
Improving Attacks on Round-Reduced
Speck32/64 Using Deep Learning

Aron Gohr

Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany,
aron.gohr@bsi.bund.de

Abstract. This paper has four main contributions.1 First, we calculate
the predicted difference distribution of Speck32/64 with one specific in-
put difference under the Markov assumption completely for up to eight
rounds and verify that this yields a globally fairly good model of the
difference distribution of Speck32/64. Secondly, we show that contrary
to conventional wisdom, machine learning can produce very powerful
cryptographic distinguishers: for instance, in a simple low-data, chosen
plaintext attack on nine rounds of Speck, we present distinguishers based
on deep residual neural networks that achieve a mean key rank roughly
five times lower than an analogous classical distinguisher using the full
difference distribution table. Thirdly, we develop a highly selective key
search policy based on a variant of Bayesian optimization which, together
with our neural distinguishers, can be used to reduce the remaining se-
curity of 11-round Speck32/64 to roughly 38 bits. This is a significant
improvement over previous literature. Lastly, we show that our neural
distinguishers successfully use features of the ciphertext pair distribution
that are invisible to all purely differential distinguishers even given un-
limited data.
While our attack is based on a known input difference taken from the
literature, we also show that neural networks can be used to rapidly
(within a matter of minutes on our machine) find good input differences
without using prior human cryptanalysis.

Keywords: Deep Learning · Differential Cryptanalysis · Speck

1 Introduction

1.1 Motivation and Goals of This Paper

Deep Learning has led to great improvements recently on a number of difficult
tasks ranging from machine translation [7, 40] and autonomous driving [13] to

1 Supplementary code and data for this paper is available at https://github.com/

agohr/deep_speck

c© IACR 2019. This article is the final version submitted by the author to the IACR
and to Springer-Verlag on June 2, 2019. The version published by Springer-Verlag
is available at (DOI to be inserted).

https://github.com/agohr/deep_speck
https://github.com/agohr/deep_speck

playing various abstract board games at superhuman level [16, 37, 38]. In cryp-
tography, practical work using machine learning techniques has mostly focused
on side-channel analysis [31,34, 35]. On a theoretical level, it has long been rec-
ognized that cryptography and machine learning are naturally linked fields, see
e.g. the survey of the subject given in [36]. Many cryptographic tasks can be
naturally framed as learning tasks and consequently cryptographic hardness as-
sumptions may for instance yield examples for distributions that are by design
difficult to learn. However, not much work as been done on machine-learning
based cryptanalysis. This paper is the first to show that neural networks can
be used to produce attacks quite competitive to the published state of the art
against a round-reduced version of a modern block cipher.

1.2 Contributions and Structure of This Paper

Main Results This paper tries to teach neural networks to exploit differential
properties of round-reduced Speck. To this end, we train neural networks to
distinguish the output of Speck with a given input difference from random data.
To test the strength of these machine-learned distinguishers, we first calculate the
expected efficiency of some multiple-differential distinguishers for round-reduced
Speck32/64 that use the full Markov model of Speck32/64, i.e. all differential
characteristics following a given input difference. This is the strongest form of
differential distinguishing attack known that does not involve key search and to
the best of our knowledge, the efficiency of distinguishing attacks of this kind has
not been studied before for any Speck variant. A fairly high detection efficiency
is achieved for up to about eight rounds past our chosen input difference.

Our neural distinguishers achieve better overall classification accuracy than
these very strong baselines (see Table 2 for details). As an additional performance
metric, we construct a simple partial key recovery attack on nine rounds of Speck
using only 128 chosen plaintexts where the two types of distinguisher can be
directly compared. In this test, we try to recover one subkey. The mean rank
of this subkey is roughly five times lower with the neural distinguishers than
with the difference distribution table. We explore this further by designing a
cryptographic task in which the adversary has to distinguish two ciphertext pair
distributions that have exactly the same ciphertext difference distribution. We
find that our neural distinguishers perform fairly well in this game without any
retraining, reinforcing the observation that the neural distinguishers use features
not represented in the difference distribution table.

In order to allow for a direct comparison to existing literature, we also con-
struct a partial key recovery attack against 11 (out of 22) rounds of Speck32/64
based on a lightweight version of our neural distinguishers. The attack is ex-
pected to recover the last two subkeys after 214.5 chosen-plaintext queries at a
computational complexity equivalent to about 238 Speck encryptions; expected
average wall time to recovery of the last two subkeys on a desktop computer
under single-threaded CPU-only execution is about 15 minutes in our proof of
concept implementation. The closest comparison to this in the literature might
be the attack on Speck32/64 reduced to 11 rounds presented in [19], which needs

2

an expected 214 chosen plaintexts to recover a Speck key with a computational
effort of about 246 reduced Speck evaluations. For a summary, see Table 1.

All experiments reported in this paper have been performed with a full im-
plementation of Speck32/64, i.e. including the real key schedule. However, there
is no evidence that the neural distinguishers use any properties of the key sched-
ule. In particular, our 11-round key recovery attack has been tested also against
reduced Speck32/64 with the free key schedule (independent and uniformly dis-
tributed subkeys), with no difference in performance compared to the real key
schedule.

While other authors have tried to use neural networks for cryptanalytic tasks
(see e.g. [6,15,17,18,26,28] and the references cited therein), this paper is to the
best of our knowledge the first work that compares cryptanalysis performed by a
deep neural network to solving the same problems with strong, well-understood
conventional cryptanalytic tools. It is also to the best of our knowledge the
first paper to combine neural networks with strong conventional cryptanalysis
techniques and the first paper to demonstrate a neural network based attack on
a symmetric cryptographic primitive that improves upon the published state of
the art.

The comparison with traditional techniques serves in this paper both a bench-
marking purpose and heuristically also as an additional safeguard against possi-
ble flaws in experimental setup. In the examples here considered, the performance
of our deep neural networks is competitive with results obtained classically.

Table 1. Summary of key recovery attacks on 11 round Speck32/64. Computational
complexity is given in terms of Speck evaluations on a modern CPU, i.e. assuming full
utilisation of SIMD parallelism for fast key search.

Type Complexity Data Source

Single-trail differential 246 214 CP [19]

Neural multiple differential 238 214.5 CP This paper, section 4

Structure of the Paper In section 2, we give a short overview of the Speck family
of block ciphers and fix some notations.

In section 3, we systematically develop new high-gain random-or-real differ-
ential distinguishers for round-reduced Speck based on an approach similar to
that used on KATAN32 in [3]. For five to eight rounds of Speck32/64, we calcu-
late for the first time the full distribution of differences within the Markov model
for Speck induced by the input difference 0x0040/0000 up to double precision
rounding error. See Table 2 for details.

Section 4 contains our main results on using neural networks for cryptanaly-
sis: we develop strong neural distinguishers against Speck reduced to up to eight
rounds and show key recovery attacks competitive with classical methods for 9
and 11 rounds. We further show that using few shot learning techniques, fairly
strong distinguishers against up to six rounds of Speck can be trained from very

3

small data sets (see Figure 2) and with very little computation. We use this fur-
ther to automatically find good input differences for Speck32/64 without using
prior human cryptanalysis.

In section 5, we further investigate the capabilities of our networks by in-
troducing a differential cryptanalytic task which we call the real differences ex-
periment where the distinguishers of section 3 are made useless. In this model,
the adversary has to distinguish a real ciphertext C = (C0, C1) obtained by
encrypting two blocks of data P0, P1 with a known plaintext difference ∆ from
ciphertext that has additionally been bitwise-added with a random masking
value Kout ∈ {0, 1}b, where b is the block size of the primitive considered.

We show that our best neural models for the main distinguishing task dis-
cussed in section 4 have discovered ways to win in this experiment significantly
more often than random guessing without any retraining, although for the five-
round case retraining is found to be quite helpful in extending this advantage.
We also discuss a concrete example of a ciphertext pair that is misclassified by
traditional differential distinguishers.

In section 6 we discuss our results and possible extensions of this work.

1.3 Related Work

Related Cryptographic Work Speck has since its publication [9] received a
fair amount of analysis, see e.g. [8] for a review. We focus only on those works
that are most relevant to the present paper.

The differential cryptanalysis of Speck was first studied by Abed, List, Lucks
and Wenzel in [2]. They constructed efficient differential characteristics for round-
reduced versions of all members of the Speck family of ciphers and showed how
to use these for key recovery. For Speck32/64, the round 3 difference of their 9-
round characteristic is used in the present work as the input difference required
by our differential distinguishers.

In [19], Dinur improved the analysis given in [2] by using a two-round guess
and determine attack to speed up key recovery and extend the number of rounds
that can be attacked. The two-round guess and determine stage of this attack
takes as input a bitwise input difference and the cipher output two rounds later
and returns all possible solutions for the subkeys used in these final rounds. In
section 3, we use this two-round attack to construct a practical distinguisher for
Speck reduced to five rounds that exploits the nonuniformity of the ciphertext
pair distribution perfectly in the setting where only the input difference but not
the input values to the cipher are known.

