
Leakage Resilient Secret Sharing and
Applications?

Akshayaram Srinivasan and Prashant Nalini Vasudevan

University of California, Berkeley
{akshayaram,prashvas}@berkeley.edu

Abstract. A secret sharing scheme allows a dealer to share a secret
among a set of n parties such that any authorized subset of the parties
can recover the secret, while any unauthorized subset learns no infor-
mation about the secret. A leakage-resilient secret sharing scheme (in-
troduced in independent works by Goyal and Kumar, STOC ’18 and
Benhamouda, Degwekar, Ishai and Rabin, CRYPTO ’18) additionally
requires the secrecy to hold against every unauthorized set of parties
even if they obtain some bounded leakage from every other share. The
leakage is said to be local if it is computed independently for each share.
So far, the only known constructions of local leakage resilient secret shar-
ing schemes are for threshold access structures for very low (O(1)) or very
high (n− o(logn)) thresholds.
In this work, we give a compiler that takes a secret sharing scheme for
any monotone access structure and produces a local leakage resilient
secret sharing scheme for the same access structure, with only a constant-
factor asymptotic blow-up in the sizes of the shares. Furthermore, the
resultant secret sharing scheme has optimal leakage-resilience rate, i.e.,
the ratio between the leakage tolerated and the size of each share can be
made arbitrarily close to 1. Using this secret sharing scheme as the main
building block, we obtain the following results:

– Rate Preserving Non-Malleable Secret Sharing. We give a
compiler that takes any secret sharing scheme for a 4-monotone ac-
cess structure1 with rate R and converts it into a non-malleable
secret sharing scheme for the same access structure with rate Ω(R).
The previous such non-zero rate construction (Badrinarayanan and
Srinivasan, EUROCRYPT ’19) achieved a rate of Θ(R/tmax log2 n),
where tmax is the maximum size of any minimal set in the access
structure. As a special case, for any threshold t ≥ 4 and an arbi-
trary n ≥ t, we get the first constant-rate construction of t-out-of-n
non-malleable secret sharing.

– Leakage-Tolerant Multiparty Computation for General In-
teraction Patterns. For any function f , we give a reduction from

? Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, a
Hellman Award and research grants by the Okawa Foundation, Visa Inc., and
Center for LongTerm Cybersecurity (CLTC, UC Berkeley).

1 A 4-monotone access structure has the property that any authorized set has size at
least 4.

constructing a leakage-tolerant secure multi-party computation pro-
tocol for computing f that obeys any given interaction pattern to
constructing a secure (but not necessarily leakage-tolerant) protocol
for a related function that obeys the star interaction pattern. To-
gether with the known results for the star interaction pattern, this
gives leakage tolerant MPC for any interaction pattern with statisti-
cal/computational security. This improves upon the result of (Halevi
et al., ITCS 2016), who presented such a reduction in a leak-free en-
vironment.

1 Introduction

Secret sharing [Sha79, Bla79] is a fundamental cryptographic primitive that al-
lows a secret to be shared among a set of parties in such a way that only cer-
tain authorized subsets of parties can recover the secret by pooling their shares
together; while any subset of parties that is not authorized do not learn any-
thing about the secret from their shares. Secret sharing has had widespread
applications across cryptography, ranging from secure multiparty computation
[GMW87, BGW88, CCD88] and threshold cryptographic systems [DF90, Fra90,
DDFY94] to leakage resilient circuit compilers [ISW03,FRR+10,Rot12]

While sufficient in idealized settings, in several practically relevant scenarios
(as illustrated by the recent Meltdown and Spectre attacks [LSG+18,KGG+18],
for instance), it is not satisfactory to assume that the set of unauthorized parties
have no information at all about the remaining shares. They could, for instance,
have access to some side-channel on the devices storing the other shares that
leaks some information about them, and we would like for the secret to still
remain hidden in this case. Such leakage-resilience has been widely studied in
the past as a desirable property in various settings and cryptographic primi-
tives [MR04,DP08,AGV09,NS09, . . .]. In this paper, we study leakage-resilience
in secret sharing – we ask that the secret remain hidden from unauthorized sub-
sets of parties even if they have access to some small amount of information
about the shares of the remaining parties.

The Leakage Model. A secret sharing scheme consist of a sharing algorithm,
which takes a secret and shares it into a set of shares, and a reconstruction
algorithm, which takes some subset of these shares and reconstructs the secret
from it. In this work, we do not deal with the leakage from the machines that run
these procedures. Instead, the leakage that we care about is that which could
happen from the machines that these shares are stored on after they have been
generated, and the sharing and reconstruction are assumed to be leak-free.

More specifically, we are interested in local leakage resilience, which means
that secrets are hidden from an adversary that works as follows. First, it speci-
fies an unauthorized subset of parties, and for each of the remaining parties, it
specifies a leakage function that takes its share as input, performs an arbitrary
(possibly inefficient) computation and outputs a small pre-determined number
of bits. Once the shares are generated, the adversary is given all the shares of

the unauthorized subset, and the output of the corresponding leakage function
applied to each of the remaining shares. This form of leakage-resilience for se-
cret sharing was formalized in recent work by Goyal and Kumar [GK18a], and
Benhamouda, Degwekar, Ishai and Rabin [BDIR18].

This leakage model may be seen as an adaptation of the “memory attacks”
model introduced by Akavia, Goldwasser, and Vaikuntanathan [AGV09] to the
context of secret sharing. In this model, the basic axiom is that everything that
is stored in the memory is subject to leakage, and the only restriction is that the
leakage function must be shrinking. This model was introduced as an alternative
to the well-studied “Only Computational Leaks” (OCL) model [MR04] (which
we do not consider in this work) in order to capture known real-world attacks
that were not captured by the OCL model. A notable example of such an attack
is the cold-boot attack by Halderman et al. [HSH+09], which showed measures
to leak a significant fraction of the bits of a secret if it was ever stored in a part of
memory which could be accessed by an adversary (e.g. DRAM). The definition
of leakage-resilience for secret sharing that we work with is intended (as was the
memory attacks model) to protect against such attacks on the machines that
store the shares after they have been generated.

Goyal and Kumar, and Benhamouda et al, showed constructions of leakage-
resilient threshold secret sharing schemes (where subsets above a certain size are
authorized) for certain thresholds. They then showed how such schemes could
be used to construct leakage-resilient multi-party computation protocols and
non-malleable secret sharing schemes. Given the prevalence of secret-sharing in
cryptographic constructions and the importance of resilience to leakage, one may
reasonably expect many more applications of leakage-resilient secret sharing to
be discovered in the future.

In this work, we are interested in constructing local leakage resilient secret
sharing schemes for a larger class of access structures2 (and in particular for all
thresholds). Beyond showing feasibility, our focus is on optimizing the following
parameters of our schemes:

– the rate, which is the ratio of the size of the secret to the size of a share,
and,

– the leakage-resilience rate, which is the ratio of the number of bits of leakage
tolerated per share to the size of a share.

We present a construction of leakage-resilient secret sharing that is near-
optimal in terms of the above parameters, and show applications of our con-
struction to constructing constant-rate non-malleable secret sharing schemes and
leakage-tolerant multi-party computation protocols.

2 The access structure of a secret sharing scheme is what we call the set of authorized
subsets of parties.

3

1.1 Our Results and Techniques

Our primary result is a transformation that converts a secret sharing scheme for
any access structure A into a local leakage resilient secret sharing scheme for A
whose rate is only a small constant factor less than that of the original scheme,
and which has an optimal leakage-resilience rate of 1.

Informal Theorem 1 There is a compiler that, given a secret sharing scheme
for a monotone access structure A with rate R, produces a secret sharing scheme
for A that has rate R/3.01 and is local leakage resilient with leakage-resilience
rate tending to 1.

In particular, for any t ≤ n, starting from t-out-of-n Shamir secret shar-
ing [Sha79] gives us a t-out-of-n threshold secret sharing scheme with rate 1/3.01
and leakage-resilience rate 1. The only constructions of local leakage resilient se-
cret sharing known before our work were for threshold access structures with
either very small or very large thresholds. Goyal and Kumar [GK18a] presented
a construction for t = 2, which had both rate and leakage-resilience rate Θ(1/n).
This was extended to any constant t by Badrinarayanan and Srinivasan [BS19],
with rate Θ(1/ log(n)) and leakage-resilience rate Θ(1/n log(n)). Benhamouda
et al. [BDIR18] showed that t-out-of-n Shamir secret sharing over certain fields
is local leakage-resilient if t = n−o(n), and this has rate 1 and leakage-resilience
rate roughly 1/4.

Outline of our Compiler. We will now briefly describe the functioning of our
compiler for the case of a t-out-of-n threshold secret sharing scheme, for sim-
plicity. It makes use of a strong seeded randomness extractor Ext, which is an
algorithm that takes two inputs – a seed s and a source w – and whose output
Ext(s, w) is close to being uniformly random if s is chosen at random and w
has sufficient min-entropy. The extractor being “strong” means that the output
remains close to uniform even if the seed is given.

We take any threshold secret sharing scheme (such as Shamir’s [Sha79]), and
share our secret m with it to obtain the set of shares (Sh1, . . . ,Shn). We first
choose a uniform seed s, and for each i ∈ [n], we choose a uniformly random
“source” wi (all of appropriate lengths), and mask Shi using Ext(s, wi). That is,
we compute Sh′i = Shi ⊕ Ext(s, wi). We then secret share s using a 2-out-of-n
secret sharing scheme to get the set of shares S1, . . . , Sn. The share corresponding
to party i in our scheme is now set to (wi,Sh

′
i, Si).

