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Abstrat. The existene of seure indistinguishability obfusators (iO)

has far-reahing impliations, signi�antly expanding the sope of prob-

lems amenable to ryptographi study. All known approahes to on-

struting iO rely on d-linear maps. While seure bilinear maps are well es-

tablished in ryptographi literature, the seurity of andidates for d > 2
is poorly understood.

We propose a new approah to onstruting iO for general iruits. Unlike

all previously known realizations of iO, we avoid the use of d-linear maps

of degree d ≥ 3.

At the heart of our approah is the assumption that a new weak pseudo-

random objet exists. We onsider two related variants of these objets,

whih we all perturbation resilient generator (∆RG) and pseudo �awed-

smudging generator (PFG), respetively. At a high level, both objets

are polynomially expanding funtions whose outputs partially hide (or

smudge) small noise vetors when added to them. We further require that

they are omputable by a family of degree-3 polynomials over Z. We show

how they an be used to onstrut funtional enryption shemes with

weak seurity guarantees. Finally, we use novel ampli�ation tehniques

to obtain full seurity.

As a result, we obtain iO for general iruits assuming:

� Subexponentially seure LWE

� Bilinear Maps

� poly(λ)-seure 3-blok-loal PRGs

� ∆RGs or PFGs

⋆

This paper is a merge of two independent works, one by Ananth, Jain, and Sa-

hai [AJS18℄, and the other by Lin and Matt [LM18℄.



1 Introdution

Program obfusation onsiders the problem of building an e�ient randomized

ompiler that takes as input a omputer program P and outputs an equivalent

program O(P ) suh that any serets present within P are �as hard as possible�

to extrat from O(P ). This property an be formalized by the notion of indistin-

guishability obfusation (iO) [BGI+01, GR07℄. Formally, iO requires that given

any two equivalent programs P1 and P2 of the same size, it is not possible for a

omputationally bounded adversary to distinguish between the obfusated ver-

sions of these programs. Reently, starting with the works of [GGH

+
13b, SW14℄,

it has been shown that iO would have far-reahing appliations, signi�antly

expanding the sope of problems to whih ryptography an be

The work of [GGH

+
13b℄ gave the �rst mathematial andidate iO onstru-

tion, and sine then more than a dozen andidates have been proposed and stud-

ied more reent andidates [Lin16a, LV16, AS17, LT17℄ based iO on simple prim-

tives and assumptions. However, all these iO onstrutions rely on multi-linear

maps with degree at least 3. Unfortunately, all known andidates for degree-3

multilinear maps [GGH13a, CLT13a, GGH15a℄ have poorly understood seurity

properties, and even seurity models [MSZ16, BGMZ18, MZ18℄.

Our results in a nutshell. Seurely building iO remains a entral hallenge in

ryptography. In this paper, we report on the works of [AJS18, LM18℄, in whih

we develop new tehniques that enables building iO without multilinear maps

of degree ≥ 3. Instead, we rely on (relatively) standard assumptions inluding

(subexponentnailly seure) bilinear maps, LWE, and blok-loal PRGs [LT17℄

(a relaxation of loal PRGs, a.k.a. Goldreih's PRGs [Gol00℄), as well as new

types of �weak� pseudo-randomness generators with ertain �simple� strutures

� either perturbation resilient generators [AJS18℄ or pseudo �awed-smudging

generators [LM18℄.

Along the way, we study the notion of Funtional Enryption, whih was

introdued by [SW05℄, and formalized by [BSW11, O'N10℄. We provide new

general seurity ampli�ation theorems for amplifying Funtional Enryption

with (1/λc)-indistinguishability-based seurity to Funtional Enryption with

standard seurity [AJS18℄, and seurity ampli�ation for amplifying ertain leaky

forms of Funtional Enryption to standard seurity [LM18℄. We now elaborate.

Prior iO from multilinear maps with degree ≥ 3. The �rst-generation iO on-

strutions [GGH

+
13b, BR14, BGK

+
14, PST14, AGIS14, GLSW14, Zim15, AB15,

GMM

+
16a, DGG

+
16℄ rely on polynomial-degree multilinear maps or graded en-

odings. An L-linear map [BS02℄ essentially allows to evaluate degree-L polyno-

mials on seret enoded values, and to test whether the output of suh poly-

nomials is zero or not. While bilinear maps (i.e., L = 2) an be e�iently in-

stantiated from ellipti urves, instantiation of L-linear maps for L ≥ 3 has re-

mained elusive�While andidate onstrutions of suh graded enoding shemes

exist [CLT13b, LSS14, GGH15b, CLT15℄, their seurity is poorly understood
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due to several known expliit attaks on ertain distributions of enoded val-

ues [CHL

+
15, BWZ14, CGH

+
15, HJ15, BGH

+
15, Hal15, CLR15, MF15, MSZ16℄

5

.

A line of reent works [Lin16b, LV16, Lin17, AS17℄ aimed at �nding the

minimal degree of multilinear maps su�ient for onstruting iO, and has su-

essfully redued the required degree to L = 3. A key ingredient in these seond-

generation onstrutions are PRGs with small loality

6

. They showed that to

onstrut iO, it su�es to have multilinear maps with degree mathing exatly

the loality of the PRG [Lin16b, AS17℄, or even the relaxed notion of blok lo-

ality [LT17℄. These onstrutions essentially use degree-L multilinear maps to

evaluate a PRG with (blok-)loality L, and then bootstrap from there to hide

arbitrary omplex omputation. Unfortunately, the loality of a PRG annot

be smaller than 5 [CM01, MST03℄, and reent attaks [LV17, BBKK18℄ showed

that blok-loality annot be smaller than 3.

7

This raises the following natural

question:

Can we build iO without ryptographi multilinear maps of degree ≥ 3?
Are there new types of simple and weak pseudo-randomness generators

that an help?

Our simple and weak pseudorandomness generators. We answer the above ques-

tions positively, relying on either the new notion of perturbation-resilient gen-

erators, ∆RG for short, proposed by [AJS18℄ (AJS), or pseudo �awed-smuding

generators, PFG for short, proposed by [LM18℄ (LM). They are weak pseudo-

randomness generators with the same simple struture, and similar intuitive

seurity guarantees. However, their onrete seurity formalizations are very dif-

ferent, requiring di�erent tehniques of using them in iO onstrutions as done

in [AJS18, LM18℄.

We start with explaining their shared simple struture. A ∆RG/PFG is given

by a polynomially expanding funtion G from n input (or seed) elements to

m = n1+α
output elements in Zp, together with a seed distribution S over Z

n
p

that samples a pair s = (s1, s2) of publi and private seeds

8

. G has the simple

struture that 1) it is a degree 3 polynomial over Zp with degree 1 in the publi

seed s1 and degree 2 in the private seed s2, and 2) its output distribution G(S)
is polynomially bounded. At a very high-level, these two strutural properties

ensure that we an essentially ompute G in the exponent of bilinear pairing

groups (property 1) and extrat the output in the lear via brute fore disrete

5

Note that this does not neessarily mean that the resulting iO onstrutions are

inseure; in partiular, there have been e�orts (e.g., [GMM

+
16b℄) in onstruting

iO in more omplex seurity models for multilinear maps (e.g. [MSZ16℄) that have

resisted polynomial-time attaks. There have also been several other iO andidates

proposed whih are not known to polynomial-time broken (e.g. [CVW18, BGMZ18℄).

6

A funtion has loality ℓ if every output element depends on at most ℓ input elements.

7

The attaks atually leave open a very small window of expansion. Nevertheless,

they have weakened our on�dene on the seurity of PRGs with blok-loality 2.

8 n,m, p are parameterized by the seurity parameter λ
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logarithm (property 2). An aute reader may be urious about the purpose of

the publi seed s1. In short, it is a relaxation to requiring G having total degree

2, and as we shall see later, is ruial for the seurity of the instantiation of G.
Intuitively, the seurity of ∆RG/PFG guarantees that its output when added

to a small noise vetor, produing G(s) + e, weakly �smudge� or �hide� e. In the

literature, noise smudging (or noise �ooding) is a ommonly used tehnique for

hiding small noises in LWE samples, whih is also our purpose. However, to om-

pletely hide the noise vetor e, the smudging noises must be super-polynomially

large. This stands in ontrast with the fat that G(s) is polynomially bounded.

To irumvent this, ∆RG and PFG formalizes di�erent weakly hiding require-

ments:

� ∆RG guarantees that the distributions ∆RG(s) and (∆RG(s)+e) are some-

what hard to distinguish as long as the perturbation e is relatively small.

More spei�ally, it su�es if e�ient adversaries fail to distinguish these

two distributions with at least some �xed 1/poly(λ) probability. Thus, a an-
didate ∆RG would be seure, for instane, if an adversary ould distinguish

between ∆RG(s) and (∆RG(s)+e) with probability 99%, but no adversary

ould distinguish with probability over 99.5%.

� PFG guarantees thatG(s) is omputationally indistinguishable to a so-alled,

�awed-smudging distribution Y ← Y, satisfying that given Y+e, the values

of e at a few o(λ) oordinates are revealed, while the values at the rest

oordinates are hidden.

We elaborate on the seurity de�nitions of these generators, and possible instan-

tiations, in Setion 2.

Hardness of polynomials over the reals. The seurity of our andidate∆RGs/PFGs

ruially relies on the hardness of solving ertain over-determinined systems of

degree-3 polynomial equations over the reals, and a LWE leakage assumption.

Solving systems of polynomials over the reals has been studied by mathemati-

ians, sientists, and engineers for hundreds of years. This is preisely why we are

taking this approah: we want to relate iO to simple-to-state problems related

to areas of mathematis with long histories of study. Aside from that, our work

also fundamentally diversi�es the kinds of assumptions from whih iO an be

onstruted.

In Setion 2.4, we desribe spei� andidates suggested in follow-up work

by [BHJ

+
19℄ that were inspired by the hardness of RANDOM 3-SAT. We hope

that our work will motivate further ryptanalyti study of simple pseudorandom

objets.

Using respeitively ∆RG and PFG, we show how to onstrut iO without

multilinear maps of degree ≥ 3 in two onurrent works [AJS18, LM18℄. Next,

we desribe the results in eah work slightly more formally.

Results in AJS in more detail. AJS onstruts iO based on bilinear maps, LWE,

∆RG, and blok-loality 3 PRG. For the latter, in fat AJS require only a weak-

ened forms of 3-blokwise-loal PRGs [LT17℄ where e�ient adversaries fail to
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distinguish the the PRG output distribution from the uniformly random distri-

bution with some polynomial probability

9

.

Theorem 1 (AJS Main Theorem, Informal). For every onstants c, there
is a onstrution of indistinguishability obfusation for all polynomial-sized ir-

uits from,

�

(

1− 1
λc

)

-indistinguishable perturbation-resilient generators with aforemen-

tioned struture and seurity against sub-exponential size adversaries,

�

1
2λc -indistinguishable three-blok-loal pseudorandom generators [LT17℄ with

polynomial streth and seurity against sub-exponential size adversaries,

� learning with errors seure against sub-exponential size adversaries, and

� assumptions on bilinear maps seure against sub-exponential size adversaries

(that hold unonditionally in the generi bilinear map model).

Here κ-indistinguishability refers to seurity where the distinguishing advantage

of suh adversaries is bounded by κ. Thus, standard seurity would be negl(λ)-
seurity, where negl is a negligible funtion. In ontrast (1 − p)-seurity allows

for an adversary that fails to distinguish only with probability p.
Along the way to proving the result above, AJS also obtains a seurty ampli-

�ation theorem for funtional enryption:

Theorem 2 (AJS seurity ampli�ation theorem, informal). Assume

there exists a onstant c > 0, and

� (1 − 1/λc)-indistinguishable sublinearly ompat seret key FE shemes for

polynomial size iruits of depth λ, and
� learning with errors seure against sub-exponential size adversaries.

There exists sublinearly ompat seret key FE shemes for polynomial size ir-

uits of depth λ with negl(λ)-indistinguishability.

Note that the ampli�ation theorem above relies only on subexponential LWE,

and no new assumptions. Moreover, if we assume the underlying FE shemes to

be seure against subexponential size, then the resulting shemes satisfy subex-

ponential seurity. Please refer [AJS18℄ for a omplete formulation.

Results in LM in more detail. LM onstruts iO based on bilinear maps, LWE,

PFGs, and onstant blok-loal PRGs.

Theorem 3 (LM Main Theorem, informal). There is a onstrution of

indistinguishability obfusation for all polynomial-sized iruits from,

� pseudo �awed-smudging generators with aforementioned struture and seu-

rity against sub-exponential size adversaries,

9

There is be a tradeo� between how muh AJS an weaken the indistinguishability

requirements of the ∆RG and the 3-blok-loal PRG.
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� onstant-blok-loal pseudorandom generators [LT17℄ with mild strutural

properties desribed in Remark 1, and seurity against sub-exponential size

adversaries,

� learning with errors seure against sub-exponential size adversaries, and

� the SXDH assumption on bilinear maps seure against sub-exponential size

adversaries.

Remark 1. The blok-loal PRGs used in LM map n bits to n1+α
bits for an

arbitrarily small onstant α, where every PRG is de�ned by a prediate P and an

input-output dependeny graph G, suh that the i'th output bit yi = P (SeedG(i))
is omputed by evaluating the prediate P on a subset of seed bits SeedG(i)

spei�ed by G(i). LM requires the output loality (i.e., maxi |G(i)|) to be a

onstant, and the input loality (i.e., the maximal number of output bits that

an input bit in�uenes) to be bounded by o(n1−α). Most andidate onstant-

loality PRGs [Gol00, MST03, OW14, AL16℄ satisfy these strutural properties.

In partiular, the input-output dependeny graph is often hosen at random in

whih ase the input loality is indeed bounded by o(n1−α). The seurity of loal
PRGs, espeially ones with large onstant loality, has been studied extensively,

for instane in [CM01, MST03, CEMT09, BQ12, OW14, AL16℄.

