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Abstract. Memory-hard functions (MHFs) are a key cryptographic primitive
underlying the design of moderately expensive password hashing algorithms and
egalitarian proofs of work. Over the past few years several increasingly stringent
goals for an MHF have been proposed including the requirement that the MHF
have high sequential space-time (ST) complexity, parallel space-time complexity,
amortized area-time (aAT) complexity and sustained space complexity. Data-
Independent Memory Hard Functions (iMHFs) are of special interest in the
context of password hashing as they naturally resist side-channel attacks. iMHFs
can be specified using a directed acyclic graph (DAG) G with N=2n nodes and
low indegree and the complexity of the iMHF can be analyzed using a pebbling
game. Recently, Alwen et al. [ABH17] constructed a DAG called DRSample
that has aAT complexity at least Ω

(
N2/logN

)
. Asymptotically DRSample

outperformed all prior iMHF constructions including Argon2i, winner of the
password hashing competition (aAT cost O

(
N1.767)), though the constants

in these bounds are poorly understood. We show that the greedy pebbling
strategy of Boneh et al. [BCS16] is particularly effective against DRSample
e.g., the aAT cost is O

(
N2/logN

)
. In fact, our empirical analysis reverses the

prior conclusion of Alwen et al. that DRSample provides stronger resistance
to known pebbling attacks for practical values of N ≤ 224. We construct a
new iMHF candidate (DRSample+BRG) by using the bit-reversal graph to
extend DRSample. We then prove that the construction is asymptotically
optimal under every MHF criteria, and we empirically demonstrate that our
iMHF provides the best resistance to known pebbling attacks. For example,
we show that any parallel pebbling attack either has aAT cost ω(N2) or
requires at least Ω(N) steps with Ω(N/logN) pebbles on the DAG. This
makes our construction the first practical iMHF with a strong sustained space-
complexity guarantee and immediately implies that any parallel pebbling has
aAT complexity Ω(N2/logN). We also prove that any sequential pebbling
(including the greedy pebbling attack) has aAT cost Ω

(
N2) and, if a plausible

conjecture holds, any parallel pebbling has aAT cost Ω(N2 loglogN/logN)
— the best possible bound for an iMHF. We implement our new iMHF and
demonstrate that it is just as fast as Argon2. Along the way we propose a
simple modification to the Argon2 round function that increases an attacker’s
aAT cost by nearly an order of magnitude without increasing running time on
a CPU. Finally, we give a pebbling reduction that proves that in the parallel
random oracle model (PROM) the cost of evaluating an iMHF like Argon2i or
DRSample+BRG is given by the pebbling cost of the underlying DAG. Prior
pebbling reductions assumed that the iMHF round function concatenates input
labels before hashing and did not apply to practical iMHFs such as Argon2i,
DRSample or DRSample+BRG where input labels are instead XORed together.



1 Introduction

Memory Hard Functions (MHFs) are a key cryptographic primitive in the design of pass-
word hashing, algorithms and egalitarian proof of work puzzles [Lee11]. In the context
of password hashing we want to ensure that the function can be computed reasonably
quickly on standard hardware, but that it is prohibitively expensive to evaluate the func-
tion millions or billions of times. The first property ensures that legitimate users can au-
thenticate reasonably quickly, while the purpose of the latter goal is to protect low-entropy
secrets (e.g., passwords, PINs, biometrics) against brute-force offline guessing attacks.
One of the challenges is that the attacker might attempt to reduce computation costs by
employing customized hardware such as a Field Programmable Gate Array (FPGA) or
an Application Specific Integrated Circuit (ASIC). MHFs were of particular interest in
the 2015 Password Hashing Competition [PHC16], where the winner, Argon2 [BDK16],
and all but one finalists [FLW14,SAA+15,Pes14] claimed some form of memory hardness.

Wiener [Wie04] defined the full cost of an algorithm’s execution to be the number
of hardware components multiplied by the duration of their usage e.g., if the algorithm
needs to allocate Ω(N) blocks of memory for Ω(N) time steps then full evaluation
costs would scale quadratically. At an intuitive level, a strong MHF f(·) should have
the property that the full cost [Wie04] of evaluation grows as fast as possible in the
running time parameter N . Towards this end, a number of increasingly stringent security
criteria have been proposed for a MHF including sequential space-time complexity,
parallel space-time complexity, amortized area-time complexity (aAT) and sustained
space-complexity. The sequential (resp. parallel) space-time complexity of a function
f(·) measures the space-time cost of the best sequential (resp. parallel) algorithm
evaluating f(·) i.e., if a computation runs in time t and requires space s then the
space-time cost is given by the product st. The requirement that a hash function has
high space-time complexity rules out traditional hash iteration based key-derivation
functions like PBKDF2 and bcrypt as both of these functions be computed in linear
time O(N) and constant space O(1). Blocki et al. [BHZ18] recently presented an
economic argument that algorithms with low space-time complexity such as bcrypt
and PBKDF2 are no longer suitable to protect low-entropy secrets like passwords i.e.,
one cannot provide meaningful protection against a rational attacker with customized
hardware (FPGA,ASIC) without introducing an unacceptably long authentication delay.
By contrast, they argued that MHFs with true cost Ω(N2) can ensure that a rational
attacker will quickly give up since marginal guessing costs are substantially higher.

The Catena-Bit Reversal MHF [FLW14] has provably optimal sequential space-time
complexity Ω(N2) — the space-time complexity of any sequential algorithm running in
time N is at most O(N2) since at most N blocks of memory can be allocated in time N .
However, Alwen and Serbinenko [AS15] showed that the parallel space-time complexity
of this MHF is just O(N1.5). Even parallel space-time complexity has limitations in
that it does not amortize nicely. The stronger notion of Amortized Area-Time (aAT)
complexity (and the asymptotically equivalent notion of cumulative memory complexity
(cmc)) measures the amortized cost of any parallel algorithm evaluating the function
f(·) on m distinct inputs. Alwen and Serbinenko [AS15] gave a theoretical example of
a function f(·) with the property that the amortized space-time cost of evaluating the
function on m=

√
N distinct inputs is approximately m times cheaper than the parallel

space-time cost i.e., evaluating the function on the last m−1 inputs is essentially free.
This is problematic in the context of password hashing where the attacker wants to



compute the function f(·) multiple times i.e., on each password in a cracking dictionary.
The amortization issue is not merely theoretical. Indeed, the aAT complexity of many
MHF candidates is significantly lower than O(N2) e.g., the aAT complexity of Balloon
Hash [BCS16] is just O(N5/3) [AB16,ABP17] and for password hashing competition
winner Argon2i [BDK16] the aAT cost is at mostO(N1.767) [AB16,AB17,ABP17,BZ17].

The scrypt MHF, introduced by Percival in 2009 [Per09], was proven to have cmc/aAT
complexity Ω

(
N2) in the random oracle model [ACP+17]. However, it is possible for

an scrypt attacker to achieve any space-time trade-off subject to the constraint that
st=Ω(N2) without penalty e.g., an attacker could evaluate scrypt in time t=Ω(N2)
with space s=O(1). Alwen et al. [ABP18] argued that this flexibility potentially makes
it easier to develop ASICs for scrypt, and proposed the even stricter MHF requirement
of sustained space complexity, which demands that any (parallel) algorithm evaluating
the function f(·) requires at least t time steps in which the space usage is ≥ s —
this implies that aAT ≥st. Alwen et al. [ABP18] provided a theoretical construction
of a MHF with maximal sustained space complexity i.e., evaluation requires space
s=Ω(N/logN) for time t=Ω(N). However, there are no practical constructions of
MHFs that provide strong guarantees with respect to sustained space complexity.
Data-Independent vs Data-Dependent Memory Hard Functions. Memory
Hard Functions can be divided into two categories: Data-Independent Memory Hard
Functions (iMHFs) and Data-Dependent Memory Hard Functions (dMHFs). Examples
of dMHFs include scrypt [Per09], Argon2d [BDK16] and Boyen’s halting puzzles [Boy07].
Examples of iMHFs include Password Hashing Competition (PHC) [PHC16] winner
Argon2i [BDK16], Balloon Hashing [BCS16] and DRSample [ABH17]. In this work we pri-
marily focus on the design and analysis of secure iMHFs. iMHFs are designed to resist cer-
tain side-channel attacks e.g., cache timing [Ber05] by requiring that the induced memory
access pattern does not depend on the (sensitive) input e.g., the user’s password. By con-
trast, the induced memory access for a dMHFs is allowed to depend on the function input.

Alwen and Blocki [AB16] proved that any iMHF has aAT complexity at most
O(N2loglogN/logN), while the dMHF scrypt provably has aAT complexity Ω(N2) in
the random oracle model — a result which cannot be matched by any iMHF. However,
the aAT complexity of a dMHF may be greatly reduced after a side-channel attack. If a
brute-force attacker is trying to find x≤m s.t. f(x)=y and the attacker also has learned
the correct memory access pattern induced by the real input x∗ (e.g., via a side-channel
attack) then the attacker can quit evaluation f(x) immediately once it is clear that
the induced memory access pattern on input x 6=x∗ is different. For example, the aAT
complexity of scrypt (resp. [Boy07]) after a side-channel attack is justO(N) (resp.O(1)).
Hybrid Modes. Alwen and Blocki [AB16,AB17] showed that the aAT complexity
of most iMHFs was significantly lower than one would hope, but their techniques do
not extend to MHFs. In response, the Argon2 spec [KDBJ17] was updated to list
Argon2id as the recommended mode of operation for password hashing instead of the
purely data-independent mode Argon2i. Hybrid independent-dependent (id) modes,
such as Argon2id [KDBJ17], balance side-channel resistance with high aAT complexity
by running the MHF in data-independent mode for N/2 steps before switching to
data-dependent mode for the final N/2 steps. If there is a side-channel attack then
security reduces to that of the underlying iMHF (e.g., Argon2i), and if there is no
side-channel attack then the function is expected to have optimal aAT complexity
Ω(N2). We remark that, even for a hybrid mode, it is important to ensure that the



underlying iMHF is as strong as possible a side-channel attack on a hybrid “id” mode
of operation will reduce security to that of the underlying iMHF.

1.1 Related Work

MHF Goals. Dwork et al. and Abadi et al. [DGN03,ABMW05] introduced the notion
of a memory-bound function where we require that any evaluation algorithm results in a
large number of cache-misses. Ren and Devadas recently introduced a refinement to this
notion called bandwidth-hardness [RD17]. To the best of our knowledge Percival was
the first to propose the goal that a MHF should have high space-time complexity [Per09]
though Boyen’s dMHF construction appears to achieve this goal [Boy07] and the
notion of space-time complexity is closely related to the notion of “full cost” proposed
by Wiener [Wie04]. Metrics like space-time complexity and Amortized Area-Time
Complexity [AS15, ABH17] aim to capture the cost of the hardware (e.g., DRAM
chips) the attacker must purchase to compute an MHF — amortized by the number
of MHF instances computed over the lifetime of the hardware components. By contrast,
bandwidth hardness [RD17] aims to capture the energy cost of the electricity required
to compute the MHF once. If the attacker uses an ASIC to compute the function then
the energy expended during computation will typically be small in comparison with the
energy expended during a cache-miss. Thus, a bandwidth hard function aims to ensure
that any evaluation strategy either results in Ω(N) cache-misses or ω(N) evaluations
of the hash function.