Given t such shares, to recover the secret, we first reconstruct the seed from
any two Si’s and then unmask Sh′i by XORing with Ext(s, wi) to obtain Shi.
We then use the reconstruction procedure of the underlying secret sharing to
recover the message.

The correctness and privacy of the constructed scheme are straightforward
to check. To argue the local leakage resilience of this construction, we go over a
set of n − t + 1 hybrids where in each hybrid, we will replace one Shi with the
all 0’s string. Once we have replaced n − t + 1 such shares with the 0’s string,
we can then rely on the secrecy of the underlying secret sharing scheme to show

4

that the message is perfectly hidden. Thus, it is now sufficient to show that any
two adjacent hybrids in the above argument are statistically close. To argue that
the adjacent hybrids, say Hybi and Hybi+1, are statistically close, we rely on the
randomness property of the extractor. The key here is that as long as the leakage
from the source wi is much smaller than its length, it still has enough entropy for
the output of the extractor on wi to be statistically close to random. This allows
us to argue that Ext(s, wi) acts as a one-time pad and thus, we can replace Shi
with the all 0’s string without an adversary being able to tell.

However, in order to make the argument work, we must ensure that the
leakage from the source is independent of the seed (which is required for the
extractor to work). This is where we will be using the fact that the seed is secret
shared using a 2-out-of-n secret sharing scheme. Intuitively, this ensures that a
local leakage function has no idea what the seed is, and so cannot leak anything
about wi that depends on the seed. In our reduction, we fix the share Si to
be independent of the seed and then leak from the source wi. Once the seed is
known3, we can sample the other shares (S1, . . . , Si−1, Si+1, . . . , Sn) as a valid
2-out-of-n secret sharing of s that is consistent with the fixed share Si. This
allows us to argue that the leakage on wi is independent of the seed. There is
a small caveat here that the masked value Sh′i is dependent on the seed and
hence we cannot argue independence of the leakage on the source and the seed.
However, we use a simple trick of masking Sh′i by another one-time pad and then
secret share the one-time pad key along with the seed s and use this argue that
this masked value is independent of the seed.

This construction described above has several useful properties. The most
significant one is that the transformation is rather simple and only incurs a very
small overhead when compared to the original secret sharing scheme. In partic-
ular, the rate of the resultant leakage resilient secret sharing has only a small
constant factor loss when compared to the initial secret sharing scheme. Also,
we can sample the seed s of the extractor once and use it for sharing multi-
ple secrets.4 The second advantage is that it easily generalizes to all monotone
access structures, basically, the only difference is that we use a secret sharing
scheme for this access structure to obtain the set of shares (Sh1, . . . ,Shn), and
the rest of the steps are exactly the same as before. The third advantage is that
the resultant secret sharing scheme has optimal leakage-resilience rate, i.e., the
ratio between the number of bits of leakage tolerated and size of the share tends
to 1 as the amount of leakage that the scheme is designed to handle increases.
Finally, if we use the inner product two-source extractor of Chor and Goldre-
ich [CG88] as the underlying extractor and the Shamir secret sharing scheme,
then the sharing procedure is a linear function of the secret and a quadratic
function of the randomness, and this can be implemented very efficiently.

3 As the extractor is a strong seeded extractor, Ext(s, wi) is statistically close to
uniform even given the seed.

4 For the security of this modification to go through, we need the adversary to specify
all the secrets and leakage functions upfront – it cannot adaptively choose the secrets
and leakage functions depending on the previous leakage.

5

Stronger Leakage-Resilience. We also extend our construction to satisfy a stronger
notion of leakage resilience, which we describe next. In the earlier definition of
local leakage, the leakage functions that are applied on the shares of honest par-
ties are required to be specified independently of the shares that are completely
revealed to the adversary. In our stronger definition, these leakage functions are
allowed to depend on some number of the adversary’s shares.

In particular, we construct t-out-of-n threshold secret sharing schemes that
are resilient to such stronger leakage where the adversary is given (t− 1) shares,
and the leakage functions applied on the honest party’s shares are allowed to
depend on (t − 2) of these shares. This construction, which is in fact a simple
modification of our earlier one, has worse rate, but still has optimal leakage-
resilience rate. Referring temporarily to the above as (t − 2, t − 1)-strong local
leakage, we have the following.

Informal Theorem 2 For any t ≤ n, there is a t-out-of-n threshold secret
sharing scheme that is resilient against (t−2, t−1)-strong local leakage, has rate
Ω(1/n), and leakage-resilience rate tending to 1.

It is easy to check that this definition is impossible to achieve for a t-out-of-
n threshold secret sharing scheme if we allow the leakage functions to depend
on all (t − 1) of the adversary’s shares, as the leakage function on any honest
party’s share can use the (t− 1) shares along with this share to reconstruct the
secret and leak a few bits of the secret. Later in this section, we will describe an
application of this strong leakage resilient secret sharing scheme in constructing
leakage tolerant MPC for general interaction patterns.

Application 1: Rate-Preserving Non-Malleable Secret Sharing. Non-
malleable secret sharing schemes, introduced by Goyal and Kumar [GK18a], are
secret sharing schemes where it is not possible to tamper with the shares of a
secret s (in certain limited ways) so as to convert them to shares corresponding
to a different secret s̃ that is related to s (such as s + 1 or s with the first bit
flipped). We are interested in security against an adversary that tampers each
share independent of the others (called individual tampering). Such an adversary
works as follows. Initially, it specifies n “tampering functions” f1, . . . , fn and an
authorized set. A secret s is then shared into (Sh1, . . . ,Shn) and the shares are

tampered to get S̃hi ← fi(Shi). The requirement now is that if the above specified

authorized set of parties try to reconstruct the secret using the shares {S̃hi}, the
resulting secret s̃ is either the same as s or something completely independent.

In this setting, Goyal and Kumar presented a construction of a non-malleable
t-out-of-n threshold secret sharing scheme, and in a later paper [GK18b] ex-
tended this to general access structures. Their constructions, however, had an
asymptotic rate of zero.

Badrinarayanan and Srinivasan [BS19] gave a rate-efficient compiler that
takes any secret sharing scheme for a 4-monotone5 access structure and outputs

5 k-monotone means that all authorized sets in the access structure are of size at least
k.

6

a non-malleable secret sharing scheme for the same access structure. The main
tool used in their compiler was a local leakage resilient threshold secret sharing
scheme. The loss in the rate of the resulting non-malleable secret sharing scheme
depended on the parameters of the underlying local leakage resilient secret shar-
ing. In particular, to have only a constant loss in the rate, it was important to
have a local leakage resilient threshold secret sharing scheme that had a con-
stant rate and a constant leakage-resilience rate. We plug in our leakage resilient
secret sharing scheme that has both these features with the compiler of Badri-
narayanan and Srinivasan to obtain a rate-preserving compiler for non-malleable
secret sharing.

Informal Theorem 3 There is a compiler that, given a secret sharing scheme
for a 4-monotone access structure A with rate R, produces a secret sharing
scheme for A that has rate Ω(R) and is non-malleable against individual tam-
pering.

Application 2: Leakage-Tolerant MPC for General Interaction Pat-
terns. Next, we provide an application of our constructions to secure multi-
party computation (MPC), an area where secret sharing is rather pervasive. In
particular, we study MPC protocols obeying a specified interaction pattern.

Background. An interaction pattern (introduced by Halevi et al [HIJ+16]) gen-
eralizes the communication graph of a standard MPC protocol. It is defined as a
directed graph which specifies the sequence of messages that have to be sent dur-
ing the execution of a MPC protocol – its vertices correspond to the messages,
and edges indicate dependencies between messages. We illustrate by example
with the ring interaction pattern. Here, the first message is sent by the party P1

to the party P2 and depending on this message, P2 sends a message to P3 and so
on. Finally, the party Pn sends a message to P1 who computes the output based
on this message. The directed graph corresponding to this has (n + 1) nodes,
one corresponding to each message and one for the output, and the graph is a
single directed path that goes from the first message to the last and then to the
output node. To give another example, a standard 2-round MPC protocol with
n parties can be represented by an interaction pattern graph with two sets of(
n
2

)
nodes, representing the messages sent by each party to every other party in

the two rounds. The edges then go from the nodes corresponding to first-round
messages to second-round messages, according to the protocol.

Given an interaction pattern specified by such a directed graph, the main
goal is to understand which functions can be computed securely by a protocol
following this pattern. It is known that without any form of correlated random-
ness setup, even simple functions such as majority cannot be computed with
any meaningful form of security for certain interaction patterns [BGI+14]. It is
also known from a sequence of works [HLP11,GGG+14,BGI+14] that standard
notions of security in MPC that guarantee that only the output is leaked are
impossible to achieve for certain interaction patterns. To see this, consider the

7

star interaction pattern [FKN94] where there is a special party called the eval-
uator and every other party sends a single message to the evaluator who then
computes the output. In this interaction pattern, if the evaluator colludes with
some subset of the parties, then it is easy to see that the colluding parties can
learn the entire residual function resulting from fixing the honest parties’ inputs
to the function being computed.