Partially Hiding Funtional Enryption. In order to evaluate ∆RGs/PFGs using

bilinear map, we develop the primitive of Partially Hiding Funtional Enryption

shemes (PHFE), introdued under the name 3-restrited FE by [AJS18℄. The

notion of PHFE is a natural modi�ation of partially-hiding Prediate Enryp-

tion (PE) of [GVW15℄ by strengthening the seurity requirement from that of PE

to FE. PHFE shemes an evaluate funtions of the form g(x,y) and guarantee

that iphertexts and seret keys reveal only the outputs and part of its input x,

referred to as the publi input, while hiding the remaining part y, referred to

as the private input. Partially-hiding FE naturally interpolates attribute-based

enryption and funtional enryption: if the publi input x is empty, it is equiv-

alent to funtional enryption, and if g is suh that it outputs y when some

prediate on x evaluates to 1, then it orresponds to attribute-based enryption.

In the literature, there are onstrutions of seret-key FE shemes for quadrati

polynomials from bilinear map groups [Lin17, BCFG17℄. In AJS and LM, we ex-

tend these onstrutions to allow for additional linear omputation on a publi

input.

Theorem 4 (PHFE in AJS and LM, Informal). There are onstrutions

of seret-key partially-hiding FE shemes for omputing multilinear ubi poly-

nomials g(x, (y, z)) over Zp with polynomially bounded outputs and x as the

publi input, from bilinear pairing groups of order p. The shemes have linear

enryption time poly(λ)N in the input length N = max(|x|, |y|, |z|).

The onstrutions of PHFE in AJS and LM di�er in details. The sheme orig-

inally developed in AJS, referred to as 3-restrited FE there, follows the semi-

funtional FE framework and is based on assumptions over bilinear maps that

hold unonditionally in the generi bilinear map model. The sheme subsequently
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developed in LM, referred to as degree-(1,2) PHFE there, satis�es simulation se-

urity for one iphertext (meaning that the outputs evaluated on one enryption

input an be programmed) and is based on SXDH.

Finally, we mention that in followup works, our approah has been extended

to i) use∆RGs/PFGs implementable by polynomials of any onstant-degree [JLMS19℄,

ii) remove the need for blok-loal PRGs ompletely [JLS19℄, and iii) onstrut

PHFE supporting NC1 publi omputation and degree 2 private omptuation [JLS19℄.

1.1 History

We provide a timeline desribing how the results were oneived, to larify how

this line of work has developed.

06/17/2018: [AJS18℄ reeived by Eprint (2018/615).

[AJS18℄ introdued ∆RGs, 3-restrited FE, and a new general FE ampli�ation

theorem.

Historial notes: Earlier weaker versions of [AJS18℄ were submitted to EC

2018 (on 9/19/2017) and Crypto 2018 (on 2/13/2018). These earlier versions

ontained the notions of 3-restrited FE, and Tempered Cubi Enoding. How-

ever, they did not ontain either the notion of ∆RG nor the FE ampli�ation

theorem. The authors of [AJS18℄ were not aware of the relevant onurrent work

by [Agr18a℄ or [LM18℄ until seeing Eprint papers appear.

06/17/2018: [Agr18a℄ reeived by Eprint (2018/633).

To hide deryption noises, [Agr18a℄ introdued di�erent notions of (smudging)

noise generators, whih all *perfetly* hides the noises. Hene [Agr18a℄ did

not develop any FE seurity ampli�ation tehnique. In terms of instantiation,

[Agr18a℄ proposed using MQ or 2 blok-loal PRG as degree 2 andidates and

used o�-the-shelf deg 2 FE to evaluate them. [Agr18a℄ ontains a gap in the

onstrution: It proposes to use known deg 2 FE to ompute the noise generator.

Known deg 2 FE restrits the outputs of the noise generator to be poly-large.

On the other hand, [Agr18a℄ needs the noise generator to perfetly hide the HE

deryption noise e, whih requires the outputs to be super-poly large. (Note: this

is why [AJS18℄'s ∆RG and [LM18℄'s PFG only provide weak guarantees. This

allows for having poly-large outputs, but opens many hallenges in order to deal

with the weak guarantees.)

07/02/2018: [LM18℄ reeived by Eprint (2018/646).

In Aug 2017, Lin disussed with Agrawal about her ideas and Agrawal shared

a manusript. After the disussion, Agrawal and Lin proeeded independently.

Sine the shared manusript has large overlap with the later posted [Agr18a℄,

[LM18℄ simply treats entire [Agr18a℄ as prior work for larity.

Prior to posting, [LM18℄ has developed for over a year. [LM18℄ introdued

the notion of Pseudo Flawed-smudging Generator (PFG) and the leakage-based

seurity ampli�ation tehnique. They analyzed PFG properties and proposed
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using deg 2 polynomials sampled from a speial distribution as the andidates.

07/08/2018: [AJS18℄ updated on Eprint (2018/615).

Added expliit degree 3 ∆RG andidate and assoiated expliit ∆RG assump-

tion.

08/17/2018: [Agr18a℄ updated on Eprint (2018/633).

[Agr18a℄ ites [AJS18℄ for �xing the aforementioned gap. This means using the

notion of ∆RG and the FE seurity ampli�ation theorem of [AJS18℄.

08/19/2018: [BHJ

+
19℄ announed at �Beyond Crypto� workshop at

CRYPTO 2018.

This work gave empirial and theoretial evidene of polynomial-time attaks on

all known expliit degree-2 andidates onsidered in [AJS18, Agr18a, LM18℄. It

is expliitly noted that the attaks do not extend to the degree 3 ∆RG andidate

of [AJS18℄.

10/4/2018: [JS18℄, [BHJ

+
19℄ submitted to Eurorypt 2019.

[JS18℄ showed how to onstrut onstant-restrited FE for any onstant (i.e.,

(deg-O(1), deg 2)-PHFE) assuming SXDH. This enables using onstant degree

andidates, for any onstant. [JS18℄ is learly marked as a follow-up work to

[AJS18, Agr18a, LM18℄.

10/9/2018: The seond version of [LM18℄ was updated on Eprint

(2018/646). Added onstrution of (deg 1, deg 2)-PHFE, whih is a variant

of 3-restrited FE, and proposed to use the degree 3 andidate of [AJS18℄ as

andidate PFGs, whih are not subjet to [BHJ

+
19℄ attaks. This updated

[LM18℄ learly ites [AJS18℄ for this andidate and the idea of using weak deg-3

FE to evaluate it. However, note that this just replaes the previous deg 2 andi-

date and deg 2 FE in [LM18℄, whih are very simple and not the main tehnial

ontributions of [LM18℄.

In this update, there is also a onstrution of PHFE able to handle publi

omputation of poly degree, but subjet to ertain size onstraints. This on-

strution does not appear in this urrent paper for two reasons: 1) Lin and Matt

were added as authors to [JS18℄ in redit for this onurrent PHFE onstru-

tion, and 2) it is later superseded by a full (NC1, deg 2) PHFE onstrution in

a follow-up [JLS19℄.

10/11/2018: [JS18℄ reeived by Eprint (2018/973).

02/01/2019: [JS18℄, [BHJ

+
19℄ aepted at Eurorypt 2019.

The authors of [JS18℄ emailed Chairs to add Lin and Matt as authors, resulting

in publiation [JLMS19℄. The paper [JLMS19℄ is learly marked as a follow-up

work to [AJS18, Agr18a, LM18℄.
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1.2 Comparison of Tehniques

We provide a detailed omparison of the works of [AJS18, LM18, Agr18b, BHJ

+
19,

JLMS19℄.

Comparison of the works of [AJS18℄ and [LM18℄. We �rst start by omparing

the notions of PFGs and ∆RGs. Both notions are geared for the purpose of

generating a smudging noise Y to hide a small polynomially bounded noise e,

however, with di�erent guarantees. The output O of PFGs is omputationally

indistinguishable to �awed smudging noisesY suh that (e,Y+e) and (e′,Y+e)
are statistially lose with probability δ. On the other hand, the output O of

∆RGs diretly guarantees that (e,O + e) and (e′,O + e) are omputationally

indistinguishable up to advantage 1−δ. Furthermore, in the good ase with prob-

ability δ, the output of PFGs may still reveal e at a few oordinates (i.e., e and

e′ agree at a few oordinates), whereas ∆RG ask for weak indistinguishability

between the two ases (i.e. e and e′).

Besides the use of di�erent weak notions of randomness generators, other

di�erenes between [AJS18℄ and [LM18℄ inlude: i) [LM18℄ rely on onstant-

loality PRGs with mild strutural properties, while [AJS18℄ use blok-loality 3

PRGs. ii) [AJS18℄ �rst showed seurity in the generi bilinear map model, sub-

sequently [LM18℄ relied on the SXDH assumption over bilinear pairing groups.

In terms of tehniques, both works start with onstruting some weak no-

tions of FE: [LM18℄ onstrut FE for onstant-degree polynomials that may leak

a small portion of the input, whereas [AJS18℄ onstrut FE for degree 3 polyno-

mials that bounds the adversarial advantage only by 1− 1/poly(λ). Both works

then design di�erent methods to amplify their respetive weak FE to full-�edged

FE. The ampli�ation tehniques are similar in parts, for instane, both works

use threshold FHE, but also have di�erenes, for instane, while [LM18℄ relies

on the use of random permutations and a areful analysis to ensure that the

e�et of ompromising a few bits of the seed of a onstant-loality PRG an be

�ontrolled�. On the other hand, [AJS18℄ use tehniques from the dense model

theorem to give a general seurity ampli�ation for Funtional Enryption with

weak distinguishing advantage, into Funtional Enryption satisfying the stan-

dard notion of seurity.

Comparison of [AJS18, LM18℄ with the work of Agrawal [Agr18a℄. Following [AR17℄,

to obtain ompat iphertexts, Agrawal [Agr18b℄ (as mentioned in the timeline,

an early version of [Agr18a℄ was shared by the author of [Agr18b℄ with the au-

thors of [LM18℄) proposed the approah of using a noise generator to generate Y.

As an abstration of that, they introdued the notion of noisy linear funtional

enryption that adds the smudging noises Y to the outputs. The noise gener-

ator in [Agr18b℄ is able to produe super-polynomially large smudging noises,

and they propose a onstant degree FE sheme supporting super-polynomially

large outputs from a new assumption on NTRU Rings. The works of [AJS18℄

and [LM18℄ explore what happens when Y is polynomially bounded and e may

be leaked, whih allows us to use FE shemes supporting only polynomially large

outputs from multilinear maps.
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Subsequent to [AJS18℄, Agrawal notes that their onstrution is ompatible

with the approah of [AJS18℄ using ∆RG with polynomially large outputs and

weak seurity, and later amplifying the seurity of FE in a blak-box way. Thus,

the onstrution in the updated version an use known onstrutions of FE

shemes with restrited output size.

Comparison with the work by Jain, Lin, Matt and Sahai [JLMS19℄. As a follow-

up to [AJS18, LM18, Agr18a℄, Jain, Lin, Matt and Sahai [JLMS19℄ onstrut

FE shemes for degree d+2 funtions multilinear in their inputs x1, . . . ,xd, y, z,

where x1, . . . ,xd are publi, y and z are private, and d an be any onstant. They

further improve upon [AJS18℄ by only relying on the SXDH assumption instead

of the generi bilinear map model. Moreover, their work provides new andidates

of ∆RGs that an be omputed by their FE shemes. Similar to [AJS18, LM18℄,

their andidates hide the publi inputs as noises in LWE samples.

Comparison of [AJS18, LM18℄ and [GKP

+
13, GVW15, BTVW17, AR17℄. Both

the works of [AJS18, LM18℄ use a homomorphi enryption sheme (HE) in

onjuntion with the newly introdued pseudorandom generators to onstrut

FE. This approah of using a homomorphi enryption sheme to onstrut FE is

not new has already been explored in several works [GVW12, GKP

+
13, GVW15,

BTVW17, AR17, Agr18a℄. The hallenges to build FE from HE are twofold: 1)

privay�derypt a iphertext CTf,x enrypting an output f(x) = y seurely

revealing only y, and 2) integrity�enfore that only iphertexts for �legitimate�

funtions f (ones for whih seret keys are generated) an be derypted. Below,

we brie�y disuss how this approah was adopted in previous works.

The work of Goldwasser et al. [GKP

+
13℄ use the above template to build

a single-funtional enryption sheme. They use an attribute-based enryption

sheme to ensure integrity and garbled iruits to ensure privay. Then they

ombine both these tools along with HE to ahieve their result.

Gorbunov, Vaikuntanathan, and Wee [GVW15℄, also using the above ap-

proah, onstrut a prediate enryption sheme based on learning with errors;

reall that prediate enryption is a weaker form of funtional enryption. They

propose a novel primitive, alled partial-hiding prediate enryption sheme and

then ombine it with HE to obtain a prediate enryption sheme. Their notion of

partial-hiding prediate enryption sheme inorporates both the privay and the

integrity properties. In terms of tehniques, the starting point to their onstru-

tion of partial-hiding prediate enryption sheme is the observation that the HE

deryption orresponds to omputing an inner produt followed by a threshold

funtion. Moreover, there are lattie-based onstrutions of prediate enryp-

tion shemes for threshold of inner produt [AFV11, GMW15℄. They then pro-

pose a novel method to ombine a lattie-based prediate enryption for thresh-

old of inner produt with a lattie-based attribute-based enryption sheme to

ahieve a partial-hiding prediate enryption sheme. Natural attempts to ex-

tend their onstrution to ahieve funtional enryption have been shown to be

broken [Agr17a℄.
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In [AR17℄, to ensure privay of HE deryption, they use an FE sheme to

perform linear HE half-deryption and add super-polynomially large smudging

noises Y to hide the deryption noise e. In their sheme, the smudging noises

Y are sampled and enoded into the iphertext. As a result, the iphertext size

grows with the output length of the omputation, whih is non-ompat. In

addition, they also developed a new approah to ensure integrity. Instead of re-

lying on primitives like attribute based enryption or PHFE to ensure integrity

as in [GVW12, GKP

+
13, GVW15℄, they employ a speial HE sheme whose de-

ryption equation has the form y+e = cf −Afs, where Af depends only on the

publi and reusable random matrix A in LWE samples and the evaluated fun-

tion f . Thus, to ensure integrity, it su�es to enfore that only linear funtions

Afs for legitimate f an be evaluated on s. The work of [LM18℄ follows their

approah for integrity. The work of [AJS18℄, however, takes a di�erent path, by

introduing the notion of 3-restrited FE (that we all partially hiding funtional

enryption here).