Biryukov and Velichkov proposed in [11] a framework for the automatic
search for optimal single differential characteristics of Speck and further im-
proved on the differential characteristics found in [2]. They also showed that
Speck is not a Markov cipher. This latter finding is reinforced by our finding
that neural distinguishers on Speck can for a nontrivial number of rounds out-
perform in terms of prediction accuracy all purely differential distinguishers.

Differential attacks are most useful in the chosen plaintext setting, as the
adversary needs to see the output of the primitive under study given plaintext

4

inputs with a particular chosen difference. The most powerful attacks against
round-reduced Speck that have been put forward in the known plaintext setting
come from linear cryptanalysis [5, 30].

Multiple differential cryptanalysis as an extension of truncated differential
cryptanalysis was first studied by Blondeau and Gerard in [12]. A multiple-
differential attack framework for block ciphers with small block size which (un-
der the assumption that the relevant differential transition probabilities can be
calculated correctly) exploits the difference between the wrong-key and right-
key difference distributions perfectly was developed by Albrecht and Leander [3]
and used to provide new cryptanalytic results on the KATAN32 block cipher,
significantly extending the number of rounds that can be shown to be attackable.

Prior Work on Machine Learning and Data Driven Techniques in
Cryptanalysis A number of works have explored the use of machine learning
and broadly applicable statistical techniques for cryptanalytic purposes previ-
ously. We give a brief review here.

For the purpose of this review, precomputation attacks are generally viewed
as not being machine learning. Likewise, side channel attacks and other ways of
exploiting the implementation of a mechanism are considered not to be crypt-
analysis in the sense here discussed.

Laskari, Meletiou, Stamatiou and Vrahatis [28] reported some success (in
terms of search tree size, not necessarily in terms of execution time) compared
to the baseline given by unoptimized brute force search in applying evolutionary
computing methods to the problem of recovering additional subkey bits in four-
and six round reduced DES subsequent to a classical differential attack.

Klimov, Mityagin and Shamir used genetic algorithms and neural networks
to break a proposed public-key scheme itself based on neural networks [25]. The
same protocol was broken in the same paper also using two other methods.

A few authors have looked at the possibility of using machine learning directly
to distinguish between or to otherwise attack unreduced modern ciphers. From
a cryptographic point of view, this is clearly expected to be impossible, at least
unless mode-of-operation or other implementation issues make it feasible. This
is e.g. also the conclusion reached by Chou, Lin and Chen [15], who perform
some experiments along these lines and give a review of the literature.

Gomez, Huang, Zhang, Li, Osama and Kaiser [20] used unsupervised learning
using neural networks to achieve code book recovery for short-period Vigenere
ciphers in a setting in which neither parallel text nor information on the encipher-
ing mechanism was available to the network during training. Their motivation
was primarily to work towards unsupervised learning techniques for machine
translation.

Abadi and Andersen [1] trained two neural networks to protect their commu-
nications from a third network that was trying to read their traffic. They showed
that the two networks were in this setting able to use a pre-shared secret to shut
out the adversary. However, neither analysis of humanly designed primitives nor

5

human cryptanalysis of the communication method developed by the networks
was performed.

Rivest in [36] reviewed various connections between machine learning and
cryptography. He also suggested some possible directions of research in cryptan-
alytic applications of machine learning.

Greydanus reported that recurrent neural networks can in a black box setting
learn to simulate a restricted version of Enigma [21].

Purely data driven attacks have been used with good success e.g. against
RC4 by Paterson, Poettering and Schuldt [32]. They basically learn from a very
large amount of RC4 keystream examples a Bayesian model of single-byte and
two-byte biases of RC4. This model is then used to derive some plaintext data
given on the order of millions of encryptions of the same plaintext.

2 The Speck Family of Block Ciphers

2.1 Notations and Conventions

Bitwise addition will in the sequel be denoted by ⊕, modular addition modulo
2n by �, and bitwise rotation of a fixed-size word by � for rotation to the left
and � for rotation to the right. Here, k will be the word size of the primitive in
question, which in the case of Speck32/64 is 16.

In this paper, differential cryptanalysis will always mean cryptanalysis with
regards to bitwise differences in the adversary-controlled input to the cipher
under study. Let hence F : {0, 1}n → {0, 1}m be a map. Then, a differen-
tial transition for F is a pair (∆in, ∆out) ∈ {0, 1}n × {0, 1}m. The probability
P (∆in → ∆out) of the differential transition F : ∆in → ∆out is defined as

P (∆in → ∆out) :=
Card({x ∈ {0, 1}n : F (x)⊕ F (x⊕∆in) = ∆out})

2n
. (1)

In the description of differential attacks, it is sometimes necessary to specify
specific ciphertext or plaintext differences or ciphertext/plaintext states. A single
Speck block (or the difference between two blocks, depending on context) will
in this paper be described by a pair of hexadecimal numbers. For instance, for
Speck32/64, a state difference in which only the most significant bit is set will
be written as 0x8000/8000.

For a primitive iteratively constructed by repeated application of a simpler
building block (i.e. a round function), a differential characteristic or differential
trail will be a sequence of differential transitions, given by a sequence of dif-
ferences ∆0, ∆1, . . . ,∆n. When the same concepts are applied to key-dependent
function families (e.g. block ciphers), any key dependence of the differential prob-
ability will usually be suppressed, although such key-dependencies can make a
difference for security evaluation and although they are known to exist in ARX
primitives (see e.g. [4]).

As introduced by Lai, Massey and Murphy [27], a Markov cipher is an it-
erated block cipher in which the probability of the individual differential tran-
sitions is independent of the concrete plaintext values if the subkeys applied to

6

each round are chosen in a uniformly random manner. It is common to suppress
the effect of initial or final keyless permutations on the assessment of the Markov
property, because the details of message modifying the data that goes into these
initial or final permutations are outside the scope of differential cryptanalysis. In
the case of Speck, the first round up to and excluding the first subkey addition
is for instance a fixed initial permutation on the plaintext.

A differential attack is any cryptographic attack that uses nonrandom prop-
erties of the output of a cryptographic primitive when it is being given input
data with a known difference distribution. The most general form of differential
attack that has been formally discussed in the literature are multiple differential
attacks [12], where information from an arbitrary set of differential transitions
is exploited in order to maximise the gain of the resulting attack.

In this paper, we will see both attacks that only use the information contained
in observed ciphertext differences and the full information contained in output
ciphertext pairs. We will in the sequel call the former purely differential attacks
and the latter general differential attacks.

A distinguisher is a classifier C that accepts as input d data sampled indepen-
dently from a finite event space Ω according to one of n probability distributions
Di, i = 1, . . . , n, and outputs a guess of i for the submitted input item d. Here,
i is chosen at each trial with a probability pi from the set {1, 2, . . . , n}. The
selection method for i together with the distributions Di is known in advance
and is in this paper called an experiment.

2.2 A Short Description of Speck

Speck is an iterated block cipher designed by Beaulieu, Treatman-Clark, Shors,
Weeks, Smith and Wingers [9] for the NSA with the aim of building a cipher
efficient in software implementations in IoT devices [8]. It is an ARX construc-
tion, meaning that it is a composition of the basic functions of modular addition
(mod 2k), bitwise rotation, and bitwise addition applied to k-bit words. In [9],
various versions of Speck were proposed, which differ from each other by the
values of some rotation constants, the number of rounds suggested, as well as by
the block and key sizes used. Generally, Speckn/m will denote Speck with n bit
block size and m bits key size.

The round function F : Fk2 × F2k
2 → F2k

2 of Speck is very simple. It takes as
input a k-bit subkey K and a cipher state consisting of two k-bit words (Li, Ri)
and produces from this the next round state (Li+1, Ri+1) as follows:

Li+1 := ((Li � α) �Ri)⊕K,Ri+1 := (Ri � β)⊕ Li+1, (2)

where α, β are constants specific to each member of the Speck cipher family
(α = 7, β = 2 for Speck32/64 and α = 8, β = 3 for the other variants).

The round function is applied a fixed number of times (for 22 rounds in the
case of Speck32/64) to produce from the plaintext input the ciphertext output.
The subkeys for each round are generated from a master key by a non-linear
key schedule that uses as its main building block also this round function. Some

7

details of the key schedule differ between different versions of Speck due to
the different number of words in the master key. The key schedule will not be
analyzed in this paper and we therefore refer to [9] for reference.

3 Multiple Differential Attacks on Speck32/64

3.1 Pure Differential Distinguishers

Setting Multiple differential attacks [12] build cryptographic distinguishers by
using a set S of differential transitions for some cryptographic function F to
characterise its behaviour. The basic idea is that each transition ∆i → δj in S
has associated with it a probability pij of being observed given the experimen-
tal setting the cipher is being studied in and another probability p̃ij in some
situation that is being distinguished against. Given some observed data O from
the experiment, Bayesian inference can then be used to determine e.g. if the
observed data comes from the real or the random experiment.

Calculating Differential Transition Probabilities We use algorithm 2 in [29] to
compute the differential behaviour of the nonlinear component of Speck32/64,
which is simply modular addition modulo 216. This gives us an efficient way
to access arbitrary entries of the single-round differential transition matrix A ∈
R232×232 of Speck. Given an input difference distribution vi ∈ R232 for round i
of Speck, we calculate the distribution at the input of round i + 1 by setting
vi+1 := Avi.