In the full version [BHK+18] we argue that, in the context of password hashing, aAT
complexity is more relevant than bandwidth hardness because the “full cost” [Wie04]
can scale quadratically in the running time parameter N . However, one would ideally
want to design a MHF that has high aAT complexity and is also maximally bandwidth
hard. Blocki et al. [BRZ18] recently showed that any MHF with high aAT complexity
is at least somewhat bandwidth hard. Furthermore, all practical iMHFs (including
Catena-Bit Reversal [FLW14], Argon2i and DRSample) are maximally bandwidth
hard [RD17,BRZ18], including our new construction DRS+BRG.
Graph Pebbling and iMHFs. An iMHF fG,H can be viewed as a mode of
operation over a directed acyclic graph (DAG) G=(V =[N ],E) that encodes data-
dependencies (because the DAG is static the memory access pattern will be identical
for all inputs) and a compression function H(·). Alwen and Serbinenko [AS15] defined
fG,H(x)= labG,H,x(N) to be the label of the last node in the graph G on input x. Here,
the label of the first node labG,H,x(1)=H(1,x) is computed using the input x and for
each internal node v with parents(v)=v1,...,vδ we have

labG,H,x(v)=H(v,labG,H,x(v1),...,labG,H,x(vδ)) .
In practice, one requires that the maximum indegree is constant δ=O(1) so that the
function fG,H can be evaluated in sequential time O(N). Alwen and Serbinenko [AS15]
proved that the cmc complexity (asymptotically equivalent to aAT complexity) of the
function fG,H can be fully described in terms of the black pebbling game — defined later
in Section 2.2. The result is significant in that it reduces the complex task of building
an iMHF with high aAT complexity to the (potentially easier) task of constructing
a DAG with maximum pebbling cost. In particular, Alwen and Serbinenko showed that
any algorithm evaluating the function fG,H in the parallel random oracle model must
have cumulative memory cost at least Ω

(
w×Π‖cc(G)

)
, where Π‖cc(G) is the cumulative



pebbling cost of G (defined in Section 2.2), H :{0,1}∗→{0,1}w is modeled as a random
oracle and w= |H(z)| is the number of output bits in a single hash value. Similar,
pebbling reductions have been given for bandwidth hardness [BRZ18] and sustained
space complexity [ABP18] using the same labeling rule.

While these pebbling reductions are useful in theory, practical iMHF implementations
do not use the labeling rule proposed in [AS15]. In particular, Argon2i, DRSample and
our own iMHF implementation (DRSample+BRG) all use the following labeling rule

labG,H,x(v)=H(labG,H,x(v1)⊕...⊕labG,H,x(vδ)) ,
where v1,...,vδ=parents(v) and the DAGs have indegree δ=2. The XOR labeling rule
allows one to work with a faster round function H : {0,1}w→{0,1}w e.g., Argon2i
builds H :{0,1}8192→{0,1}8192 using the Blake2b permutation function and DRSam-
ple(+BRG) uses the same labeling rule as Argon2i. When we define fG,H using the above,
the pebbling reduction of [AS15] no longer applies. Thus, while we know that the pebbling
cost of DRSample (resp. Argon2i) is Ω(N2/logN) [ABH17] (resp. Ω̃(N1.75) [BZ17]),
technically it had never been proven that DRSample (resp. Argon2i) has aAT complexity
Ω(wN2/logN) (resp. Ω̃(wN1.75) in the parallel random oracle model.
Argon2i and DRSample. Arguably, two of the most significant iMHFs candidates are
Argon2i [BDK16] and DRSample [ABH17]. Argon2i was the winner of the recently com-
pleted password hashing competition [PHC16] and DRSample [ABH17] was the first prac-
tical construction of an iMHF with aAT complexity proven to be at least Ω

(
N2/logN

)
in the random oracle model. In an asymptotic sense this upper bound almost matches the
general upper bound O(N2loglogN/logN) on the aAT cost of any iMHF established by
Alwen and Blocki [AB16]. A recent line of research [AB16,AB17,ABP17,BZ17] has de-
veloped theoretical depth-reducing attacks on Argon2i showing that the iMHF has aAT
complexity at most O

(
N1.767)4. The DRSample [ABH17] iMHF modifies the edge distri-

bution of the Argon2i graph to ensure that the underlying directed acyclic graph (DAG)
satisfies a combinatorial property called depth-robustness, which is known to be neces-
sary [AB16] and sufficient [ABP17] for developing an MHF with high aAT complexity.

While the aAT complexity of DRSample is at least c1N
2/logN for some constant c1,

the constant c in this lower bound is poorly understood — Alwen et al. [ABH17] only
proved the lower bound when c1≈7×10−6. Similarly, Argon2i has aAT complexity
at least c2N

1.75/logN [BZ17] though the constants from this lower bound are also
poorly understood5. On the negative side the asymptotic lower bounds do not absolutely
rule out the possibility of an attack that reduces aAT complexity by several orders
of magnitude. Alwen et al. [ABH17] also presented an empirical analysis of the aAT
cost of DRSample and Argon2i by measuring the aAT cost of these functions against
a wide battery of pebbling attacks [AB16,ABP17,AB17]. The results of this empirical
analysis were quite positive for DRSample and indicated that DRSample was not only
stronger in an asymptotic sense, but that it also provided greater resistance to other
pebbling attacks than other iMHF candidates like Argon2i in practice.

Boneh et al. [BCS16] previously presented a greedy pebbling attack that reduced the
pebbling cost of Argon2i by a moderate constant factor of 4 to 5. The greedy pebbling
attack does not appear to have been included in the empirical analysis of Alwen et
4 This latest attack almost matches the lower bound of Ω̃

(
N1.75) on the aAT complexity

of Argon2i.
5 Blocki and Zhou did not explicitly work out the constants in their lower bound, but it

appears that c2≈5×10−7 [ABH17].



al. [ABH17]. In a strict asymptotic sense the depth-reducing attacks of Alwen and
Blocki [AB16,AB17] achieved more substantial Ω

(
N0.2+)-factor reductions in pebbling

cost, which may help to explain the omission of the greedy algorithm in [ABH17].
Nevertheless, it is worth noting that the greedy pebbling strategy is a simple sequential
pebbling strategy that would be easy to implement in practice. By contrast, there
has been debate about the practical feasibility of implementing the more complicated
pebbling attacks of Alwen and Blocki [AB16] (Alwen and Blocki [AB17] argued that
the attacks do not require unrealistic parallelism or memory bandwidth, but to the
best of our knowledge the attacks have yet to be implemented on an ASIC).

1.2 Contributions

Stronger Attacks. We present a theoretical and empirical analysis of the greedy peb-
bling attack [BCS16] finding that DRSample has aAT complexity at most /N2/logN .
The greedy pebbling attack that achieves this bound is sequential, easy to implement
and achieves high attack quality even for practical values of N . In fact, for practical
values of N ≤ 224 we show that DRSample is more vulnerable to known pebbling
attacks than Argon2i, which reverses previous conclusions about the practical security
of Argon2i and DRSample [ABH17]. We next consider a defense proposed by Biryukov
et al. [BDK16] against the greedy pebbling attack, which we call the XOR-extension
gadget. While this defense defeats the original greedy pebbling attack [BCS16], we
found a simple generalization of the greedy pebbling attack that thwarts this defense.
We also use the greedy pebbling attack to prove that any DAG with indegree two has
a sequential pebbling with aAT cost / N2

4 .
We also develop a novel greedy algorithm for constructing depth-reducing sets, which

is the critical first step in the parallel pebbling attacks of Alwen and Blocki [AB16,AB17].
Empirical analysis demonstrates that this greedy algorithm constructs significantly
smaller depth-reducing sets than previous state of the art techniques [AB16,AB17,
ABH17], which leads to higher quality attacks [AB16] and leaving us in an uncomfortable
situation where there high quality pebbling attacks against all iMHF candidates e.g.,
DRSample is susceptible to the greedy pebbling attack while Argon2i is susceptible
to depth-reducing attacks [AB16,AB17,ABH17].

New iMHF Candidate with Optimal Security. We next develop a new iMHF
candidate DRSample+BRG by overlaying a bit-reversal graph [LT82,FLW14] on top of
DRSample, and analyze the new DAG empirically and theoretically. Interestingly, while
neither DAG (DRSample or BRG) is known to have strong sustained space complexity
guarantees, we can prove that any parallel pebbling either has maximal sustained space
complexity (meaning that there are at leastΩ(N) steps withΩ(N/logN) pebbles on the
DAG) or has aAT cost at least ω(N2). This makes our construction the first practical con-
struction with strong guarantees on the sustained space-complexity — prior constructions
of Alwen et al. [ABP18] were theoretical. DRSample+BRG is asymptotically optimal
with respect to all proposed MHF metrics including bandwidth hardness (both BRG and
DRSample are bandwidth hard [RD17,BRZ18]) and aAT complexity (inherited from
DRSample [ABH17]). We also show that our construction optimally resists the greedy
attack and any extensions. In particular, we prove sequential pebbling of the bit-reversal
graph has cumulative memory cost (cmc) and aAT cost at least Ω(N2). This result
generalizes a well-known result that the bit-reversal graph has sequential space-time cost



Ω(N2) and may be of independent interest e.g., it demonstrates that Password Hashing
Competition Finalist Catena-BRG [FLW14] is secure against all sequential attacks.

Our empirical analysis indicates that DRSample+BRG offers strong resistance to all
known attacks, including the greedy pebbling attack, depth-reducing attacks and several
other novel attacks introduced in this paper. In particular, even for very large N=224

(224 1KB blocks =16GB) the best attack had aAT cost over N2

11 — for comparison
any DAG with indegree two has aAT cost / N2

4 .
We also show that the aAT/cmc of DRSample+BRG is at least Ω

(
N2loglogN/logN

)
under a plausible conjecture about the depth-robustness of DRSample. As evidence
for our conjecture we analyze three state-of-the-art approaches for constructing a
depth-reducing set, including the layered attack [AB16], Valiant’s Lemma [AB16,Val77]
and the reduction of Alwen et al. [ABP17], which can transform any pebbling with
low aAT cost (e.g., the Greedy Pebbling Attack) into a depth-reducing set. We show
that each attack fails to refute our conjecture. Thus, even if the conjecture is false we
would require significant improvements to state-of-the art to refute it.

Black Pebbling Reduction for XOR Labeling Rule. While Alwen and Ser-
binenko showed that any algorithm evaluating the graph labeling function fG,H
in the parallel random oracle model must have cumulative memory cost at least
Ω
(
w×Π‖cc(G)

)
, their proof made the restrictive assumption that labels are computed

using the concatenation rule labG,H,x(v)=H(v,labG,H,x(v1),...,labG,H,x(vδ)). However,
most practical iMHF implementations (e.g., Argon2i and DRSample(+BRG)) all follow
the more efficient XOR labeling rule labG,H,x(v)=H(labG,H,x(v1)⊕...⊕labG,H,x(vδ))
where v1,...,vδ=parents(v) and the DAGs have indegree δ=O(1). The XOR labeling
rule allows one to work with a faster round function H :{0,1}w→{0,1}w, e.g., Argon2i
builds H :{0,1}8192→{0,1}8192, to speed up computation so that we fill more memory.

We extend the results of Alwen and Serbinenko to show that, for suitable DAGs,
fG,H has cumulative memory cost at least Ω

(
w×Π‖cc(G)/δ

)
when using the XOR

labeling rule. The loss of δ is necessary as the pebbling complexity of the complete
DAG KN is Π‖cc(Kn)=Ω(N2), but fKN ,H has cmc/aAT cost at most O(N) when
defined using the XOR labeling rule. In practice, all of the graphs we consider have
δ=O(1) so this loss is not significant.

One challenge we face in the reduction is that it is more difficult to extract labels
from the random oracle query labG,H,x(v1)⊕ ...⊕ labG,H,x(vδ) than from the query
labG,H,x(v1),...,labG,H,x(vδ). Another challenge we face is that the labeling function
H′(x,y)=H(x⊕y) is not even collision resistant e.g., H′(y,x)=H′(x,y). In fact, one
can exploit this property to find graphs G on N nodes where the function fG,H is a
constant function: Suppose we start with a DAG G′=(V ′=[N−3],E′) on N−3 nodes
that has high pebbling cost Π‖cc(G′) and define G=(V =[N ],E=E′∪{(N−3,N−
2),(N−3,N−1),(N−4,N−2),(N−4,N−1),(N−2,N),(N−1,N)}) by adding directed
edges from node N−3 and N−4 to nodes N−2,N−1 and then adding directed edges
from N−2 and N−1 to node N . Note that for any input x we have labG,H,x(N−2)=
H(labG,H,x(N−3)⊕labG,H,x(N−3))= labG,H,x(N−1). It follows that

fG,H(x)= labG,H,x(N)=H(labG,H,x(N−2)⊕labG,H,x(N−1))=H(0w)
is a constant function. Thus, the claim that fG,H has cumulative memory cost at least
Ω
(
w×Π‖cc(G)/δ

)
cannot hold for arbitrary graphs.