1.3 Open Questions

Our work opens many interesting questions. First, we all for more study of the

andidate ∆RGs/PFGs. Studying their seurity as well as �nding new andi-

dates may build interesting onnetion with algorithm and omplexity theory as

already demonstrated in the attak by [BHJ

+
19℄ using SOS algorithms.

Seondly, an we further strengthen the onstrution of FE or iO in order to

further weaken the requirements on the struture and seurity of ∆RGs/PFGs?

Follow-up works show how to onstrut PHFE shemes that an perform onstant-

degree [JLMS19℄ omputation or even up to NC1 omputation [JLS19℄ in the

publi input, instead of just linear (still quadrati in the private input). Suh

sheme allows for having more andidate ∆RGs/PFGs.

Thirdly, the reason that we an only work with polynomially bounded smudg-

ing noises is beause we do not have onstant-degree FE shemes that support

super-polynomially large outputs from multilinear maps and/or standard as-

sumptions. For instane, an we build a quadrati FE sheme for super-polynomially

large outputs from standard assumptions? That would lead to a signi�ant sim-

pli�ation of our onstrution of NC
1
-FE as there would be no more leakage.

2 New PRG Assumptions

This setion is organized as follows. In Setion 2.1 we de�ne the notion of per-

turbation resilient generator ∆RG proposed by [AJS18℄. In Setion 2.2 we de�ne

pseudo-�awed smudging generators (PFGs) proposed by [LM18℄. Then, in Se-

tion 2.3 we give an algorithmi framework to realise ∆RG and PFG. Both of

them are PRGs whih has seed onsisting of one publi input and two seret in-

put. These PRGs evaluate degree-3 multilinear polynomials over Zp over these

inputs. In the same setion, we give an intuition as to why this struture an

be realised using bilinear maps. In Setion 2.4 we give andidate polynomials
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whih an be used to instantiate these primitives. In Setion 2.5, we illustrate a

single assumption whih will imply the notion of a perturbation resilient gener-

ator su�ient to build iO [AJS18℄. In Setion 2.6 we present the state of art in

ryptanalysis of the andidate polynomials.

2.1 Perturbation Resilient Generator

A perturbation-resilient generator, denoted by ∆RG, onsists of the following

algorithms:

� Setup, Setup(1λ, 1n, B): On input seurity parameter λ, the length parame-

ter n and a polynomial B = B(λ), it outputs a seed Seed and publi param-

eters pp.

� Evaluation, Eval(pp, Seed): It takes as input publi parameters pp, seed

Seed and outputs a vetor (h1, ..., hℓ) ∈ Z
ℓ
. The parameter ℓ is de�ned to be

the streth of ∆RG.

The following properties are assoiated with a ∆RG sheme.

E�ieny: The following onditions need to be satis�ed.

� The time taken to ompute Setup(1λ, 1n, B) is n · poly(λ) for some �xed

polynomial poly.

� For all i ∈ [ℓ], |hi| = poly(λ, n). That is, the norm of eah omponent hi in

Z is bounded by some polynomial in λ and n.

Perturbation Resiliene: For every polynomial B(λ), for every large enough poly-

nomial n = n(λ) and for all large enough λ, the following holds: for every

a1, ..., aℓ ∈ Z, with |ai| ≤ B(λ), we have that for any distinguisher D of size

2λ,

∣

∣

∣

∣

∣

Pr
x

$
←−D1

[1← D(x)]− Pr
x

$
←−D2

[1← D(x)]

∣

∣

∣

∣

∣

< 1− 1/λ,

where the sampling algorithms of D1 and D2 are de�ned as follows:

� Distribution D1: Compute (pp, Seed) ← Setup(1λ, 1n, B) and (h1, ..., hℓ) ←
Eval(pp, Seed). Output (pp, h1, ..., hℓ).

� Distribution D2: Compute (pp, Seed) ← Setup(1λ, 1n, B) and (h1, ..., hℓ) ←
Eval(pp, Seed). Output (pp, h1 + a1, ..., hℓ + aℓ).

Note that as is, we are not able to use the notion of a ∆RG to onstrut iO. We

now de�ne the notion of a perturbation-resilient generator implementable by a

three-restrited FE sheme (3∆RG for short). This notion turns out to be useful

for our onstrution of iO.
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∆RG implementable by Three-Restrited FE. A ∆RG sheme imple-

mentable by Three-Restrited FE (3∆RG for short) is a perturbation resilient

generator with some additional strutural properties. We desribe syntax again

for a omplete spei�ation.

� Setup(1λ, 1n, B) → (pp, Seed). The setup algorithm takes as input a seu-

rity parameter λ, the length parameter 1n and a polynomial B = B(λ) and
outputs a seed Seed and publi parameters pp. Here, Seed = (Seed.pub,
Seed.priv(1), Seed.priv(2)) is a vetor on Zp for a modulus p, whih is also

the modulus used in three-restrited FE sheme. There are three omponents

of this vetor, where one of the omponent is publi and two omponents

are private, eah in Z
npoly(λ)
p . Also eah part an be partitioned into sub-

omponents as follows. Seed.pub = (Seedpub,1, ..., Seedpub,n), Seed.priv(1) =
(Seedpriv(1),1, ..., Seedpriv(1),n) and Seed.priv(2) = (Seedpriv(2),1, ..., Seedpriv(2),n).

Here, eah sub omponent is in Z
poly(λ)
p for some �xed polynomial poly in-

dependent of n. Also, pp = (Seed.pub, q1, .., qℓ) where eah qi is a ubi

multilinear polynomial desribed in the next algorithm. We require synta-

tially there exists two algorithms SetupSeed and SetupPoly suh that Setup

an be deomposed follows:

1. SetupSeed(1λ, 1n, B)→ Seed. The SetupSeed algorithm outputs the seed.

2. SetupPoly(1λ, 1n, B)→ q1, ..., qℓ. The SetupPoly algorithm outputs q1, .., qℓ.

� Eval(pp, Seed)→ (h1, ..., hℓ), evaluation algorithm output a vetor (h1, ..., hℓ) ∈
Z
ℓ
. Here for i ∈ [ℓ], hi = qi(Seed) and ℓ is the streth of 3∆RG. Here qi is a

ubi polynomial whih is multilinear in publi and private omponents of

the seed.

The seurity and e�ieny requirements are same as before.

Remark 2. To onstrut iO we need the streth of 3∆RG to be equal to ℓ = n1+ǫ

for some onstant ǫ > 0.

We an onstrut 3∆RG from a suintly stated, instane independent and

a falsi�able assumption stated in Setion 2.5.

2.2 Pseudo-Flawed Smudging Generators

In this setion, we �rst de�ne what it means for a distribution over Z
ℓ
to be

smudging and �awed-smudging, and then introdue pseudo �awed-smudging gen-

erators.

First, the distribution of a random variable X is smudging if the statistial

distane between X and X + e is small for all e with bounded magnitude.

De�nition 1 (Smudging distributions). Let ℓ be a positive integer, let ε ∈
[0, 1], and let B either be a positive integer or an ℓ-dimensional vetor of positive

integers. We say a distribution X over Z
ℓ
is (B, ε)-smudging if for X ← X and

for all B-bounded e ∈ Z
ℓ
, we have δ(X,X + e) ≤ ε.
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We next de�ne distributions obtained by �xing some positions in the output

of a distribution. This will be used for de�ning �awed-smudging distributions.

De�nition 2 (Bit-�xing distributions). Let D be a distribution over strings

in ∆ℓ
for some set ∆ and some integer ℓ. Let I ⊆ [ℓ] be a set of indies, and

x an arbitrary string in ∆|I|
. De�ne D|x,I to be the distribution of sampling x

from D onditioned on xI = x. For onveniene, we sometimes also write I as

its harateristi vetor v, where vi = 1 i� i ∈ I.
We say that D is bit-�xing e�iently samplable if D|x,I is e�iently samplable

for any x, I.

We now de�ne �awed-smudging distributions. On a high level, the distribu-

tion of X is �awed-smudging for a random variable E if there are a few �bad�

oordinates suh that X +E �hides� E at all oordinates that are not bad. This

means, given X + E and whih oordinates are bad, one annot distinguish E
from E, where E is a fresh sample onditioned on agreeing with E on the bad

oordinates.

De�nition 3 (Flawed-smudging distributions). Let ℓ be a positive integer

and let X and E be distributions over Z
ℓ
. Further let K ∈ N and µ ∈ [0, 1].

We say that X is (K,µ)-�awed-smudging for E if there exist randomized pred-

iates

{

BADi : Z
ℓ+1 → {0, 1}

}

i∈[ℓ]
suh that the following two distributions are

idential:

D1 =







E ← E
X ← X

bad =
(

badi ← BADi(Ei, X)
)

i∈[ℓ]

: (E, X + E, bad)







,

D2 =















E ← E
X ← X

bad =
(

badi ← BADi(Ei, X)
)

i∈[ℓ]

E ← E|Ebad,bad

:
(

E, X + E, bad
)















,

and in addition, with probability at least 1− µ, the 1-norm of bad is bounded by

|bad|1 ≤ K.

We say the distribution X is (K,µ)-�awed-smudging for B-bounded distribu-

tions if it is (K,µ)-�awed-smudging for every B-bounded distribution E, where
B an either be a positive integer or a vetor in Z

ℓ
.

Remark 3. A more diret generalization of the de�nition of smudging distribu-

tions (see De�nition 1) would be that for all e, the distribution of X + e is equal

(or statistially lose) to the distribution of Y , where Yi = Xi + ei for all bad i,
and Yi = Xi for non-bad i. This is, however, not su�ient for our purposes: We

need that no information about the non-bad oordinates is leaked. While Xi

itself does not leak anything about ei, the fat that i is not a bad oordinate an

leak something about ei, sine the prediate BAD depends on ei. De�nition 3

resolves this issue by sampling the non-bad oordinates freshly after sampling

bad.
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Pseudo �awed-smudging generators. We now de�ne pseudo �awed-smudging

generators (PFGs). A PFG is a distribution of e�iently omputable funtions

and seeds for whih the output of the funtions is indistinguishable from a �awed-

smudging distribution.

De�nition 4. (Pseudo Flawed-Smudging Generator) Let n,m,K,B be polyno-

mials. A family of (K,µ)-pseudo �awed-smudging generators ((K,µ)-PFG) for

B-bounded distributions is an ensemble of distributions PFG = {PFGλ}λ∈N

satisfying the following properties:

Syntax: For every λ ∈ N, every (PFG,Dsd) in the support of PFGλ de�nes a

funtion PFG: Zn(λ) → Z
m(λ)

and a distribution Dsd
over seeds.

E�ieny: There is a uniform Turing mahine M satisfying that for every

λ ∈ N, every (PFG,Dsd) ∈ Support(PFGλ) and Seed ∈ Support(Dsd),
M(PFG, Seed) runs in time poly(λ) and we have M(PFG, Seed) = PFG(Seed).
Furthermore, PFG and all Dsd

in the support of PFGλ are e�iently sam-

plable.

(K,µ)-pseudo-�awed-smudging for B-bounded distributions: There exists

an ensemble {Xλ} of distributions, suh that the distribution Xλ is (K(λ), µ(λ))-
�awed-smudging for all B(λ)-bounded distributions, and the following ensem-

bles are µ-indistinguishable:

{

(PFG,Dsd)← PFGλ; Seed← D
sd : (PFG,PFG(Seed))

}

λ∈N

,
{

(PFG,Dsd)← PFGλ;X ← Xλ : (PFG, X)
}

λ∈N

.

Degree 3 PFG with Partial Publi Input: As mentioned in the introdution

and as desribed w.r.t. ∆RG, it su�es if our PFG has the simple struture that

every funtion PFG sampled from PFGλ is a degree 2 polynomial over Zp, where

p is a modulus that eventually mathes the modulus that our PHFE supports,

whih in turn is the modulus assoiated with the bilinear maps. However, so

far, we do not know how to instantiate a truly degree 2 PFG. Instead, we an

work with the following slightly weaker struture, where the PFG is a degree

3 multilinear polynomial, and the �rst input vetor an be made publi, more

spei�ally:

Struture: For every λ, every (PFG,Dsd) ∈ PFGλ satis�es that Dsd
is a dis-

tribution over (x,y, z) ∈ Z
3
p for some modulus p, and PFG(x,y, z) is a

multilinear degree 3 polynomial over Z
3
p.

Seurity with partial publi input: The seurity in De�nition 4 is strength-

ened so that the following distributions are indistinguishable:

{

(PFG,Dsd)← PFGλ; Seed = (x,y, z)← Dsd : (PFG,x,PFG(Seed))
}

λ∈N

,
{

(PFG,Dsd)← PFGλ; Seed = (x,y, z)← Dsd;X ← Xλ : (PFG,x, X)
}

λ∈N

.
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Weaker variant: Flawed-smudging with 1/poly(λ) probability. In the

full version [LM18℄, we show how to further weaken the requirements on PFGs.

Roughly speaking, the PFG outputs are indistinguishable to a �awed-smudging

distribution only with some 1/poly(λ) probability. We show that using essentially

the same tehnique for handling the partial hiding guarantee of PFG an also

be used to handle this weakening. We omit details here; see [LM18℄ for more

details.

Properties of (Flawed-)Smudging Distributions In the full version [LM18℄,

we prove some properties of smudging and of �awed-smudging distributions.

More spei�ally, we show the following:

� Polynomially bounded distributions annot be smudging with negligible ε.
More preisely, if X is B-bounded and (B′, ε)-smudging, then ε ≥ 1

2B+1 .