Starting from the input difference ∆ = 0x0040/0000, i.e. the round 3 differ-
ence of the differential characteristic given in Table 7 of [2], we have calculated
the full predicted induced output distribution of Speck32/64 for up to 8 rounds
in this way. The required sparse matrix-vector multiplications and the on-the-fly
calculation of the relevant matrix entries took around 300 core-days of comput-
ing time in our implementation and produced about 34 gigabytes of distribution
data for each round, which was saved to disk for further study. The input differ-
ence ∆ is used in most distinguishers developed in the remainder of this paper.
It transitions deterministically to the low-weight difference 0x8000/8000 and
has been chosen for being a very good starting point for truncated differential
cryptanalysis in a low-data setting.

Cryptographic Tasks In this section, we set out to distinguish reduced-round
Speck output with the input difference ∆ from random data. Our distinguishers
will use the full predicted output difference distribution for the number of rounds
considered. We will denote by Di the resulting distinguisher for i rounds. Hence,
D5 will e.g. be the resulting five-round distinguisher and the corresponding dis-
tinguishing problem will be referred to as the D5 task.

Classification To distinguish between examples of real ciphertext pairs and ex-
amples generated at random, we assume that random ciphertext pair differ-
ences are distributed according to the uniform distribution on nonzero cipher-
text blocks. We classify an observed output difference δ as real if the predicted

8

probability of observing it in the real distribution is > 1/(232−1) and as random
otherwise. This exploits the non-uniformity of the output difference distribution
perfectly if our prediction of this distribution does not contain errors. The re-
ported true positive rates and accuracies for the distinguishers defined by the
predicted output distribution were calculated under the assumption that the
true output distribution is the predicted one.

Sources of Error This kind of calculation works only if the cipher under study
does not deviate too strongly from the Markov property. Also, in our calculation
we used double-precision arithmetic, which introduces rounding errors. We have
therefore tested the validity of this model in three ways:

1. We checked empirically that the highest-probability transition found by our
model for eight rounds (0x0040/0000 → 0x0280/0080) is empirically ob-
served with the expected probability of 2−26.015. This was found to be the
case.

2. We checked empirically that the predicted true positive rates of our differ-
ential distinguishers match observed values on a size 106 test set from the
real distribution. This was also the case within experimental error margins.
The corresponding experiment for true negative rates was not performed, as
the random distribution is a priori known exactly, so given the distinguisher,
there is no error in predicting its accuracy on random samples.

3. We approximated the true difference distribution of Speck32/64 also empiri-
cally using 100 billion samples in each case. The resulting distinguishers were
clearly inferior to our theoretical model.

These experiments indicate that our model captures the difference distri-
bution of round-reduced Speck32/64 for the considered input difference quite
well.

Distinguisher Accuracy and Key Rank Accuracy as well as true positive and
true negative rate results are summarised in the next section, specifically in
Table 2. Computing the full difference distribution table of Speck32/64 yields
fairly strong distinguishers for at least up to eight rounds (better results than
presented here may be possible with other input differences). Statistics on key
ranking in the context of a simple key recovery attack can be found in Table 3.

3.2 Differential Distinguishers Using the Full Distribution of
Ciphertext Pairs

Setting and Motivation The distinguishers so far considered in this paper observe
a ciphertext pair that has been generated from a known input difference (but
unknown input plaintext pairs) and try to guess based on the ciphertext differ-
ence whether the observed pair has been generated by reduced Speck encryption
or randomly chosen. It is clear that one could improve on this by considering
not only the difference data for an observed ciphertext pair, but the entire data

9

observed. However, this is more difficult, because calculating the full distribu-
tion of ciphertext pairs for the real distribution is not feasible. The goal of this
section is to determine, for differential distinguishers on five-round Speck with
the input difference used in the previously studied distinguishers, how much of
an advantage the adversary might gain in still exploiting this additional infor-
mation.

A Perfect Differential Distinguisher for Speck32/64 Reduced to Five Rounds We
have developed a perfect distinguisher for the D5 task. Given an observed ci-
phertext pair C := (C0, C1) and an input difference ∆, the likelihood P (C|real)
that we would observe (C0, C1) under the real distribution for a block cipher E
of block size b and key size k given uniformly random key and plaintext data is
given by 2−(b+k)N , where N is the number of key and plaintext pairs (K,P) such
that EK(P) = C0 and EK(P ⊕∆) = C1. But N is just the number Nkeys(C) of
keys that decrypt C into a plaintext pair with difference ∆. On the other hand,
P (C|random) = 1/(22b−2b), so applying Bayes’ theorem again, for perfect clas-
sification we need to determine whether Nkeys(C) > 2b+k/(22b − 2b) ≈ 2b+k−2b

or not. For Speck32/64, we hence check whether Nkeys > 232.

For the D5 task, it is possible to do this in practice by enumerating the
possible round-3 differential states and then launching the two-round attack
from [19] for each of these intermediate differences, enumerating the subkeys sk5

and sk4 used in rounds 4 and 5. After obtaining candidate round 3 output, we
note that the round 1 output difference is known (the input difference transitions
deterministically to 0x8000/8000) and use the two round attack again to recover
the first two subkeys. We stop after 232 + 1 solutions have been found or the key
space has been exhausted, whichever comes first. We tested this distinguisher on
a test set of 10000 examples. 9456 of these were correctly classified, for an overall
accuracy of about 95 percent. Replacing key search on the first two rounds with a
(much faster) estimate of the number of solutions based on the 3-round difference
distribution table did not lead to a statistically significant loss in performance.

4 Neural Distinguishers for Reduced Speck32/64

4.1 Overview

In this section, we will use neural networks to develop distinguishing attacks that
try to solve the same problems as those presented previously. We only report
results on our best neural models. The computational effort used in searching
for a good architecture was not excessive; all machine learning experiments here
reported were performed on a single workstation. Some other choices of archi-
tecture yield results that are also comparable or superior to the distinguishers
presented in the previous section. One example of a simpler network architecture
with still reasonable performance is shown in the github repository.

10

4.2 Network Structure

Input Representation A pair (C0, C1) of ciphertexts for Speck32/64 can be writ-
ten as a sequence of four sixteen-bit words (w0, w1, w2, w3), mirroring the word-
oriented structure of the cipher. In our networks, the wi are directly interpreted
as the row-vectors of a 4 × 16-matrix and the input layer consists of 64 units
likewise arranged in a 4× 16 array.

Overall Network Structure Our best network is a residual tower of two-layer
convolutional neural networks preceded by a single bit-sliced convolution and
followed by a densely connected prediction head. Deep residual networks were
first introduced in [22] for image recognition and have been successful since in
a number of other applications, for instance strategic board games [38,39]. The
results reported for five and six rounds use a depth-10 residual tower; for seven
and eight round Speck, our final models use just a single residual block.

Initial Convolution The input layer is connected in channels-first mode to one
layer of bit-sliced, e.g. width 1, convolutions with 32 output channels. Batch
normalization is applied to the output of these convolutions. Finally, rectifier
nonlinearities are applied to the outputs of batch normalization and the resulting
32x16 matrix is passed to the main residual tower.

Convolutional Blocks Each convolutional block consists of two layers of 32 filters.
Each layer applies first the convolutions, then a batch normalization, and finally a
rectifier layer. At the end of the convolutional block, a skip connection then adds
the output of the final rectifier layer of the block to the input of the convolutional
block and passes the result to the next block.

Prediction Head The prediction head consists of two hidden layers and one
output unit. The first and second layer are densely connected layers with 64
units. The first of these layers is followed by a batch normalization layer and a
rectifier layer; the second hidden layer does not use batch normalization but is
simply a densely connected layer of 64 relu units. The final layer consists of a
single output unit using a sigmoid activation.

Rationale The use of the initial width-1 convolutional layer is intended to make
the learning of simple bit-sliced functions such as bitwise addition easier. The
number of filters in the initial convolution is meant to expand the data to the
format required by the residual tower. The choice of the input channels is moti-
vated by a desire to make the word-oriented structure of the cipher known to the
network. The use of a densely connected prediction head reflects the fact that for
a nontrivial number of rounds, we do not expect the input data to show strong
spatial symmetries, so any attempt to extract local features from the data using
a spatially symmetric pooling layer of some sort is probably futile. The size of
the layers was determined by experiment, although we tried only a few settings.
The depth of the residual tower was chosen so as to allow for integration of input

11

data over the whole input string within the convolutional layers. However, even
a design with just one residual block achieves reasonably good (clearly superior
to a purely differential distinguisher) results.

4.3 Training Real vs Random Classifiers

Data Generation Training and validation data was generated by using the Linux
random number generator (/dev/urandom) to obtain uniformly distributed keys
Ki and plaintext pairs Pi with the input difference ∆ = 0x0040/0000 as well as a
vector of binary-valued real/random labels Yi. To produce training or validation
data for k-round Speck, the plaintext pair Pi was then encrypted for k rounds
if Yi was set, while otherwise the second plaintext of the pair was replaced with
a freshly generated random plaintext.