The above example exploited the absence of the explicit term v in labG,H,x(v) to
produce two nodes that always have the same label. However, we can prove that if
the DAG G= (V = [N ],E) contains all edges of the form (i,i+1) for i < N then
any algorithm evaluating the function fG,H in the parallel random oracle model must
have cumulative memory cost at least Ω

(
w×Π‖cc(G)/δ

)
. Furthermore, the cumulative

memory cost of an algorithm computing fG,H on m distinct inputs must be at least
Ω
(
mw×Π‖cc(G)

)
. We stress that all of the practical iMHFs we consider, including

Argon2i and DRSample(+BRG), satisfy this condition.
Sequential Round Function. We show how a parallel attacker could reduce aAT
costs by nearly an order of magnitude by computation of the Argon2i round func-
tion in parallel. For example, the first step to evaluate the Argon2 round function
H(X,Y ) is to divide the input R = X ⊕Y ∈ {0,1}8192 into 64 groups of 16-byte
values R0,...,R63 ∈ {0,1}128 and then compute (Q0,Q1,...,Q7)←BP(R0,...,R7),...,
(Q56,Q56,...,Q63)←BP(R56,...,R63). Each call to the Blake2b permutation BP can be
trivially evaluated in parallel, which means that the attacker can easily reduce the depth
of the circuit evaluating Argon2 by a factor of 8 without increasing the area of the circuit
i.e., memory usage remains constant. The issue affects all Argon2 modes of operation
(including data-dependent modes like Argon2d and Argon2id) and could potentially
be used in combination with other pebbling attacks [AB16,AB17] for an even more
dramatic decrease in aAT complexity. We also stress that this gain is independent of
any other optimizations that an ASIC attacker might make to speed up computation
of BP e.g., if the attacker can evaluate BP four-times faster than the honest party
then the attacker will be able to evaluate the round function H 8×4=32-times faster
than the honest party. We propose a simple modification to the Argon2 round function
by injecting a few additional data-dependencies to ensure that evaluation is inherently
sequential. While the modification is simple we show it increases a parallel attacker’s
aAT costs by nearly an order of magnitude. Furthermore, empirical analysis indicates
that our modifications have negligible impact on the running time on a CPU.
Implementation of our iMHF. We develop an implementation of our new iMHF
candidate DRSample+BRG, which also uses the improved sequential Argon2 round
function. The source code is available on Github at https://github.com/antiparallel-
drsbrg-argon/Antiparallel-DRS-BRG. Empirical tests indicate that the running time
of DRSample+BRG is equivalent to that of Argon2 for the honest party, while our
prior analysis indicates the aAT costs, energy costs and sustained space complexity
are all higher for DRSample+BRG.

2 Preliminaries

In this section we will lay out notation and important definitions required for the
following sections.
2.1 Graph Notation and Definitions

We use G = (V,E) to denote a directed acyclic graph and we use N = 2n to
denote the number of nodes in V = {1, ... , N}. Given a node v ∈ V , we use
parents(v) = {u : (u,v) ∈ E} to denote the immediate parents of node v in G.
In general, we use ancestorsG(v)=

⋃
i≥1parentsiG(v) to denote the set of all ancestors

https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG
https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG


of v — here, parents2
G(v)=parentsG(parentsG(v)) denotes the grandparents of v and

parentsi+1
G (v)=parentsG

(
parentsiG(v)

)
. When G is clear from context we will simply

write parents (ancestors). We use indeg(G)=maxv|parents(v)| to denote the maximum
indegree of any node in G. All of the practical graphs we consider will contain each
of the edges (i,i+1) for i<N . Thus, there is a single source node 1 and a single sink
node N . Most of the graphs we consider will have indeg(G)=2 and in this case we
will use r(i)<i to denote the other parent of node i besides i−1. Given a subset of
nodes S⊆V we use G−S to refer to the graph with all nodes in S deleted and we
use G[S]=G−(V \S) to refer to the graph obtained by deleting all nodes except S.
Finally, we use G≤k=G[{1,...,k}] to refer to the graph induced by the first k nodes.

Block depth-robustness: Block depth-robustness is a stronger variant of depth-
robustness. First, we define N(v,b)={v−b+1,v−b+2,...,v} to be the set of b contiguous
nodes ending at node v. For a set of vertices S⊆V, we also define N(S,b)=

⋃
v∈SN(v,b).

We say that a graph is (e,d,b) block depth-robust if, for every set S⊆V of size |S|≤e,
depth(G−N(S,b))≥d. When b=1 we simply say that the graph is (e,d) depth-robust.
It is known that highly depth-robust DAGs G have high pebbling complexity, and can
be used to construct strong iMHFs with high aAT complexity in the random oracle
model [ABP17]. In certain cases, block depth-robustness can be used to establish even
stronger lower bounds on the pebbling complexity of a graph [ABH17,BZ17]. Alwen
et al. gave an algorithm DRSample that (whp) outputs a DAG G that is (e,d,b) block
depth-robust with e=Ω(N/logN), d=Ω(N) and b=Ω(logN) [ABH17].

Graph labeling functions. As mentioned in the introduction, an iMHF fG,H can be
described as a mode of operation over a directed acyclic graph using a round function
H. Intuitively, the graph represents data dependencies between the memory blocks
that are generated as computation progresses and each vertex represents a value being
computed based on some dependencies. The function fG,H(x) can typically be defined
as a labeling function i.e., given a set of vertices V =[N ]={1,2,3,...,N}, a compression
function H={0,1}∗→{0,1}m (often modeled as a Random Oracle in security analysis),
and an input x, we “label” the nodes in V as follows. All source vertices (those with no
parents) are labeled as `v(x)=H(v,x) and all other nodes with parents v1,v2,...,vδ are
labeled `v(x) =Fv,H(`v1(x),`v2(x),...,`vδ(x)) for a function Fv,H(·) that depends on
H(·). The output fG,H(x) is then defined to be the label(s) of the sink node(s) in G.

In theoretical constructions (e.g., [AS15]) we often haveFv,H(`v1(x),`v2(x),...,`vδ(x))=
H(v,`v1(x),`v2(x),...,`vδ(x)) while in most real world constructions (e.g., Argon2i [BDK16])
we have Fv,H(`v1(x),`v2(x),...,`vδ(x)) =H(`v1(x)⊕`v2(x)...⊕`vδ(x)). To ensure that
the function fG,H can be computed in O(N) steps, we require that G is an N-node
DAG with constant indegree δ.
2.2 iMHFs and the Parallel Black Pebbling Game
Alwen and Serbinenko [AS15] and Alwen and Tackmann [AT17] provided reductions
proving that in the parallel random oracle model (PROM) the amortized area time com-
plexity of the function fG,H is completely captured by the (parallel) black pebbling game
on the DAGGwhen we instantiate the round function as Fv,H(`v1(x),`v2(x),...,`vδ(x))=
H(v,`v1(x),`v2(x),...,`vδ(x)). However, practical constructions such as Argon2i use a
different round function F⊕v,H(`v1(x),`v2(x),...,`vδ(x))=H

(⊕δ
j=1`vj(x)

)
. In Section 6

we extend prior pebbling reductions to handle the round function F⊕v,H , which justifies
the use of pebbling games to analyze practical constructions of iMHFs such as Argon2i
or DRSample.



Intuitively, placing a pebble on a node represents computing the corresponding memory
block and storing it in memory. The rules of the black pebbling game state that we cannot
place a pebble on a node v until we have pebbles on the parents of node v i.e., we cannot
compute a new memory block until we have access to all of the memory blocks on which
the computation depends. More formally, in the black pebbling game on a directed graph
G=(V,E), we place pebbles on certain vertices of G over a series of t rounds. A valid
pebbling P is a sequence P0,P1,...,Pt of sets of vertices satisfying the following properties:
(1) P0 =∅, (2) ∀v∈Pi\Pi−1 we have parents(v)⊆Pi−1, and (3) ∀v∈V,∃i s.t. v∈Pi.

Intuitively, Pi denotes the subset of data-labels stored in memory at time i and
Pi\Pi−1 denotes the new data-labels that are computed during round i — the second
constraint states that we can only compute these new data-labels if all of the necessary
dependent data values were already in memory. The final constraint says that we
must eventually pebble all nodes (otherwise we would never compute the output
labels for fG,H). We say that a pebbling is sequential if ∀i>0 we have |Pi\Pi−1|≤1
i.e., in every round at most one new pebble is placed on the graph. We use P‖(G)
(resp. P(G)) to denote the set of all valid parallel (resp. sequential) black pebblings
of the DAG G. We define the space-time cost of a pebbling P = (P1,...,Pt) ∈ P‖G
to be st(P)=t×max1≤i≤t|Pi| and the sequential space-time pebbling cost, denoted
Πst(G)=minP∈PGst(P), to be the space-time cost of the best legal pebbling of G.

There are many other pebbling games one can define on a DAG including the red-blue
pebbling game [JWK81] and the black-white pebbling game [Len81]. Red-blue pebbling
games can be used to analyze the bandwidth-hardness of an iMHF [RD17,BRZ18]. In this
work, we primarily focus on the (parallel) black pebbling game to analyze the amortized
Area-Time complexity and the sustained space complexity of a memory-hard function.

Definition 1 (Time/Space/Cumulative Pebbling Complexity). The time, space,
space-time and cumulative complexity of a pebbling P ={P0,...,Pt}∈P‖G are defined to
be:
Πt(P)=t Πs(P)=max

i∈[t]
|Pi| Πst(P)=Πt(P)·Πs(P) Πcc(P)=

∑
i∈[t]

|Pi| .

For α∈{s,t,st,cc} the sequential and parallel pebbling complexities of G are defined as
Πα(G)= min

P∈PG
Πα(P) and Π‖α(G)= min

P∈P‖
G

Πα(P) .

It follows from the definition that for α∈{s,t,st,cc} and any G, the parallel pebbling
complexity is always at most as high as the sequential, i.e., Πα(G)≥Π‖α(G), and cumu-
lative complexity is at most as high as space-time complexity, i.e., Πst(G)≥Πcc(G) and
Π
‖
st(G)≥Π‖cc(G). Thus, we have Πst(G)≥Πcc(G)≥Π‖cc(G) and Πst(G)≥Π‖st(G)≥

Π
‖
cc(G). However, the relationship between Π‖st(G) and Πcc(G) is less clear. It is easy

to provide examples of graphs for which Πcc(G)�Π
‖
st(G) 6. Alwen and Serbinenko

showed that for the bit-reversal graph G= BRGn with O(N = 2n) nodes we have
6 One such graph G would be to start with the pyramid graph

a
k, which has O(k2) nodes,

a single sink node t and append a path W of length k3 starting at this sink node t. The
pyramid graph requires Π‖s

(a
k

)
=Θ(k) space to pebble and has Πcc

(a
k

)
≤Πst

(a
k

)
≤k3.

Similarly, the path W requires at least Π‖t (W )=Πt(W )=k3 steps to pebble the path (even
in parallel). Thus, Π‖st(G)≥k4. By contrast, we have Πcc(G)≤Πcc

(a
k

)
+k3≤k3+k3�k4



Π
‖
st(G) =O(n

√
n). In Section 4.2 we show that Πcc(G) =Ω

(
N2). Thus, for some

DAGs we have Πcc(G)�Π
‖
st(G).

Definition 2 (Sustained Space Complexity [ABP18]). For s∈N the s-sustained-
space (s-ss) complexity of a pebbling P={P0,...,Pt}∈P‖G is: Πss(P,s)= |{i∈ [t] : |Pi|≥
s}|. More generally, the sequential and parallel s-sustained space complexities of G are
defined as

Πss(G,s)= min
P∈PG

Πss(P,s) and Π‖ss(G,s)= min
P∈P‖

G

Πss(P,s) .