� Adding independent values preserves the (�awed-)smudging property, i.e., if

X and Y are independent and the distribution of X is (�awed-)smudging,

then the distribution of X + Y is (�awed-)smudging with the same parame-

ters.

� Probabilistially mixing (�awed-)smudging distributions yields a (�awed-)

smudging distribution. That is, if the distributions ofXi are (B, εi)-smudging

(or (K,µi)-�awed-smudging) and αi ∈ [0, 1] suh that

∑

i αi = 1, then the

distribution of X with Pr[X = x] =
∑

i αi Pr[Xi = x] is
(

B,
∑

i αiεi
)

-

smudging (or

(

K,
∑

i αiµi

)

-�awed-smudging).

� The joint distribution of mutually independent smudging distributions is

�awed-smudging. More preisely, we show that if X is a distribution over Z
ℓ

suh that for (X1, . . . , Xℓ) ← X , X1, . . . , Xℓ are mutually independent and

the distribution of eah Xi is (B, ε)-smudging for ε ≤ K+1
22ℓ·(2B+1) , then X is

(K, 2−K)-�awed-smudging for B-bounded distributions.

� The produt of �awed-smudging distributions is �awed-smudging. That is,

for distributions X (1)
and X (2)

suh that X (i)
is

(

K(i), µ(i)
)

-�awed-smudging,

we have that X (1) ×X (2)
is

(

K(1) +K(2), µ(1) + µ(2)
)

-�awed-smudging.

� If the distribution of X is �awed-smudging for the distribution of E and

E = E(V ) is a funtion of some random vetor V suh that eah oordinate

of E(V ) depends only on a few oordinates of V , then E(V )+X hides V at

all but a few loations.

2.3 Framework for Algorithms of 3∆RG and PFG

We now desribe a framework of algorithms that an be used to instantiate

∆RG and PFG. However for the sake of suintness and larity we desribe it

in terms of a perturbation resilient generator 3∆RG. For onreteness, we use a

large enough prime modulus p = O(2λ), whih is the same as the modulus used

by 3−restrited FE/(1,2)-PHFE. Then, let χ be a distribution used to sample

input elements over Z. Let Q denote a polynomial sampler. Next we desribe the

algorithms in terms of χ and Q but give onrete instantiations later in Setion

2.4.
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� Setup(1λ, 1n, B) → (pp, Seed). Sample a seret s ← Z
1×d
p for d = poly(λ)

suh that LWEd,n·d,p,χ holds. Here χ is a bounded distribution with bound

poly(λ). Let Q denote an e�iently samplable distribution of homogeneous

degree 3 polynomials (instantiated later). Then proeed with SetupSeed as

follows:

1. Sample ai ← Z
1×d
p for i ∈ [n] along with ei, yi, zi ← χ for i ∈ [n].

2. Compute LWE samples wi = (ai, ri = 〈ai, s〉+ ei mod p) for i ∈ [n].
3. Output Seed.pub(i) = wi for i ∈ [n], Seed.priv(1, j) = yi ⊗ (−s, 1) for

j ∈ [n] and Seed.priv(2, k) = zk for k ∈ [n].
� SetupPoly : Now we desribe SetupPoly. Fix η = n1+ǫ

.

1. Sample polynomials q′ℓ for ℓ ∈ [η] as follows. q′ℓ(e1, ..., en, y1, ..., yn, z1, ..., zn) =
ΣI=(i,j,k)cIei · yj · zk where oe�ients cI are bounded by poly(λ). These
polynomials {q′ℓ} are sampled aording to Q

2. De�ne qi be a multilinear homogeneous degree 3 polynomial takes as

input Seed = ({wi}i∈[n],y
′
1, . . . ,y

′
n, z). Then it omputes eah monomial

cIeiyj · zk as follows and then adds all the results:

• Compute cI〈wi, (−s, 1)〉 · yj · zk. This step requires y′
i = yi ⊗ (−s, 1)

to perform this omputation.

3. Output q1, ..., qη. Observe that qi(Seed) = q′i(e,y, z) for all i.
� Eval(pp, Seed)→ (h1, ..., hη), evaluation algorithm output a vetor (h1, ..., hη) ∈

Z
η
. Here for i ∈ [η], hi = qi(Seed) and η is the streth of 3∆RG. Here qi is

a degree 3 homogenenous multilinear polynomial (de�ned above) whih is

degree 1 in publi and 2 in private omponents of the seed.

We prove that the above andidate satis�es the e�ieny property of a perturbation-

resilient generator.

E�ieny:

1. Note that Seed ontains n LWE samples wi for i ∈ [n] of dimension d. Along

with the samples, it ontains elements y′
i = yi⊗ t for i ∈ [n] and elements zi

for i ∈ [n]. Note that the size of these elements are bounded by poly(λ) and
is independent of n.

2. The values hi = qi(Seed) = ΣI=(i,j,k)cIei · yj · zk. Sine χ is a bounded

distribution, bounded by poly(λ, n), and oe�ients cI are also polynomially

bounded, eah |hi| < poly(λ, n) for i ∈ [m].

Intuition behind andidate with partially-publi inputs. Starting from

a ubi multilinear andidate g(x,y, z) where all inputs are private, and the �rst

input x is from a distribution that an be used as LWE noises, we transform

it into another funtion h(C,y′, z) where the �rst input an be made publi.

The key idea is hiding x in LWE samples C = (A,As′ + x) mod p as the noise

terms. Then omputing g translates into omputing another funtion h where x
is replaed with Cs mod p for s = (−s′||1),

h(C, y′ = (y⊗s), z) :=
∑

j

g(C[⋆, j], sjy, z) = g (Cs,y, z) = g(x,y, z) (mod p) ,
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whereC[⋆, j] is the vetor ontaining the j'th element of all LWE samples. NowC

is the publi input of h. By providing the tensor y⊗s as input, the polynomial h
is multilinear. For h to be seure when C is publi, the output of g needs to be

indistinguishable from a pseudo �awed-smudging distribution, say D, even when

its �rst input is hidden in some LWE samples,

{ g(x,y, z), C = (A,As′ + x) } ≈ { ∆← D, C = (A,As′ + x) } .

The family of ubi polynomials with partially-publi input of [AJS18℄ orre-

sponds exatly to h obtained by applying the above transformation to the de-

gree d = 3 andidates g(x,y, z) =
∑

i1,i2,i3
ci1,i2,i3xi1yi2zi3 with small inputs

and oe�ients desribed in Instantiation 1. We observe that for every �xed

publi input C, the funtion h is quadrati in y and z, but its omputation over

Zp does not degenerate to omputation over Z, as it does trigger wrap-around

modulo p due to LWE �deryption�.

2.4 Our Instantiation of Polynomials for ∆RG and PFG.

We now give various instantiations of Q. Let χ be the disrete gaussian distribu-

tion with 0 mean and standard deviation n. The following andidate is proposed
by [BHJ

+
19℄ and [AJS18℄ based on the investigation of the hardness of families

of expanding polynomials over the reals. For any vetor v, denote by v[i], the
ith omponent of the vetor.

Instantiation: 3XOR Based Candidate. Let t = B2λ. Sample eah polynomial q′i
for i ∈ [η] as follows. q′i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . , zt) = Σj∈[t]q

′
i,j(xj,yj, zj).

Here xj ∈ χd×n
and yj , zj ∈ χn

for j ∈ [t]. In other words, q′i is a sum of t
polynomials q′i,j over t disjoint set of variables.

Now we desribe how to sample q′i,j for j ∈ [η].

1. To sample q′i,j do the following. Sample three indies randomly and indepen-

dently i1, i2, i3 ← [n].
2. Set q′i,j(xj,yj, zj) = xj[i1] · yj [i2] · zj [i3]

Remark: The andidate above was generalised to have a onstant degree d
in a followup. This an be found in [JLMS19℄. One ould also onsider arithmeti

versions of various boolean prediates. For example, any lause of the form a1 ∨
a2∨a3 an be written as 1−(1−a1)(1−a2)(1−a3) over integers where a1, a2, a3
are literals in �rst ase and take values in {0, 1}, and thus any random satis�able

3SAT formula an be onverted to polynomials in this manner.

2.5 Pseudorandomness Assumption in Ananth-Jain-Sahai

Below we desribe the atual hardness assumption needed by [AJS18℄, when

ombined with subexponentially seure LWE, bilinear maps, and 3-blok-loal

PRGs, to imply iO.
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The AJS Assumption. This assumption states the following. There exists a poly-

nomially bounded distribution χ over the integers, and there exists a polynomial

samplerQ over families of multilinear degree-3 polynomials. Let δi ∈ Z be output

by the adversary given only the parameters (1λ, 1n), suh that for all i ∈ [n1+ǫ],
we have that |δi| < λc

for some onstant c. Then onsider the following two

distributions:

Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n, λc, ǫ) to obtain

polynomials (q1, ..., q⌊n1+ǫ⌋). Sample a seret s ← Z
λ
p and sample ai ← Z

λ
p for

i ∈ [n]. Finally, for every i ∈ [n], sample ei, yi, zi ← χ, and write e = (e1, . . . , en),
y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with

{qk, qk(e,y, z)}k∈[n1+ǫ]

Distribution D2 is the same as D1, exept that we onsider polynomial eval-

uations perturbed with δi. The output is now

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with

{qk, qk(e,y, z) + δk}k∈[n1+ǫ]

Then we require that for all subexponential-time adversary A it holds that:

| Pr
Z

$
←−D1

[A(Z) = 1]− Pr
Z

$
←−D2

[A(Z) = 1]| ≤ 1− 1/λ

Remark 4. For onreteness, the andidate for the sampler Q an be found in

Setion 2.4.

Deomposing the assumption into two parts. To help understand the assumption

above, next we make the following observation. The assumption desribed above

is su�ient to build iO and it turns out the assumption above is true if the

following two simpler assumptions are true. This impliation is one sided and

indeed it may be true that one of the two assumptions below is false but the

assumption above still holds. We present the assumptions below only to help

the reader oneptually understand the assumption above. The �rst assumption

alled �Weak LWE with Leakage" states that given the polynomial samples,

it is omputationally hard to determine whether the LWE sample is hosen

with the same error over whih the polynomials are evaluated or a ompletely

independently hosen error.

Explaining the AJS Assumption, Part 1. Weak LWE with leakage. This assump-

tion states that there exists a polynomially bounded distribution χ over the

integers, and there exists a polynomial sampler Q over families of multilinear

degree-3 polynomials suh that the following two distributions are weakly indis-

tinguishable (spei�ed later).
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Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n, λc, ǫ) to obtain

polynomials (q1, ..., q⌊n1+ǫ⌋) for some onstant c > 0. Sample a seret s ← Z
λ
p

and sample ai ← Z
λ
p for i ∈ [n]. Finally, for every i ∈ [n], sample ei, yi, zi ← χ,

and write e = (e1, . . . , en), y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with

{qk, qk(e,y, z)}k∈[n1+ǫ]

Distribution D2 is the same as D1, exept that we additionally sample e′j ← χ
for i ∈ [n]. The output is now

{ai, 〈ai, s〉+ e′i mod p}i∈[n]

along with

{qk, qk(e,y, z)}k∈[n1+ǫ]

Then it holds that for any adversary A of subexponential size:

| Pr
Z

$
←−D1

[A(Z) = 1]− Pr
Z

$
←−D2

[A(Z) = 1]| ≤ 1/λ

We an think of the polynomials qk(e,y, z) as �leaking� some information

about the LWE errors ei. The assumption above states that suh leakage provides

only a limited advantage to the adversary. Critially, the fat that there are

n2 > n1+ǫ
quadrati monomials involving just y and z above, whih are not

used in the LWE samples at all, is ruial to avoiding linearization attaks over

Zp in the spirit of Arora-Ge [AG11℄. For more disussion of the seurity of the

above assumption in the ontext of D = 3, see [BHJ+19℄.
The seond assumption deals only with expanding degree-3 polynomials over

the reals, and requires that these polynomials are weakly perturbation resilient.

Explaining the AJS Assumption, Part 2. Weak Perturbation-Resiliene. This as-

sumption states that for the same distribution of polynomials and inputs as above

the following distributions are weakly indistinguishable. Let δi ∈ Z be output by

the adversary given only the parameters (1λ, 1n), suh that for all i ∈ [n1+ǫ], we
have that |δi| < λc

for some onstant c. Consider the following two distributions:

Distribution D1 onsists of the evaluated polynomial samples. That is, we output:

{qk, qk(e,y, z)}k∈[n1+ǫ]

Distribution D2 onsists of the evaluated polynomial samples with added per-

turbations δi for i ∈ [n1+ǫ]. That is, we output:

{qk, qk(e,y, z) + δk}k∈[n1+ǫ]

Then it holds that for any adversary A of subexponential size:

| Pr
Z

$
←−D1

[A(Z) = 1]− Pr
Z

$
←−D2

[A(Z) = 1]| ≤ 1− 3/λ
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2.6 Known Cryptanalysis

Now, we disuss various preliminary ryptanalysis attempts made on these an-

didates. These attaks an be ategorised in the following ategories:

Linearisation Attaks: The system of degree-3 polynomials desribed above an

be onverted to a degree-2 system over Zp by performing bak substitution of

ei, from the LWE sample (ai, 〈ai, s〉+ei mod p). However, the resulting system
has about Ω(n) variables y⊗ s and z, but only about n1+ǫ

equations. Thus, all

known linearization attak fail. This was onsidered in the work of [BHJ

+
19℄.

Sum-of-Squares Attaks: [BHJ

+
19℄ systematially studies SDP attaks on suh

system and they gave an evidene why the assumptions above instantiated using

degree-2 polynomials over reals is unlikely to be true. However, they also onje-

ture that for degree-3 and higher, these systems exhibit SoS lower bounds (at

least, the lower bounds are known to hold in the ase when inputs are hosen

from {−1, 1} [Gri01, Sh08℄). The lower bounds hold when number of equations

m ≤ nd/2
for a general degree d ≥ 3. Thus for our ase when m = n1+ǫ

for any

ǫ > 0, the SoS algorithm is unlikely to attak suh systems in polynomial time.