In this way, data sets consisting of 107 samples were generated for training.
Preprocessing was performed to transform the data so obtained into the format
required by the network. Data generation is very cheap. On a standard PC, it
takes a few seconds to generate a data set of size 107 in our implementation.

Basic Training Pipeline Training was run for 200 epochs on the dataset of size
107. The datasets were processed in batches of size 5000. The last 106 samples
were withheld for validation. Optimization was performed against mean square
error loss plus a small penalty based on L2 weights regularization (with regular-
ization parameter c = 10−5) using the Adam algorithm [24] with default param-
eters in Keras [14]. A cyclic learning rate schedule was used, setting the learning

rate li for epoch i to li := α+ (n−i) mod (n+1)
n ·(β−α), with α = 10−4,β = 2 ·10−3

and n = 9. The networks obtained at the end of each epoch were stored and the
best network by validation loss was evaluated against a test set of size 106 not
used in training or validation.

Improving the Distinguishers by Key Search We tested whether the distinguish-
ers obtained can be improved by key search. To this end, a size one million test
set for Speck reduced to seven rounds was generated as previously described.
Each ciphertext pair c in the test set was then evaluated by performing brute
force key search on the last round, grading the resulting partial decryptions us-
ing a six-round neural distinguisher, and combining the results into a score for
the ciphertext pair c by transforming the scores into real-vs-random likelihood
ratios and averaging. Algorithm 1 gives details on the method used.

Using key search as a teacher for a fast neural distinguisher The size one million
sample set so obtained was further used as a training target for a single-block
distinguisher against seven rounds of Speck. Training was performed from a
randomly initialized network state for 300 epochs at batch size 5000 with a
single learning rate drop from 0.001 to 0.0001 at epoch 200. Data on the resulting
distinguisher can be found in Table 2 and Table 3.

12

Algorithm 1 KeyAveraging: Deriving a differential distinguisher against a block
cipher Er+1 reduced to r + 1 rounds for input difference ∆ from a correspond-
ing distinguisher D against Er. A sample is predicted to come from the real
distribution if and only if the output value of the algorithm is ≥ 0.5.

Require: Observed output ciphertext pair C0, C1 ∈ {0, 1}b
1: Di ← [DecryptOneRound(Ci, k) for k ∈ Subkeys]
2: vk ← D(D0[k], D1[k]) for all k ∈ Subkeys
3: vk ← vk/(1− vk) for all k ∈ Subkeys
4: v ← Average([vk, k ∈ Subkeys])
5: v ← v/(1 + v)
6: return v

Training an 8-Round Distinguisher For 8 rounds, the training scheme described
above fails, i.e. the model does not learn to approximate any useful function.
We still succeeded in training an 8-round distinguisher slightly superior to the
difference distribution table by using several stages of pre-training. First, we
retrained our best seven-round distinguisher to recognize 5-round Speck32/64
with the input difference 0x8000/840a (the most likely difference to appear three
rounds after the input difference 0x0040/0000). This was done on 107 examples
for ten epochs with a batch size of 5000 and a learning rate of 10−4. Then, we
trained the distinguisher so obtained to recognize 8-round Speck with the input
difference 0x0040/0000 by processing 109 freshly generated examples once with
batch size 10000, keeping the learning rate constant. Finally, learning rate was
dropped twice to 10−5 and finally to 10−6 after processing another 109 fresh
examples each, again with a batch size of 10000.

Training Cost A single epoch of training according to the basic training schedule
for one of our ten-block networks takes about 150 seconds on a single GTX 1080
Ti graphics card at batch size 5000. A full training cycle can therefore be run
in less than a day, and results superior to the difference distribution table can
be obtained in less than fifteen minutes after starting the training cycle for our
neural distinguishers against 5 to 7 rounds.

4.4 Results

Test Set Accuracy We summarize data on our best models in Table 2. N5 and N6
are networks with ten residual blocks trained using the basic training method.
N7 was trained to predict output of the KeyAveraging algorithm used with
a six-round single-block neural distinguisher derived by knowledge distillation
from N6 (see the paragraph on inference speed below for further details). N8
was derived from N7 using the staged training method described in section 4.3.
The neural distinguishers achieve higher accuracies than the purely differential
baselines discussed in the previous section on all tasks. The accuracy of the key
search based distinguishers was not matched, as expected. Validation losses were
only slightly lower than training losses at the end of training, suggesting that

13

only mild overfitting took place. An example learning history for a five-round
network is shown in Figure 1. Algorithm 1 was tried on the seven round problem
and did slightly improve prediction accuracy: ground truth was matched in 62.7
percent of the test sample.

If encryption is performed with fixed keys, a mild key dependency of distin-
guisher performance is observed, in line with previous work on Speck [4]. For
instance, with 100 random keys, we found that true positive rates for the 7-round
distinguisher empirically varied between 57.1 and 49.7 percent. See the github
repository for code and data on this.

0 50 100 150 200
Epoch

0.0540

0.0545

0.0550

0.0555

0.0560

Lo
ss

Validation loss
Training loss

0 50 100 150 200
Epoch

0.9270

0.9275

0.9280

0.9285

0.9290

Va
lid

at
io
n
ac

cu
ra
cy

Fig. 1. Training a neural network to distinguish 5-round Speck32/64 output for the
input difference ∆ = 0x0040/0 from random data. (left) Training and validation loss by
epoch. (right) Validation accuracy. (both) Only data for epochs with lowest learning rate
is shown. Intermediate epochs contained excursions to low performance. Full learning
history for this run is available from supplementary data.

Key Ranking We can extend all of the distinguishers here discussed by one round
at no additional cost by using the fact that the first subkey addition happens
after the first application of nonlinearity in Speck. An adversary in the chosen-
plaintext setting can easily inject plaintext differences of their choosing into the
output of the first round of Speck. A simple attack on 9-round Speck can then
be performed as follows:

1. Request encryptions for n chosen plaintext pairs P1, . . . , Pn such that the
output difference of the first round will be ∆ = 0x0040/0000. Obtain the
corresponding ciphertext pairs C1, . . . , Cn.

2. For each value of the final subkey k, decrypt the Ci under k to get Cki . Let
δki be the difference of the ciphertext pair Cki .

3. Use a 7-round differential distinguisher to get scores Zki for each partially
decrypted ciphertext pair.

4. For each k, combine the scores Zki into one score vk.
5. Sort the keys in descending order according to their score vk.

14

Table 2. Accuracy of various distinguishers against Speck32/64 using two blocks of
ciphertext with chosen plaintext difference 0x0040/0000 for Nr rounds. D5-D8 are
classical differential distinguishers that use the entire difference distribution table of
Speck32/64 (calculated under the Markov assumption). N5-N8 are neural distinguish-
ers solving the same distinguishing task. The accuracies of the D5-D8 distinguishers
are theoretical predictions based on the assumption that they correctly predict the
difference distribution, but have been empirically confirmed within 2σ error margins
on size 106 test sets. The figures for the neural distinguishers were obtained by testing
on size 106 test sets containing approximately 500000 positive and negative examples
each. N5 and N6 are networks with ten residual blocks, while N7 and N8 are smaller
networks with only one block.

Nr Distinguisher Accuracy True Positive Rate True Negative Rate

5 D5 0.911 0.877 0.947

5 N5 0.929± 5.13 · 10−4 0.904± 8.33 · 10−4 0.954± 5.91 · 10−4

6 D6 0.758 0.680 0.837

6 N6 0.788± 8.17 · 10−4 0.724± 1.26 · 10−3 0.853± 1.00 · 10−3

7 D7 0.591 0.543 0.640

7 N7 0.616± 9.7 · 10−4 0.533± 1.41 · 10−3 0.699± 1.30 · 10−3

8 D8 0.512 0.496 0.527

8 N8 0.514± 1.00 · 10−3 0.519± 1.41 · 10−3 0.508± 1.42 · 10−3

We have implemented this attack both with the 7-round distinguisher derived
from the difference distribution of 7-round Speck with the given input difference
and with our 7-round neural distinguisher. In the case of the neural distinguisher,
we used the formula

vk :=

n∑
i=1

log2(Zki /(1− Zki)) (3)

to combine the scores of individual decrypted ciphertext pairs into a score for
the key; in the case of the difference distribution table, we set

vk :=

n∑
i=1

log2(P (δki)), (4)

where P (δki) is the probability according to the difference distribution table of
observing the output difference δki in the output of Speck32/64 reduced to seven
rounds given the input difference ∆. This is comparable, since in both cases we
can up to a constant multiplicative factor heuristically treat the summed terms
as logarithms of real-vs-random likelihood ratios2.

We chose n = 64 for this experiment. In this setting, we found that the neural
distinguishers achieved much better key ranking (Table 3).

It is worth noting the following:

2 As an implementation remark, note that with the neural networks used in this paper,
the individual terms in the sum of Equation 3 are up to a scale factor just the neural
network outputs before application of the final sigmoid activation.