We remark that for any s we have Πcc(G)≥Πss(G,s)×s and Π‖cc(G)≥Π‖ss(G,s)×s.
2.3 Amortized Area-Time Cost (aAT)

Amortized Area-Time (aAT) cost is a way of viewing the cost to compute an iMHF,
and it is closely related to the cost of pebbling a graph. Essentially, aAT cost represents
the cost to keep pebbles in memory and adds in a factor representing the cost to
compute the pebble. Here we require an additional factor, the core-memory ratio R,
a multiplicative factor representing the ratio between computation cost vs memory
cost. In this paper we are mainly focused on analysis of Argon2, which has previous
calculations showing R=3000 [BK15]. It can be assumed that this value is being used
for R unless otherwise specified. The formal definition of the aAT complexity of a
pebbling P=(P0,...,PT ) of the graph G is as follows:

aATR(P)=
T∑
i=1
|Pi|+R

T∑
i=1
|Pi\Pi−1|

The (sequential) aAT complexity of a graph G is defined to be the aAT complexity
of the optimal (sequential) pebbling strategy. Formally,

aATR(G)= min
P∈P(G)

aATR(G) , and aAT‖R(G)= min
P∈P‖(G)

aATR(P) .

One of the nice properties of aAT‖ and Π‖cc complexity is that both cost metrics
amortize nicely i.e., if Gm consists of m independent copies of the DAG G then
aAT‖R(Gm)=m×aAT‖R(G). We remark that aAT‖R(G)≥Π‖cc(G), but that in most
cases we will have aAT‖R(G)≈Π‖cc(G) since the number of queries to the random
oracle is typically o

(
Π
‖
cc(G)

)
. We will work with Π‖cc(G) when conducting theoretical

analysis and we will use aAT‖R(G) when conducting empirical experiments, as the
constant factor R is important in practice. This also makes it easier to compare our
empirical results with prior work [AB17,ABH17].
2.4 Attack Quality

In many cases we will care about how efficient certain pebbling strategies are compared
to others. When we work with an iMHF, we have a näıve sequential algorithm N for
evaluation e.g., the algorithm described in the Argon2 specifications [BDK16]. Typically,
the näıve algorithm N is relatively expensive e.g., aATR(N )=N2/2+RN . We say

since we can place a pebble on node t with cost Πcc
(a

k

)
, discard all other pebbles from

the graph, and then walk this pebble across the path.



that an attacker A is successful at reducing evaluation costs if aATR(A)<aATR(N ).
Following [AB16] we define the quality of the attack as

AT-quality(A)= aATR(N )
aATR(A) ,

which describes how much more efficiently A evaluates the function compared to N .

3 Analysis of the Greedy Pebbling Algorithm

In this section we present a theoretical and empirical analysis of the greedy pebbling
attack [BCS16] that reverses previous conclusions about the practical security of Argon2i
vs DRSample [ABH17]. We prove two main results using the greedy algorithm. First, we
show that for any N node DAG G with indegree 2 and a unique topological ordering, we
have aATR(G)≤ N2+2N

4 +RN — see Theorem 1. Second, we prove that for any constant
η>0 and a random DRSample DAGG onN nodes, we haveΠst(G)≤(1+η)2N2/logN
with high probability — see Theorem 2. We stress that in both cases the bounds are
explicit not asymptotic, and that the pebbling attacks are simple and sequential.

Alwen and Blocki [AB16] previously had shown that any DAG G with constant
indegree has aAT‖R(G)∈O(N2loglogN/logN), but the constants from this bound
were not well understood and did not rule out the existence of an N node DAG G with
aAT‖R(G)≥N2/2+RN for practical values of N e.g., unless we use more than 16GB of
RAM we have N≤224 for Argon2i or DRSample7. By contrast, Theorem 1 immediately
implies that aAT‖R(G)≤ N2+2N

4 +RN . Similarly, Alwen et al. [ABH17] previously
showed that with high probability a DRSample DAG G has aAT‖R(G)∈Ω(N2/logN),
but the constants in this lower bound were not well understood. On a theoretical side, our
analysis shows that this bound is tight i.e., aAT‖R(G)∈Θ(N2/logN). It also proves that
DRSample does not quite match the generic upper bound of Alwen and Blocki [AB16].

Extension of the Greedy Pebbling Attack. Our analysis leaves us in an uncomfortable
position where every practical iMHF candidate has high-quality pebbling attacks i.e.,
greedy pebble for DRSample and depth-reducing attacks for Argon2i. We would like to
develop a practical iMHF candidate that provides strong resistance against all known
pebbling attacks for all practical values of N≤224. We first consider a defense proposed
by Biryukov et al. [BDK16] against the greedy pebbling attack. While this defense
provides optimal protection against the greedy pebbling attack, we introduce an extension
of the greedy pebbling attack that we call the staggered greedy pebbling attack and show
that the trick of Biryukov et al. [BDK16] fails to protect against the extended attack.

3.1 The Greedy Pebbling Algorithm

We first review the greedy pebbling algorithm. We first introduce some notation.
gc(v): For each node v<N we let gc(v)=max{w| (v,w)∈E} denote the maximum

child of node v — if v<N then the set {w| (v,w)∈E} is non-empty as it contains
the node v+1. If node v has no children then set gc(v):=v.

7 In Argon2, the block-size is 1KB so when we use N=224 nodes the honest party would
require 16GB (=N× KB) of RAM to evaluate the MHF. Thus, we view 224 as a reasonable
upper bound on the number of blocks that would be used in practical applications.



χ(i): This represents what we call the crossing set of the ith node. It is defined as
χ(i)={v|v≤i ∧ gc(v)>i}. Intuitively this represents the set of nodes v≤i incident
to a directed edge (v,u) that “crosses over” node i i.e. u>i.

Greedy Pebbling Strategy: Set GP(G)=P=(P1,...,PN) where Pi=χ(i) for each
i≤N . Intuitively, the pebbling strategy can be described follows: In round i we place
a pebble on node i and we then discard any pebbles on nodes v that are no longer
needed in any future round i.e., for all future nodes w > i we have v /∈ parents(w)
(equivalently, the greatest-child of node v is gc(v)≤i). We refer the reader to the full
version [BHK+18] for a formal algorithmic description.

We first prove the following general lower bound for any N node DAG with
indeg(G)≤2 that has a unique topological ordering i.e., G contains each of the edges
(i,i+1). In particular, Theorem 1 shows that for any such DAG G we have Πst(G)/ N2

2
and Πcc(G)/N2/4. We stress that this is twice as efficient as the naive pebbling algo-
rithm N , which set Pi={1,...,i} for each i≤N and has cumulative cost Π‖cc(N )= N2

2 .
Previously, the gold standard was to find constructions of DAGs G with N nodes such
that Π‖cc(G)' N2

2 for practical values of N — asymptotic results did not rule out this
possibility even for N≤240. Theorem 1 demonstrates that the best we could hope for
is to ensure Π‖cc(G)' N2

4 for practical values of N .

Theorem 1. Let r : N>0 → N be any function with the property that r(i) < i− 1
for all i∈N>0. Then the DAG G= (V,E) with N nodes V = {1,...,N} and edges
E = {(i− 1,i) : 1 < i ≤ N}∪ {(r(i),i) : 2 < i ≤ N} has Πst(G) ≤ N2+2N

2 and
Πcc(G)≤ N2+2N

4 and aATR(G)≤ N2+2N
4 +RN .

The full proof of Theorem 1 is in the full version [BHK+18] of this paper. Intuitively,
Theorem 1 follows from the observation that in any pebbling we have |Pi|≤i, and in
the greedy pebbling we also have |Pi|≤N−i since there can be at most N−i nodes
w such that w=r(v) for some v>i and other pebbles on any other node would have
been discarded by the greedy pebbling algorithm.

3.2 Analysis of the Greedy Pebble Attack on DRSample

We now turn our attention to the specific case of the iMHF DRSample. A DAG G sam-
pled from this distribution has edges of the form (i,i+1) and (r(i),i) where each r(i)<i
is independently selected from some distribution. It is not necessary to understand all of
the details of this distribution to follow our analysis in this section as the crucial property
that we require is given in Claim 1. The proof of Claim 1 (along with a description of DR-
Sample [ABH17]) is found in the full version [BHK+18] of this paper. Intuitively, Claim 1
follows because we have Pr[r(j)=i]∼ 1

logj×
1
|j−i| for each node i<j in DRSample.

Claim 1 Let G be a randomly sampled DRSample DAG with N nodes and let Yi,j
be an indicator random variable for the event that r(j)<i for nodes i<j≤N. Then
we have E[Yi,j]=Pr[r(j)<i]≤1− log(j−i−1)

logj .

If P =(P1,...,PN)=GP(G), then we remark that χ(i) can be viewed as an alternate
characterization of the set Pi=χ(i) of pebbles on the graph at time i. Lemma 1 now im-
plies that with high probability, we will have |Pi|≤(1+δ)N/n during all pebbling rounds.



Lemma 1. Given a DAG G on N=2n nodes sampled using the randomized DRSample
algorithm for any η>0, we have

Pr
[
max
i
|χ(i)|>(1+η)

(
2N
n

)]
≤exp

(
−2η2N

3n +nln2
)
.

Lemma 1, which bounds the size of maxi|χ(i)|, is proved in the full version [BHK+18].
Intuitively, the proof uses the observation that |χ(i)|≤

∑N
j=i+1Yi,j where Yi,j is an

indicator random variable for the event that r(j)≤i. This is because |χ(i)| is upper
bounded by the number of edges that “cross” over the node i. We can then use Claim 1
and standard concentration bounds to obtain Lemma 1.

Theorem 2, our main result in this section, now follows immediately from Lemma 1.
Theorem 2 states that, except with negligibly small probability, the sequential pebbling
cost of a DRSample DAG is at most (1+η)

(
2N2

n

)
+RN .

Theorem 2. Let G be a randomly sampled DRSample DAG with N=2n nodes. Then
for all η>0 we have

Pr
[
Πst(GP(G))>(1+η)

(
2N2

n

)]
≤exp

(
−2η2N

3n +nln2
)
.

Proof. Fix η>0 and consider a randomly sampled N-node DRSample DAG G. Recall
that |Pi|=χ(i) where P =GP(G). It follows that that Πst(GP(G))≤Nmaxi∈[N]|χ(i)|.
By Lemma 1, except with probability exp

(
−η2N/n

3 +nln2
)

, we have

Πst(GP(G))≤N×max
i∈[N]
|χ(i)|≤(1+η)

(
2N2

n

)
.

�

Discussion. Theorem 2 implies that the (sequential) aAT complexity of DRSample is
aATR(G)/2N2/logN∈O(N2/logN), which asymptotically matches the lower bound
of Ω(N2/logN) [ABH17]. More significant from a practical standpoint is that the
constant factors in the upper bound are given explicitly. Theorem 2 implies attack
quality at least ' logN

4 since the cost of the näıve pebbling algorithm is N2/2. Thus, for
practical values of N≤224 we will get high-quality attacks and our empirical analysis
suggests that attack quality actually scales with logN . On a positive note, the pebbling
attack is sequential, which means that we could adjust the näıve (honest) evaluation
algorithm to simply use N to use GP(G) instead because the greedy pebbling strategy
is sequential. While this would lead to an egalitarian function, the outcome is still
undesirable from the standpoint of password hashing where we want to ensure that
the attacker’s absolute aAT costs are as high as possible given a fixed running time N .

3.3 Empirical Analysis of the GP Attack

We ran the greedy pebbling attack against several iMHF DAGs including Argon2i,
DRSample and our new construction DRSample+BRG (see Section 4) and compare
the attack quality of the greedy pebbling attack with prior depth-reducing attacks. The
results, seen in Figure 2 (left), show that the GP attack was especially effective against
the DRSample DAG, improving attack quality by a factor of up to 7 (at n=24) when



compared to previous state-of-the-art depth-reducing attacks (Valiant, Layered, and
various hybrid approaches) [Val77,AB16,ABH17].