In other interaction patterns, the residual function that the colluding parties
are able to learn may be different. In general, Halevi et al. [HIJ+16] classify the
parties’ inputs into fixed and free – every honest party’s input is fixed, and so
is a corrupted party’s input if there exists a path from a message sent by the
corrupted party to the output that passes through at least one honest party’s
message. The inputs of the remaining corrupted parties are free. To capture
the inherent security loss in certain interaction patterns, Halevi et al. allow the
adversary to learn the residual function with the above set of fixed inputs, and
say a protocol that is compliant with an interaction pattern is secure if it hides
everything other than this residual function.

Defining Leakage Tolerance. We extend the above definition of security to also
account for possible leakage from the states of honest parties. Specifically, we
define the notion of leakage tolerance for an MPC protocol that is compliant
with an interaction pattern along the same lines as that of leakage tolerant
MPC [GJS11, BCH12]. In the setting of leakage tolerance, as in the standard
setting, we consider an adversary who corrupts an arbitrary subset of parties
and can see their entire views. But in addition to this, the adversary also obtains
bounded leakage on the complete internal state – that includes the correlated
randomness, the input, the secret randomness, and the entire view of the pro-
tocol – of every honest party. The only process that we assume happens in a
leak-free manner is the correlated randomness generation phase which is anyway
independent of the actual inputs of the parties. After this leak-free randomness
generation, every bit of an honest party’s secret state including its input is sub-
ject to leakage. Here, the adversary can potentially learn bounded information
about the honest party’s input since it has access to all of the honest parties’
secret state. We would like to guarantee that nothing beyond such bounded in-
formation about the inputs and the residual function is actually leaked to the
adversary – note that this is the best possible security we can hope for in this
setting. Technically, we account for this leakage by allowing the simulator to
learn the same amount of information about the honest parties’ inputs.

What makes the task of providing such security non-trivial is that, unlike
a standard MPC simulator who is allowed to cheat in generating the protocol
messages, a simulator in the leakage tolerance setting cannot deviate from the
protocol specification. This is because any deviation can be caught by the ad-
versary by leveraging the leakage on the secret state of the honest party. At first
sight, the task of designing such a simulator seems impossible as we require the
simulator to generate the correct protocol messages based only the output (or
more generally, based on the residual function). However, notice that the leak-
age functions are local to the honest party’s view. Hence, the simulator must

8

follow the protocol correctly at the local level but must somehow cheat at the
global level, i.e., in generating the joint distribution of the protocol messages. To
make this task even more demanding, we do not wish to use any computational
assumptions and only make use of information theoretic tools to achieve leakage
tolerance.

Our Results. In this setting, we upgrade one of the results of Halevi et al [HIJ+16]
to have the additional guarantee of leakage tolerance. They showed that the
star interaction pattern described earlier is complete for obtaining MPC for
general interaction patterns – given a secure protocol for a function f that is
compliant with the star interaction pattern, they showed how to construct a
secure protocol for f compliant with any other interaction pattern. In this work,
we show that star interaction pattern is complete for obtaining leakage-tolerant
MPC for general interaction patterns. Specifically, we obtain the following.

Informal Theorem 4 There is a compiler that, given a function f : {0, 1}n →
{0, 1}, an interaction pattern I, and a secure protocol for f compliant with the
star interaction pattern, produces a secure protocol (with a leak-free setup phase
producing correlated randomness) for f compliant with I that is leakage tolerant.

Using the known protocols for the star interaction pattern [BGI+14,BKR17,
GGG+14], we obtain the following corollaries for any interaction pattern I and
function f : {0, 1}n → {0, 1}:

– An I-compliant protocol for f with statistical leakage tolerance against upto
(n− 1) passive corruptions, with communication exponential in n.

– An efficient I-compliant protocol for f ∈ NC1 with statistical leakage toler-
ance against a constant number of passive corruptions.

– Assuming the existence of one-way functions, and that f is computable by a
polynomial-sized circuit, an efficient I-compliant protocol for f with compu-
tational leakage tolerance against a constant number of passive corruptions.

– Assuming the existence of indistinguishability obfuscation and one-way func-
tions, and that f is computable by a polynomial-sized circuit, an efficient
I-compliant protocol for f with computational leakage tolerance against
upto (n− 1) passive corruptions.

Our actual construction also covers functions where each party has multiple
bits as input and the function can output multiple bits (see Theorem 9). The
compiler we use is the same as that of Halevi et al, except for using a leakage-
resilient secret sharing scheme where theirs uses additive secret sharing. However,
the proof of leakage tolerance is quite involved and, in fact, it turns out that
standard local leakage resilience is insufficient for this purpose and we require
strong leakage resilience. We now provide some intuition on why this is the
case. In the Halevi et al’s construction, some set of secrets are shared among all
the parties in the correlated randomness generation phase. The messages sent

9

during the execution of the protocol comprise of a subset of a party’s shares.
So, a party’s secret state not only includes its own shares, but also the shares
received from the other parties. Thus, the leakage function on an honest party’s
internal state is not local as it gets to see a subset of the other parties’ shares.
Thus, we need a secret sharing scheme satisfying the stronger notion of leakage
resilience, where the leakage on the honest party’s share can potentially depend
on the shares of corrupted parties. For this purpose, we make use of the secret
sharing scheme described in Informal Theorem 2.

1.2 Related Work

In a concurrent and independent work, Aggarwal et al. [ADN+18] also construct
leakage-resilient secret sharing schemes for any access structure from any secret
sharing scheme for that access structure. Their transformation incurs a O(1/n)-
factor loss in the rate and achieves a leakage-resilience rate of (1− c) for a small
constant c. In comparison, our transformation has a constant-factor loss in the
rate and achieves a leakage-resilience rate of 1. They use their techniques and
results to construct non-malleable secret sharing for 3-monotone access struc-
tures with an asymptotic rate of 0, and threshold signatures that are resilient to
leakage and mauling attacks. In comparison, our compiler for non-malleable se-
cret sharing is rate-preserving, but works only for 4-monotone access structures.
Their work also considers the stronger model of concurrent tampering and gives
positive results in this model as well.

In another concurrent and independent work, Kumar et al. [KMS18] also
consider the problem of obtaining leakage-resilient secret sharing schemes in a
stronger leakage model. In particular, they consider a leakage model where every
bit of the leakage can depend on an adaptively chosen set ofO(log n) shares. They
give constructions of such secret sharing schemes for general access structures
via a connection to problems that have large communication complexity. The
rate and the leakage-resilience rate of the construction are both Θ(1/poly(n)).
As an application, they construct a leakage-resilient non-malleable secret sharing
scheme where the tampering function can obtain bounded, adaptive leakage from
each share. In comparison, our strong leakage-resilient secret sharing scheme
works against local leakage with a single level of adaptivity, where the leakage
on each honest party’s share could depend on at most (t− 2) shares in a t-out-
of-n threshold scheme; our scheme has rate Ω(1/n) and a leakage-resilience rate
of 1.

Apart from these, most closely related to our work are the papers by Goyal
and Kumar on non-malleable secret sharing [GK18a, GK18b], Benhamouda et
al on leakage-resilient secret sharing and MPC [BDIR18], and Badrinarayanan
and Srinivasan on non-malleable secret sharing with non-zero rate [BS19].

Local leakage resilient secret sharing (in the sense in which we use this term)
was first studied by Goyal and Kumar [GK18a] and Benhamouda et al [BDIR18]
(independently of each other). [GK18a] constructed a local leakage resilient 2-
out-of-n threshold secret sharing scheme with rate and leakage-resilience rate
both Θ(1/n). They used this as a building block to construct non-malleable

10

threshold secret sharing schemes secure against individual and joint tampering
(where the adversary is allowed to jointly tamper sets of shares). A later pa-
per also by Goyal and Kumar [GK18b] extended this to a compiler that adds
non-malleability to a secret sharing scheme for any access structure. The non-
malleable schemes resulting from both of these works, however, had rate tending
to 0. Badrinarayanan and Srinivasan [BS19] later presented a compiler that con-
verts any rate R secret sharing scheme to a non-malleable one for the same
access struture with rate Θ(R/tmax log2 n), where tmax is the maximum size of
any minimal set in the access structure. In the process, they constructed local
leakage resilient t-out-of-n secret sharing schemes for a constant t that had rate
Θ(1/ log(n)) and leakage-resilience rate Θ(1/n log(n)).

Benhamouda et al [BDIR18] were interested in studying the leakage-resilience
of existing secret sharing schemes and MPC protocols. Inspired by the results
of Guruswami and Wootters [GW16] that implied the possibility of recovering
the secret from single-bit local leakage of Shamir shares over small characteris-
tic fields, they investigated the leakage resilience of Shamir secret sharing over
larger characteristic fields. They showed that, for large enough characteristic
and large enough number of parties n, this scheme is leakage-resilient (with
leakage-resilience rate close to 1/4) as long as the threshold is large (at least
n− o(log(n))). They used this fact to show leakage-resilience of the GMW pro-
tocol [GMW87] (using Beaver’s triples), and to show an impossibility result for
multi-party share conversion.

Boyle et al. [BGK14] define and construct leakage-resilient verifiable secret
sharing schemes where the sharing and reconstruction are performed by interac-
tive protocols (as opposed to just algorithms). They also show that a modification
of the Shamir secret sharing scheme satisfies a weaker notion of leakage-resilience
than the one we consider here, where it is only required that a random secret
retain sufficient entropy given the leakage on the shares.

Dziembowski and Pietrzak [DP07] construct secret sharing schemes (that
they call intrusion-resilient) that are resilient to adaptive leakage where the
adversary is allowed to iteratively ask for leakage from different shares. Their
reconstruction procedure is also interactive, however, requiring as many rounds
of interaction as the adaptivity of the leakage tolerated.

Leakage-resilience of secure multiparty computation has been studied in the
past in various settings [BGJK12, GIM+16, DHP11]. More broadly, leakage-
resilience of various cryptographic primitives have been quite widely studied
– we refer the reader to the survey by Alwen et al [ADW09] and the ref-
erences therein. The notion of leakage tolerance was introduced by Garg et
al [GJS11] and Bitansky et al [BCH12], and has been the subject of many papers
since [BCG+11,BGJ+13,BDL14].

Secure multiparty computation with general interaction patterns was first
studied by Halevi et al [HIJ+16], who showed a reduction from general interac-
tion patterns to the star pattern (which is what we base our reduction on). For
any interaction pattern, they then showed an inefficient information-theoretically
secure protocol for general functions, and an efficient one for symmetric func-

11

tions; they also showed a computationally secure protocol for general functions
assuming the existence of indistinguishability obfuscation and one-way functions,
and for symmetric functions under an assumption about multilinear maps.

Subsequent Work. Subsequent to our work, Nielsen and Simkin [NS19] showed
a lower bound on the share size of leakage resilient secret sharing schemes that
satisfies the property that t̂ shares completely determine the other n−t̂ shares. In
particular, they showed that the size of the shares of such schemes for threshold
access structures with threshold t must be at least `(n− t)/t̂ where ` is the size
of the leakage tolerated. This in particular, shows that Shamir secret sharing
cannot be leakage resilient for thresholds o(n) when leaking, say, 1/4-th of the
share size. On the other hand, it does not apply to schemes like ours where
each share contains some randomness independent of the other shares and is not
determined even given all the other shares.

2 Preliminaries

Notation. We use capital letters to denote distributions and their support, and
corresponding lowercase letters to denote a sample from the same. Let [n] denote
the set {1, 2, . . . , n} and Ur denote the uniform distribution over {0, 1}r. For a

finite set S, we denote x
$← S as sampling x uniformly at random from the set

S. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate of x, and for
any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates
indexed by T . We write ◦ to denote concatenation. We assume the reader’s
familiarity with the standard definitions of min-entropy, statistical distance and
seeded extractors and for completeness give the definition in the full version.

We first give the definition of a k-monotone access structure, then define a
sharing function and finally define a secret sharing scheme.

Definition 1 (k-Monotone Access Structure). An access structure A is
said to be monotone if for any set S ∈ A, any superset of S is also in A. We
will call a monotone access structure A as k-monotone if for any S ∈ A, |S| ≥ k.

Definition 2 (Sharing Function [Bei11]). Let [n] = {1, 2, . . . , n} be a set of
identities of n parties. LetM be the domain of secrets. A sharing function Share
is a randomized mapping from M to S1 × S2 × . . . × Sn, where Si is called the
domain of shares of party with identity i. A dealer distributes a secret m ∈ M
by computing the vector Share(m) = (S1, . . . ,Sn), and privately communicating
each share Si to the party i. For a set T ⊆ [n], we denote Share(m)T to be a
restriction of Share(m) to its T entries.

Definition 3 ((A, n, εc, εs)-Secret Sharing Scheme [Bei11]). Let M be a
finite set of secrets, where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities
(indices) of n parties. A sharing function Share with domain of secrets M is a
(A, n, εc, εs)-secret sharing scheme with respect to monotone access structure A
if the following two properties hold :

12

– Correctness: The secret can be reconstructed by any set of parties that are
part of the access structure A. That is, for any set T ∈ A, there exists a
deterministic reconstruction function Rec : ⊗i∈TSi →M such that for every
m ∈M,

Pr[Rec(Share(m)T) = m] = 1− εc
where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction procedure
that takes in T ∈ A and Share(m)T as input and outputs the secret.

– Statistical Privacy: Any collusion of parties not part of the access struc-
ture should have “almost” no information about the underlying secret. More
formally, for any unauthorized set U ⊆ [n] such that U /∈ A, and for every
pair of secrets m0,m1 ∈ M , for any distinguisher D with output in {0, 1},
the following holds :

|Pr[D(Share(m0)U) = 1]− Pr[D(Share(m1)U) = 1]| ≤ εs

We define the rate of the secret sharing scheme as lim|m|→∞
|m|

maxi∈[n] |Share(m)i|

Remark 1 (Threshold Secret Sharing Scheme). For ease of notation, we will de-
note a t-out-of-n threshold secret sharing scheme as (t, n, εc, εs)-secret sharing
scheme.

3 Leakage Resilient Secret Sharing Scheme

In this section, we will define and construct a leakage resilient secret sharing
scheme against a class of local leakage functions. We first recall the definition of
a leakage resilient secret sharing scheme from [GK18a].

Definition 4 (Leakage Resilient Secret Sharing [GK18a]). An (A, n, εc,
εs) secret sharing scheme (Share,Rec) for message spaceM is said to be ε-leakage
resilient against a leakage family F if for all functions f ∈ F and for any two
messages m0,m1 ∈M:

|f(Share(m0))− f(Share(m1))| ≤ ε

3.1 Local Leakage Resilience

In this subsection, we will transform any secret sharing scheme to a leakage
resilient secret sharing scheme against the local leakage function family. We first
recall the definition of this function family.

Local Leakage Function Family. Let (S1×S2 . . .×Sn) be the domain of shares for
some secret sharing scheme, and A be an access structure. The corresponding
local leakage function family is given by FA,µ = {fK,−→τ : K ⊆ [n],K 6∈ A,
τi : Si → {0, 1}µ} where fK,−→τ on input (share1, . . . , sharen) outputs sharei for
each i ∈ K in the clear and outputs τi(sharei) for every i ∈ [n] \K.

13

Following [BDIR18], we will call secret sharing schemes resilient to FA,−→τ as
local leakage resilient secret sharing. We will define the leakage-resilience rate of
such a secret sharing scheme to be limµ→∞

µ
maxi∈[n] log |Si|

.

Remark 2. We remark that Definition 4 is satisfiable against the leakage func-
tion class FA,µ (for any µ > 0) only if the access structure is 2-monotone (see
Definition 1). Hence, in the rest of the paper, we will concentrate on 2-monotone
access structures.

Description of the Compiler. We will give a compiler that takes any (A, n,
εc, εs) secret sharing scheme for any 2-monotone A and outputs a local leakage
resilient secret sharing scheme for A. We give the description of the compiler in
Figure 1.

Let (Share,Rec) be a (A, n, εc, εs) secret sharing scheme for sharing secrets from
M with share size equal to ρ bits. Let (Share(2,n),Rec(2,n)) be a 2-out-of-n Shamir
Secret sharing. Let Ext : {0, 1}η × {0, 1}d → {0, 1}ρ be a (η − µ, ε)-average-case,
strong seeded extractor.

LRShare : To share a secret m ∈M:
1. Run Share(m) to obtain the shares (Sh1, . . . , Shn).

2. Choose a uniform seed s
$← {0, 1}d and a masking string r

$← {0, 1}ρ.
3. For each i ∈ [n] do:

(a) Choose wi
$← {0, 1}η.

(b) Set Sh′i = Shi ⊕ Ext(wi, s).
4. Run Share(2,n)(s, r) to obtain S1, . . . , Sn.
5. Output sharei as (wi, Sh

′
i ⊕ r, Si).

LRRec : Given the shares sharej1 , sharej2 , . . . , sharej` where K = {j1, . . . , jk} ∈ A
do:
1. For each i ∈ K, parse sharei as (wi, S

′
i, Si).

2. Run Rec(2,n)(Sj1 , Sj2) to recover (s, r)
3. For each i ∈ K do:

(a) Compute Sh′i = S′i ⊕ r.
(b) Recover Shi by computing Sh′i ⊕ Ext(wi, s).

4. Run Rec(Shj1 , . . . , Shjk) to recover the secret m.

Fig. 1. Local Leakage-Resilient Secret Sharing

Theorem 5. Consider any 2-monotone access structure A and µ ∈ N and a
secret domain M with secrets of length m. Suppose for some η, d, ρ ∈ N and
εc, εs, ε ∈ [0, 1), the following exist:

14

– A (A, n, εc, εs) secret sharing scheme for the secret domain M with share
length ρ.

– A (η − µ, ε)-average-case strong seeded extractor Ext : {0, 1}η × {0, 1}d →
{0, 1}ρ.

Then, the construction in Figure 1, when instantiated with these, is a (A, n, εc,
εs) secret sharing scheme for M that is 2(εs + n · ε)-leakage resilient against
FA,µ. It has share size (η + 2ρ+ d).

We give the proof of this theorem in the full version of the paper.

Instantiation. Next we demonstrate an instantiation of Theorem 5 with the
state-of-the-art explicit construction of strong seeded extractors from the work
of Guruswami, Umans and Vadhan [GUV09].

Theorem 6 ([GUV09]). For any constant α > 0, and all integers n, k > 0
there exists a polynomial time computable (k, ε)-strong seeded extractor Ext : {0,
1}n × {0, 1}d → {0, 1}m with d = O(log n+ log(1

ε)) and m = (1− α)k.

We now instantiate our scheme with the following building blocks:

– Let (Share,Rec) be a secret sharing scheme for a 2-monotone access structure
A for sharing m-bit messages with rate R.

– We use the Guruswami, Umans and Vadhan [GUV09] strong seeded ex-
tractor (refer Theorem 6). We set n = 1.01m/R + log(1/ε) + µ and d =
O(log n+ log(1/ε)) and from Theorem 6 and from [DORS08], it follows that
Ext is a (1.01m/R+ log(1/ε), 2ε) average-case, strong seeded extractor.