Please refer [BHJ

+
19℄ for further details.

Gradient Desent: We implemented gradient desent to ryptanalyze all our an-

didates. It seems like given the signs of the planted inputs, gradient desent was

able to reover the planted inputs in most ases. For degree-2 andidates, gra-

dient desent was able to reover the planted inputs even with random starting

points (even with no information on the signs). For degree-3 and higher, our im-

plementation of gradient desent did not yield any attak starting from random

signs. This mathes our intuition developed in SoS literature, sine the lower

bounds hold when inputs are sampled from {+1,−1} (thus implying �nding

signs is hard).

3 Tehnial Overview of Ananth-Jain-Sahai 18

We now begin with a very high-level overview of our tehniques in [AJS18℄.

The story so far. Prior work, ulminating in the most reent works of [AS17,

Lin17, LT17℄ showed us that the powerful primitive of indistinguishability obfus-

ation an be based on trilinear maps and (sub-exponential) 3-blok-loal pseudo-
random generators. Importantly for us, these works also (impliitly) demonstrate

that in order to ahieve indistinguishability obfusation, it su�es to onstrut

(sub-exponentially seure) seret-key sublinear FE for ubi polynomials, satis-

fying semi-funtional seurity. Unfortunately, these prior approahes neessarily

relied on multilinear maps with degree at least 3 to build suh a ubi FE sheme.

That is beause intuitively suh a ubi FE sheme guarantees a way to eval-

uate a ubi polynomial on enrypted inputs without revealing any information

about the input exept the evaluation of the polynomial. In other words, suh a
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sheme provides a way to output the deryption of a degree-3 polynomial evalu-

ated �homomorphially� on enoded inputs. However, we seek to aomplish this

without the use of degree-3 maps.

Sine we seek to operate homomorphially on enoded values, a natural start-

ing idea is to use fully homomorphi enryption (for onreteness and simpliity,

in this paper we rely on the GSW fully homomorphi enryption sheme [GSW13℄)

with polynomially bounded error in order to perform ubi evaluations on en-

rypted inputs. The main hallenge, however, is to reveal the output of ubi

evaluation without ompromising seurity.

Initial approah. Our �rst observation is that omputing the inner produt

〈GSW.sk,GSW.CT〉 of a GSW seret key with a GSW iphertext enrypting

message M , outputs (M · ⌊q/2⌋ + e) where the LWE modulus is q and e is a

small error. With the assistane of a bilinear map, this inner produt an be

arried out via pairings, suh that the output (M · ⌊q/2⌋ + e) appears as an

exponent in the target group. Next, one an hope to test whether the message

M is zero by omputing a disrete logarithm by brute-fore heking all possible

values, provided the output range is polynomial, whih would happen if M = 0.
A reader familiar with GSW will observe that this approah already runs

into major hurdles. The �rst problem is that brute-fore omputing the message

M also reveals the error e to a potential adversary, whih is problemati when

we try to invoke the semanti seurity of GSW. In fat, reent work shows how

knowledge of suh error an be used to build devastating attaks [Agr17b℄. We

will ruially deal with this issue, but before we takle this, let us �rst onsider

how we an fore the adversary to obtain only inner produts 〈GSW.sk,GSW.CT〉
where the messages orrespond to ubi omputations that the adversary is

allowed to obtain.

3-Restrited FE. To aomplish this, we �rst de�ne a restrited version of fun-

tional enryption (FE) � whih allows for the omputation of multilinear ubi

polynomials of three inputs, where one remains unenoded and is alled the pub-

li omponent and the other two are enoded; these are the private omponents.

In other words, our restrited FE is a partially hiding FE, or PHFE for short.

The input to the enryption algorithm is split into three parts x,y, and z, where

x is not hidden by the enryption, but y and z are kept hidden.

One of our key tehnial ontributions is to ahieve a new way of (indistin-

guishably) enforing the output of suh a 3-restrited FE sheme, despite the

fat that one of the enodings is publily known to the adversary. We use these

tehniques to ahieve seurity for this 3-restrited variant of FE relying solely

on asymmetri bilinear maps. While we only need the resulting 3-restrited FE

to be sublinear, our onstrution in fat ahieves ompatness, where the size of

enoding is only linear in the input length.

Construting Three-Restrited FE. Before getting to 3 restrited FE, let's �rst

reap how seret key quadrati funtional enryption shemes [AS17, Lin17℄ work

at a high level. Let's say that the enryptor wants to enrypt y, z ∈ Z
n
p. The
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master seret key onsists of two seret random vetors β, γ ∈ Z
n
p that are used

for enforement of omputations done on y and z respetively. The idea is that

the enryptor enodes y and β using some randomness r, and similarly enodes

z and γ together as well. These enodings are reated using bilinear maps in one

of the two base groups. These enodings are onstruted so that the deryptor

an ompute an enoding of [g(y, z) − rg(β, γ)]t in the target group for any

quadrati funtion g. The funtion key for the given funtion f is onstruted in

suh a manner that it allows the deryptor to ompute the enoding [rf(β, γ)]t
in the target group. Thus the output [f(y, z)]t an be reovered in the exponent

by omputing the sum of [rf(β, γ)]t and [f(y, z)−rf(β, γ)]t in the exponent. As

long as f(y, z) is polynomially small, this value an then be reovered e�iently.

Clearly the idea above only works for degree-2 omputations, if we use bilinear

maps. However, we build upon this idea nevertheless to onstrut a 3-restrited
FE sheme. Reall, in a 3-restrited FE one wants to enrypt three vetors

x,y, z ∈ Z
n
p. While y and z are required to be hidden, x is not required to be

hidden.

Now, in addition to β, γ ∈ Z
n
p in ase of a quadrati FE, another vetor

α ∈ Z
n
p is also sampled that is used to enfore the orretness of the x part of

the omputation. As before, given the iphertext one an ompute [y[j]z[k] −
rβ[j]γ[k]]t for j, k ∈ [n]. But this is learly not enough, as these enodings do not

involve x in any way. Thus, in addition, an enoding of r(x[i]−α[i]) is also given
in the iphertext for i ∈ [n]. Inside the funtion key, there are orresponding

enodings of β[j]γ[k] for j, k ∈ [n] whih the deryptor an pair with enoding

of r(x[i]−α[i]) to form the enoding [r(x[i]−α[i])β[j]γ[k]]t in the target group.

Now observe that,

x[i] ·
(

y[j]z[k]− rβ[j]γ[k]
)

+ r(x[i]− α[i]) · β[j]γ[k]

=x[i]y[j]z[k]− rα[i]β[j]γ[k]

Above, sine x[i] is publi, the deryptor an herself take (y[j]z[k]−rβ[j]γ[k]),
whih she already has, and multiply it with x[i] in the exponent. This allows her

to ompute enoding of [x[i]y[j]z[k]−rα[i]β[j]γ[k]]t. Combining these enodings

appropriately, she an obtain [g(x,y, z)−rg(α, β, γ)]t for any degree-3 multilinear

funtion g. Given the funtion key for f and the iphertext, one an ompute

[rf(α, β, γ)]t whih an be used to unmask the output. This is beause the

iphertext ontains an enoding of r in one of the base groups and the funtion

key ontains an enoding of f(α, β, γ) in the other group and pairing them results

in [rf(α, β, γ)]t.
In full version [AJS18℄, we provide details of our 3-restrited FE; spei�ally,

we de�ne a notion of semi-funtional seurity [AS17℄ (variant of funtion-hiding)

assoiated with a three-restrited FE sheme. One we have suh a restrited FE,

making the leap to ubi FE would require us to also keep the publi enoding

hidden. Therefore, it is not lear whether we have ahieved anything meaningful

yet.

Applying Three-Restrited FE. One way that we an hope to protet or hide the

input that goes into the publi omponent of the 3-restrited FE, is to let this
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omponent itself be a GSW-based fully homomorphi enryption of the input. We

an then rely on 3-restrited FE to homomorphially evaluate the ubi funtion

itself and obtain a GSW enryption of the output of ubi evaluation. Note,

however, that releasing suh a GSW enryption by itself is useless, beause it

does not allow even an honest evaluator to reover the output of ubi evaluation.

At this point, let us go bak to the initial approah desribed at the begin-

ning of this setion. Notie that instead of relying on 3-restrited FE to only

homomorphially evaluate the ubi funtion itself, we an also perform a GSW

deryption via 3-restrited FE. The seret key for GSW deryption an be embed-

ded as input into one of the private omponents of the 3-restrited FE. We show

how this an be arefully done via degree three operations only, to obtain output

the GSW plaintext with some added error, that is, we obtain out = µ⌊ q2⌋+e. Our
atual method of bootstrapping three-restrited FE to sublinear FE for ubi

polynomials involves additional subtleties, and in partiular, we de�ne and on-

strut what we all tempered ubi enodings that serve as a useful abstration

in this proess. We now further disuss one of the main tehnial issues that

arises in this proess.

Beause the error e is sampled from a (bounded) polynomial-sized domain,

it is possible to iterate, in polynomial time, over all possible values of out or-

responding to µ = 0 and µ = 1, and therefore reover µ. Unfortunately, this
proess also reveals the error e, whih an be devastating as we noted before.

Preventing the revelation of error terms. To prevent this issue, we will reveal

the value out = µ⌊ q2⌋+e but with some added noise, so as to hide the error e via
noise �ooding. Unfortunately, this idea still su�ers from two major drawbaks:

� How should we generate suh noise? A natural idea is to rely a pseudorandom

generator that an be omputed via quadrati operations only. However, this

is exatly the reason why previous approahes from the literature ould not

rely on bilinear maps � in fat, the reent works of [LV17, BBKK17℄ showed

that suh PRGs are quite di�ult to onstrut. To overome this problem,

we introdue and rely on a very weak variant of a pseudorandom objet,

that instead of guaranteeing pseudorandomness, only guarantees perturba-

tion resiliene. Furthermore, we will implement this objet with degree-3

polynomials. We will soon explain this objet in more detail.

� For an honest evaluator to reover µ by iterating over all possible values

of out = µ⌊ q2⌋ + e, we ruially require the added noise be sampled from

a polynomial-sized domain. But suh noise appears to be insu�ient for

seurity, in partiular, an adversary would have advantage at least

1
poly(λ)

in distinguishing a message with added noise from a message without noise.

Another key tehnial ontribution of our work is to �nd a way to amplify

seurity, via tools inspired by the dense model theorem. In the next two

bullets, we desribe these ideas in additional detail.

The hallenge of onstruting degree-3 pseudorandomness: a barrier at degree 2.

As we've outlined above, we need a way to reate pseudorandomness to (at least

24



partially) hide noise values. The most straightforward way to do this would be

to build a degree-2 pseudorandom generator (PRG) whose output is indistin-

guishable from some nie m-dimensional distribution, like a disrete gaussian.

Intuitively, if suh a degree-2 objet existed, a bilinear map would be su�ient

to implement it. However, the works of [BBKK17, LV17℄ showed that there are

fundamental barriers to onstruting suh PRGs due to attaks arising from the

Sum of Squares paradigm. Beause we will propose a diretion to overome this

barrier, we now review how these attaks work at a high level.

For simpliity, let's restrit our attention to polynomials where every mono-

mial is of degree exatly 2. We an represent any suh polynomial p as a sym-

metri n-by-n matrix P , where Pi,j = Pj,i is equal to half the oe�ient of the

monomial xixj if i 6= j, and Pi,i is equal to the oe�ient of the monomial x2
i .

Then we observe that p(x) = x⊤Px. Suppose, then, we have a andidate PRG

onsisting of m degree-2 polynomials that we represent by matries M1, . . . ,Mm.

Thus, to sample from this PRG, we sample a seed vetor x from a bounded-norm

distribution, and obtain the outputs yi = x⊤Mix. The goal of an attak would be

to distinguish suh outputs from a set of independent random values r1, . . . , rm,

say from a disrete gaussian distribution entered around zero.

The works of [BBKK17, LV17℄ suggest the following attak approah: Sup-

pose we reeive values z1, . . . , zm. Then we onstrut the matrix

M =

m
∑

i=1

ziMi

Observe now, that if zi = yi orresponding to some seed vetor x, then we have:

x⊤Mx =
m
∑

i=1

yix
⊤Mix =

m
∑

i=1

y2i

Intuitively, beause the above sum is a sum of squares, this will be a quite large

positive value, showing that there exists x of bounded norm suh that x⊤Mx
an be quite large.

However, if the zi = ri, then the entries of the matrixM arise from a �random

walk,� and thus intuitively, the matrix M should behave a lot like a random

matrix. However a random matrix has bounded eigenvalues, and thus we expet

that there should not exist any x of bounded norm suh that x⊤Mx is large.

Indeed, this intuition an be made formal and gives rise to atual attaks on many

degree-2 PRGs [BBKK17, LV17℄. The attak above was generalized further in a

followup work to this paper [BHJ

+
19℄, showing that several families of degree-2

pseudorandom objets annot exist. While there are still potential aveats to

known degree-2 attaks, we propose a di�erent, more onservative, way forward:

Perturbation-Resilient Generators (∆RG). We observe that even though the

most natural way to �drown out� the GSW error term above is by adding

some nie noise distribution, all we atually need is something we will all a

perturbation-resilient generator (∆RG): Informally speaking, we want that for
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every polynomial bound B(λ), there should exist a low-degree10 ∆RG using poly-

nomially bounded seeds and oe�ients, suh that for any perturbation vetor

a ∈ [−B,B]m, it should be true that all e�ient adversaries must fail to distin-

guish between the distributions ∆RG(x) and (∆RG(x) + a) with probability at

least 1/poly(λ), whih is a �xed inverse polynomial in the seurity parameter.