The most important observation about Figure 2 (left) is simply how effective the
greedy pebbling attack is against DRSample. We remark that attack quality for DR-
Sample with N=2n nodes seems to be approximately n — slightly better than the
theoretical guarantees from Theorem 2. While DRSample may have the strongest asymp-
totic guarantees (i.e. aAT‖(G)=Ω(N2/logN) for DRSample vs. aAT‖(G)=O(N1.767)
for Argon2i) Argon2i seems to provide better resistance to known pebbling attacks
for practical parameter ranges.

Our tests found that while the Greedy Pebbling attack does sometimes outperform
depth-reducing attacks at smaller values of n, the depth-reducing attacks appear to
be superior once we reach graph sizes that would likely be used in practice. As an
example, when n=20 we find that the attack quality of the greedy pebbling attack
is just 2.99, while the best depth-reducing attack achieved attack quality 6.25 [ABH17].

3.4 Defense Against Greedy Pebbling Attack: Attempt 1 XOR extension

Biryukov et al. [BDK16] introduced a simple defense against the greedy pebbling attack of
Boneh et al. [BCS16] for iMHFs that make two passes over memory. Normally during com-
putation the block Bi+N/2 would be stored at memory location i overwriting block Bi.
The idea of the defense is to XOR the two blocksBi+N/2 andBi before overwriting block
Bi in memory. Biryukov et al. [BDK16] observed that this defense does not significantly
slow down computation because block Bi would have been loaded into cache before it is
overwritten in either case. The effect of performing this extra computation is effectively
to add each edge of the form (i−N

2 ,i) to the DAG G. In particular, this means that the
greedy pebbling algorithm will not discard the pebble on node i−N

2 until round i, which
is when the honest pebbling algorithm would have discarded the pebble anyway. Given
a graph G=(V,E) we use G⊕=(V,E⊕) to denote the XOR-extension graph of G where
E⊕=E∪{(i−N

2 ,i) | i>
N
2 }. It is easy to see that Π‖cc(GP(G⊕))≥ N2+2N

4 , which would
make it tempting to conclude that the XOR-extension defeats the greedy pebbling attack.
Greedy Pebble Extension: Given a graph G on N nodes, let P = (P1,...,PN) =
GP(G) and let Q=(Q1,...,QN/2)=GP(G≤N/2). Define GPE(G⊕)=

(
P⊕1 ,...,P

⊕
N

)
where

P⊕i+N/2−1 =Qi∪Pi+N/2−1 and P⊕i =Pi for i<N/2. Intuitively, the attack exploits the
fact that we always ensure that we have a pebble on the extra node v∈parents(N/2+v)
at time N/2+v−1 by using the greedy pebble algorithm to synchronously re-pebble
the nodes 1,...,N/2 a second time.

Theorem 3 demonstrates that the new generalized greedy pebble algorithm is effective
against the XOR-extension gadget. In particular, Corollary 2 states that we still obtain
high-quality attacks against DRSample⊕ so the XOR-gadget does not significantly
improve the aAT cost of DRSample.

Theorem 3. Let r :N>0→N be any function with the property that r(i)<i for all
i∈N>0 and let G=(V,E) be a graph with N nodes V ={1,...,N} and directed edges
E={(i,i+1) | i<N}∪{r(i),i | 1<i≤N}. If P =GP(G)∈P(G) and Q∈P(G≤N/2)
then the XOR-extension graph G⊕ of G has amortized Area-Time complexity at most

aAT‖R
(
G⊕
)
≤
N/2∑
i=1
|Pi|+

N∑
i=1
|Qi|+

3RN
2 .



Corollary 1. Let r :N>0→N be any function with the property that r(i)<i for all
i∈N>0 and let G=(V,E) be a graph with N nodes V ={1,...,N} and directed edges
E={(i,i+1) | i<N}∪{r(i),i | 1<i≤N}. Then for the XOR-extension graph G⊕

we have aAT‖R(G⊕)≤ 5N2+12N
16 + 3RN

2 .

The proof of Theorem 3 can be found in the full version [BHK+18]. One consequence
of Theorem 3 is that the XOR-extension gadget does not rescue DRSample from the
greedy pebble attack — see Corollary 2.

Corollary 2. Fix η > 0 be a fixed constant and let G = (V,E) be a randomly
sampled DRSample DAG with N = 2n nodes V = {1, ... ,N} and directed edges
E={(i,i+1) | i<N}∪{r(i),i | 1<i≤N}. Then

Pr
[
aAT‖R

(
G⊕
)
>(1+η)

(
3N2

n
− N2

n(n−1)

)
+ 3RN

2

]
≤exp

(
−η2N

3(n−1) +1+nln2
)
.

Proof. Fix η>0 and let P =GP(G) whereG is a randomly sampled DRSample DAG. By
Lemma 1, except with probability exp

(
−2η2N

3n +nln2
)

, we have maxi|Pi|=maxi|χ(i)|≤

(1+η)2N
n , which means that

∑N
i=1|Pi| ≤ (1+η)2N2

n . Similarly, let Q= GP(G≤N/2)
be a greedy pebbling of the subgraph formed by the first N/2 nodes in G. We re-
mark that G≤N/2 can be viewed as a randomly DRSample DAG with N/2 = 2n−1

nodes. Thus except with probability exp
(
−η2N
3(n−1) +(n−1)ln2

)
, we have maxi≤N/2|Qi|=

maxi|χ(i)|≤(1+η) N
n−1 since the first N/2 nodes of G form a random DRSample DAG

with N/2=2n−1 nodes. This would imply that
∑N/2
i=1 |Qi|≤(1+η) N

n−1 . Putting both
bounds together Theorem 3 implies that aAT‖(G⊕)≤(1+η)

(
3N2

n −
N2

n(n−1)

)
+ 3RN

2 . �

4 New iMHF Construction with Optimal Security

In this section, we introduce a new iMHF construction called DRSample+BRG. The
new construction is obtained by overlaying a bit-reversal graph BRGn [LT82] on top of
a random DRSample DAG. If G denotes a random DRSample DAG with N/2 nodes
then we will use BRG(G) to denote the bit-reversal overlay with N nodes. Intuitively,
the result is a graph that resists both the greedy pebble attack (which is effective
against DRSample alone) and depth-reducing attacks (which DRSample was designed
to resist). An even more exciting result is that we can show that DRSample+BRG is
the first practical construction to provide strong sustained space complexity guarantees.
Interestingly, neither graph (DRSample or BRG) is individually known to provide strong
sustained space guarantees. Instead, several of our proofs exploit the synergistic properties
of both graphs. We elaborate on the desirable properties of DRSample+BRG below.

First, our new construction inherits desirable properties from both the bit-reversal
graph and DRSample. For example, Π‖cc(BRG(G))≥Π‖cc(G)=Ω

(
N2/logN

)
. Similarly,

it immediately follows that BRG(G) is maximally bandwidth hard. In particular, Ren
and Devadas [RD17] showed that BRGn is maximally bandwidth hard, and Blocki et
al. [BRZ18] showed that DRSample is maximally bandwidth hard.

Second, BRG(G) provides optimal resistance to the greedy pebbling attack —
Π
‖
cc(GP(BRG(G)))≈N2/4. Furthermore, we can show that any c-parallel pebbling



attack P =(P1,...,Pt) in which |Pi+1\Pi|≤c has cost Πcc(P )=Ω
(
N2). This rules out

any extension of the greedy pebble attack e.g., GPE is 2-parallel. In fact, we prove
that this property already holds for any c-parallel pebbling of the bit reversal graph
BRGn. Our proof that Πcc(BRGn) =Ω(N2) generalizes the well-known result that
Πst(BRGn)=Ω(N2) and may be of independent interest.

Third, we can show that any parallel pebbling P of BRG(G) either has Πcc(P)=
Ω
(
N2) or has maximal sustained space complexity Πss (P,s) = Ω(N) for space

s=Ω(N/logN) i.e., there are at least Ω(N) steps with at least Ω(N/logN) pebbles on
the graph. To prove this last property we must rely on properties of both graphs G and
BRGn i.e., the fact that DRSample is highly block depth-robust and the fact that edges
BRGn are evenly distributed over every interval. This makes BRG(G) the first practical
construction of a DAG with provably strong sustained space complexity guarantees.

Finally, we can show that Π‖cc(G) =Ω
(
N2loglogN/logN

)
, matching the general

upper bound of Alwen and Blocki [AB16], under a plausible conjecture about the
block-depth-robustness of G. In particular, we conjecture that G is (e,d,b)-block
depth-robust for e=Ω

(
NloglogN

logN

)
, d=Ω

(
NloglogN

logN

)
and b=Ω

(
logN

loglogN

)
. In the full

version [BHK+18], we also show how to construct a constant indegree DAG G′ with
Π
‖
cc(G′)=Ω

(
N2loglogN/logN

)
from any (e,d)-depth robust graph by overlaying a

superconcentrator on top of G [Pip77]. However, the resulting construction is not prac-
tically efficient. Thus we show the bit reversal overlay G′=BRG(G) satisfies the same
complexity bounds under the slightly stronger assumption that G is block-depth-robust.
As evidence for the conjecture we show that known attacks require the removal of a
set S of e=Ω

(
NloglogN

logN

)
to achieve depth(G−S)≤ N√

logN
. Thus, we would need to

find substantially improved depth-reducing attacks to refute the conjectures.
Bit-Reversal Graph Background. The bit reversal graph was originally proposed

by Lenguer and Tarjan [LT82] who showed that any sequential pebbling has maximal
space-time complexity. Forler et al. [FLW14] previously incorporated this graph into
the design of their iMHF candidate Catena, which received special recognition at
the password hashing competition [PHC16]. While we are not focused on sequential
space-time complexity, the bit reversal graph has several other useful properties that
we exploit in our analysis (see Lemma 2).

Local Samplable. We note that one benefit of DRS+BRG is that it is locally
samplable, a notion mentioned as desirable in [ABH17]. Specifically, we want to be
able to compute the parent blocks with time and space O(log|V |) with small constants.
DRS+BRG meets this requirement. Edges sampled from DRSample were shown to
be locally navigable in [ABH17], and each bit-reversal edge a simple operation called
requires one bit reversal operation, which can easily be computed in timeO(log|V |). The
formal description of the bit-reversal overlay graph BRG(G) is presented in Definition 4.

The Bit-Reversal DAG. Given a sequence of bits X = x1 ◦ x2 ◦ ··· xn, let
ReverseBits(X)=xn◦xn−1◦···◦x1. Let integer(X) be the integer representation of bit-
stringX starting at 1 so that integer({0,1}n)=[2n] i.e., integer(0n)=1 and integer(1n)=
2n. Similarly, let bits(v,n) be the length n binary encoding of (v−1) mod2n e.g.,
bits(1,n)=0n and bits(2n,n)=1n so that for all v∈ [2n] we have integer(bits(v,n))=v.
Definition 3. We use the notation BRGn to denote the bit reversal graph with 2n+1

nodes. In particular, BRGn =
(
V =

[
2n+1],E=E1∪E2

)
where E1 := {(i,i+1) : 1≤



i < 2n+1} and E2 := {(x,2n + y) : x = integer(ReverseBits(bits(y,n)))}. That is,
E2 contains an edge from node x ≤ 2n to node 2n + y in BRGn if and only if
x= integer(ReverseBits(bits(y,n))).

Claim 2 states that the cumulative memory cost of the greedy pebbling strategy
GP(BRGn) is at least N2+N .

Claim 2 Πcc(GP(BRGn))≥N2+N

Proof. Let P = (P1,...,P2N) = GP(BRGn). We first note that for all i≤N we have
Pi={1,...,i} since gc(i)>N — every node on the bottom layer [N ] has an edge to
some node on the top layer [N+1,2N ]. Second, observe that for any round i>N we
have |(Pi\Pi+1)∩[N ]|≤1 since the only pebble in [N ] that might be discarded is the
(unique) parent of node i. Thus,

2N∑
i=1
|Pi|≥

N∑
i=1

i+
N∑
i=1

(N−i+1)=N(N+1) . �

Thus, we now define the bit-reversal overlay of the bit reversal graph on a graph G1.
If the graph G1 has N nodes then BRG(G1) has 2N nodes, and the subgraph induced
by the first N nodes of BRG(G1) is simply G1.

