of the j'th sharing xj

of v, homomorphi
ally evaluates gIj ,

13

If not, one 
an always use garbled 
ir
uits to turn g into another 
ir
uit where every

output bit is 
omputable in size poly(λ), at the 
ost of in
reasing the size, input

length, and output length of the 
ir
uit by a multipli
ative poly(λ) fa
tor.
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i.e.,

Dj
i (x

j
i ) = BFeval(crs, xj

i , i, gIj ) = oji .

• Choose a random permutation π : [λ] × [M ] × [φ] → [λMφ]. For every
j ∈ [M ] and i ∈ [λ], let f j

i be the following fun
tion:

f j
i (x

j
i , Seed) = REnc

(

Dj
i , x

j
i ; PRG

Π
j

i
(Seed)

)

.

Above, PRG
Π

j

i

(Seed) 
ontains PRG output bits at lo
ations {π(i, j, k)}k∈[φ]

determined by the random permutation π and is su�
iently long for sup-

plying the random 
oins needed for 
omputing the randomized en
oding.

Finally, set

f

(

{

xj =
{

xj
i

}

i∈[λ]

}

j∈[M ]
, Seed

)

:=
{

f j
i (x

j
i , Seed)

}

j,i
.

� Generate a DFE se
ret key of f , Dsk ← DFE.KeyGen(DMSK, f).
This 
an be done sin
e by the e�
ien
y of the bit-�xing homomorphi
 sharing

and randomized en
oding, the input length and size of f is N ′ = |{xj
i}| +

|Seed| = poly(λ, s)λM + poly(λ)S1−α = poly(λ)S1−α
and S′ = |f j

i |λM =
poly(λ)S. Sin
e the AIK randomized en
oding algorithm REnc and PRG

both have 
onstant lo
ality, f also has 
onstant lo
ality ℓ. Moreover, over

the �eld Z2, it has at most degree ℓ.

Output sk = Dsk.

FE.Enc(MSK, v): On input MSK = (DMSK, crs) and v ∈ {0, 1}N , do:

� For every j ∈ [M ], generate the j'th BF sharing of v, xj =
{

xj
i

}

i∈[λ]
←

BFshare(crs, v).
� Sample randomly a PRG seed Seed.

� En
rypt X =
(

{xj}j , Seed
)

using DFE, DCT← DFE.Enc(DMSK, X).

Output CT = DCT.

FE.Dec(sk,CT) : On input sk = Dsk and CT = DCT, do

� De
rypt the DFE 
iphertext DCT with the se
ret key Dsk to obtain y =
f(X) = DFE.Dec(Dsk,DCT).

� Parse y = {yji }, and for every j ∈ [M ] and i ∈ [λ], de
ode yji using REval to

obtain oji = REval(yji ).

� For every j ∈ [M ], de
ode the output shares {oji}i∈[λ] to obtain the a
tual

output uj = BFdec(crs, {oji}).

Output u = {uj}.
Corre
tness of the 
onstru
tion 
an be shown as follows: By the 
orre
tness

of DFE, we have

y = f(X) =
{

yji = f j
i (x

j
i , Seed)

}

j,i
,

yji = REnc(Dj
i , x

j
i ; PRG

Π
j

i

(Seed)) .
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By the 
orre
tness of RE, we have that

oji = REval(yji ) = Dj
i (x

j
i ) = BFeval(crs, xj

i , i, gIj ) = oji .

By the 
orre
tness of BF, we have that uj = gIj (v).
In the full version [LM18℄, we formally prove that the above 
onstru
tion

is a sublinearly 
ompa
t se
ret key FE s
heme for NC1 satisfying standard

indistinguishability-based se
urity, whi
h implies iO.
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