Thus, (using terminology from Figure 1) we get |sharei| = |wi|+ |Shi|+ |Si| =
n+m/R+ (m/R+ d) = 3.01m/R+ µ+O(logm+ logµ+ log 1/ε).

Corollary 1. If there exists a secret sharing scheme for a 2-monotone access
structure with rate R, then there exists an ε-local leakage resilient secret sharing
for A against FA,µ for some negligible ε with rate R/3.01 and leakage-resilience
rate 1.

For the special case of threshold secret sharing scheme for which we know con-
structions with rate 1 [Sha79], we obtain the following corollary, where F(t,n),µ

denotes the local leakage function family corresponding to the t-out-of-n thresh-
old access structure.

Corollary 2. For any n, t, µ ∈ N such that t ≤ n, and ε ∈ (0, 1), there is a
t-out-of-n threshold secret sharing scheme that is (2nε)-leakage resilient against
F(t,n),µ, and has rate Ω(1), and leakage-resilience rate 1.

15

3.2 Strong Local Leakage Resilience

In this subsection, we consider a stronger notion of leakage resilience for secret
sharing, in which the leakage on the “honest” shares is allowed to depend arbi-
trarily on the “corrupted” shares – this is meant to capture a scenario where an
adversary first learns the shares of t of the n parties, and then specifies leakage
functions that are applied to the remaining (n− t) shares, the outputs of which
are then given to the adversary. This corresponds to leakage resilience against
the function family described below.

Our motivation for studying this specific strengthening of local leakage re-
silience is an application to constructing leakage-tolerant MPC protocols where
local leakage resilience turns out to be insufficient (see Section 5). For simplicity,
we will describe our results (and definitions) in this subsection only for thresh-
old access structures (which suffices for our MPC construciton), but they can be
generalized to all access structures in a straightforward manner.

Semi-Local Leakage Function Family. Let (S1×· · ·×Sn) be the domain of shares
for some secret sharing scheme, and t, t′ ∈ [n] and µ be natural numbers. A semi-
local leakage function family is parametrized by three numbers t (the adaptivity
threshold), t′ (the corruption threshold), and µ (the amount of leakage), such
that t ≤ t′. The family Ht,t′,µ consists of functions {hT,T ′,−→τ }, where the subsets
T ⊆ T ′ ⊆ [n] are such that |T | = t and |T ′| = t′; and for i ∈ [n]\T ′, the function
τi takes inputs from (Si1×· · ·×Sit)×Si (where T = {i1, . . . , it}), and outputs µ
bits. The function hT,T ′,−→τ , when given input (share1, . . . , sharen), outputs sharei
for each i ∈ T ′, and τi((sharei1 , . . . , shareit), sharei) for i 6∈ T ′.

A secret sharing scheme resilient to leakage by such function families is said
to be strongly local leakage resilient.

Game-based Definition. Strong local leakage resilience of a secret sharing scheme
(LRShare, LRRec) may alternatively, and perhaps more naturally, be defined as
the inability of the adversary to guess the bit b correctly in the following game:

1. The adversary selects the sets T ⊆ T ′ ⊆ [n] such that |T | = t and |T ′| = t′.
It then picks messages m0,m1 ∈M, and sends all of these to the challenger.

2. The challenger picks a random bit b and computes (share1, . . . , sharen) ←
LRShare(mb). It sends shareT to the adversary.

3. The adversary now chooses a local leakage function f(T ′\T),µ that operates
on the (n− t) shares (sharei)i6∈T . It sends this to the challenger.

4. The challenger sends the leakage f(T ′\T),µ((sharei)i 6∈T).

5. The adversary outputs a guess b′ for b.

We require that Pr[b = b′] = 1/2 + negl(m). To see that these two definitions
are equivalent, note that the task of the adversary in the game is essentially to
specify a function from Ht,t′,µ – any function hT,T ′,−→τ in this class is specified by
sets T ⊆ T ′, outputs the shares in T ′ in the clear and also leaks some information
about the honest parties’ shares depending on the shares in T . And what the

16

adversary gets from the challenger is precisely the output of this function applied
to the shares.

We show that a modification of the construction from Section 3.1 can achieve
strong local leakage resilience. This is presented in Figure 2.

Let (Share(t,n),Rec(t,n)) represent a t-out-of-n threshold secret sharing scheme for
secrets in an unspecified domain; let ρ be the bit-length of each share under this
scheme when the secret is from the secret domainM. Let η and d be such that there
is a (k, ε)-average-case strong seeded extractor Ext : {0, 1}η × {0, 1}d → {0, 1}ρ
that outputs ρ bits, where k = (η − µ).

LRShare : To share a secret m ∈M:
1. Run Share(t,n)(m) to obtain the shares (Sh1, . . . , Shn).

2. Choose a uniform seed s
$← {0, 1}d.

3. For each i ∈ [n] do:

(a) Choose wi
$← {0, 1}η.

(b) Choose a masking string ri
$← {0, 1}ρ.

(c) Set Sh′i = Shi ⊕ Ext(wi, s)⊕ ri.
(d) Run Share(t,n)(ri) to obtain r(i,1), . . . , r(i,n).

4. Run Share(t,n)(s) to obtain S1, . . . , Sn.
5. Output sharei as (wi, Sh

′
i, Si, (r(1,i), . . . , r(n,i))).

LRRec : Given any set of t shares sharei1 , sharei2 , . . . , shareit , do:
1. For each ij , parse shareij as (wij , S

′
ij , Sij , (r(1,ij), . . . , r(n,ij))).

2. Run Rec(t,n)(Si1 , . . . , Sit) to recover s.
3. For each ij , do:

(a) Run Rec(t,n)(r(ij ,i1), . . . , r(ij ,it)) to recover rij .
(b) Recover Shij by computing S′ij ⊕ Ext(wij , s)⊕ rij .

4. Run Rec(Shi1 , . . . , Shit) to recover the secret m.

Fig. 2. Strongly Local Leakage-Resilient Secret Sharing

Theorem 7. Consider any n, t, µ ∈ N such that t ≤ n and a secret domain M.
Suppose for some η, d,R ∈ N and ε ∈ [0, 1), the following exist:

– A perfect t-out-of-n threshold secret sharing scheme with share size ρ for
secrets in M.

– A (η − µ, ε)-average-case strong seeded extractor Ext : {0, 1}η × {0, 1}d →
{0, 1}ρ.

Then, the construction in Figure 2, when instantiated with these, is a t-out-of-
n threshold secret sharing scheme for M that is (2nε)-leakage resilient against
H(t−2),(t−1),µ. It has share size (η + ρ+ d+ nρ).

17

Using the same instantiations as in Section 3.1, we get the following.

Corollary 3. For any n, t, µ ∈ N such that t ≤ n, and ε ∈ [0, 1], there is a
t-out-of-n threshold secret sharing scheme that is (2nε)-leakage resilient against
H(t−2),(t−1),µ, and has rate Ω(1/n), and leakage-resilience rate 1.

We prove Theorem 7 along the same lines as Theorem 5, and we give the
details in the full version.

4 Rate Preserving Non-Malleable Secret Sharing

In this section, we will use the leakage resilient secret sharing scheme in Sec-
tion 3 to construct a non-malleable secret sharing scheme. Specifically, we give a
compiler that takes any secret sharing scheme for a 4-monotone access structure
(see Definition 1) with rate R and converts it into a non-malleable secret sharing
scheme for the same access structure with rate Ω(R).

In the full version, we give some background on non-malleable codes and
below we recall the definition of non-malleable secret sharing for a monotone
access structure A.

Definition 5 (Non-Malleable Secret Sharing for General Access Struc-
tures [GK18b]). Let (Share,Rec) be a (A, n, εc, εs)-secret sharing scheme for
message space M and access structure A. Let F be a family of tampering func-
tions. For each f ∈ F , m ∈ M and authorized set T ∈ A, define the tam-
pered distribution Tamperf,Tm as Rec(f(Share(m))T) where the randomness is over
the sharing function Share. We say that the (A, n, εc, εs)-secret sharing scheme,
(Share,Rec) is ε′-non-malleable w.r.t. F if for each f ∈ F and any authorized
set T ∈ A, there exists a distribution Df,T over M∪{same?} such that for any
m,

|Tamperf,Tm − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{
x if x 6= same?

y if x = same?
. We call ε′ as the

simulation error.

4.1 Construction

We give a construction of a non-malleable secret sharing scheme for a 4-monotone
access structures against the individual tampering function family Find (see be-
low).

Individual Tampering Family Find. Let Share be the sharing function of the secret
sharing scheme that outputs n-shares in S1 × S2 . . . × Sn. The function family
Find is composed of tuples of functions (f1, . . . , fn) where each fi : Si → Si.

18

Construction. The construction is same as the one given in [BS19] but we instan-
tiate the leakage-resilient secret sharing scheme with the one constructed in the
previous section. We now give the description of the building blocks and then
give the construction. In the following, we will denote a t-out-of-n monotone
access structure as (t, n).

Building Blocks. The construction uses the following building blocks. We instan-
tiate them with concrete schemes later:

– A 3-split-state non-malleable code (Enc,Dec) where Enc : M→ L× C × R
and the simulation error of the scheme is ε1. Furthermore, we assume that for
any two messages m,m′ ∈ M, (C,R) ≈ε2 (C′,R′) where (L,C,R) ← Enc(m)
and (L′,C′,R′)← Enc(m′).

– A (A, n, εc, εs) (whereA is 4-monotone) secret sharing scheme (SecShare(A,n),
SecRec(A,n)) with statistical privacy (with error εs) for message space L. We
will assume that the size of each share is m1.

– A (3, n, 0, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-leakage
resilient against leakage functions F(3,n),m1

for message space C. We assume
that the size of each share is m2.

– A (2, n, 0, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message
space R that is ε4-leakage resilient against leakage functions F(2,n),µ where
µ = m1 +m2. We assume that the size of each share is m3.

We give the formal description of the construction in Figure 3 (taken verbatim
from [BS19]).

Imported Theorem 8 ([BS19]) For any arbitrary n ∈ N and any 4-monotone
access structure A, the construction given in Figure 3 is a (A, n, εc, εs+ε2) secret
sharing scheme. Furthermore, it is (ε1 + ε3 + ε4)-non-malleable against Find.

We defer the rate analysis to the full version of the paper and only state the
corollary below.

Corollary 4. For any n ∈ N, ρ > 0 and 4-monotone access structure A, if
there exists a statistically private (with privacy error ε) secret sharing scheme
for A that can share m-bit secrets with rate R, there exists a non-malleable secret
sharing scheme for sharing m-bit secrets for the same access structure A against
Find with rate Ω(R) and simulation error ε+ 2−Ω(m/ log1+ρ(m)).

5 Leakage Tolerant MPC for General Interaction
Patterns

In this section, we will construct a leakage tolerant secure multiparty compu-
tation protocol for any interaction pattern (defined below). We will first recall
some basic definitions from [HIJ+16].

19

Let (SecShare(A,n), SecRec(A,n)) be a (A, n, εc, εs) (where A is 4-monotone) se-
cret sharing scheme. Let (Enc,Dec) be a 3-split state non-malleable code and
(LRShare(t,n), LRRec(t,n)) be leakage resilient threshold secret sharing schemes with
threshold t.

Share(m) : To share a secret s ∈M do:
1. Encode the secret s as (L,C,R)← Enc(s).
2. Compute the shares

(SL1, . . . , SLn)← SecShare(A,n)(L)

(SC1, . . . , SCn)← LRShare(3,n)(C)

(SR1, . . . , SRn)← LRShare(2,n)(R)

3. For each i ∈ [n], set sharei as (SLi, SCi,SRi) and output (share1, . . . ,
sharen) as the set of shares.

Rec(Share(m)T) : Given a set of shares in an authorized set T ′ ∈ A, let T ⊆ T ′

denote a minimal authorized set. To reconstruct the secret from the shares in
set T (of size at most t), do:
1. Let the shares corresponding to the set T be (sharei1 , . . . , shareit).
2. For each j ∈ {i1, . . . , it}, parse sharej as (SLj , SCj , SRj).
3. Reconstruct

L := SecRec(A,n)(SLi1 , . . . , SLit)

C := LRRec(3,n)(SCi1 ,SCi2 ,SCi3)

R := LRRec(2,n)(SRi1 ,SRi2)

4. Output the secret s as Dec(L,C,R).

Fig. 3. Construction of Non-Malleable Secret Sharing Scheme for 4-monotone access
structure taken verbatim from [BS19]

5.1 Basic Definitions

This subsection consists of definitions and some associated exposition, all taken
verbatim from [HIJ+16].

We begin by defining the syntax for specifying a communication pattern I
and a protocol Π that complies with it. In all the definitions below, we let
P = {P1, . . . , Pn} denote a fixed set of parties who would participate in the
protocol. When we want to stress the difference between a protocol message
as an entity by itself (e.g., “the 3rd message of party P1”) and the content of
that message in a specific run of the protocol, we sometime refer to the former
as a “message slot” and the latter as the “message content.” To define an N -
message interaction pattern for the parties in P, we assign a unique identifier
to each message slot. Without loss of generality, the identifiers are the indices
1 through N . An interaction pattern is then defined via a set of constraints on
these message slots, specifying the sender and receiver of each message, as well

20

as the other messages that it depends on. These constraints are specified by a
message dependency graph, where the vertices are the message slots and the
edges specify the dependencies.

Definition 6 (Interaction pattern [HIJ+16]). An N -message interaction
pattern for the set of parties P is specified by a message dependency directed
acyclic labeled graph,

I = ([N], D, L : V → P × (P ∪ Out))

The vertices are the message indices [N], each vertex i ∈ [N] is labeled by a
sender-receiver pair L(i) = (Si, Ri), with Ri = Out meaning that this message
is output by party Si rather than sent to another party. The directed edges in D
specify message dependencies, where an edge i→ j means that message j in the
protocol may depend on message i. The message-dependency graph must satisfy
two requirements:

– I is acyclic. We assume without loss of generality that the message indices
are given in topological order, so i < j for every (i→ j) ∈ D.

– If message j depends on message i, then the sender of message j is the
receiver of message i. That is, for every (i → j) ∈ D, we have Sj = Ri
(where L(i) = (Si, Ri) and L(j) = (Sj , Rj)).

We assume without loss of generality that each party P ∈ P has at most one
output, namely at most one i ∈ [N] such that L(i) = (P,Out). For a message j ∈
[N], we denote its incoming neighborhood, i.e. all the messages that it depends
on, by DepOn(j) := {i : (i→ j) ∈ D}.

An n-party, N -message interaction pattern, is an N -message pattern for P =
[n]. We will interchangeably denote the i-th party as either using i or Pi.

A well known example of an interaction pattern is the star pattern which we
define below.

Star Interaction Pattern. A n + 1-party, n + 1-message interaction pattern is
called a star interaction pattern, if for each i ∈ [n], L(i) = (Pi, Pn+1), (i →
n + 1) ∈ D and L(n + 1) = (Pn+1,Out). In other words, for every i ∈ [n], Pi
sends a single message to Pn+1 who computes the output from all the messages
received.

I-compliant MPC. We next define the syntax of an MPC protocol complying
with a restricted fixed interaction pattern. Importantly, our model includes gen-
eral correlated randomness set-up, making protocols with limited interaction
much more powerful.

Definition 7 (I compliant protocol [HIJ+16]). Let I = ([N], D, L) be an
n-party N -message interaction pattern. An n-party protocol complying with I is
specified by a pair of algorithms Π = (Gen,Msg) of the following syntax:

21

– Gen is a randomized sampling algorithm that outputs an n-tuple of correlated
random strings (r1, . . . , rn).

– Msg is a deterministic algorithm specifying how each message is computed
from the messages on which it depends. Concretely, the input of Msg consists
of the index i ∈ [N] of a vertex in the dependency graph, the randomness
rSi and input xSi for the sender Si corresponding to that vertex, and an
assignment of message-content to all the messages that message i depends
on, M : DepOn(i) → {0, 1}∗. The output of Msg is an outgoing message in
{0, 1}∗ , namely the string that the sender Si should send to the receiver Ri.

The execution of such a protocol Π with pattern I proceeds as follows.
During an offline set-up phase, before the inputs are known, Gen is used to
generate the correlated randomness (r1, ..., rn) and distribute ri to party Pi .
In the online phase, on inputs (x1, . . . , xn), the parties repeatedly invoke Msg
on vertices (message-slots) in I to compute the message-content they should
send. The execution of Π goes over the message slots in a topological order,
where each message is sent after all messages on which it depends have been
received. We do not impose any restriction on the order in which messages are
sent, other than complying with the depend-on relation as specified by I. Once
all messages (including outputs) are computed, the parties have local outputs
(y1, . . . , yn), where we use yi = ⊥ to indicate that Pi does not have an output.

For a set T ⊂ [n] of corrupted parties, let viewT denote the entire view of
T during the protocol execution. This view includes the inputs xT , correlated
randomness rT , and messages received by T . (Sent messages and outputs are
determined by this information.) The view does not include messages exchanged
between honest parties. Security of a protocol with communication pattern I
requires that for any subset of corrupted parties T ⊂ P, the view viewT reveals
as little about the inputs xT of honest parties as is possible with the interaction
pattern I. We formulate this notion of “as little as possible” via the notion of
fixed vs. free inputs: If parties Pi , Pj are corrupted and no path of messages
from Pi to Pj passes through any honest party, then the adversary can learn
the output of Pj on every possible value of xi . However, if there is some honest
party on some communication path from Pi to Pj , then having to send a message
through that party may be used to “fix” the input of Pi that was used to generate
that message, so the adversary can only learn the value of the function on that
one input.

Definition 8 (Fixed vs. free inputs.). For an interaction pattern I, parties
Pi, Pj ∈ P (input and output parties), and a set T ⊂ P of corrupted parties, we
say that Pi has fixed input with respect to I, T and Pj if either

– Pi 6∈ T (the input party is honest), or
– there is a directed path in I starting with some message sent by Pi, ending

with some message received by Pj , and containing at least one message sent
by some honest party Ph 6∈ T .

We say that Pi has free input (with respect to I, T, Pj) if Pi ∈ T and its input
is not fixed. We let Free(I, T, Pj) ⊆ T denote the set of parties with free inputs,

22

and Fixed(I, T, Pj) = P \ Free(I, T, Pj) is the complement set of parties with
fixed input (all with respect to I, T and Pj).

Using the notion of fixed inputs, we can now capture the minimum informa-
tion available to the adversary by defining a suitable restriction of the function
f that the protocol needs to compute.

Definition 9. For an n-party functionality f , interaction pattern I, corrupted
set T ⊂ P , input x = (x1, . . . , xn) and output party Pj ∈ P , the residual func-
tion fI,T,x,Pj is the function obtained from fj by restricting the input variables
indexed by F = Fixed(I, T, Pj) to their values in x. That is, for input variables
x′
F

= {x′i}i 6∈F , we define fI,T,x,Pj (x
′
F

) = fj(x
′
1, . . . , x

′
n), where x′i = xi for all

i ∈ F .

We formalize our notion of security in the semi-honest model below. To get
around general impossibility results for security with polynomial-time simulation
[HLP11,GGG+14,BGI+14], we will allow by default simulators to be unbounded
(but will also consider bounded simulation variants). We start by considering
perfectly/statistically/computationally secure protocols.

Definition 10. (Security with semi-honest adversaries). Let f be a determin-
istic n-party functionality, I be an n-party, N -message interaction pattern, and
Π = (Gen,Msg) be an n-party protocol complying with I. We say that Π is a
perfectly T -secure protocol for f in the semi-honest model for a fixed set T ⊂ P
of corrupted parties if the following requirements are met:

– Correctness: For every input x = (x1, . . . , xn), the outputs at the end of
the protocol execution are always equal to f(x) (namely, with probability 1
over the randomness of Gen).

– Semi-honest security: There is an unbounded simulator S that for any in-
put x is given xT and the truth tables of the residual functions fI,T,x,Pj for all
Pj ∈ T , and its output is distributed identically/statistically close/computationally
indistinguishable to viewT (x).

Remark 3 (Efficient Simulation). For the case where we require the simulator to
be efficient, we provide the simulator with oracle access to the residual function
fI,T,x,Pj .

5.2 Definition: Leakage Tolerant MPC for an Interaction Pattern

We now define what it means for an MPC protocol compliant with an interaction
pattern I to be leakage-tolerant.

We consider an (n + 1)-party P = {P1, . . . , Pn, Pn+1} protocol Π = (Gen,
Msg) that is compliant with an interaction pattern I with a single output party,
namely, Pn+1 (that does not have any inputs)6 that computes a function f :

6 The case of multiple output parties reduces to the case of single output party by
considering each output party computing a specific function of the other parties
input.

23

({0, 1}m)n → {0, 1}∗, where the party Pi gets input xi ∈ {0, 1}m for each i ∈ [n].
The execution of Π proceeds along an identical fashion as in the standard MPC
for general interaction pattern (see Definition 7) and we recall this once again. In
the offline phase before the parties get to know their actual inputs, the algorithm
Gen is run and this outputs the correlated randomness (r1, . . . , rn+1) where ri
is given to party Pi. In the online phase, on inputs (x1, . . . , xn), the parties
repeatedly invoke Msg on vertices (message-slots) in I to compute the message-
content they should send. The execution of Π goes over the message slots in
a topological order, where each message is sent after all messages on which it
depends have been received. Once all messages are sent, the output party Pn+1

computes the output.
Let us say that at the end of a protocol Π, the party Pi’s view viewi is from

a domain Vi. Recall that viewi includes the correlated randomness output by
Gen, party Pi’s input xi as well as the messages that it has received during the
execution of the protocol. Let us denote Π(x) as the joint distribution of the
views of every party during the execution of the protocol. We are interested in
adversaries that statically corrupt t (< n) of the parties, obtaining their entire
states, and also obtain some leakage on the states of the other uncorrupted
parties. More formally, we represent the view of such adversaries as families
of functions of the form Gt,µ = {gT,−→τ : T ⊆ [n], |T | ≤ t, τi : Vi → {0, 1}µ};
where gT,−→τ (Π(x)) outputs viewi for every i ∈ T , and τi(viewi) for i 6∈ T ,
when the protocol Π is run with input x – we refer to such a function as a
(T, µ)-leakage function. Informally, we assume that the algorithm Gen runs in
a leak-free manner and from then on, the honest party’s entire secret state is
subject to leakage.

Definition 11 (Leakage Tolerance against Semi-Honest Adversaries).
Let f be a deterministic n-party functionality, I be an n-party, N -message in-
teraction pattern, and Π = (Gen,Msg) be an n-party protocol complying with I.
We say that Π is a (T, µ)–leakage tolerant protocol for f in the semi-honest
model for a set T ⊆ P if it satisfies the following properties:

– Correctness: The protocol Π computes f(x) correctly for any input x = (x1,
. . . , xn).

– Leakage Tolerance: For any (T, µ)- leakage function gT,−→τ , there is an
unbounded simulator S satisfying the following.
• For any input x = (x1, . . . , xn), the simulator S is given the inputs of

the corrupted parties xT and the truth tables of the residual functions
fI,T,x,Pj for all Pj ∈ T as input. It is allowed a single query to an oracle
O[xT], which takes as input a tuple of functions (σi)i∈T , where each
function is of the form σi : {0, 1}m → {0, 1}µ, and outputs (σi(xi))i∈T .

• We require that:

gT,−→τ (Π(x)) ≈ SO[xT](fI,T,x,Pj , xT)

where ≈ might indicate identical/statistically close/computationally in-
distinguishable.

24

We say that Π is a (t, µ)-leakage tolerant protocol for f if it is (T, µ)-leakage
tolerant for all T ⊆ P and |T | ≤ t.

5.3 Construction

In this subsection, we give a construction of a leakage-tolerant semi-honest MPC
for any interaction pattern I. Specifically, we give a reduction from a leakage-
tolerant semi-honest MPC for any interaction pattern I to constructing a (pos-
sible leakage intolerant) MPC protocol for the star interaction pattern. The
construction we give is the same as the one given in [HIJ+16] with the only
change being that we use our strong local leakage-resilient scheme instead of any
secret sharing scheme.

Before we describe the construction, we introduce the following notation. For
a function f : ({0, 1}m)n → {0, 1}∗, we denote by f bit : {0, 1}mn → {0, 1}∗ the
function that takes mn bits as inputs, groups them together in order into n
strings of length m each, and applies f on them.

Building Blocks. The construction uses the following building blocks:

– A star compliant, semi-honest protocol Π∗ = (Gen∗,Msg∗,Eval∗) that se-
curely (either perfect/statistical/computational) computes the function f bit.
Here, Msg∗ denotes the next message function of the parties P1, . . . , Pmn and
Eval∗ is the function computed by the evaluator (or in other words, party
Pmn+1).

– A (n+ 1, n+ 1, 0, 0) threshold secret sharing scheme (LRShare, LRRec) that
is ε-strong leakage resilient for some negligible ε against the function family
Hn−1,n,µ (where H function class is defined in Section 3.2).

Construction. Let f : ({0, 1}m)n → {0, 1}∗ be a n-party functionality that
depends on all its inputs and I be an interaction pattern with a single sink. Let
P = {P1, . . . , Pn+1} be the set of parties with Pn+1 being the evaluator who
does not have any inputs. We give the construction of an I compliant protocol
in Figure 4.

Theorem 9. If Π∗ computes f bit with statistical/computational security and
(LRShare, LRRec) is an ε-strong leakage resilient secret sharing scheme against
Hn−1,n,µ for some negligible ε, then the construction in Figure 4 is a semi-
honest, I-compliant protocol for f that is (n, µ)-leakage tolerant with statisti-
cal/computational security. Furthermore, if each party uses R bits of correlated
randomness and sends M bits in the protocol Π∗, then each party in the protocol
in Figure 4 uses O(m(R+ n2M + nµ)) bits of correlated randomness and sends
O((n2M + nµ)m) bits.

We give the proof of this theorem in the full version. Using the known protocols
for the star interaction pattern from the works of [BGI+14, BKR17, GGG+14],
we obtain the following corollary.

25

Gen : To generate the correlated randomness, do:
1. Run Gen∗ to obtain the correlated randomness (r1, . . . , rmn+1).
2. For each i ∈ [mn] and σ ∈ {0, 1}, compute mσ

i := Msg∗(σ, ri).
3. For each i ∈ [mn] and σ ∈ {0, 1}, compute (mσ

i,1, . . . ,m
σ
i,n+1) ←

LRShare(mσ
i).

4. Choose random permutation strings b1, . . . , bn ← {0, 1}m, one for each
party Pi, i ≤ n.

5. Let c = b1 ◦ b2 ◦ . . . ◦ bn. For each i ∈ [mn], let ci denote the i-th bit of c.
6. For each j ∈ [n], the correlated randomness for party j is ({mci

i,j ,

m1−ci
i,j }i∈[mn], bj). The correlated randomness of the evaluator Pn+1 is

(rmn+1, {mci
i,n+1,m

1−ci
i,n+1}i∈[mn])

Msg : On input xj ∈ {0, 1}m and the correlated randomness, party Pj does the
following:
1. Parses the correlated randomness as ({M0

i,j ,M
1
i,j}i∈[mn],σ∈{0,1}, bj).

2. Computes sj = xj ⊕ bj and sends sj on every path to the evaluator in I.
3. Then, for every Pk such that some path from Pk to the evaluator goes

through Pj , party Pj waits until it receives the string sk and then sends
{Msk,`

(k−1)m+`,j}`∈[m] = {mxk,`
(k−1)m+`,j}`∈[m] on every path to the evaluator.

4. For every Pk such that no path from Pk to the evaluator goes through
Pj , party Pj sends both shares {M0

(k−1)m+`,j ,M
1
(k−1)m+`,j}`∈[m] on every

path to the evaluator.
5. In addition, Pj forwards every message that it receives from other parties

on some I-path to the evaluator.
Eval: The evaluator uses its correlated randomness to reconstruct M

sk,`
(k−1)m+` for

every k ∈ [n] and ` ∈ [m]. It then uses the function Eval∗ on these recon-
structed values to learn the output.

Fig. 4. A I compliant protocol computing f . The construction is same as the one
in [HIJ+16] except that we use our leakage resilient secret sharing.

Corollary 5 ([BGI+14,BKR17,GGG+14]). Let I be a n-party interaction
pattern with a single sink and let be f : ({0, 1}m)n → {0, 1}∗ be a function which
depends on all its inputs. Then,

– There is a statistical I-compliant leakage tolerant protocol that securely com-
putes f against upto n−1 passive corruptions. The communication complex-
ity is exponential in n,m.

– If f is computable by a circuit in NC1 and m = O(log n), then there ex-
ists an efficient I-compliant leakage tolerant protocol that computes f with
statistical security upto a constant number of corruptions. Assuming one-
way functions, every f that is computable by polynomial-sized circuits has a
computationally secure, efficient, I-compliant leakage tolerant protocol upto
a constant number of corruptions.

– Assuming indistinguishability obfuscation and one-way functions, every func-
tion computable by polynomial-sized circuits has a computationally secure,

26

efficient, I-compliant leakage tolerant protocol against upto n − 1 passive
corruptions.

References

ADN+18. Divesh Aggarwal, Ivan Damgard, Jesper Buus Nielsen, Maciej Obremski,
Erick Purwanto, Jo ao Ribeiro, and Mark Simkin. Stronger leakage-resilient
and non-malleable secret-sharing schemes for general access structures.
Cryptology ePrint Archive, Report 2018/1147, 2018. https://eprint.

iacr.org/2018/1147.

ADW09. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience
and the bounded retrieval model. In Kaoru Kurosawa, editor, Information
Theoretic Security, 4th International Conference, ICITS 2009, Shizuoka,
Japan, December 3-6, 2009. Revised Selected Papers, volume 5973 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2009.

AGV09. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In Omer Reingold,
editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of
Lecture Notes in Computer Science, pages 474–495. Springer, Heidelberg,
March 2009.

BCG+11. Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman
Kalai, and Guy N. Rothblum. Program obfuscation with leaky hardware.
In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology –
ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science,
pages 722–739. Springer, Heidelberg, December 2011.

BCH12. Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive
protocols. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography
Conference, volume 7194 of Lecture Notes in Computer Science, pages 266–
284. Springer, Heidelberg, March 2012.

BDIR18. Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On
the local leakage resilience of linear secret sharing schemes. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer Science,
pages 531–561. Springer, Heidelberg, August 2018.

BDL14. Nir Bitansky, Dana Dachman-Soled, and Huijia Lin. Leakage-tolerant com-
putation with input-independent preprocessing. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part II,
volume 8617 of Lecture Notes in Computer Science, pages 146–163. Springer,
Heidelberg, August 2014.

Bei11. Amos Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology -
Third International Workshop, IWCC 2011, Qingdao, China, May 30-June
3, 2011. Proceedings, pages 11–46, 2011.

BGI+14. Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd
Meldgaard, and Anat Paskin-Cherniavsky. Non-interactive secure multi-
party computation. In Juan A. Garay and Rosario Gennaro, editors, Ad-
vances in Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture
Notes in Computer Science, pages 387–404. Springer, Heidelberg, August
2014.

27

https://eprint.iacr.org/2018/1147
https://eprint.iacr.org/2018/1147

BGJ+13. Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and
Amit Sahai. Secure computation against adaptive auxiliary information.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Sci-
ence, pages 316–334. Springer, Heidelberg, August 2013.

BGJK12. Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai.
Multiparty computation secure against continual memory leakage. In
Howard J. Karloff and Toniann Pitassi, editors, 44th Annual ACM Sym-
posium on Theory of Computing, pages 1235–1254. ACM Press, May 2012.

BGK14. Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. Leakage-resilient
coin tossing. Distributed Computing, 27(3):147–164, 2014.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10,
1988.

BKR17. Fabrice Benhamouda, Hugo Krawczyk, and Tal Rabin. Robust non-
interactive multiparty computation against constant-size collusion. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 391–419. Springer, Heidelberg, August 2017.

Bla79. G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979
National Computer Conference, 48:313–317, 1979.

BS19. Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-
malleable secret sharing. In Advances in Cryptology - EUROCRYPT 2019
- 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Pro-
ceedings, Part I, pages 593–622, 2019.

CCD88. David Chaum, Claude Crepeau, and Ivan Damgaard. Multiparty uncon-
ditionally secure protocols (extended abstract). In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 11–19. ACM, 1988.

CG88. Benny Chor and Oded Goldreich. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. SIAM J. Comput.,
17(2):230–261, 1988.

DDFY94. Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to
share a function securely. In 26th Annual ACM Symposium on Theory of
Computing, pages 522–533. ACM Press, May 1994.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 307–315. Springer, Heidelberg, August
1990.

DHP11. Ivan Damgard, Carmit Hazay, and Arpita Patra. Leakage resilient secure
two-party computation. Cryptology ePrint Archive, Report 2011/256, 2011.
http://eprint.iacr.org/2011/256.

DORS08. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM Journal
on Computing, 38:97–139, 2008.

DP07. Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret shar-
ing. In 48th Annual Symposium on Foundations of Computer Science, pages
227–237. IEEE Computer Society Press, October 2007.

28

http://eprint.iacr.org/2011/256

DP08. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptogra-
phy. In 49th Annual Symposium on Foundations of Computer Science, pages
293–302. IEEE Computer Society Press, October 2008.

FKN94. Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure com-
putation (extended abstract). In 26th Annual ACM Symposium on Theory
of Computing, pages 554–563. ACM Press, May 1994.

Fra90. Yair Frankel. A practical protocol for large group oriented networks. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryp-
tology – EUROCRYPT’89, volume 434 of Lecture Notes in Computer Sci-
ence, pages 56–61. Springer, Heidelberg, April 1990.

FRR+10. Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod
Vaikuntanathan. Protecting circuits from leakage: the computationally-
bounded and noisy cases. In Henri Gilbert, editor, Advances in Cryptology
– EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 135–156. Springer, Heidelberg, May / June 2010.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, pages 578–602, 2014.

GIM+16. Vipul Goyal, Yuval Ishai, Hemanta K. Maji, Amit Sahai, and Alexander A.
Sherstov. Bounded-communication leakage resilience via parity-resilient cir-
cuits. In Irit Dinur, editor, 57th Annual Symposium on Foundations of Com-
puter Science, pages 1–10. IEEE Computer Society Press, October 2016.

GJS11. Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowl-
edge. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 297–315. Springer,
Heidelberg, August 2011.

GK18a. Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 685–
698, 2018.

GK18b. Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general
access structures. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part I, volume 10991 of Lecture
Notes in Computer Science, pages 501–530. Springer, Heidelberg, August
2018.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing,
pages 218–229. ACM Press, May 1987.

GMW17. Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Constant-rate non-
malleable codes in the split-state model. Cryptology ePrint Archive, Report
2017/1048, 2017. http://eprint.iacr.org/2017/1048.

GUV09. Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbal-
anced expanders and randomness extractors from parvaresh–vardy codes.
J. ACM, 56(4), 2009.

GW16. Venkatesan Guruswami and Mary Wootters. Repairing reed-solomon codes.
In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM Sympo-
sium on Theory of Computing, pages 216–226. ACM Press, June 2016.

29

http://eprint.iacr.org/2017/1048

HIJ+16. Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin.
Secure multiparty computation with general interaction patterns. In Madhu
Sudan, editor, ITCS 2016: 7th Conference on Innovations in Theoretical
Computer Science, pages 157–168. Association for Computing Machinery,
January 2016.

HLP11. Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on
the web: Computing without simultaneous interaction. In Phillip Rogaway,
editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 132–150. Springer, Heidelberg, August
2011.

HSH+09. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: cold-boot attacks on encryption
keys. Commun. ACM, 52(5):91–98, 2009.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology
– CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
463–481. Springer, Heidelberg, August 2003.

KGG+18. Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. Spectre attacks: Exploiting speculative execution. CoRR,
abs/1801.01203, 2018.

KMS18. Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret
sharing. IACR Cryptology ePrint Archive, 2018:1138, 2018.

KOS18. Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar.
Non-malleable randomness encoders and their applications. In Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
April 29 - May 3, 2018 Proceedings, Part III, pages 589–617, 2018.

LSG+18. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. CoRR, abs/1801.01207, 2018.

MR04. Silvio Micali and Leonid Reyzin. Physically observable cryptography (ex-
tended abstract). In Moni Naor, editor, TCC 2004: 1st Theory of Cryp-
tography Conference, volume 2951 of Lecture Notes in Computer Science,
pages 278–296. Springer, Heidelberg, February 2004.

NS09. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leak-
age. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, vol-
ume 5677 of Lecture Notes in Computer Science, pages 18–35. Springer,
Heidelberg, August 2009.

NS19. Jesper Buus Nielsen and Mark Simkin. Lower bounds for leakage-resilient
secret sharing. IACR Cryptology ePrint Archive, 2019:181, 2019.

Rot12. Guy N. Rothblum. How to compute under AC0 leakage without secure
hardware. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 552–569. Springer, Heidelberg, August 2012.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

30

	Leakage Resilient Secret Sharing and Applications