Definition 4. Let G1 = (V1 = [N ],E1) be a fixed DAG with N = 2n nodes and
BRGn=(V =[2N ],E) denote the bit-reversal graph. Then we use BRG(G1)=(V,E∪E1)
to denote the bit-reversal overlay of G1.

In our analysis, we will rely heavily on the following key-property of the bit-reversal
graph from Lemma 2.

Lemma 2. Let G = BRGn and N = 2n so that G has 2N nodes. For a given b,
partition [N ] into N

2n−b =2b intervals Ik=
[
(k−1)2n−b, k2n−b−1

]
, each having length

2n−b, for 1≤k≤2b. Then for any interval I of length 2b+1, with I⊆ [N+1,2N ], there
exists an edge from each Ik to I, for 1≤k≤2b.

Proof of Lemma 2. Let I be any interval of length 2b, with I⊆ [N+1,2N ]. Note that
every 2b length bitstring appears as a suffix in I. Thus, there exists an edge from each
interval containing a unique 2b length bitstring as a prefix. It follows that there exists
an edge from each Ik to I, for 1≤k≤2b. �

As we will see, the consequences of Lemma 2 will have powerful implications for
the pebbling complexity of G=BRG(G1) whenever the underlying DAG G1 is (e,d,b)-
block-depth-robust. In particular, Lemma 3 states that if we start with pebbles on
a set |Pi|<e/2 then for any initially empty interval I of O(N/b) consecutive nodes
in the top-half of G we have the property that H :=G−

⋃
x∈Pi[x− b+1,x] is an

(e/2,d,b)-block-depth-robust graph that will need to be completely re-pebbled (at cost
at least Π‖cc(H)≥ ed/2) just to advance a pebble across the interval I. See the full
version [BHK+18] for the proof of Lemma 3.

Lemma 3. Let G1 =(V1 =[N ],E) be a (e,d,b)-block depth-robust graph with N=2n
nodes and let G= BRG(G1) denote the bit-reversal extension of G1 with 2N nodes
V (G)=[2N ]. For any interval I=

[
N+i+1,N+i+1+ 4N

b

]
⊆ [2N ] and any S⊆ [1,N+i]

with |S|< e
2 , ancestorsG−S(I) is

(
e
2 ,d,b

)
-block depth-robust.



Lemma 4. LetG be a (e,d,b)-block depth-robust DAG withN=2n and letG′=BRG(G)
be the bit reversal overlay of G. Let P ∈P‖(G′) be a legal pebbling of G′ and let tv
be the first time where v ∈ Ptv . Then for all v ≥ 1 such that e′ := |Ptv+N | ≤ e

4 and
v≤N− 32Ne′

be , we have
t
v+N+ 32Ne

be′
−1∑

j=tv+N

|Pj|≥
ed

2 .

Proof of Lemma 4. Let v ≤N − 32Ne
be′ be given such that the set S = PtN+v has

size at most e′ = |S| ≤ e/4 and set b′ = eb
4e′ . Consider the ancestors of the interval

I = [N+v+1,N+v+ 8N
b′ ] in the graph G′−S. Note that I∩S = ∅ since v is the

maximum node that has been pebbled at time tN+v. We have
H :=G−

⋃
x∈S

[x−b′+1,x]⊆ancestorG′−S(I)

because for any node u∈V (G) if u 6∈
⋃
x∈S[x−b′+1,x] then [u,u+b′−1]∩S=∅ which

implies that there exists an “S-free path” from u to I by Lemma 2. Thus, H will have to
be repebbled completely at some point during the time interval

[
tv+N ,tv+N+ 32Ne′

be −1

]
since 32Ne′

be ≥
8N
b .

Since b′= eb
4e′ ≥b we note that the e′ intervals of length b′ we are removing can be

covered by at most db′/bee′=de/(4e′)ee′≤(e/4)+e′≤e/2 intervals of length e. Hence,
Lemma 3 implies that H is still (e/2,d,b)-block depth-robust and, consequently, we
have that Π‖cc(H)≥ed/2 by [ABP17]. We can conclude that

t
v+N+ 32Ne′

be
−1∑

j=tv+N

|Pj|≥Π‖cc(H)≥ed/2 . �

4.1 Sustained Space Complexity (Tradeoff Theorem)

We prove that for any parameter e=O
(

N
logN

)
, either the cumulative pebbling cost

of any parallel (legal) pebbling P is at least Π(P)=Ω(N3/(elogN)), or there are at
least Ω(N) steps with at least e pebbles on the graph i.e., Πss,e(P )=Ω(N). Note that
the cumulative pebbling cost rapidly increases as e decreases e.g., if e=

√
N/logN then

any pebbling P for which Πss(P,e)=o(N) must have Π(P)=Ω(N2.5).
To begin we start with the known result that (with high probability) a randomly sam-

pled DRSample DAGG is (e,d,b)-block depth-robust with e=Ω(N/logN), b=Ω(logN),
and d=Ω(N) [ABH17]. Lemma 5 now implies that the DAG is also (e′,d,b′)-block depth-
robust for any suitable parameters e′ and b′. Intuitively, if we delete e′ intervals of length
b′>b then we can cover these deleted intervals with at most e′

(
b′

b +1
)

intervals of length
b, as illustrated in Figure 1. The formal proof of Lemma 5 is in the full version [BHK+18].

Lemma 5. Suppose that a DAG G is (e,d,b)-block depth-robust and that parameters e′

and b′ satisfy the condition that e′
(
b′

b

)
+e′≤ e

2 . Then G is (e′,d,b′)-block depth-robust,
and for all S with size |S|≤e′ the graph H=G−

⋃
x∈S[x−b′+1,x] is

(
e
2 ,d,b

)
-block

depth-robust.



G

G

F∈S
N∈S′

F

N N N N

⊆
⋃
x∈S[x−b′+1,x]

⊆
⋃
x∈S′ [x−b+1,x]

Fig. 1: Intervals
⋃
x∈S[x− b′+ 1,x] and

⋃
x∈S′[x− b+ 1,x] when b′ = 10 and b= 3.

Observe that
⋃
x∈S′[x−b+1,x]⊃

⋃
x∈S[x−b′+1,x] over the integers.

Together Lemma 4 and Lemma 5 imply that we must incur pebbling cost Ω(ed) to
pebble any interval of Ω

(
Ne′

be

)
consecutive nodes in the top half of BRG(G), starting

from any configuration with at most e′≤e/4 pebbles on the graph.
Theorem 4, our main result in this subsection, now follows because for any pebbling

P ∈Π‖(BRG(G)) and any interval I of Ω
(
Ne′

be

)
nodes in the top-half of G we must

either (1) keep at least e′ pebbles on the graph while we walk a pebble accross the
first half of the interval I, or (2) pay cost Ω(ed) to re-pebble a depth-robust graph.
Since there are Ω

(
eb
e′

)
such disjoint intervals we must either keep |Pi|≥e′ pebbles on

the graph for Ω(N) rounds, or pay cost Π‖cc(P)≥ e2db
64e′ .

Theorem 4. Let G be any (e,d,b)-block depth-robust DAG on N = 2n nodes, and
G′=BRG(G) be the bit reversal overlay of G. Then for any pebbling P ∈Π‖(G) and all
e′≤ e

4 , we have either Π‖cc(P)≥ e2db
64e′ , or Πss(P,e′)≥ N

4 −o(N) i.e., at least N
4 −o(N)

rounds i in which |Pi|≥e′.

Corollary 3 follows immediately from Theorem 4.

Corollary 3. Let G be any
(
c1N
logN ,c2N,c3logN

)
-block depth-robust DAG on N=2n

nodes for some constants c1,c2,c3>0 and letG′=BRG(G) be the bit reversal overlay ofG.
Then for any e′< c1N

4logN and any pebbling P ∈P‖(G′) we have either Π‖cc(P )≥ c2
1c2c3N

3

64e′logN ,
or Πss(P,e′)≥ N

4 −o(N) i.e., there are at least N
4 −o(N) rounds j in which |Pj|≥e′.

Remark 1. Alwen et al. previously proved that for constants c1 =2.4×10−4, c2 =0.03
and c3 =160, a randomly sampled DAG G from DRSample will be

(
c1N
logN ,c2N,c3logN

)
-

block depth-robust except with negligible probability [ABH17]. Thus, with high prob-
ability Corollary 3 can be applied to the bit reversal overlay BRG(G). Notice also that
as e′ decreases, the lower bound on Π‖cc(P) increases rapidly e.g., if a pebbling does
not have at least Ω(N) steps with at least e′=Ω

(√
N
)

pebbles on the graph, then

Π
‖
cc(P)=Ω̃

(
N2.5).

A Conjectured (Tight) Lower Bound on Π
‖
cc(BRG(G)). The idea behind

the proof of Theorem 5 in the full version [BHK+18] is very similar to the proof of
Theorem 4 — an attacker must either keep e/2 pebbles on the graph most of the
time or the attacker must pay Ω(edb) to repebble an (e,d)-depth Ω(b) times. In fact,
a slightly weaker version (worse constants) of Theorem 5 follows as a corollary of



Theorem 4 since Π‖cc(P )≥e′×Πss(P,e′). Under our conjecture that DRSample DAGs
are (c1N loglogN/logN,c2N loglogN/logN,c3logN/loglogN)-block depth-robust graph,
Theorem 5 implies that Π‖cc(BRG(G))=Ω(N2loglogN/logN). In fact, any pebbling
must either keep Ω(N loglogN/logN) pebbles on the graph for ≈N/4 steps or the
pebbling has cost Ω(N2loglogN).

Theorem 5. Let G1 be an (e,d,b)-block depth-robust graph with N=2n nodes. Then
Π
‖
cc(BRG(G1))≥min

(
eN
2 ,

edb
32
)
.

Evidence for Conjecture. In the full version [BHK+18] we present evidence for
our conjecture on the (block) depth-robustness of DRSample. We show that all known
techniques for constructing depth-reducing sets fail to refute our conjecture. Along the
way we introduce a general technique for bounding the size of a set S produced by
Valiant’s Lemma8. In this attack we partition the edges into sets E1,...,En where Ei
contains the set of all edges (u,v) such that the most significant different bit of (the
binary encoding of) u and v is i. By deleting j of these edge sets (e.g., by removing one
node incident to each edge) we can reduce the depth of the graph to N/2j. In the full
version [BHK+18] we show that for any edge distribution function r(v)<v we have

E[|Ei|]=
N

2i +

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
2i−1+m≥v−r(v)>m

]
where the value of the random variable |Ei| will be tightly concentrated around its
mean since for each node v the edge distribution function r(v) is independent.

4.2 (Nearly) Sequential Pebblings of BRGn have Maximum Cost

In this section, we show that for any constant c≥1 any c-parallel pebbling P of BRGn
must have cost Πcc(P)=Ω

(
N2). A pebbling P =(P1,...,Pt) is said to be c-parallel

if we have |Pi+1\Pi|≤c for all round i<t. We remark that this rules out any natural
extension of the greedy pebbling attack e.g., the extension from the previous section
that defeated the XOR extension graph G⊕ was a c= 2-parallel pebbling. We also
remark that our proof generalizes a well-known result of [LT82] that implied that
Πst(BRGn)=Ω

(
N2) for any sequential pebbling. For parallel pebblings it is known

that Π‖st =O
(
N1.5) [AS15] though this pebbling attack requires parallelism c=

√
N .

8 In the full version [BHK+18] we also analyze the performance of Valiant’s Lemma attack
against Argon2i. Previously, the best known upper bound was that Valiant’s Lemma
yields a depth-reducing set of size e=O

(
Nlog(N/d)

logN

)
for any DAG G with constant indegree.

For the specific case of Argon2i this upper bound on e was significantly larger than the
upper bound — e= Õ

(
N

d1/3

)
— obtained by running the layered attack [AB17,BZ17].

Nevertheless, empirical analysis of both attacks surprisingly indicated that Valiant’s Lemma
yields smaller depth-reducing sets than the layered attack for Argon2i. We show how to
customize the analysis of Valiant’s Lemma attack to a specific DAG such as DRSample
or Argon2i. Our theoretical analysis of Valiant’s Lemma explains these surprising empirical
results. By focusing on Argon2i specifically we can show that, for a target depth d, the
attacker yields a depth-reducing set of size e=Õ

(
N

d1/3

)
�O

(
Nlog(N/d)

logN

)
, which is optimal

and matches the performance of the layered attack [BZ17].