15

Table 3. Statistics on a key recovery attack on 9-round Speck32/64. The same attack
using 128 chosen plaintexts is executed using both a distinguisher based on the dif-
ference distribution table and a neural distinguisher against Speck32/64 reduced to 7
rounds. All values reported are based on 1000 trials of the respective attacks. Reported
error bars around the mean are for a 2σ confidence interval, where σ is calculated based
on the observed standard deviation of the key rank. The rank of a key is defined as the
number of subkeys ranked higher, i.e. rank zero corresponds to successful key recovery.
When several keys were ranked equally, the right key was assumed to be in a random
position among the equally ranked keys. Key rank data on all runs as well as data on
runs with 64 and 256 chosen plaintexts is available from the github repository.

Distinguisher Mean of key rank Median key rank Success rate

D7 263.9± 77.7 9.0 0.13

N7 52.1± 34.7 1.0 0.358

Proposition 1. Assume that E is any Speck variant with a free key schedule
and that A is an attack that tries to recover the Speck key used using purely
differential methods, i.e. assume that it gets as input plaintext differences P0 ⊕
P1, P0 ⊕ P2, . . . , P0 ⊕ Pn as well as ciphertexts C0, C1, . . . , Cn. Then full key
recovery can never be successful with a success rate beyond 50 percent.

Proof. To see this, consider any pair of ciphertexts C0, C1 and a Speck subkey k.
Suppose that E−1k (C0)⊕E−1k (C1) = δ, where Ek denotes single-round encryption
under the subkey k. Flip the most significant bit of k and call the resulting new
subkey k′. Then it is straightforward to verify that E−1k′ (C0)⊕ E−1k′ (C1) = δ as
well. The proposition follows by applying this reasoning to the first round of E.

Hence, purely differential distinguishers for Speck always produce pairs (or
larger groups) of equally ranked subkeys until the key schedule can be used to
rule out candidate keys.

However, already with 256 chosen plaintexts our 9-round attack does in fact
yield a success rate of about 70 percent if a neural distinguisher is used. This is
only possible because our neural distinguishers are not purely differential distin-
guishers. See Section 5 for further evidence of this.

Inference Speed The deep residual architecture described yields networks that
are still reasonably efficient to evaluate. On a single machine using a GTX 1080
Ti graphics card we were able to process roughly 200000 ciphertext pairs per
second with our deeper networks (10 residual blocks). For single-block networks,
we reach about one million ciphertext pairs per second on the same hardware.
For seven and eight rounds of Speck, the best networks here presented are single-
block networks; for five and six rounds, one can produce networks that are almost
as good as the ten-block architecture by using a simple form of knowledge dis-
tillation [23]. For instance, a single-block network with 92.7 percent accuracy
on the D5 task can be obtained by training against the output of our ten-block
network for 30 epochs on a size 107 training dataset with a single learning rate
drop from 0.001 to 0.0001 at epoch 20.

16

Disagreement with Difference Distribution Table For five-round Speck, we gener-
ated a size one million test set and calculated for each example both the relevant
entry of the difference distribution table for Speck32/64 using the Markov model
of Speck, and the output of a five-round one-block neural predictor. Exactly half
of the test sample was generated using the real distribution, with the other half
being drawn at random. We used this data set to study disagreements between
the neural predictor and the difference distribution table.

Disagreement between both predictors was observed in 48826 samples, of
which the majority was from the random distribution (about 57 percent). Our
neural network chose the classification corresponding to ground truth in 67 per-
cent of these cases of disagreement.

However, exploitation of information that can be obtained reliably from the
difference distribution table was not perfect. For instance, 1549 of our samples
were found to correspond to impossible differential transitions. Two of these
were misclassified by the neural network as coming from the real distribution,
although in both cases the confidence level returned by the neural network output
was low (56 percent and 53 percent respectively).

On the other hand, the neural network also successfully identified output
pairs that could not have appeared in the real distribution. For instance, the
lowest neural network score on the set of disagreements was obtained for the
output pair (c0, c1) := (0xc65d2696, 0xa6a37b2a). This corresponds to an out-
put difference of 0x60fe/5dbc, and the transition 0x0040/0000 → 0x60fe/5dbc
for five rounds has a transition probability of about 2−26 according to the Markov
model. Accordingly, the predictor based on the difference distribution table as-
signs a 98 percent probability to this output pair being from the real distribution,
whereas our neural distinguisher returns an almost zero score. Performing opti-
mized key search, we found that there is in fact no key that links this output
pair to a possible intermediate difference in round 3. Indeed, the sample had
come from the random distribution in our test set.

Few-Shot Learning of Cryptographic Distributions Few-shot learning is the abil-
ity of people (and sometimes machines) to learn to recognize objects of a certain
category or to solve certain problems after having been shown only a few or even
just one example. We tested if our neural networks can successfully perform few-
shot learning of a cryptographic distribution given knowledge of another related
distribution by performing the following experiment: a fresh neural network with
one residual block was first trained to recognize Speck reduced to three rounds
with a fixed but randomly chosen input difference. Training consisted of a single
epoch of 2000 descent steps with batch size 5000, which on our hardware cor-
responds to about a minute of training time. We then accessed the output of
the second-to-last layer of this network, treating it as a representation of the in-
put data. We generated small samples (only real examples, specifically between
1 and 50 of them) of the output distribution for six rounds of Speck with the
chosen input difference of our main distinguishers. Each example set so created
was complemented by the same number of samples drawn from the random dis-
tribution. The resulting example set S was sent through the neural network to

17

obtain the corresponding set S′ ⊂ R64 of internal representation vectors. Ridge
regression (with regularization parameter α = 1) was used to create from this
small training set a linear predictor L : R64 → R for the six-round distribution
minimizing the squared error between labels and predictions on S′. We classified
an example x ∈ S′ as real if L(x) > 0.5 and as random otherwise. This predictor
was then tested on a size 50000 test set to determine its accuracy. This worked
well even with a single-figure number of examples. Figure 2 gives detailed results,
Algorithm 2 summarizes the algorithm used.

Algorithm 2 TrainByTransfer: Training a distinguisher for a block cipher with
block size b reduced to r rounds Er with input difference δ by transfer learning
given an auxiliary neural distinguisher N for input difference ∆ and Es.

Require: N, r, δ, n
1: X0 ← n samples drawn from the real output distribution of Er with input difference
δ.

2: Y0 ← (1, 1, ..., 1) ∈ Rn
3: X1 ← n samples drawn uniformly at random from {0, 1}2b.
4: Y1 ← 0 ∈ Rn.
5: N ′ ← N [−2], where N [−2] denotes the output of the second-to-last layer of N .
6: Z, Y ← N ′(X0||X1), Y0||Y1

7: L← RidgeRegression(Z, Y)
8: return L ◦N ′

Training a new distinguisher using Algorithm 2 is very efficient. For instance,
retraining on a thousand example training set takes about a millisecond on our
platform.

Deriving Good Input Differences Without Human Knowledge This few-shot learn-
ing capability allows us to very quickly derive a rough lower bound for the
effectiveness of truncated differential distinguishers for Speck for a given input
difference and a given number of rounds. Concretely, given a pre-trained network
for three-round Speck and a random input difference δ, we can quickly train a
distinguisher for another random input difference δ′ and evaluate its accuracy on
a small test set. Starting with a random δ′, we then use Algorithm 3 to optimize
δ′ for test set accuracy of the resulting distinguishers. Using α = 0.01, t = 2000,
and test and training datasets of size 1000 for each new input difference to be
tested, we need less than two minutes of computing time for the training of
the initial three-round distinguisher and about 15 seconds for each full run of
Algorithm 3 on our platform. The initial difference of our main neural distin-
guishers is usually found within a few random restarts of the greedy optimizer
and extending the number of rounds to be attacked, one can then easily show
using transfer learning that at least six rounds of Speck can be distinguished
with fairly high gain.

It seems likely that other generic optimization algorithms, e.g. suitable vari-
ants of Monte Carlo Tree Search, might work even better.

18

0 10 20 30 40 50
Number of training examples

55

60

65

70

Ac
cu
ra
cy

Few-shot learning for 5-round Speck

0 10 20 30 40 50
Number of training examples

52

54

56

58

Ac
cu
ra
cy

Few-shot learning for 6-round Speck

Fig. 2. Few-shot learning on the D5 and D6 tasks using a pre-trained classifier to
preprocess the input data. Algorithm 2 was used with a fixed auxiliary network trained
to distinguish Speck32/64 reduced to three rounds with a random fixed input difference.
The number of training examples supplied was varied from 1 to 50. The accuracy figures
shown are an average over 100 runs for each training set size, where for each training
run a fresh training set of the indicated size was generated on the fly. Accuracy was
measured against a fixed test set of size 50000. Measured accuracy is above guessing
at 2σ significance level even for a single training example.

Algorithm 3 GreedyOptimizerWithExplorationBias: Given a function F :
{0, 1}b → R, try to find x ∈ {0, 1}b which maximises F .