We stress again that we are not seeking a ∆RG with standard negligible seurity,

but only some low level of seurity. Indeed, even if an e�ient adversary ould

distinguish between ∆RG(x) and (∆RG(x) + a) with probability 1− 1/poly(λ),
but still fail to distinguish on at least 1/poly(λ) probability mass, our approah

will sueed due to ampli�ation (see below).

Cruially, instead of requiring the ∆RG to be omputable via polynomials

of degree two, we de�ne a notion of ∆RG implementable by degree three poly-

nomials via our notion of 3-restrited FE.

The seed for a ∆RG onsists of one publi and two private omponents,

and perturbation-resiliene is required even when the adversary has aess to

the publi omponent of the seed. Furthermore, the use of ubi (as opposed

to quadrati) polynomials gives reason to hope that our ∆RGs do not su�er

from inversion attaks and ahieve the weak form of seurity desribed above.

Further in-depth researh is ertainly needed to explore our new assumptions.

Indeed, we see our work as strongly motivating the systemati exploration of

the limits of various types of low degree pseudorandom objets over Z using the

Sum of Squares paradigm and beyond. Indeed, our work reveals a fasinating

onnetion between ahieving iO and studying distributions of expanding low-

degree polynomials over the reals that are hard to solve. We refer the reader

to [BHJ

+
19℄ for further disussion on this topi.

Implementing Degree-3 ∆RGs. Having onstruted a three-restrited FE sheme,

we now desribe how to implement the degree-3 ∆RG as desribed above. Let

e = (e1, . . . , en), y = (y1, . . . , yn) and z = (z1, ..., zn) and we want to ompute

degree three polynomials of the form qℓ(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk where

ℓ ∈ [η] is the streth. Here all variables and oe�ients are polynomially bounded

in absolute value.

At �rst glane, one ould think to ould enrypt e in the publi omponent

and y, z in the private omponent of the three restrited FE sheme. Then, one

ould issue funtion keys for polynomials qℓ for ℓ ∈ [η]. However, suh a sheme

would essentially yield a degree 2 system of polynomials in y and z as e is publi,

and not provide any additional seurity beyond using degree-2 polynomials. In

order to �x this issue, we take a di�erent approah.

Enrypting e as an LWE-style error. Instead, we sample a seret s ∈ Z
d
p where

d is some polynomial in the seurity parameter. We also sample vetors ai ← Z
d
p

for i ∈ [n]. Then we ompute ri = 〈ai, s〉+ ei. Let wi = (ai, ri) for i ∈ [n]. Thus

10

In an earlier version of this paper, this overview foused on onstruting degree-2

∆RGs. However, as we desribe now, our tehnial approah is more general, and

we desribe it in greater generality here.
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we have enrypted e using the seret s. Now to implement degree-3 randomness

generator we onsider the polynomial:

qℓ(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk

This polynomial an be re-written as:

qℓ(e,y, z) = ΣI=(i,j,k)cI · (ri − 〈ai, s〉) · yj · zk

Now suppose in the private omponent that ontained y, we also put y ⊗ s

(where ⊗ denotes the tensor operation). Then observe that if wi for i ∈ [n]
are all publi values, then the entire polynomial an now be omputed using a

three-restrited FE sheme.

For this approah to be seure, intuitively we want that e is sampled from

an �error� distribution with respet to whih the LWE assumption holds. (For

simpliity, we an think of y and z also being sampled from suh a distribution.)

The seurity of our ∆RG would then rely on a variant of the LWE assumption.

Experiene teahes that one should be autious when onsidering the seurity

of variants of LWE, and our ase is no exeption. This variant was studied in a

follow-up work of [BHJ

+
19℄, where several unsuessful attaks were onsidered.

We brie�y review one of these now. The most ommon soure of devastating

attaks to LWE variants is linearization. However, a key barrier to suh attaks

in our setting is the fat that the LWE-based publi values wi ontain no in-

formation whatsoever about y and z. Thus, over Zp, we would obtain a set of

roughly n1+ǫ
quadrati equations in y ⊗ s and z, but ruially with large o-

e�ients in Zp. These large oe�ients would arise from the fat that ri and
ai are large values. Suh systems, alled MQ systems, have been widely studied

ryptanalytially and are widely believed to be hard to solve [Wol02, KS99℄ in

general. We again refer the reader to [BHJ

+
19℄ for further disussion. Spei�

andidates for the degree-3 polynomials qℓ above, inspired by the hardness of

RANDOM 3-SAT and suggested by [BHJ

+
19℄, are also given in Setion 2.

Seurity Ampli�ation. Cruially, we want allow an adversary to have a very

large distinguishing advantage when attempting to distinguish between ∆RG(x)
and (∆RG(x) + a), sine this is a new assumption. For simpliity for this teh-

nial overview, we will assume that the ∆RG we introdue above is

1
λ
-seure.

(More generally, we an tolerate any �xed inverse polynomial in the seurity

parameter.)

Using ideas already disussed above, it is possible to show (as we do in our

tehnial setions) that relying on

1
λ
-seure ∆RG in the approah outlined above,

allows us to ahieve a �weak� form of sublinear FE (sFE), that only bounds

adversarial advantage by

1
λ
. Unfortunately, suh an FE sheme it not known to

yield iO, and for our approah to sueed, we must �nd a way to amplify seurity

of sublinear FE.

How should we amplify seurity? An initial idea is to implement a diret-

produt type theorem for funtional enryption. However, a simple XOR trik

does not su�e: sine we are trying to amplify seurity of a omplex primitive
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like FE while retaining orretness, we will additionally need to rely on a speial

kind of seure omputation. More preisely, we will use (subexponentially seure)

n-out-of-n threshold fully homomorphi enryption (TFHE [MW16, BGG

+
18℄),

that is known to exist based on LWE [Reg05℄. Reall that suh a threshold (publi

key) fully homomorphi enryption sheme allows to enrypt a iphertext in suh

a way that all seret key holders an partially derypt the iphertext, and then

an reover the plaintext by ombining these partial deryptions. However, any

oalition of seret key holders of size at most n− 1 learns no information about

the message.

A simpli�ed overview of our sheme, that makes use of t = λ2
weak sublinear

FEs, is as follows:

� The setup algorithm outputs the master seret keys mski for all weak sub-

linear FEs.

� In order to generate the enryption of a plaintext M , generate a publi key

TFHE.pk and t fresh seret keys TFHE.ski for a threshold FHE, and enrypt

M using the publi key for threshold FHE to obtain iphertext TFHE.ct.
Additionally, for all i, enrypt (TFHE.ct,TFHE.ski) using the master seret

key mski for the ith weak sublinear FE.

� To generate a funtion seret key for iruit C, generate t funtion seret

keys for the sFEs, eah of whih omputes the output of the ith TFHE par-

tial deryption of the result of homomorphi evaluation of the iruit C on

TFHE.ct.

� Finally, to evaluate a funtional seret key for iruit C on a iphertext,

ombine the results of the TFHE threshold deryptions obtained via the t
outputs of sFE evaluation of the t funtion seret keys.

The orretness of our sheme follows immediately from the orretness prop-

erties of the TFHE sheme. Intuitively, seurity seems to hold beause of the

following argument. Upon ombining λ2
independent, random instanes of the

weak sFE, with overwhelming probability, at least one must remain seure. As

long as a single instane remains seure, the orresponding seret key for TFHE

will remain hidden from the adversary. Now, TFHE guarantees semanti seu-

rity against any adversary that fails to obtain even one seret key, and as a

result, the resulting FE sheme should be seure. While this intuition sounds

deeptively simple, many of these intuitive leaps assume information-theoreti

seurity. Thus, this template evades a formal proof in the omputational setting,

and we must work harder to obtain our proof of seurity, as we now sketh.

From a ryptographi point of view, one of the early hurdles when trying to

obtain suh a proof is the following. A redution must rely on an adversary that

breaks seurity of the �nal FE sheme with any notieable probability, in order

to break

1
λ
seurity of one of the λ2

�weak� FEs. However, the redution does not

know whih of the λ2
repetitions is seure, and therefore does not diretly know

where to embed an external hallenge. To deal with this, we rely on the onept

of a hardore measure [Imp95, MT10℄. Roughly speaking, we obtain measures of

probability mass roughly

1
λ
over the randomness of the sFE shemes, suh that
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no e�ient adversary an break the seurity of the sFE sheme even with some

inverse subexponential probability.

However, unfortunately these hardore measures an depend on other pa-

rameters in our system, suh as the TFHE publi key. And unfortunately, this

dependene is via extreme ine�ieny; the hardore measure is not e�iently

sampleable. This means that, for example, the hardore measure ould in prini-

ple ontain information about the TFHE master seret key. If this information

is leaked to the adversary, this would destroy the seurity of our sheme.

We overome this issue through the following idea, whih an be made formal

via the work on simulating auxiliary input [JP14, CCL18℄. Beause the hardore

measure has reasonable probability mass

1
λ
, it annot veri�ably ontain useful

information to the adversary. For example, even if the hardore distribution

revealed the �rst few bits of the TFHE master seret key, the adversary ould

not know for sure that these bits were in fat the orret bits. Indeed, we use the

works of [JP14, CCL18℄ to make this idea preise, and show that the hardore

measures an be simulated in a way that fools all e�ient adversaries, with a

simulation that runs in subexponential time.

Finally, using omplexity leveraging, we an set the seurity of the TFHE

sheme to be suh that its seurity holds against adversaries whose running time

exeeds this simulation. Thus, for example, even if the original hardore measure

was revealing partial information about the TFHE master seret key, we show

that we an give the adversary aess to a simulated hardore measure that

provably does not reveal any useful information about the TFHE master seret

key, and the adversary an't tell the di�erene!

In this way, we aomplish seurity ampli�ation for sFE, whih allows us to

ahieve iO for general iruits when ombined with previous work [AS17, LT17℄.

Along the way, our ampli�ation tehnique also shows that we an weaken the

seurity requirement on the relatively new notion of a 3-blok-loal PRG due

to [LT17℄, in a way that still allows us to ahieve iO. Our ampli�ation result

an be stated as the following theorem.

Theorem 5. Assuming there exists a onstant c > 0 and there exists:

� (2λ
c

, adv = 1− 1/λ)−seure sublinear semi-funtional FE sheme for Cn′,s′ .

� (2λ
c

, 2−λc

)−seure threshold homomorphi enryption sheme.

� (2λ
c

, 2−λc

)−seure PRFs in NC1
.

� (2λ
c

, 2−λc

)−seure statistially binding ommitments.

There exists a sublinear seret key FE sheme for iruit lass Cn,s with (2λ
c′

, 2−λc′

)
seurity for some onstant c′ > 0.

Combining these ideas, we obtain the following result.

Theorem 6. Assuming

� LWE seure against subexponential sized iruits.

� Seure Three restrited FE sheme.

� PRGs with
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• Streth of k1+ǫ
(length of input being k bits) for some onstant ǫ > 0.

• Blok loality three.

• Seurity with negl distinguishing gap against adversaries of subexponen-

tial size.

� Perturbation resilient generators implementable by three restrited FE sheme

with:

• Streth of k1+ǫ
for some ǫ > 0.

• Seurity with distinguishing gap 1− 1/λ against adversaries of subexpo-

nential size.

there exists a seure iO sheme for P/poly.

In a follow-up to our work [JLMS19℄ showed a onstrution of a d-restrited
FE sheme for any onstant d ≥ 3 from SXDH over bilinear maps.

Theorem 7 ([JS18, LM18, JLMS19℄). Assuming SXDH over bilinear maps,

there exists a onstrution of a three-restrited FE sheme.

Thus, in full generality we an prove the following result.

Theorem 8. Let adv1, adv2 be two distinguishing gaps suh that adv1 + adv2 ≤

1− 1/p(λ) for any �xed polynomial p(λ) > 1. Then assuming,

� LWE seure against adversaries of subexponential size.

� SXDH seure against adversaries of subexponential size.

� PRGs with

• Streth of k1+ǫ
(length of input being k bits) for some onstant ǫ > 0.

• Blok loality three.

• Seurity with distinguishing gap bounded by adv1 against adversaries of

subexponential size.

� Perturbation resilient generators implementable by three restrited FE sheme

with:

• Streth of k1+ǫ
for some ǫ > 0.

• Seurity with distinguishing gap adv2 against adversaries of subexponen-

tial size.

there exists a seure iO sheme for P/poly.

3.1 Reader's Guide

In the tehnial overview and the introdution, we have already desribed our

notions of three restrited FE sheme and perturbation resilient generator (∆RG).

In the sequel, for larity, we will denote by 3∆RG a ∆RG that is implementable

by three restrited FE. Below we give a high level desription of various terms

used above that we have not already disussed.

Tempered Cubi Enoding: Tempered ubi enoding is a natural abstration

enapsulating a 3∆RG and ubi homomorphi evaluation. This framework is

ompatible with our notion of a three restrited FE sheme and is used to build

Funtional Enryption for ubi polynomials.
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Semi-Funtional FE for ubi polynomials. A semi-funtional FE sheme for

ubi polynomials (FE3 for short) is a seret key funtional enryption sheme

supporting evaluation for ubi polynomials where the size of the iphertext is

linear in the number of inputs. It satis�es semi-funtional seurity: where you

an hard ode seret values in the funtion key whih will be derypted only

using a single speial iphertext (known as a semi-funtional iphertext). Note

that all our primitives satisfy 1− 1/poly(λ) seurity. They are �nally ampli�ed

to onstrut fully seure primitives.

TCE

Semi− Functional FE for Cubic Polynomials

iO

Bilinear Maps

+subexp− LWE

+subexp− LWE

+

Cubic Randomizing Polynomials

with Sublinear Complexity

(

n ! n
1+"

)

(

Single−Key; 1
poly(λ)

− Security
)

(Single−Key; negl(λ)− Security)

(

n
1+"

− Bounded Key; 1
poly(λ)

− Security
)

3− Restricted FE

[LT17]

+subexp− LWE

Semi− Functional FE for Circuits

Sublinear FE for Circuits

[BNPW16]

∆RG

Fig. 1. Steps involved in the onstrution of iO in [AJS18℄.
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NFE with

poly noise

degree-d FE

degree-d PFG

PFG with

publi input

PHFE

Leaky O(1)-deg FE

Bit-Fixing

Homom. Sharing

NC
1
-FE

iO

Fig. 2. Overview of onstrutions in [LM18℄ leading to iO.

Semi-Funtional FE for Ciruits. A semi-funtional FE sheme for iruits is a

seret key funtional enryption sheme supporting evaluation of iruits where

the size of the iphertext is sublinear in the maximum size of iruit supported.

This notion also satis�es semi-funtional seurity.

We present a diagrammati view of onstrution of iO in Figure 3.1.

4 Tehnial Overview of Lin-Matt 18

We now desribe tehniques in [LM18℄ in more detail. An overview is depited

in Figure 2.

NC
1
-FE from PFGs and FE that omputes them. It is known that to

onstrut iO, it su�es to onstrut seret-key FE shemes for omputing NC
1

iruits that have sublinearly ompat iphertexts of size polynomial in the seu-

rity parameter λ and input length N , and sublinear in the size S of the iruits

omputed. Towards onstruting funtional enryption shemes for NC
1
, we fol-

low the same two-step approah as previous works [Lin16b, LV16, Lin17, AS17℄:

They showed that the task of onstruting NC
1
-FE an be redued to the task

of onstruting FE for omputing NC
0
funtions, i.e., onstant-degree onstant-

loality polynomials, by onverting any NC
1
funtion into a NC

0
funtion using

randomized enoding and a low loality PRG. In this work, we develop a new

tehnique for onstruting onstant-degree FE and a new bootstrapping method

to NC
1
-FE that is �leakage resilient�.

Basi Ideas: Constant-degree FE via HE and Noisy Linear FE. Exist-

ing ompat onstant-degree FE shemes [GGHZ16, AS17, Lin17℄ use multilinear

map groups to diretly ompute the onstant-degree polynomial in the exponent.

We here explore a di�erent natural approah, that has already appeared in the

literature [GVW12, GVW15, BTVW17, GKP

+
13, AR17, Agr18b℄ and that per-

forms the omputation homomorphially over the enrypted input via an HE

sheme. The output iphertext is eventually derypted using multilinear maps.
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The rough template is as follows: Let the FE sheme enrypt an input x

using an HE sheme and a seret vetor s to obtain a iphertext c. To ompute

a funtion f on x, the deryptor an homomorphially evaluate f on c and

obtain a iphertext CTf enrypting the output y = f(x). The two hallenges

are

� privay�how to derypt CTf in a seure way that reveals only y and hides

all other information about x, and

� integrity�how to enfore that only iphertexts assoiated with a �legiti-

mate� funtion f (ones for whih seret keys have been generated) an be

derypted.

Previous works [GVW12, GKP

+
13, GVW15, BTVW17, AR17, Agr18b℄ devel-

oped novel tehniques for ahieving privay and integrity, using various tools

from garbled iruits, partially hiding prediate enryption, to noisy linear FE.

But the resulting shemes either ahieve weaker seurity guarantees as in Predi-

ate Enryption [GVW15, BTVW17℄, or lose iphertext ompatness [GKP

+
13,

AR17℄, or make use of strong primitives that are themselves hard to instanti-

ate [GVW12, Agr18b℄. Building upon their tehniques, we propose new ones

toward solving the hallenges.

Observe that the deryption of most HE shemes, suh as [BV11, BGV12℄

based on LWE, involves i) a linear operation, Ldec(CTf , s) (e.g., 〈CTf , s〉), whih
produes an approximate output, y + 2e, perturbed by a small noise vetor e,

referred to as �half-derypt�, ii) followed by a threshold funtion (omplex, in

NC
1
) to remove the noise. Privay entails that we must hide the seret s and the

noise e. Hiding the seret is relatively easy as we have FE shemes for omputing

a linear funtion, here L, over a seret, here s, from various assumptions (e.g.,

DDH, LWE, Paillier). However, the output of the linear FE would be the approx-

imate output y + 2e, and the noise e is sensitive, revealing information about

the input x, the noises used for generating the original iphertext c enrypting

x, and (indiretly) the seret s. On the other hand, removing the noise e requires

a high-degree omputation (suh as mod2). The works of [AR17, Agr18b℄ pro-

pose to hide e using another bigger smudging noise�ompute instead the ap-

proximate output y + 2e + 2Y further shifted by a large noise Y that hides e.

Agrawal [Agr18b℄ further enapsulated the task to be done in a primitive alled

noisy linear FE, whih performs a linear omputation, here the half-derypt, and

adds a fresh noise to the derypted output of every pair of iphertext and seret

key. Let us now delve deeper into noisy linear FE.

4.1 Noisy Linear Funtional Enryption

Noisy seret-key FE shemes have the same syntax as regular seret-key FE

shemes, but derypting a iphertext nct of v with a seret key nskL for a linear

funtion L yields a perturbed output L(v) + Y (over Zp for some modulus p),
where the noise Y is distributed indistinguishably to a distribution η � we all

suh a sheme a η-noisy linear FE. We further only require weak orretness in

33



the sense that deryption only needs to sueed if all oordinates of L(v) lie in
a polynomially sized range, and Y is polynomially bounded.

In terms of seurity, we require a notion of 1-iphertext simulation seurity

in the sense that the simulator is required to be able to �program� the output of

omputation on the enrypted input of a hallenge iphertext. More spei�ally,

there exists a simulator that an simulate a seret key nskL and a iphertext

nct⋆ for input v⋆
given only L and L(v⋆) + Y, where Y is sampled from η.

However, in the seret key setting, adversaries annot produe iphertexts on

their own and we must diretly model seurity when multiple iphertexts are

available. On the other hand, is well know that simulation seurity is impossible

when the number of iphertexts is unbounded and iphertexts are sublinearly

ompat. Instead, we do not require the simulator to �program� the outputs for

all enrypted input, it only needs to do so for one hallenge iphertexts, and

is given with the atual enrypted inputs for all other iphertexts � hene the

name 1-iphertext simulation seurity. Note that this notion is not new, as many

works ahieve indistinguishability based seurity via showing suh 1-iphertext

simulation seurity. More preisely, we require

{

nskL, nct
⋆, {ncti}i∈[t]

}

≈
{

e← η : Sim

(

L, L
(

x⋆
)

+ e, {xi}i∈[t]

)}

.

where nskf and nct⋆ are the hallenge key and iphertext and every ncti is an

honestly generated iphertext for an arbitrary input xi, whih is given to the

simulator.

Compared to noisy linear funtion enryption by Agrawal [Agr18a℄, our no-

tion di�ers in three points: First, we parametrize the notion by the noise distri-

bution η, while Agrawal's notion is parametrized by a bound on the deryption

error and distributions restriting the adversary's hallenge messages. Seondly,

we only require weak orretness. And thirdly, we onsider simulation-seurity,

whereas Agrawal de�nes indistinguishability-based seurity.

Constrution from PHFE and noise generator. There is a simple onstru-

tion of an η-noisy seret-key linear FE sheme if there is a PHFE sheme for a

funtion lass G and a noise generator G in the same lass whose outputs are

indistinguishable to η. Take for example our PHFE sheme from bilinear map

(Theorem 4) for omputing multilinear ubi polynomials g(z1, z2, z3) in Zp with

z1 publi and z2, z3 private. Assume there is a family of noise generators and

seed distributions (G,Dsd) ← NG observing the same struture, whose output

distribution G(s1, s2, s3) (with (s1, s2, s3 ← D
sd
) is indistinguishable to η when

s1 is made publi. We an onstrut η-noisy linear FE as follows:

� To enrypt a vetor v, the enryptor samples a seed (s1, s2, s3) and enrypts

z1 = s1 as the publi input, and z2 = (v||s2), z3 = s3 as the private inputs.

� To generate a key for a funtion f , it generates a key for the funtion

g(z1, z2, z3) = L(v) +Y where Y = G(s1, s2, s3).
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Deryption learly reovers L(v) +Y, where by the property of the noise gener-

ator G, Y is distributed indistinguishably to η. For the 1-iphertext simulation
seurity to hold, we orrespondingly need the underlying PHFE to satisfy 1-

iphertext simulation seurity (de�ned similarly that a simulator an �program�

the output for a single hallenge iphertext), whih our onstrution ahieves.

Finally, observe that the iphertexts are sublinear ompat, as long as G has su-

perlinear streth. We provide a formal desription and proofs of the onstrution

in the full version [LM18℄.

Bak to Constant-Degree FE Reall that we want to use a noisy linear

FE sheme to perform the linear half deryption on the output iphertext CTf ,

Ldec(CTf , s), and obtain y+2e+2Y (think of η as a distribution over 2Y). We

still fae two hallenges:

� privay: Our PHFE from bilinear maps (and all known sublinearly om-

pat degree-d FE from degree-d multilinear maps) only allows deryption if

outputs reside in a polynomially sized range. (This is beause omputation

is performed in the exponent, and outputs are extrated via brute fore dis-

rete logarithm.) This means y + 2e + 2Y must be polynomially bounded.

However, as argued in the introdution, a polynomially-bounded Y annot

hide e entirely. But revealing e at even one oordinate potentially reveals

information about x.

� integrity: How an we ensure that only output iphertexts CTf for legiti-

mate onstant-degree polynomials f an be derypted? To ensure that, we

would like to give out a noisy linear FE seret key nsk for the funtion

Ldec(CTf , ⋆) and iphertext nct enrypting the HE seret key s. However,

the key generator has no idea what CTf is.

For the privay problem, we weaken the requirements on the noise generators,

formulating PFG, so that outputs are polynomially bounded and e is guaranteed

to be partially hidden; then, we manage the leakage on e to still ahieve meaning-

ful seurity. For the integrity problem, we follow the approah of [AR17, Agr18a℄

of using speial (1-time) HE that has a speial deryption equation. We elaborate

in the next setion.

4.2 Weak and Leaky Constant-Degree FE

Let's �rst onsider the privay problem: How to manage leakage of the value ei's

at a few oordinates i's? Sine ei does depend on x, some information of x is for

sure leaked. Hene, we aim for what is the best possible: ensuring that revealing e

at a few oordinates translates to revealing x at a few oordinates, if the funtion

omputed has small loality. We show that this an be done, and onstrut

onstant-degree FE with (1-key) weak and leaky 1-iphertext simulation seurity.

Roughly speaking, it guarantees that for every distribution of f ← FN and

every distribution of x ← X , the seret key skf for f and the iphertext CTx

for x an be simulated a simulator Sim using the output y = f(x), as well as the
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value of x at a few oordinates. In addition, in the multi-iphertext setting, the

adversaries also see a set of additional iphertexts CTxi
for arbitrary inputs xi,

and the simulator is required to simulate them given the atual inputs xi. More

preisely, there is orrelated random variables K and x∗
representing the set of

leaked oordinates and their values, suh that |x∗| = |K| = o(λ) and

{ x, skf ,CTx, {CTxi
} } ≈ { x, Sim ( (x∗,K), f, y = f(x), {xi} )} ,

where (x∗,K)← Fix, and x← X|x∗,K .

In other words, given skf ,CTx, and many other iphertexts the enrypted input

x appears random up to a few oordinates being �xed and the output being y.
We now give some intuition on why weak and leaky simulation seurity is

ahievable. Assume that Y + e reveals a few oordinates of e, say with index

set J , and hides all other oordinates. We arefully analyze what information eJ
depends on: if the funtion omputed has small loality, output elements in J
depend only on a few input elements at oordinates J ′

. Suppose an ideal ase

where the HE sheme satis�es the following properties:

HE properties:

1. Preserving loality: the homomorphi evaluation preserves this loality and

eJ depends only on iphertexts cJ ′
enrypting xJ ′

,

2. Preserving entropy: revealing information related to a few iphertexts cJ ′

only redues the entropy of s by a small amount, and

3. Robustness: the HE sheme used is robust to small leakage of the seret key.

We an assert that iphertexts enrypting other oordinates of x outside J ′

remain hiding, and hene only a few oordinates of x at J ′
are leaked.

For the above argument to go through, we need a slightly stronger version

of the �awed-smudging property: For any B-bounded noise vetor distribution

χ = e(R), where the noise e is the output of a loal funtion over another

distributional seret w← R, there is a orrelated random variable I suh that

{ I, w, Y + e(w) } ≈ { I, w′, Y + e(w) } , where w′ ← χ|wI ,I .

This means given Y + e(w), only a few oordinates of w get �xed and leaked.

In our onstrution, w depends on the input x, the HE seret s, and the noises

used originally for enrypting x. The above property then allows us to bound

what information of them is leaked through e. We further show that this stronger

�awed-smudging property is in fat implied by the normal �awed-smudging prop-

erty that is agnosti of how e is generated.

Let us now onsider the integrity problem: How an we ensure only CTf for

the right f is derypted? The works of [AR17, Agr18b℄ presented HE shemes

whose iphertexts cx onsists of A, hCTx, where A is publi and indepenedent

of the input x (e.g., A ould be LWE matries, or RLWE salars) and only

hCTx depends on x. Furthermore, homomorphi evaluation operates on A and

(A, hCTx) respetively to obtain Af and hCTf , and deryption does:
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4. Speial deryption equation:

sf = Ldec(Af , s), hCTf + sf = f(x) + 2e11 (mod p)

We an view sf as a deryption key for f and it is omputed from s independently

of hCTf ! We an now ensure integrity as follows:

� FixA at set-up time. This means the sameA is reused for all HE iphertexts.

� The key generator publishes a noisy linear FE key nsk for Ldec(Af , ⋆)
� Tne enryptor publishes hCTx enrypting x using seret s and generates a

noisy linear FE iphertext nct enrypting s.

� The deryptor derypts nct, nsk to obtain sf +2Y, and omputes hCTf from

hCT, from whih y + 2e+ 2Y is revealed.

Note that sine A is �xed and reused for all HE iphertext, eah seret key s

an only be used one. This is not a problem as the enryptor an sample a fresh

seret key s for eah enryption.