It is easy to show (e.g., from Lemma 2) that starting from a configuration with
|Pi|≤e pebbles on the graph, it will take Ω(N) steps to advance a pebble O(e) steps
on the top of the graph. It follows that Πst(BRGn)=Ω

(
N2). The challenge in lower

bounding Πcc(G) as in Theorem 6 is that space usage might not remain constant
throughout the pebbling. Once we have proved that Πcc(G)=Ω(N2) we then note
that any c-parallel pebbling P can be transformed into a sequential pebbling Q s.t.
Πcc(Q)≤c×Πcc(P ) by dividing each transition Pi→Pi+1 into c transitions to ensure
that |Qj\Qj−1|≤1. Thus, it follows that Πcc(P )=Ω

(
N2) for any c-parallel pebbling.

Theorem 6. Let G=BRGn and N=2n. Then Πcc(G)=Ω
(
N2).

The full proof of Theorem 6 can be found in the full version [BHK+18]. Briefly, we
introduce a potential function Φ and then argue that, beginning with a configuration
with at most O(e) pebbles on the graph, advancing the pebble e steps on the top of
the graph either costs Ω(Ne) (i.e., we keep Ω(e) pebbles on the graph for the Ω(N)
steps required to advance the pebble e steps) or increases the potential function by
Ω(Ne) i.e., we significantly reduce the number of pebbles on the graph during the
interval. Note that the cost Ω(Ne) to advance a pebble e steps on the top of the graph
corresponds to an average cost of Ω(N) per node on the top of the graph. Thus, the
total cost is Ω(N2). Lemma 6, which states that it is expensive to transition from a
configuration with few pebbles on the graph to a configuration with many well-spread
pebbles on the graph, is a core piece of the potential function argument.

Lemma 6. Let G=BRGn for some integer n>0 and N=2n. Let P =(P1,...,Pt)∈
P(G) be some legal sequential pebbling of G. For a given b, partition [N ] into N

2b =2n−b
intervals Ix=

[
(x−1)2b+1,x×2b

]
, each having length 2b, for 1≤x≤2n−b. Suppose that

at time i, at most N
2b′+3 of the intervals contain a pebble with b′≥b and at time j, at least

N
2b′+1 of the intervals contain a pebble. Then |Pi|+...+|Pj|≥ N2

2b′+5 and (j−i)≥ 2b−b
′
N

4 .

5 Empirical Analysis

We empirically analyze the quality of DRS+BRG by subjecting it to a variety of
known depth-reducing pebbling attacks [AB16, AB17] as well as the “new” greedy
pebbling attack. We additionally present a new heuristic algorithm for construct-
ing smaller depth-reducing sets, which we call greedy depth reduce. We extend the
pebbling attack library of Alwen et al. [ABH17] to include the greedy pebbling
algorithm [BCS16] as well as our new heuristic algorithm. The source code is avail-
able on Github at https://github.com/NewAttacksAndStrongerConstructions/
PebblingAndDepthReductionAttacks.

5.1 Greedy Depth Reduce

We introduce a novel greedy algorithm for constructing a depth-reducing set S such
that depth(G−S)≤dtgt. Intuitively, the idea is to repeatedly find the node v∈V (G)\S
that is incident to the largest number of paths of length dtgt in G−S and add v to
S until depth(G−S)≤dtgt. While we can compute incident(v,dtgt), the number of
length dtgt paths incident to v, in polynomial time using dynamic programming, it will

https://github.com/NewAttacksAndStrongerConstructions/PebblingAndDepthReductionAttacks
https://github.com/NewAttacksAndStrongerConstructions/PebblingAndDepthReductionAttacks


take O(Ndtgt) time and space to fill in the dynamic programming table. Thus, a näıve
implementation would run in total timeO(Ndtgte) since we would need to recompute the
array after each iteration. This proves not to be feasible in many instances we encountered
e.g.N=224, dtgt=216 and e≈6.4×105 and we would need to run the algorithm multiple
times in our experiments. Thus, we adopt two key heuristics to reduce the running time.
The first heuristic is to fix some parameter d′≤dtgt (we used d′=16 whenever dtgt≥16)
and repeatedly delete nodes incident to the largest number of paths of length d′ until
depth(G−S)≤dtgt. The second heuristic is to select a larger set T⊆V (G)\S of k nodes
(we set k=400×2(18−n)/2 in our experiments) to delete in each round so that we can
reduce the number of times we need to re-compute incident(v,dtgt). We select T in a
greedy fashion: repeatedly select a node v (with maximum value incident(v,d′)) subject
to the constraint dist(v,T)≤r for some radius r (we used r=8 in our experiments)
until |T |≥k or there are no nodes left to add — here dist(v,T ) denotes the length of the
shortest directed path connecting v to T in G−S. In our experiments we also minimized
the number of times we need to run the greedy heuristic algorithm for each DAG G
by first identifying the target depth value d∗tgt=2j with j∈ [n] which resulted in the
highest quality attack against G when using other algorithms (Valiant’s Lemma/Layered
Attack) to build the depth-reducing set S. For each DAG G we then ran our heuristic
algorithm with target depths dtgt = 2j×d∗tgt for each j ∈{−1,0,1}. A more formal
description of the heuristic algorithm can be found in the full version [BHK+18].

Figure 3 explicitly compares the performance of our greedy heuristic algorithm with
prior state-of-the-art algorithms for constructing depth-reducing sets. Given a DAG
G (either Argon2i, DRSample or DRS+BRG) on N=2n nodes and a target depth
dtgt we run each algorithm to find a (small) set S such that depth(G−S)≤dtgt. The
figure on the left (resp. right) plots the size of the depth-reducing set e= |S| vs. the size
of the graph N (logscale) when the target depth dtgt=8 (resp. dtgt=16). Our analysis
indicates that our greedy heuristic algorithm outperforms all prior state-of-the-art
algorithms for constructing depth-reducing sets including Valiant’s Lemma [Val77] and
the layered attack [AB16]. In particular, the greedy algorithm consistently outputs a
depth-reducing that is 2.5 to 5 times smaller than the best depth-reducing set found
by any other approach — the improvement is strongest for the DRSample graph.

5.2 Comparing Attack Quality

We ran each DAG G (either Argon2i, DRSample or DRS+BRG) with N=2n nodes
against a battery of pebbling attacks including both depth-reducing attacks [AB16,AB17]
and the greedy pebble attack. In our analysis we focused on graphs of size N=2n with n
ranging from n∈ [14,24], representing memory ranging from 16MB to 16GB. Our results
are shown in Figure 2. While DRSample provided strong resistance to depth-reducing
attacks (right), the greedy pebbling attack (left) yields a very high-quality attack (for
n≥20 the attack quality is ≈n) against DRSample. Similarly, as we can see in Figure 2,
Argon2i provides reasonably strong resistance to the greedy pebble attack (left), but
is vulnerable to depth-reducing attacks (right). DRS+BRG strikes a healthy middle
ground as it provides good resistance to both attacks. In particular, even if we use our
new greedy heuristic algorithm to construct the depth-reducing sets (right), the attack
quality never exceeds 6 for DRS+BRG. In summary, DRS+BRG provides the strongest
resistance to known pebbling attacks for practical parameter ranges n∈ [14,24].



As Figure 2 (right) demonstrates attack quality almost always improves when we
use the new greedy algorithm to construct depth-reducing sets. The one exception
was that for larger Argon2i DAGs prior techniques (i.e., Valiant’s Lemma) outperform
greedy. We conjecture that this is because we had to select the parameter d′�d∗tgt for
efficiency reasons. For DRSample and DRS+BRG the value d∗tgt was reasonably small
i.e., for DRSample we always had d∗tgt≤16 allowing us to set d′=d∗tgt. We believe that
the greedy heuristic algorithm would outperform prior techniques if we were able to
set d′∼d∗tgt and that this would lead to even higher quality attacks against Argon2i.
However, the time to pre-compute the depth-reducing set will increase linearly with d′.

14 16 18 20 22 240

10

20

30

Running Time Parameter: n=log2(N)

B
es

t
A

tt
ac

k
Q

ua
lit

y

Greedy Pebble vs.
Prior Depth-Reducing Attacks

Argon2i

DRSample

DRS+BRG

best DR atk

14 16 18 20 22 24
0

2

4

6

8

10

12

Running Time Parameter: n=log2(N)

A
tt

ac
k

Q
ua

lit
y

Greedy Depth-Reduce vs.
Prior Depth Reducing Attacks

Argon2i

DRSample

DRS+BRG

Prev. best

Fig. 2: Attack Quality for Greedy Pebble and Greedy Depth Reduce

14 16 18 20 22 24 0

1

2

3

4

5

Im
pr

ov
em

en
t:
e o
ld
/e
g
r
e
e
d
y

14 16 18 20 22 24

104

105

106

107

Running Time Parameter: log2(N)

Si
ze

of
th

e
de

pt
h

re
du

ci
ng

se
t

(e
)

Depth: d=8

14 16 18 20 22 24 0

1

2

3

4

5

Running Time Parameter: log2(N)

Im
pr

ov
em

en
t:
e o
ld
/e
g
r
e
e
d
y

Depth: d=16

14 16 18 20 22 24

104

105

106

107

Si
ze

of
th

e
de

pt
h

re
du

ci
ng

se
t

(e
)

Argon2i

DRSample

DRS+BRG

w/o greedy

eold/enew

Fig. 3: Greedy Depth-Reduce vs Prior State of the Art

6 Pebbling Reduction

Alwen and Serbinenko [AS15] previously showed that, in the parallel random or-
acle model, the cumulative memory complexity (cmc) of an iMHFs fG,H can be



characterized by the black pebbling cost Π‖cc(G) of the underlying DAG. However,
their reduction assumed that the output of fG,H(x) := labG,H,x(N) is the label of
the last node N of G where labels are defined recursively using the concatenation
rule labG,H,x(v) := H(v, labG,H,x(v1),..., labG,H,x(vδ)) where v1,...,vδ = parentsG(v).
I To improve performance, real world implementations of iMHFs such as Argon2i,
DRSample and our own implementation of BRG(DRSample) use the XOR labeling rule
labG,H,x(v) :=H(labG,H,x(v1)⊕labG,H,x(v2)⊕...⊕labG,H,x(vδ)) so that we can avoid
Merkle-Damgard and work with a faster round function H :{0,1}w→{0,1}w instead
of requiring H :{0,1}(δ+1)w→{0,1}w.

We prove that in the parallel random oracle model, the cumulative memory complexity
of fG,H is still captured by Π‖cc(G) when using the XOR labeling rule (under certain
restrictions discussed below that will hold for all of the iMHF constructions we consider
in this paper). We postpone a fully formal definition of cumulative memory complexity
cmc to the full version [BHK+18] as it is identical to [AS15]. Intuitively, one can consider
the execution trace TraceA,R,H(x)={(σi,Qi)}ti=1 of an attacker AH(.)(x;R) on input
value x with internal randomness R. Here, Qi denotes the set of random oracle queries
made in parallel during round i and σi denotes the state of the attacker immediately
before the queries Qi are answered. In this case, cmc(TraceA,R,H(x)):=

∑
i|σi| sums

the memory required during each round in the parallel random oracle model9. For a
list of distinct inputs X=(x1,x2,...,xm), let f×mG,H(X) be the ordered tuple f×mG,H(X)=
(fG,H(x1),fG,H(x2),...,fG,H(xm)). Then the memory cost of a f×mG,H is defined by

cmcq,ε(f×mG,H)=min
A,x

E[cmc(TraceA,R,H(x))],

where the expectation is taken over the selection of the random oracle H(·) as well as the
internal randomness R of the algorithm A. The minimum is taken over all valid inputs
X=(x1,x2,...,xm) with xi 6=xj for i<j and all algorithmsAH(.) that compute f×mG,H(X)
correctly with probability at least ε and make at most q queries for each computation
of fG,H(xi). Let G×m be a DAG with mN nodes, including m sources and m sinks.

Theorem 7, our main result, states that cmcq,ε(f×mG,H)≥ εwm
8δ ·Π

‖
cc(G). Thus, the

cost of computing fG,H on m distinct inputs and constant indegree graphs G is
at least Ω

(
m×w×Π‖cc(G)

)
— here, we assume that H : {0,1}w → {0,1}w. We

remark that for practical iMHF constructions we will have indegree δ ∈ {2, 3}
so that cmcq,ε(f×mG,H) = Ω

(
Π
‖
cc(G)

)
. The δ-factor loss is necessary. For example,

the complete DAG KN has maximum pebbling cost Π‖cc(KN)≥N(N −1)/2, but
cmcq,ε(f×mKN ,H)=O(Nw) when we use the XOR labeling rule10

Theorem 7. Let G be a DAG with N nodes, indegree δ≥2, and parents(u) 6=parents(v)
for all pairs u 6=v∈V , and let fG,H be a function that follows the XOR labeling rule,
with label size w. Let H be a family of random oracle functions with outputs of label

9 Given a constant R that represents the core/memory area ratio we can define
aAT‖R(TraceA,R,H(x))=cmc(TraceA,R,H(x))+R

∑
i
|Qi|. We will focus on lower bounds

on cmc since the notions are asymptotically equivalent and lower bounds on aAT complexity.
10 In particular, if we let Lv = labKN ,H,x(v)=H(Lv−1⊕...⊕L1) denotes the label of node
v given input x then the prelabel of node v is Yv=prelabKN ,H,x(v)=Li−1⊕...⊕L1. Given
only Yv we can obtain Lv =H(Yv) and Yv+1 =Yv⊕Lv. Thus, cmcq,ε(fKN ,H) =O(Nw)
since we can compute fKN ,H(x)=LN in linear time with space O(w).



length w and H=(H1,H2), where H1,H2∈H. Let m be a number of parallel instances
such that mN<2w/32, q<2w/32 be the maximum number of queries to a random oracle,
and let ε

4>2−w/2+2> qmN+1
2w−m2N2−mN + 2m2N2

2w−mN . Then cmcq,ε(f×mG,H)≥ εmw
8δ ·Π

‖
cc(G).

As in [AS15] the pebbling reduction relies on an extractor argument to show that
we can find a black pebbling P=(P1,...,Pt) s.t. |Pi|=O(|σi|/w). The extractor takes
a hint h of length |h|= |σi|+h2 and then extracts ` distinct random oracle pairs
(x1,H(x1)),...,(x`,H(x`)) by simulating the attacker. Here, one can show that `≥h2/w+
Ω(|Pi|), which implies that |σi|=Ω(w|Pi|) since a random oracle cannot be compressed.

There are several additional challenges we must handle when using the XOR
labeling rule. First, in [AS15] we effectively use an independent random oracle Hv(·)=
H(v,·) to compute the label of each node v — a property that does not hold for
the XOR labeling rule we consider. Second, when we use the XOR labeling it is
more challenging for the extractor to extract the value of labels from random oracle
queries made by the (simulated) attacker. For example, the random oracle query
the attacker must submit to compute labG,H,x(v) is now

⊕δ
i=1labG,H,x(vi) instead of

(v,labG,H,x(v1),...,labG,H,x(vδ)) — in the latter case it is trivial to read each of the labels
for nodes v1,...,vδ. Third, even ifH is a random oracle the XOR labeling rule uses a round
function F(x,y)=H(x⊕y) that is not even collision resistant e.g., F(x,y)=F(y,x).
Because of this, we will not be able to prove a pebbling reduction for arbitrary DAGs G.

In fact, one can easily find examples of DAGs G where cmc(fG,H)�Π
‖
cc(G) i.e.,

the cumulative memory complexity is much less than the cumulative pebbling cost
by exploiting the fact that labG,H,x(u)= labG,H,x(v) whenever parents(u)=parents(v).
For example, observe that if parents(N)={u,v} and parents(u)=parents(v) then

fG,H(x)= labG,H,x(N)=H(labG,H,x(u)⊕labG,H,x(v))=H(0w) ,
so that fG,H(x) becomes a constant function and any attempt to extract a pebbling
from an execution trace computing fG,H would be a fruitless exercise!

For this reason, we only prove that cmc(fG,H)=Ω
(
Π
‖
cc(G)×w

)
when G=(V =

[N ],E) satisfies the unique parents property i.e., for any pair of vertices u 6=v we have
parents(v) 6=parents(u). We remark that any DAG that contains all edges of the form
(i,i+1) with i<N will satisfy this property since v−1 /∈parents(u). Thus, Argon2i,
DRSample and DRSample+BRG all satisfy the unique parents property.

Extractor: We argue that, except with negligible probability, a successful execution
trace must have the property that |σi|=Ω(w|Pi|) for each round of some legal pebbling
P . Our extractor takes a hint, which include σi (to simulate the attacker), the set Pi
and some (short) additional information e.g., to identify the index of the next random
oracle query qv where the label for node v will appear as input. To address the challenge
that the query qv= labG,H,x(v)⊕labG,H,x(u) we increase both the size of the hint and
the number of labels being extracted e.g., our hint might additionally include the pair
(u,labG,H,x(u)), which allows us to extract both labG,H,x(v) and labG,H,x(u) from qv.
Our extractor will attempt to extract labels for each node v∈Pi as well as for a few
extra sibling nodes such as u, which means that we must take care to ensure that
we never ruin the extracted label labG,H,x(u) by submitting the random oracle query⊕δ

i=1ui to H(·). If G satisfies the unique parents property then we can prove that with
high probability our extractor will be successful. It follows that |σi|=Ω(w|Pi|) since
the hint must be long enough to encode all of the labels that we extract.



7 An Improved Argon2 Round Function

In this section we show how a parallel attacker could reduce aAT costs by nearly an
order of magnitude by computing the Argon2i round function in parallel. We then
present a tweaked round function to ensure that the function must be computed
sequentially. Empirical analysis indicates that our modifications have negligible impact
on the running time performance of Argon2 for the honest party (sequential), while the
modifications will increase the attackers aAT costs by nearly an order of magnitude.
Review of the Argon2 Compression Function. We begin by briefly reviewing
the Argon2 round function G :{0,1}8192→{0,1}8192, which takes two 1KB blocks X
and Y as input and outputs the next block G(X,Y ). G builds upon a second function
BP : {0,1}1024→{0,1}1024, which is the Blake2b round function [SAA+15]. In our
analysis we treat BP as a blackbox. For a more detailed explanation including the
specific definition of BP, we refer the readers to the Argon2 specification [BDK16].

To begin, G takes the intermediate block R=X⊕Y (which is being treated as
an 8x8 array of 16-byte values R0,...,R63), and runs BP on each row to create a
second intermediate stage Q. We then apply BP to Q column-wise to obtain one more
intermediate value Z: Specifically:

(Q0,Q1,...,Q7)←BP(R0,R1,...,R7) (Z0,Z8,...,Z56)←BP(Q0,Q8,...,Q56)
(Q8,Q9,...,Q15)←BP(R8,R9,...,R15) (Z1,Z9,...,Z57)←BP(Q1,Q9,...,Q57)

...

(Q56,Q57,...,Q63)←BP(R56,R57,...,R63) (Z7,Z15,...,Z63)←BP(Q7,Q15,...,Q63)
To finish, we have one last XOR, giving the result G(X,Y ) = R ⊕ Z. ASIC

vs CPU AT cost. From the above description, it is clear that computation of
the round function can be parallelized. In particular, the first (resp. last) eight
calls to the permutation BP are all independent and could easily be evaluated
in parallel i.e., compute BP(R0,R1, ... ,R7), ... ,BP(R56,R57, ... ,R64) then compute
BP(Q0,Q8,...,Q56),...,BP(Q7,Q15,...,Q63) in parallel. Similarly, XORing the 1KB blocks
in the first (R=X⊕Y ) and last (G(X,Y )=R⊕Z) steps can be done in parallel. Thus if
we let tASICBP (resp. tCPUBP ) denote the time to compute BP on an ASIC (resp. CPU) we
have tASICG ≈2tASICBP whereas tCPUG ≈16×tCPUBP since the honest party (CPU) must eval-
uate each call to BP sequentially. Suppose that the MHF uses the round function G to fill
N blocks of size 1KB e.g., N=220 is 1GB. Then the total area-time product on an ASIC
(resp. CPU) would approximately be

(
AASICmem N

)
×
(
tASICG N

)
≈2N2×AASICmem tASICBP

(resp.
(
ACPUmemN

)
×
(
16tCPBPN

)
where AASICmem (resp. AASICmem ) is the area required to store

a 1KB block in memory on an ASIC (resp. CPU). Since memory is egalitarian we have
AASICmem ≈ACPUmem whereas we may have tASICBP �tCPUBP . If we can make G inherently se-
quential then we have tASICG ≈16tASICBP , which means that the new AT cost on an ASIC is
16N2×AASICmem tASICBP which is eight times higher than before. We remark that the change
would not necessarily increase the running time N×tCPUG on a CPU since evaluation is
already sequential. We stress that the improvement (resp. attack) applies to all modes of
Argon2 both data-dependent (Argon2d,Argon2id) and data-independent (Argon2i), and
that the attack could potentially be combined with other pebbling attacks [AB16,BCS16].
Remark 2. We remark that the implementation of BP in Argon2 is heavily optimized
using SIMD instructions so that the function BP would be computed in parallel on most
computer architectures. Thus, we avoid trying to make BP sequential as this would slow
down both the attacker and the honest party i.e., both tCPUBP and tASICBP would increase.



Inherently Sequential Round Function. We present a small modification to the
Argon2 compression function that prevents the above attack. The idea is simply to
inject extra data-dependencies between calls to BP to ensure that an attacker must
evaluate each call to BP sequentially just like the honest party would. In short, we
require the first output byte from the i−1th call to BP to be XORed with the ith
input byte for the current (ith) call.

In particular, we now compute G(X,Y ) as:
(Q0,Q1,...,Q7)←BP(R0,R1,...,R7) (Z0,Z8,...,Z56)←BP(Q0,Q8,...,Q56)

(Q8,Q9,...,Q15)←BP(R8,R9⊕Q0,...,R15) (Z1,Z9,...,Z57)←BP(Q1,Q9⊕Z0,...,Q57)
... ...

(Q56,Q57,...,Q63)←BP(R56,R57,...,R64⊕Q48) (Z7,Z15,...,Z63)←BP(Q7,Q15,...,Q63⊕Z6)
where, as before, R=X⊕Y and the output is G(X,Y )=Z⊕R.

We welcome cryptanalysis of both this round function and the original Argon2 round
function. We stress that the primary threat to passwords is brute-force attacks (not hash
inversions/collisions etc...) so increasing evaluation costs is arguably the primary goal.

Implementation and Empirical Evaluation. To determine the performance
impact this would have on Argon2, we modified the publicly available code to
include this new compression function. The source code is available on Github
at https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG. We then ran
experiments using both the Argon2 and DRS+BRG edge distributions, and further
split these groupings to include/exclude the new round function for a total of four
conditions. For each condition, we evaluated 1000 instances of the memory hard function
in single-pass mode with memory parameter N = 220 blocks (i.e., 1GB=N×1KB).
In our experiments, we interleave instances from different conditions to ensure that
any incidental interference from system processes affects each condition equally. The
experiments were run on a desktop with an Intel Core 15-6600K CPU capable of
running at 3.5GHz with 4 cores. After 1000 runs of each instance, we observed only
small differences in runtimes, ( 3%) at most. The exact results can be seen in Table
1 along with 99% confidence intervals. The evidence suggests that there is no large
difference between any of these versions and that the anti-parallel modification would
not cause a large increase in running time for legitimate users.

Table 1: Anti-parallel runtimes with 99% confidence
Argon2i DRS+BRG

Current 1405.541±1.036 ms 1445.275±1.076 ms
Anti-parallel 1405.278±1.121 ms 1445.017±0.895 ms
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