Require: F , number t of iterations, exploration factor α, input bit size b
1: x← Rand(0, 2b − 1)
2: vbest ← F (x)
3: xbest ← x
4: v ← vbest
5: H ← hashtable with default value 0
6: for i ∈ {1, . . . , t} do
7: H[x]← H[x] + 1
8: r ← Rand(0, b− 1)
9: xnew ← x⊕ (1� r)

10: vnew = F (xnew)
11: if vnew − α log2(H[xnew]) > v − α log2(H[x]) then
12: v, x← vnew, xnew
13: end if
14: if vnew > vbest then
15: vbest, xbest ← v, x
16: end if
17: end for
18: return xbest

19

4.5 Key Recovery Attack

To showcase the utility of our neural distinguishers as research tools, we have
constructed a partial-key recovery attack based on the N7 and N6 distinguisher
that is competitive to the best attacks previously known from the literature
on Speck32/64 reduced to 11 rounds, i.e. in particular to the 11-round attack
of [19]. The attack proposed by Dinur has a computational complexity approx-
imately equivalent to 246 Speck evaluations. The attack is expected to succeed
after querying 213 chosen-plaintext pairs and obtaining the corresponding ci-
phertexts. Attacks on 12 to 14 rounds were also proposed in [19], naturally with
substantially larger computational and data complexities.

Our eleven-round attack, in contrast, is expected to succeed with a compu-
tational complexity of roughly 238 Speck evaluations if it is executed on a CPU.
Its data complexity is slightly higher than that of the attack in [19]; however,
computational complexity is reduced by a factor of more than 200.

Basic Attack Idea

Overview The idea of our attack is to extend our neural 7-round distinguisher
to a 9-round distinguisher by prepending a two-round differential transition δ →
0x0040/0000 that is passed as desired with a probability of about 1/64. The
9-round distinguisher is then extended by another round at no additional cost
by asking for encryptions of ciphertext pairs P0, P1 that encrypt to the desired
input difference δ after one round of Speck encryption; this is easy, since no key
addition happens in Speck before the first nonlinear operation.

The signal from this distinguisher will be rather weak. We therefore boost
it by using k (probabilistic) neutral bits [10] to create from each plaintext pair
a plaintext structure consisting of 2k plaintext pairs that are expected to pass
the initial two-round differential together. For each plaintext structure, we de-
crypt the resulting ciphertexts under all final subkeys and rank each partially de-
crypted ciphertext structure using our neural distinguisher. If the resulting score
is beyond a threshold c1, we attempt to decrypt another round and grade the re-
sulting partially-decrypted ciphertexts using a six-round neural distinguisher. A
key guess is returned if the resulting score for the partially decrypted ciphertext
structure then exceeds another threshold c2.

Ranking a Partial Decryption To combine scores returned for individual cipher-
text pairs in a ciphertext structure into a score for the structure, we use Equation
(3) as in the previously described 9-round attack.

Attack Parameters This basic idea can be turned into a practical key recovery
attack on 11-round Speck. The initial difference (0x211/0xa04) and the neutral
bits set consisting of bits 14,15,20,21,22,23 of the cipher state work well, even
though bits 14,15 and 23 are not totally neutral. Using c1 = 15, c2 = 100 one
obtains an attack that succeeds on average within about 20 minutes of computing
time on a machine equipped with a GTX 1080 Ti graphics card, or in about 12

20

hours on a single core of a modern CPU. In one hundred trials, a key guess was
output after processing on average 213.2 ciphertext pairs. Recovery of both true
last subkeys was successful in 81 cases; the final subkey was correctly guessed in
99 cases. In the one remaining case, the second-to-last subkey was correct and
the guess for the last subkey was incorrect in one bit.

Improved Attack This basic attack can be accelerated in various ways. Here,
we focus on the following ideas:

1. The wrong key randomization hypothesis does not hold when only one round
of trial decryption is performed, especially in a lightweight cipher. We use
this to introduce an efficient key search policy using a generic optimization
algorithm.

2. It is inefficient to spend the same amount of computation on every ciphertext
structure. We use a generic method (an automatic exploitation versus explo-
ration tradeoff based on upper confidence bounds) to focus our key search
on the most promising ciphertext structures.

With these improvements, we can build an attack that recovers the final two
subkeys of Speck32/64 reduced to 11 rounds with a success probability of about
50 percent from ciphertext corresponding to 12800 chosen plaintexts in about 8
minutes running in single-threaded mode on a single CPU core.3

Bayesian Optimization Bayesian optimization [33] is a method that is commonly
used for the optimization of black box functions f that are expensive to eval-
uate. Examples are found in many domains; the tuning of hyperparameters of
machine learning models is one common example. It uses prior knowledge about
the function to be optimized to construct a probabilistic model of the function
that is easy to optimize. Knowledge about the model parameters is adjusted
to accomodate input from function evaluations f(x0), f(x1), . . . , f(xn). An ac-
quisition function is then used to decide which points of the function to query
next in order to improve in the most effective way possible knowledge about the
maximum.

In this work, we use Bayesian optimization to build an effective key search
policy for reduced-round Speck. This key search policy drastically reduces the
number of trial decryptions used by our basic attack, at the cost of a somewhat
expensive optimization step. The basic idea of our key search policy is that the
expected response of our distinguisher upon wrong-key decryption will depend
on the bitwise difference between the trial key and the real key. This wrong-
key response profile can be captured in a precomputation. Given some trial
decryptions, the optimization step then tries to come up with a new set of key
hypotheses to try. These new key hypotheses are chosen such that they maximize
the probability of the observed distinguisher responses.

3 Running the same code with different parameters, other attacks can be obtained.
The code repository, for instance, contains parameters for a 12-round attack that
is practical on a single PC (with the parameters used, average runtime is under an
hour on a GeForce GTX 1080 Ti GPU and success rate is ≈ 40 percent).

21

Model Assumptions Let C0, C1 be a ciphertext pair and let k be the real subkey
used in the final round of encryption. Let δ ∈ F16

2 and let k′ = k⊕ δ be a wrong
key. Denote the response of our distinguisher D to decryption by the key k′

by RD,δ(C0, C1) := D(E−1k′ (C0), E−1k′ (C1)). We can then view RD,δ as a random
variable depending on δ induced by the ciphertext pair distribution and compute
its mean µδ and standard deviation σδ. If we average the distinguisher response
over all elements of a ciphertext structure of size n as used in our attack, the
average can be expected to approximately follow a normal distribution4 with
mean µδ and standard deviation σδ/

√
n.

Wrong Key Randomization We calculated the wrong key response profile for
our six- and seven round distinguishers for Speck32/64. To calculate the r + 1-
round wrong key response profile, we generated 3000 random keys and message
input pairs P0, P1 for each δ and encrypted for r+1 rounds to obtain ciphertexts
C0, C1. Denoting the final subkey of each encryption operation by k, we then per-
formed single-round decryption to get E−1k⊕δ(C0), E−1k⊕δ(C1) and had the resulting
partially decrypted ciphertext pair rated by an r-round neural distinguisher. µδ
and σδ were then calculated as empirical mean and standard deviation over these
3000 trials. The wrong key response profile for seven rounds is shown in Figure
3. A lot of non-random structure is evident. The shape of the curves for σδ and
for six rounds is similar.

0 20000 40000 60000
Difference to real key

0.46

0.48

0.50

0.52

M
ea

n
re
sp

on
se

0 100 200 300 400 500
Difference to real key

0.46

0.48

0.50

0.52

M
ea

n
re
sp

on
se

Fig. 3. Wrong key response profile (only µδ shown) for 8-round Speck32/64 and our
7-round neural distinguisher. For each difference δ between trial key and right key, 3000
ciphertext pairs with the input difference 0x0040/0000 were encrypted for 8 rounds of
Speck using randomly generated keys and then decrypted for one round using a final
subkey at difference δ to the right key. Differences are shown on the x-axis, while mean
response over the 3000 pairs tried is shown in the y-axis.

4 Note that for our neural networks, this argument can be slightly strengthened if the
final sigmoid activation is removed, since then distinguisher output on an individual
ciphertext pair is just a linear combination of 64 somewhat independent intermediate
network units.

22

Using the Wrong-Key Response Profile for Key Search Given our model as-
sumptions and observations of the distinguisher response r0, r1, . . . , rn−1 for keys
k0, k1, . . . , kn−1, we can view the ri as values obtained from an n-dimensional
normal distribution. The parameters of this normal distribution depend on the
bitwise differences of the ki to the real last subkey k, specifically on µk⊕ki and
σk⊕ki . It is easy to see that the probability density at the observed values is max-

imised by minimizing the weighted euclidean distance
∑n−1
i=0 (mi−µk⊕ki)2/σ2

k⊕ki .
Our algorithm first generates a set of random key candidates, then scores those
keys by decrypting the ciphertext structure currently under study, then calcu-
lates the average distinguisher response on the tried keys, and finds a new set
of key candidates that bring the precomputed wrong key response profile in line
with the observed values as well as possible. This is iterated for a few cycles.
Algorithm 4 sums up the algorithm.

Algorithm 4 BayesianKeySearch: efficiently find a list of plausible key candi-
dates given a ciphertext structure satisfying the initial differential of our attack.

Require: Ciphertext structure C = C0, . . . Cm−1, neural distinguisher N , number of
candidates to be generated n, number of iterations l.

1: S := {k0, k1, . . . , kn−1} ← choose at random without replacement from the set of
all subkey candidates.