Instantiating the HE sheme. The question now is whether there is a HE

sheme that simultaneously has the speial deryption equation (property 4) and

is robust to leakage (properties 1-3). The shemes in [AR17, Agr18a℄ unfortu-

nately are ompliated and we do not know how to analyze their robustness

to leakage. Nevertheless, we manage to onstrut a HE sheme satisfying all 4

properties, based on the simple HE sheme by [BV11℄ from LWE. We sketh our

design. First, it was shown in [GKPV10, AKPW13℄, that the LWE assumption

is robust, in the sense that when the LWE seret s omes from a small domain

(e.g., [−1, 0, 1]λ), the hardness of LWE holds as long as s has su�ient entropy.

Thus, it is easy to observe that the HE shemes of [BV11, BGV12℄ are robust.

Furthermore, the simple BV-sheme without relinearization, whih an already

handle onstant-degree omputations, also satis�es properties 1) and 2).

However, the simple-BV sheme does not have the speial deryption equa-

tion. Inspired by [AR17, Agr18a℄, we use a reursive onstrution to homomor-

phially evaluate the BV-deryption itself similar to bootstrapping, but for a

di�erent purpose. In slightly more details, we an deompose the BV evaluation-

and-deryption proedure HE.Dec(s,HE.Eval(f, hCT)) into a publi part Pub that
does not depend on the seret key s and a private part Priv that depends on s.

CTf = Pub(f, hCT,A) sf = Priv(f,A, hCT, s)

CTf + sf = f(x) + 2e

A wishful thinking is giving out noisy linear FE key nsk for Priv(f,A, ⋆, ⋆) and
iphertext nct for (hCT, s), to enable omputing sf . This does not work as Priv

has degree d in s and degree d − 1 in hCT, where d is the degree of f . The

11

The shemes in [AR17, Agr18a℄ has more ompliated deryption equation, where

the deryption noise is of form

∑
i
piei where {pi} is a set of inreasing moduli. Here

we omit this omplexity.
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high degree in s an be dealt with as the enryptor an ompute all degree d
monomials in s and enrypt them, and there are only nd

of them where n =
|s| = poly(λ). But, the same annot be applied to hCT whih is long (length

S1−ǫ
, where S is the output length of L) and enrypting even the quadrati

monomials would make the iphertexts non-ompat. However, the good news

is that the degree in hCT is d−1 � one less than the degree of the omputation

f . Therefore, by reursively enrypting ((hCT, 1)⊗ (s, 1)⊗ (s, 1)) in a iphertext

hCT′
using an independent seret key s′, we an ompute sf by homomorphially

evaluating Priv on hCT′
in degree d − 1 and then derypt. The key observation

is that the new private omputation Priv′(Priv,A′, hCT′, s′) now has only degree

d−2 in hCT′
. Thus, we an reursively redue the degree of private omputation,

till we obtain a sheme whose Priv is linear in its iphertext hCT and degree 2

in its seret key s. Hene,

Priv(f,A, hCT, s) = Lf,A((hCT, 1)⊗ (s, 1)⊗ (s, 1))

where the total the number of monomials to be enrypted is |hCT|n2
, keeping

sublinear ompatness. In summary, our weak and leaky FE for loal onstant

degree omputation operates as follows:

� Fix A at set-up time.

� The key generator publishes a noisy linear FE key nsk for Lf,A.

� Tne enryptor publishes a iphertext hCT enrypting x under seret key s

using our reursively onstruted HE sheme, and generates a noisy linear

FE iphertext nct enrypting (hCT, 1)⊗ (s, 1)⊗ (s, 1).
� The deryptor derypts nct, nsk to obtain sf + 2Y and omputes hCTf =

Pub(f, hCT,A), from whih y + 2e+ 2Y is revealed.

The above desription is simpli�ed; please see the full paper [LM18℄ for a formal

desription and analysis of our onstant degree FE sheme.

4.3 New Bootstrapping to FE for NC1

We next present a new bootstrapping tehnique to FE for NC1
from weak and

leaky onstant-degree FE. Our bootstrapping follows the same paradigm as pre-

vious works [Lin16b, LV16, Lin17, AS17, LV17℄: it uses a randomized enod-

ing [IK02, AIK04℄ to transform an NC1
omputation g(v) into a simple onstant-

degree onstant-loality polynomial ĝ(v; r), and uses a onstant loality PRG to

supply pseudorandom oins r = PRG(Seed) needed for the randomized enoding.

The fat that the underlying onstant-degree FE is weak and leaky means both

the input v, as well as the PRG seed Seed may be �xed and leaked at a few

oordinates. To deal with this, we introdue a new primitive alled Bit-Fixing

Homomorphi Sharing in order to make the original omputation g robust.

Our (T, t1, t2)-bit-�xing homomorphi sharing resembles the reent new on-

ept of Homomorphi Seret Sharing (HSS) [BGI15℄ in syntax, but di�ers in

seurity and e�ieny requirements. It enables ompiling a single omputation
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g(v) into a olletion of omputations o1 = h1(x1), . . . , oT = hT (xT ) that oper-
ate on a seret sharing x1, . . . , xT of the original input v, and from the olletion

of output shares o1, . . . , oT , the original output g(v) an be reonstruted. Se-

urity ensures that the original input v remains hidden, given all output shares

o1, . . . , oT and a subset of t2 input shares. Moreover, the seurity is robust to a

few t1 bits in the input shares being �xed. In terms of e�ieny, we allow the

output share size to sale with the size of the omputation g, however, it should
not depend on the number of omputations to be preformed � in other words,

the shares are reusable.

In omparison, HSS shares need to be suint and output reonstrution

needs to be simple, whih are not required here. In terms of seurity, HSS is

seure against an adversary seeing a subset of the input shares only. From these

input shares, the adversaries an always derive the orresponding output shares,

but not all output shares. In ontrast, our bit-�xing homomorphi sharing is

seure against adversaries seeing all output shares. Note, however, HSS with ad-

ditive reonstrution i.e., o =
∑

i oi, does satisfy this stronger seurity, sine the

adversaries knowing the output o an easily reverse sample the missing additive

output shares

12

.

We give a onstrution of bit-�xing homomorphi sharing BF from multi-key

FHE with threshold deryption as onstruted in [MW16℄, whih roughly works

as follows:

� BFsetup samples a CRS crs for the multi-key FHE.

� BFshare shares a string v as follow: It additively shares v into v = ss1 ⊕
. . .⊕ ssT , generates T key-pairs (PKi, ski) of the multi-key FHE sheme, and

enrypts the ith share ssi under PKi to obtain iphertext CTi. It additionally

samples a PRF key Ki. Finally, the i'th share is set to

xi =
{

{CTi,PKi}i∈[T ] , ski,Ki

}

� BFeval on input crs, xi, i, g evaluates g on the i'th share as follows: It homo-

morphially evaluates the funtion g on all iphertexts CT1, . . . ,CTT obtain-

ing CTf . By properties of the multi-key FHE sheme, this output iphertexts

an be derypted in a distributed way using eah seret key ski independently.
Hene, the i'th output share oi is set to the value derypted from CTg by

ski. (The deryption proedure of MKFHE is atually randomized. BFeval

uses the PRF Ki to generate the pseudorandom oins).

� BFdec reonstruts the �nal output o from o1, · · · , oT using the reonstru-

tion proedure of the multi-key FHE.

Seurity of this sheme follows simply from the seurity of the multi-key FHE

sheme and the fat that less than T additive shares ssi reveal nothing about v.

Next, to onstrut FE for NC1, instead of using our weak and leaky onstant-

degree FE to ompute the randomized enodings {RE(gj , v ; PRGj(Seed))}j for

12

Thanks Yuval Ishai and Elette Boyal for pointing this out.
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eah output bit gj(v) diretly, where PRGi(Seed) denotes the j'th hunk of out-

put bits of PRG, we ompute the randomized enodings {RE(BFeval, (crs, xi, i, gj);
PRGi,j(Seed))}i∈[T ],j for evaluating eah gj on eah input share xi. By the weak

and leaky seurity of onstant-degree FE, only a few oordinates of its enrypted

input, here {(crsxi, i, g)} and Seed, are leaked. Small leakage on {(crsxi, i, g)}
alone is harmless, as the seurity of bit-�xing homomorphi sharing ensures that

the original input v would remain hidden under suh leakage.

However, small leakage on Seed is problemati. Consider a typial loal PRG

where every output bit depends on O(1) randomly hosen seed bits. Sine PRG

maps S1−α
bits to S bits where S is proportional the size of g, eah seed bit Seedk

in�uenes a large number, Sǫ
on average, of output bits. If Seedk is leaked, all

these output bits are no longer pseudorandom� all them orrupted. In turn, all

the randomized enodings that use these output bits are no longer hiding, whih

may leak all input shares xi. To irumvent this, instead of having only a single

set of shares {xi}i∈[T ], we will have M = S1−α
sets of shares {xt

i}t∈[M ],i∈[T ]. We

divide the output bits of g into M hunks, eah ontaining Sα
bits, and the t'th

hunk is omputed using the t'th set of input shares as desribed above. Why

does this help? Suppose that the loations of the orrupted PRG output bits are

distributed randomly. Sine there are only about poly(λ)Sα
orrupted output

bits, whereas way more M = S1−α
hunks, with overwhelming probability, no

hunk ends up using more than λ orrupted PRG output bits. As a result, for

eah set of input shares {xt
i}, at most λ input shares are leaked, and the seurity

of bit �xing homomorphi sharing kiks in again, and hene v is hidden. To

ensure that orrupted PRG output bits indeed distribute randomly, we apply

a random permutation π to the output of the PRG. In other words, the i'th
pseudorandom bit is the π(i)'th PRG output bit.

In summary, our FE sheme for NC1
depth Dep proeeds as follows: DFE is

our weak and leaky FE for loal onstant degree omputation.

FE.Setup(1λ): Generate a DFE master seret key DMSK, and a CRS for the

bit-�xing homomorphi sharing sheme crs. Output MSK = (DMSK, crs).

FE.KeyGen(MSK, g): g is a NC1 funtion with input-length N , output-length S,
and depth Dep. Assume w.l.o.g. that every output bit gi is omputable in some

�xed polynomial size = poly(λ).13

� Generate a polynomial f as follows:

• Divide the output bits of g into M = S1−α
(assume for onveniene that

M divides S) onseutive hunks I1, . . . , IM , where hunk Ij inludes

output bits (j − 1)S/M + 1, . . . , jS/M . For every j ∈ [M ], let gIj =
{gk}k∈Ij denote the olletion of iruits that omputes output bits in

hunk Ij .

• For every j ∈ [M ] and i ∈ [λ], let Dj
i be the iruit that on input the

i'th share xj
i of the j'th sharing xj

of v, homomorphially evaluates gIj ,

13

If not, one an always use garbled iruits to turn g into another iruit where every

output bit is omputable in size poly(λ), at the ost of inreasing the size, input

length, and output length of the iruit by a multipliative poly(λ) fator.

40



i.e.,

Dj
i (x

j
i ) = BFeval(crs, xj

i , i, gIj ) = oji .

• Choose a random permutation π : [λ] × [M ] × [φ] → [λMφ]. For every
j ∈ [M ] and i ∈ [λ], let f j

i be the following funtion:

f j
i (x

j
i , Seed) = REnc

(

Dj
i , x

j
i ; PRG

Π
j

i
(Seed)

)

.

Above, PRG
Π

j

i

(Seed) ontains PRG output bits at loations {π(i, j, k)}k∈[φ]

determined by the random permutation π and is su�iently long for sup-

plying the random oins needed for omputing the randomized enoding.

Finally, set

f

(

{

xj =
{

xj
i

}

i∈[λ]

}

j∈[M ]
, Seed

)

:=
{

f j
i (x

j
i , Seed)

}

j,i
.

� Generate a DFE seret key of f , Dsk ← DFE.KeyGen(DMSK, f).
This an be done sine by the e�ieny of the bit-�xing homomorphi sharing

and randomized enoding, the input length and size of f is N ′ = |{xj
i}| +

|Seed| = poly(λ, s)λM + poly(λ)S1−α = poly(λ)S1−α
and S′ = |f j

i |λM =
poly(λ)S. Sine the AIK randomized enoding algorithm REnc and PRG

both have onstant loality, f also has onstant loality ℓ. Moreover, over

the �eld Z2, it has at most degree ℓ.

Output sk = Dsk.

FE.Enc(MSK, v): On input MSK = (DMSK, crs) and v ∈ {0, 1}N , do:

� For every j ∈ [M ], generate the j'th BF sharing of v, xj =
{

xj
i

}

i∈[λ]
←

BFshare(crs, v).
� Sample randomly a PRG seed Seed.

� Enrypt X =
(

{xj}j , Seed
)

using DFE, DCT← DFE.Enc(DMSK, X).

Output CT = DCT.

FE.Dec(sk,CT) : On input sk = Dsk and CT = DCT, do

� Derypt the DFE iphertext DCT with the seret key Dsk to obtain y =
f(X) = DFE.Dec(Dsk,DCT).

� Parse y = {yji }, and for every j ∈ [M ] and i ∈ [λ], deode yji using REval to

obtain oji = REval(yji ).

� For every j ∈ [M ], deode the output shares {oji}i∈[λ] to obtain the atual

output uj = BFdec(crs, {oji}).

Output u = {uj}.
Corretness of the onstrution an be shown as follows: By the orretness

of DFE, we have

y = f(X) =
{

yji = f j
i (x

j
i , Seed)

}

j,i
,

yji = REnc(Dj
i , x

j
i ; PRG

Π
j

i

(Seed)) .
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By the orretness of RE, we have that

oji = REval(yji ) = Dj
i (x

j
i ) = BFeval(crs, xj

i , i, gIj ) = oji .

By the orretness of BF, we have that uj = gIj (v).
In the full version [LM18℄, we formally prove that the above onstrution

is a sublinearly ompat seret key FE sheme for NC1 satisfying standard

indistinguishability-based seurity, whih implies iO.
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