2: L← {}
3: for j ∈ {0, 1, . . . , l − 1}: do
4: Pi,k ← Decrypt(Ci, k) for all i ∈ {0, 1, . . . ,m− 1}, k ∈ S.
5: vi,k ← N(Pi,k) for all i,k
6: wi,k ← log2(vi,k/(1− vi,k)) for all i ∈ {0, . . . ,m− 1}, k ∈ S
7: wk ←

∑n
i=1 vi,kfor allk ∈ S

8: L← L||[(k,wk) for k ∈ S]
9: mk ←

∑n−1
i=0 vi,k/n for k ∈ {k0, . . . , kn−1}

10: λk ←
∑n−1
i=0 (mki − µki⊕k)2/σ2

ki⊕k for k ∈ {0, 1, . . . , 216 − 1}:
11: S ← argsortk(λ)[0 : n− 1]
12: end for
13: return L

All keys tried and their scores wk on the current ciphertext structure are
stored. Keys that obtain a score above a cutoff threshold c1 are expanded by
repeating the process for one further round, i.e. Algorithm 4 is used with a six-
round neural distinguisher and its associated wrong key response profile. If one
of the resulting key candidates scores above another threshold c2, we determine
that the search will be terminated, but the processing of the current search
node is finished before the best pair of subkeys found for the last two rounds is
returned.

Before we return a key, we perform a small verification search with hamming
radius two around the two subkey candidates that are currently best. This re-
moves remaining bit errors in the key guess. If the verification search yields an
improvement, it is repeated with the new best key guess.

23

Given t ciphertext structures, our algorithm is first tried on each structure.
If no solution is found, since Algorithm 4 is probabilistic, we continue for a pre-
set number of iterations it before returning the highest-scoring pair of subkeys
for the last two rounds. During these additional iterations, we have to actively
decide which ciphertext structures we will spend our computational budget on.
We treat this as a multi-armed bandit problem and solve it using a standard
exploration-exploitation technique, namely Upper Confidence Bounds (UCB).
The order of the ciphertext structures to be tested in this phase depends on the
highest distinguisher score obtained in the last-key search for the structures so far
and on the number of visits they have received in our search. Specifically, denote
by wimax the highest distinguisher score obtained so far for the ith ciphertext
structure, by ni the number of previous iterations in which the ith ciphertext
structure has been selected, and by j the number of the current iteration. We
calculate a priority score

si := wimax + α ·
√

log2(j)/ni (5)

and pick the ciphertext structure with the highest priority score for further
processing. The visit count and the best result for this ciphertext structure are
updated after the iteration has finished. We set α to

√
nc, where nc is the number

of ciphertext structures available.

Results In the trials subsequently described, we use 100 ciphertext structures
of 64 chosen plaintext pair encryptions each, the cutoff parameters c1 = 5,
c2 = 10, the UCB exploration term α = 10, an iteration count for the Bayesian
key search policy of l = 5 and candidate number n = 32, and an iteration
budget for the main loop it = 500. Given a hundred ciphertext structures, our
implementation outputs a key guess in approximately eight minutes on average
(measured average in 100 trials: 500.68 seconds) when running on a single thread
of our machine with no graphics card usage. This key guess is not always correct,
but if it is not, this is easily apparent from the scores returned. When a fast
graphics card is used, performance of our proof of concept implementation is
not limited by the speed of neural network evaluation, but by the key search
policy. The key search policy tries with the settings mentioned only 160 keys
when processing a ciphertext structure.

We count a key guess as successful if the last round key was guessed correctly
and if the second round key is at hamming distance at most two of the real
key. Under these conditions, the attack was successful in 521 out of 1000 trials;
recovery of the first round key was successful in 521 cases and in all of these
cases, the second round key guess was wrong for at most two bits within the
most significant nibble. For comparison, the attack presented in [19] is expected
to succeed with the same data complexity in about 55 percent of all trials. In the
simple model where in case of failure we request ciphertext values for another
100 plaintext structures, we expect that this attack will on average use 214.5

chosen plaintexts until success, slightly more than [19].

24

Computational Complexity We estimate that a highly optimized, fully SIMD-
parallelized implementation of Speck32/64 could perform brute force key search
on our system at a speed of about 228 keys per second per core. Adjusting for the
empirically measured success rate of our attack we expect to need about 1000
seconds on average to execute the key recovery algorithm on a single core of our
system. This yields an estimated computational attack complexity of 238 Speck
encryptions until a solution is found. The additional effort needed for full-key
recovery is negligible, since at that point a good ciphertext structure has been
found and the same attack can be launched on that single ciphertext structure
with distinguishers for less rounds of Speck.

5 The Real Differences Experiment

5.1 Summary

In this section, we design a cryptographic experiment in which the adversary
has to do differential cryptanalysis in a setting where the random and the real
difference distribution are the same. We show that our neural distinguishers are
successful in this experiment and compare their efficiency to solving the same
problem by key search in the case of five-round Speck.

5.2 Experiment

Motivation We have seen in the previous section that our best neural distin-
guishers are better at recognizing Speck32/64 reduced up to eight rounds than
a distinguisher based on the full difference distribution table. We have also seen
that the Markov model at least predicts its own distinguishing success rate fairly
well and have seen some evidence that the neural distinguishers exploit features
outside the difference distribution table, e.g. from the fact that our neural dis-
tinguishers break Proposition 1. This section looks at that topic in isolation.

To this end, we introduce a differential cryptographic distinguishing task
in which perfect knowledge of the differential distribution of a primitive under
study does not in itself allow the adversary to do better than random guessing.

Experimental Setup First, 106 samples were drawn from the real distribution
for the D5, D6, D7 and D8 tasks. Then, half of these samples were randomized
in the following way: for an output ciphertext pair C = (C0, C1) ∈ F2b

2 to be
randomized, a blinding value K ∈ Fb2 was generated uniformly at random by
reading from /dev/urandom. This value was bitwise-added to both ciphertexts
to produce the randomized ciphertext C̃ = (C0 ⊕K,C1 ⊕K).

The resulting 106 samples of randomized or non-randomized ciphertext pairs
were preprocessed as previously described and the results were passed to the
appropriate pretrained neural network for classification as random or real. No
further training took place.

25

Rationale The distribution of difference values is clearly the same in both the
random and the real sample in this experiment. On the other hand, in the random
sample any information about the ciphertext other than the difference between
the two ciphertext blocks given is perfectly hidden, as the blinding makes the
results of the random sampling uniformly distributed on the hyperplane given
by each possible difference.

Adapting Key Search For reference, the key search based distinguisher on five
rounds from section 3 was modified to work in the real differences setting. In
this setting, an exact solution by counting the keys leading to a decryption with
the desired input difference seems infeasible, as both random and real examples
are expected to regularly have a very high number of solutions. We therefore
calculate two approximations to Nkeys.

First, we calculate Arand := 264 ·DP (∆C), where DP (∆C) is the differential
probability of observing the output difference of the ciphertext pair C as given
by the Markov model of Speck.

Second, denoting by Dmid the set of possible round 3 differences, by P (δ) the
probability of observing the round 3 difference δ, and by Nδ(C) the number of
solutions for the final two subkeys that decrypt our observed ciphertext pair C
to the round 3 difference δ, we compute Areal := 232 ·

∑
δ∈Dmid

P (δ) ·Nδ(C).
C is then predicted as real if Areal > Arand and as random otherwise.

Results Our best networks were found to solve the real differences task measur-
ably better than random guessing without ever having explicitly been trained
for it. Training on the real differences task was tried in the five-round case and
expanded this advantage considerably. Predictably, however, key search yielded
clearly superior distinguishing power. See Table 4 for details.

Table 4. Performance of neural distinguishers in the real differences experiment. For
comparison, the performance of a key search based distinguisher and a version of the
N5 network retrained to this task are also given. Test set size is 106 for the neural
distinguishers and 104 for Search.

Nr Distinguisher Accuracy

5 N5 0.707± 9.10 · 10−4

6 N6 0.606± 9.77 · 10−4

7 N7 0.551± 9.95 · 10−4

8 N8 0.507± 1.00 · 10−3

5 Search 0.810± 7.84 · 10−3

5 N5 retrained 0.762± 8.51 · 10−4

These tests show that ciphertext pairs are not evenly distributed within their
respective difference equivalence classes. Indeed, using neural distinguishers as
a search tool it is easy to find examples of ciphertext pairs with relatively high-
likelihood differences which have very little chance of appearing in the ciphertext

26

pair distribution of reduced Speck. One such example has already been discussed
in section 4.4. For another, consider the output pair (0x58e0bc4, 0x85a4ff6c). It
has the ciphertext difference 0x802a/f4a8, which is a high probability output
difference for five round Speck given our input difference (p ≈ 2−15.3 according
to the full Markov model, which matches empirical trials well here). However,
the pair decrypts to our input difference with a much lower likelihood, around
2−35.3 according to our calculations.

Constraining the Additional Signal If we constrain the blinding values used in the
real differences experiment to be of the form aa, where a is any 16-bit word, our
distinguishers fail. This is consistent with the observation that the distinguishers
do not exploit the key schedule, as addition of a blinding value of this form is
equivalent to changing the final subkey used in encryption. It also suggests that
the networks exploit a strictly more fine-grained partition of the output pairs into
equivalence classes than the difference equivalence classes. We find that intra-
class variance of distinguisher output is very low for these equivalence classes
and that also the input representations generated by the penultimate network
layer show tight clustering.

6 Conclusions

We have tested in this paper whether neural networks can be used to develop sta-
tistical tests that efficiently exploit differential properties of a symmetric primi-
tive that has been weakened sufficiently by round reduction to allow for attacks
to be carried out in a low data setting. In the setting considered, this works
reasonably well: our distinguishers offer classification accuracy superior to the
difference distribution table for the primitive in question and use less memory,
even if inference speed is of course low compared to the simple memory lookup
needed with a precomputed difference distribution table. We consider it interest-
ing that this much knowledge about the differential distribution of round-reduced
Speck can be extracted from a few million examples by black-box methods.

The time needed to train a network from the ground up to an accuracy level
beyond the difference distribution table is on the order of minutes in our trials
when a single fast graphics card is available. Our networks start training with no
cryptographic knowledge beyond the word-structure of the cipher, making our
approach fairly generic. The transfer learning capabilities shown in this paper
demonstrate that finding good input differences from scratch is likewise possi-
ble using our networks with minimal input of prior cryptographic knowledge.
Our distinguishers have various novel properties, most notably the ability to
differentiate between ciphertext pairs within the same difference class.

In the context of this study, it certainly helped that Speck32/64 is a small
blocksize, lightweight primitive. However, this is true both for the optimisation
of conventional attacks and for the application of machine learning.

Given that the present work is an initial case study, we would not be surprised
if our results could be improved. Various directions for further research suggest

27

themselves. For instance, it would be interesting if a reasonably generic way were
found to give the model to be trained more prior knowledge about the cipher or
to enable the researcher to more easily extract knowledge from a trained model.

Small improvements to network performance are also completely expected to
be possible within the architecture and setting given by this paper.

It would be interesting to see the effect of giving the network cryptographic
knowledge in the form of precomputed features. We did some tests along these
lines, for instance by giving the prediction head a classification derived from the
difference distribution table as an additional input, but this was only marginally
helpful.

The use of Bayesian optimization and related methods for key search could be
of more general interest whenever an attack exploits a statistical distinguisher
with high evaluation cost. This could be a neural network, but for instance
ordinary statistical distinguishers that need to be evaluated on very large sets
of ciphertexts to be effective may also be examples.

We do not think that machine learning methods will supplant traditional
cryptanalysis. However, we do think that our results show that neural networks
can learn to do cryptanalysis at a level that is interesting for a cryptographer
and that ML methods can be a useful addition to the cryptographic evaluators’
tool box. We expect that similar to other general-purpose tools used in crypto-
graphy such as SAT solvers or Groebner basis methods, machine learning will not
solve cryptography but usefully complement and support conventional dedicated
methods of doing research on the security of symmetric constructions.

Acknowledgments The author wishes to thank the anonymous reviewers for their
questions and comments, as they helped him to improve the present paper.

References

1. Martin Abadi and David G Andersen. Learning to protect communications with
adversarial neural cryptography. arXiv preprint arXiv:1610.06918, 2016.

2. Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential crypt-
analysis of round-reduced Simon and Speck. In International Workshop on Fast
Software Encryption, pages 525–545. Springer, 2014.

3. Martin R Albrecht and Gregor Leander. An all-in-one approach to differential
cryptanalysis for small block ciphers. In International Conference on Selected
Areas in Cryptography, pages 1–15. Springer, 2012.

4. Ralph Ankele and Stefan Kölbl. Mind the Gap – A Closer Look at the Security of
Block Ciphers against Differential Cryptanalysis. In Proceedings SAC 2018, 2018.

5. Tomer Ashur and Daniël Bodden. Linear cryptanalysis of reduced-round SPECK.
In Proceedings of the 37th Symposium on Information Theory in the Benelux.
Werkgemeenschap voor Informatie-en Communicatietheorie, 2016.

6. Wasan Shaker Awad and El-Sayed El-Alfy. Computational intelligence in cryptol-
ogy. Improving Information Security Practices through Computational Intelligence,
pages 28–45, 2015.

7. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

28

8. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. SIMON and SPECK: Block Ciphers for the Internet of Things.
IACR Cryptology ePrint Archive, 2015:585, 2015.

9. Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason Smith,
and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In Design
Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6. IEEE,
2015.

10. Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Annual International
Cryptology Conference, pages 290–305. Springer, 2004.

11. Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search for the
best trails in ARX: Application to block cipher Speck. In International Conference
on Fast Software Encryption, pages 289–310. Springer, 2016.

12. Céline Blondeau and Benôıt Gérard. Multiple differential cryptanalysis: theory
and practice. In International Workshop on Fast Software Encryption, pages 35–
54. Springer, 2011.

13. Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learn-
ing affordance for direct perception in autonomous driving. In Computer Vision
(ICCV), 2015 IEEE International Conference on, pages 2722–2730. IEEE, 2015.

14. François Chollet et al. Keras. https://keras.io, 2015.
15. Jung-Wei Chou, Shou-De Lin, and Chen-Mou Cheng. On the effectiveness of using

state-of-the-art machine learning techniques to launch cryptographic distinguish-
ing attacks. In Proceedings of the 5th ACM workshop on Security and artificial
intelligence, pages 105–110. ACM, 2012.

16. Christopher Clark and Amos Storkey. Training deep convolutional neural networks
to play go. In International Conference on Machine Learning, pages 1766–1774,
2015.

17. Moisés Danziger and Marco Aurélio Amaral Henriques. Improved cryptanalysis
combining differential and artificial neural network schemes. In Telecommunica-
tions Symposium (ITS), 2014 International, pages 1–5. IEEE, 2014.

18. Flavio de Mello and José Xexéo. Identifying Encryption Algorithms in ECB and
CBC Modes Using Computational Intelligence. Journal of Universal Computer
Science, 24(1):25–42, 2018.

19. Itai Dinur. Improved differential cryptanalysis of round-reduced Speck. In Inter-
national Workshop on Selected Areas in Cryptography, pages 147–164. Springer,
2014.

20. Aidan N. Gomez, Sicong Huang, Ivan Zhang, Bryan M. Li, Muhammad Osama, and
Lukasz Kaiser. Unsupervised cipher cracking using discrete GANs. In International
Conference on Learning Representations, 2018.

21. Sam Greydanus. Learning the enigma with recurrent neural networks. arXiv
preprint arXiv:1708.07576, 2017.

22. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

23. Geoffry Hinton, Orio Vinyals, and Jeffrey Dean. Distilling the knowledge in a
neural network. arXiv preprint: arXiv 1503.02531, 2015.

24. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

25. Alexander Klimov, Anton Mityagin, and Adi Shamir. Analysis of neural cryptog-
raphy. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 288–298. Springer, 2002.

29

https://keras.io

26. Linus Lagerhjelm. Extracting Information from Encrypted Data using Deep Neural
Networks. Master’s thesis, Ume̊a University, 2018.

27. Xuejia Lai, James L Massey, and Sean Murphy. Markov ciphers and differential
cryptanalysis. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 17–38. Springer, 1991.

28. Elena Laskari, Gerasimos Meletiou, Yannis Stamatiou, and Michael Vrahatis.
Cryptography and cryptanalysis through computational intelligence. In Compu-
tational Intelligence in Information Assurance and Security, pages 1–49. Springer,
2007.

29. Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential
properties of addition. In International Workshop on Fast Software Encryption,
pages 336–350. Springer, 2001.

30. Yu Liu, Kai Fu, Wei Wang, Ling Sun, and Meiqin Wang. Linear cryptanalysis of
reduced-round SPECK. Information Processing Letters, 116(3):259–266, 2016.

31. Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryp-
tographic implementations using deep learning techniques. In International Con-
ference on Security, Privacy, and Applied Cryptography Engineering, pages 3–26.
Springer, 2016.

32. Kenneth G Paterson, Bertram Poettering, and Jacob CN Schuldt. Big bias hunting
in amazonia: Large-scale computation and exploitation of RC4 biases. In Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, pages 398–419. Springer, 2014.

33. Martin Pelikan, David E Goldberg, and Erick Cantú-Paz. BOA: The Bayesian
optimization algorithm. In Proceedings of the 1st Annual Conference on Genetic
and Evolutionary Computation-Volume 1, pages 525–532. Morgan Kaufmann Pub-
lishers Inc., 1999.

34. Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template attack vs bayes
classifier. Technical report, Cryptology ePrint Archive, Report 2017/531, 2017,
2016.

35. Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In International Conference on Security, Privacy, and
Applied Cryptography Engineering, pages 157–176. Springer, 2018.

36. Ronald L Rivest. Cryptography and machine learning. In International Conference
on the Theory and Application of Cryptology, pages 427–439. Springer, 1991.

37. David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

38. David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, et al. A general reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science, 362(6419):1140–1144, 2018.

39. David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. Mastering the game of go without human knowledge. Nature, 550(7676):354,
2017.

40. Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

30

	Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning

