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Abstract. Leakage certification aims at guaranteeing that the statis-
tical models used in side-channel security evaluations are close to the
true statistical distribution of the leakages, hence can be used to approx-
imate a worst-case security level. Previous works in this direction were
only qualitative: for a given amount of measurements available to an
evaluation laboratory, they rated a model as “good enough” if the model
assumption errors (i.e., the errors due to an incorrect choice of model
family) were small with respect to the model estimation errors. We revisit
this problem by providing the first quantitative tools for leakage certifi-
cation. For this purpose, we provide bounds for the (unknown) Mutual
Information metric that corresponds to the true statistical distribution of
the leakages based on two easy-to-compute information theoretic quanti-
ties: the Perceived Information, which is the amount of information that
can be extracted from a leaking device thanks to an estimated statis-
tical model, possibly biased due to estimation and assumption errors,
and the Hypothetical Information, which is the amount of information
that would be extracted from an hypothetical device exactly following
the model distribution. This positive outcome derives from the obser-
vation that while the estimation of the Mutual Information is in gen-
eral a hard problem (i.e., estimators are biased and their convergence is
distribution-dependent), it is significantly simplified in the case of sta-
tistical inference attacks where a target random variable (e.g., a key in
a cryptographic setting) has a constant (e.g., uniform) probability. Our
results therefore provide a general and principled path to bound the
worst-case security level of an implementation. They also significantly
speed up the evaluation of any profiled side-channel attack, since they
imply that the estimation of the Perceived Information, which embeds an
expensive cross-validation step, can be bounded by the computation of
a cheaper Hypothetical Information, for any estimated statistical model.

1 Introduction

State-of-the-art. Side-Channel Attacks (SCAs) are among the most im-
portant threats against the security of modern embedded devices [20].
They leverage physical leakages such as the power consumption or elec-
tromagnetic radiation of an implementation in order to recover sensitive



data. Concretely, SCAs consist in two main steps: information extrac-
tion and information exploitation. In the first step, the adversary collects
partial information about some intermediate computations of the leaking
implementation. For this purpose, he generally compares key-dependent
leakage models with actual measurements thanks to a distinguisher such
as the popular Correlation Power Analysis (CPA) [2] or Template At-
tacks (TAs) [5]. In the second step, the adversary combines this partial
information in order to recover the sensitive data in full (e.g., by per-
forming a key recovery). For this purpose, the most frequent solution is
to exploit a divide-and-conquer strategy (e.g., to recover each key byte
independently), and to perform key enumeration if needed [22,27,34].!

Based on this description, the (worst-case) security evaluation of ac-
tual implementations and side-channel countermeasures requires estimat-
ing the amount of information leaked by a target device [33]. Fair eval-
uations ideally require exploiting a perfect leakage model (i.e., a model
that perfectly corresponds to the leakage distribution) with a Bayesian
distinguisher. Yet, such a perfect leakage model is in general unknown.
Therefore, side-channel security evaluators (and adversaries) have to ap-
proximate the statistical distribution of the leakages using density es-
timation techniques. It raises the problem that security evaluations can
become inaccurate due to estimation and assumption errors in the leakage
model. Estimation errors are due to an insufficient number of measure-
ments for the model parameters to converge. Assumption errors are due
to incorrect choices of density estimation tools (e.g., assuming Gaussian
leakages for non-Gaussian leakages).

The problem of ensuring that a leakage model is “good enough” so
that it does not lead to over-estimating the security of an implementation
has been formalized by Durvaux et al. as leakage certification [13]. In the
first leakage certification test introduced at Eurocrypt 2014, a leakage
model is defined as good enough if its assumption errors are small with
respect to its estimation errors. Intuitively, it guarantees that given the
amount of measurements used by the evaluator / adversary to estimate
a model, any improvement of his (possibly incorrect) assumptions will
not lead to noticeable degradations of the security level (since the im-
pact of improved assumptions will be hidden by estimation errors). In
a heuristic simplification proposed at CHES 2016, a model is considered
as good enough if the statistical moments of the model do not notice-

! More advanced strategies, such as Algebraic Side-Channel Attacks (ASCA) [29)
or Soft Analytical Side-Channel Attacks (SASCA) [35] can also be considered. Our
following tools apply identically to these attacks.



ably deviate from the statistical moments of the actual leakage distribu-
tion [12]. In both cases, the certification tests are based on challenging
the model against fresh samples in a cross-validation step. In both cases,
the certification tests are qualitative and conditional to the number of
measurements available to build the model. By increasing the number of
measurements (and if the model is imperfect), one can make estimation
errors arbitrarily small, which inevitably leads to the possible detection
of assumption errors. As a result, a fundamental challenge in side-channel
security evaluations (which we tackle in this paper) is to bound the infor-
mation loss due to model errors quantitatively.

We note that from an information theoretic viewpoint, the risk of
under-estimating the leakages due to model errors in side-channel security
evaluations can be captured with the notion of Perceived Information
(PI) initially introduced in [30] to analyze model variability in nanoscale
devices. Informally, the PI corresponds to the amount of information that
can be extracted from some data thanks to a statistical model possibly
affected by estimation or assumption errors. If the model is perfect, the
PI is identical to Shannon’s standard definition of Mutual Information
(MI). Otherwise, the difference between the MI and the PI provides a
quantitative view of the information loss. (Yet, at this stage not a usable
one since the MI is unknown, just as the perfect model).

Contribution. The main contributions of the paper are to provide simple
and efficient information theoretic tools in order to bound the model
errors in side-channel security evaluations, and to validate these tools
empirically based on simulated leakages and actual measurements.

Our starting point for this purpose is a third information theoretic
quantity that was introduced as part as a negative result on the way
towards the CHES 2016 heuristic leakage certification test. Namely, the
Hypothetical Information (HI), which is the amount of information that
would be extractable from the samples if the true distribution was the
statistical model. As discussed in [12], as such the HI seems useless since
in case of incorrect model, it can be completely disconnected from the
true leakage distribution (i.e., models with positive HI may not lead to
successful attacks). Yet, we show next how it can be used in combina-
tion with the PI in order to enable quantitative leakage certification. In
particular, our main results in this direction are twofold:

First, we show that — under the assumption that the target random
variable (e.g., the secret key) has constant (e.g., uniform) probability —
the empirical HI (eHI), which corresponds to the HI estimated directly
based on the empirical leakage distribution, is in expected value an upper



bound for the MI and that it converges monotonically towards the true
MI as the number of measurements used in order to estimate the leakage
model increases. Second, we show that (under the same assumptions) the
PI is a lower bound for the MI.

Our experiments then show that these tools can be concretely ex-
ploited in the analysis of actual leakage models and speed up side-channel
security evaluations. They also sometimes illustrate the difficulty to ob-
tain tight worst-case bounds in practice, and the interest of exploiting
some additional (e.g., Gaussian) leakage assumptions in order to more
efficiently obtain “close to worst-case” evaluations. In this case as well,
we show that bounding the PI with the HI can lead to efficiency gains,
especially for distributions with larger number of dimensions.

Related works. The fact that we may bound the MI is surprising since
it is actually known to be impossible in general. As for example discussed
by Paninski [26], there are no unbiased estimators for the MI (and the
rate at which the error decreases depends on the data structure, for any
estimator). This had led some works aiming at leakage detection to exploit
more positive results for the distribution of the zero MI (i.e., the case with
no information leakage) [6,7,24]. We follow a different path by observing
that in the context of side-channel security evaluations, every key (or
target intermediate variable) has a uniform distribution a priori, and it
is easy for the evaluator to enforce that the number of leakages collected
for every key (or target intermediate variable) is identical. In this case,
where the probability of the key (or target intermediate variable) does
not need to be estimated, we fall back on a situation where the maximum
likelihood estimation of the MI is biased upwards everywhere. Combined
with the good properties of the empirical distribution (which converges
towards the true distribution) it leads to our first result. The result for
the PI is even more direct, holds for any model, and is obtained by solving
an optimization problem.

Besides, the problem of leakage certification shares strong similarities
with the application of the bias-variance decomposition [9], introduced
as a diagnosis tool for the evaluation of side-channel leakage models by
Lerman et al. [18]. Note that we here mean the bias (and variance) of
the leakage model, not the bias of the MI estimator as when previously
referring to Paninski. Conceptually, evaluating the bias and variance of a
leakage model can be viewed as similar to evaluating its estimation and
assumption errors. Yet, the problem of this decomposition is again that
it requires the knowledge of the perfect leakage model. Lerman et al. al-
leviate this difficulty by assuming that the perfect leakage model directly



provides the key (in one trace). However, this leads their estimation of
the bias and variance to gradually become inaccurate as the target imple-
mentations become protected, so that this idealizing assumption becomes
more and more incorrect.

2 Notations and background

In this section, we provide the background and definitions needed to de-
scribe our results, with a particular focus on the different metrics we
suggest for side-channel security evaluations.

True distributions. Given a (discrete) secret key variable K and a (dis-
crete or continuous) leakage variable L, we denote the true conditional
Probability Mass Function (PMF) — which corresponds to discrete leak-
ages — as Pr(L = [|K = k) and the true conditional Probability Den-
sity Function (PDF) — which corresponds to continuous leakages — as
f(L =K = k).

Mutual Information (MI). For discrete leakages, it is defined as [§]:

MI(K; L) K)+» Pr(L=1)-> Pr(K =k|L=1) log, Pr(K =k|L=1), (1)
lel ke

K)+ > Pr(K =k)- > Pr(L=IK =k)-log, Pr(K = k|L =1). (2)
kel lel

Using the simplified notation Pr(X = x) := p(x), it leads to:

MI(K; L) = H(K) + Y p(k)- Y _ p(l|k) - log, p(k|l). (3)

kel lel

Assuming uniformly distributed keys, p(k|l) is computed as %
*e
and H(K) = logy(|K|). Similarly, in the case of continuous leakages, we

can define the MI as follows:

MI(K; L) +]§Cpr /Hf(uk) logy p(k|l) dI.  (4)

MI and statistical inference attacks. We are interested in the MI in the
context of side-channel analysis because it is a good predictor of the
success probability of a continuous “statistical inference attack”, where
an adversary uses his leakages in order to recover a secret key.? Precisely,

2 We consider so-called noisy leakages, where the adversary can observe a noisy
function of secret variables [28].



it is shown in [11] that a higher MI generally implies a more efficient
maximum likelihood attack where the adversary selects the most likely
key k among all the candidates k* as:

k = argmax | [ p(k*[1). 5
s [To(k 1 (5)

Note that this implication only holds independently for each key k& ma-
nipulated by the leaking device. That is, a higher “MI per key” MI(k; L)
implies a higher probability of success Pr(k = k).

Intuitively, the link between such an attack and MI(k; L) comes from
the similarity between the product of probabilities in the attack and the
sum of log probabilities in the metric.

Sampling process. The true distributions are generally unknown, but we
can sample them in order to produce data sets for estimating leakage
models and testing these models. We denote these sampling processes as
M & p(l|k) and T & p(I|k) in the discrete case, with n and n; (resp.,
n(k) and n¢(k)) the number of i.i.d. samples measured and stored (resp.,
per key) in the multisets of samples M and 7 (which have repetitions).
We replace p by f for the continuous case.

Computing the MI by sampling. The MI metric can be computed directly
thanks to Equations 3 or 4. It can also be computed “by sampling” (for
discrete and continuous leakages) as:

n¢ (k)

MI(KL) = H(E) + 32 p(h) - Y o lom (kI (6)

e = )

where [ (1) € T is the ith leakage sample observed for the key k. In the
discrete case, it is easy to see that the blue part of the equation corre-
sponds to the empirical distribution. So Equation 6 essentially replaces
the true distribution p(l|k) by the empirical one, and the hat sign is used
to reflect that the MI is computed by sampling. Sincg\ the empirical dis-
tribution converges towards the real one as ny — oo, MI(K; L) also tends
towards MI(K; L). In the continuous case, the convergence requires more
elaboration (details are given in the full version of the paper [3]). For
simplicity, we next refer to the blue part of Equation 6 as the empirical
in both the discrete and continuous cases.

Note that the PMF after the log in Equation 6 is fixed (i.e., it is not
an estimate). So this equation does not describe an estimation of the MI



in the usual sense, where the joint probability of two random variables
has to be estimated: it only provides an alternative way to compute the
MI of some known distribution. Hence it does not suffer from the bias
issues discussed in [26].

Model estimation. Given a set of n modeling samples M, we denote the
process of estimating the conditional leakage distribution as m,,(I|k) <
M, where we use the red color to highlight the model and the tilde sign
to reflect that it is the result of a statistical estimation.

We will consider two types of models: exhaustive models where we
directly estimate the empirical distribution (e.g., in the discrete case they
correspond to histograms on the full support of the observations); simpli-
fied models which may for example correspond to histograms with reduced
numbers of bins in the discrete case, or to parametric (e.g., Gaussian)
PDF estimation in the continuous case. Simplified models are aimed to
converge faster (i.e., to require lower n values before becoming informa-
tive), possibly at the cost of some information loss when n — oo. In other
words, exhaustive models (sometimes slowly) converge towards the real
distribution as n — oo, while simplified models may be affected by as-
sumption errors appearing for large n’s (i.e., bad choices of parametric
estimation such as assuming Gaussian noise for non-Gaussian leakages).

Finally, we use the term model for the (parametric or non-parametric)
estimation of a distribution from a given number of profiling leakages n,
and the term model family for the set of all the models that can be
produced with a defined set of parameters. For example, the (univariate)
Gaussian model family denotes all the models that can be produced by
estimating a sample mean and a sample variance, and a Gaussian model
corresponds to one estimation given n leakages.

Hypothetical and Perceived information. Given that the true distributions
p(l|k) or f(I|k) are unknown, we cannot directly compute the MI. One op-
tion to get around this impossibility is to estimate it, which is known to be
a hard problem (i.e., there are no unbiased and distribution-independent
estimators [26]). We next study an alternative approach which is to an-
alyze the information that is revealed by estimated models thanks to
two previously introduced and easy-to-compute quantities. First the Per-
ceived Information (PI), which is the amount of information that can be
extracted from some data thanks to an estimated model, possibly affected
by estimation or assumption errors [13]. Second the Hypothetical Infor-
mation (HI), which is the amount of information that would be revealed
by (hypothetical) data following the model distribution [12].



Informally, the PI predicts the concrete success probability of a max-
imum likelihood attack exploiting an estimated model just as the (un-
known) MI predicts the theoretical success probability of a worst-case
maximum likelihood attack exploiting the true leakage distribution [15].
It can be negative if the estimated model is too different from the true
distribution, and therefore can underestimate the information available
in the leakages. By contrast, the HI is a purely hypothetical value that
is always non-negative and can therefore overestimate the information
available in the leakages. We next aim to formalize their properties, and
in particular to show that they can be used to (lower and upper) bound
the worst-case security level captured by the unknown MI.

The HI is defined as follows in the discrete case:

HI, (K; L) )+ > p(k)- D (k) -logy (Kl (7)

kek lel

(Replace Y by [ in the continuous case) For an estimated model m,, (I|k),
the HI can be computed based on Equation 7, or by sampling (just as for
the MI). In the latter case, we use the notation HIL,(K; L):

HI,(K; L) )+ > plk Z o) 1oga M (K@), (8)

with as main difference from the MI case that the test samples come from
a set 7, which has been picked up from the model distribution rather than
the true distribution. We denote this process as 7, <= m,,({|k), and use
the green color to denote the empirical distribution of the model.

Note that, as in Equation 6, the model after the log in Equation 8 is
fixed. Similarly to the MI estimation process, the value of the estimation
HI(K; L) when ny — oo equals HI(K; L). In most practical cases, the HI
will be estimated directly via Equations 7 (which is simpler and faster).

Next, the PI is theoretically defined as follows in the discrete case:

PI,(K; L) K)+ Y plk)- > p(llk) - logy i, (k[1), (9)

kel lel

and as follows in the continuous case:

PI,(K;L) )+ p(k fl|k:) logy My, (k|1 dl. (10)
kel



In contrast with the HI, these equations cannot be computed directly
since they require the knowledge of the true distributions p(I|k) and f(I|k)
which are unknown. So concretely, the PI will always be computed thanks
to the following sampling process (where we keep the red color code for
the model and the blue color code for the true empirical distribution):

n¢ (k)
PL (K L) = H(K) + 3 p(k) - 3 nik) Nogy MKIL(@D). (1)
ke =1

This is feasible in practice since, even though the analytical form of the
true distributions is unknown to the evaluator, he can sample these dis-
tributions, by measuring his target implementation.

Note again that, as in Equation 6, the model after the log in Equa-
tion 11 is fixed. So the PI captures the amount of information that can be
extracted from some fixed model (usually obtained by estimation in an
earlier phase). In other words, the PI computation is a two-step process:
first a model is estimated, second the amount of information it provides
is estimated. This is captured in our equations with the tilde and hat
notations: the first one is for the estimation of the model, the second one
for the computation of the information theoretic metrics by sampling.

Other useful facts. We next list a few additional former results.

o A sufficient condition for successful (mazimum likelihood) attacks. As
previously mentioned, the PI can be negative, indicating an estimated
model that is too different from the true distribution. Also, the link be-
tween information theoretic metrics and the success rate of maximum
likelihood attacks only holds per key. A sufficient condition for successful
maximum likelihood attacks, first stated in [33], can therefore be given
based on the “PI per key”. For this purpose, and again assuming uni-
formly distributed keys, we first define a PI matrix (PIM) as follows:

PIM,, (k, k*) = H(K) + > % -logy . (K*|1). (12)

It captures the correlation between a key generating leakages k and a key
candidate in a maximum likelihood attack £*. The sufficient condition of
successful attack against this key £ is:

k = argmax PIM,, (k, k*). (13)
k*ek



The PI is connected to the PIM: 1/3\In(K, L)= keElC (mn(k, k))

e Key equivalence in the standard DPA setting. In the usual (divide-and-
conquer) side-channel analysis context, formalized in [21] as the standard
DPA setting that we consider next, the adversary can continuously accu-
mulate information about the key thanks to multiple input plaintexts x.
Information theoretic metrics such as the MI, HI and PI therefore have
to include another sum over these inputs to be reflective of this setting.
For example in the discrete MI case, it yields:

MI(K; L, X) K)+> plk)-> " p(@)-Y " p(llk, x)-logy p(k|l,x). (14)

kel zeX leL

Concretely, the adversary exploits the leakages after a first group op-
eration between uniformly distributed plaintexts x and a key k took
place. For example, he can target an intermediate operation y = = @ k
or y =S(x @ k) with S a block cipher S-box.? As a result, one can lever-
age the “key equivalence property” also proven in [21], which states that
MI(K; L, X) =MI(k; L, X) = MI(Y; L) (i.e., there are no weak keys with
respect to standard DPA and all the information exploited depends on
the target intermediate computation Y).# Again, we use the MI(k; L, X)
notation for a “MI per key” (i.e., Equation 14 for a fixed value of K,
which is the same for all £’s). The same type of result holds with the HI
and PI. In the following, and in order to keep notations concise, we will
therefore state our results for MI(Y'; L), HIL,(Y; L) and PL,(Y; L):

MI(Y;L) = H(Y) + ) p(y) - Y _ p(lly) - loga p(yll), (15)

yey lel

HI,(Y; L) )+ D p) - Y mallly) -logy ma(yll),  (16)
yeY lel

PI, (Y L —|—Z Z lly) logs an(y“)a (17)
yey leL

where the n subscript is the amount of leakages used to estimate the model.

e Cross-validation. When computing a metric by sampling, one generally
uses cross-validation in order to better take advantage of the collected

3 Tt is shown in [36] that their adaptive selection only marginally improves the attacks,
and in [10,11] how this average metric can be used to state a sufficient condition for
secure masked implementations.

4 The second equality is turned into an inequality in case of non-bijective S-boxes.

10



data. As detailed in [13], it allows all the measured leakages to be used
both as profiling and as test samples (but not both at the same time).

o Metrics convergence and confidence intervals. When estimating a metric
by sampling, one is generally interested in knowing whether the computed
value is close enough to the asymptotic one. In the context of side-channel
analysis considered here, the amount of collected data is generally suffi-
cient to build a “convergence plot” (see the experimental section) enabling
to gain simple (visual) confidence that the metric is well estimated. If
needed (e.g., in case of limited amount of data available), the bootstrap
confidence intervals proposed in [17] can be used.

e QOutliers. We finally note that outliers may prevent the PI metric com-
puted from real data to converge (e.g., in case a probability zero is as-
signed to the correct y, leading to a log(0) in the PI equation). The
treatment of these outliers will be discussed in the next section.

3 Theoretical bounds for the MI metric

Given the motivation that the MI metric is a good predictor of the suc-
cess probability of a worst-case side-channel attack using the true leakage
model, and the impossibility to compute it directly for unknown distribu-
tions, we now provide our main theoretical results and show how the HI
and PI metrics can be used to bound the MI. We first state our results
for discrete leakages and discuss the continuous case in Section 3.4. We
will consider three quantities for this purpose:

— The previously defined MI with p(y|l) computed thanks to Bayes as-
suming uniform y’s (uniform y’s are typically encountered in the afore-
mentioned standard DPA setting):

MI(Y; L) =H(Y) + > p(y)- > p(lly) - logy p(yll), (18)

yey lel
) _ o, — PUY)
—H(Y) + yz@:} p(y) ; p(ly) - log >y PUly")

— The PI (i.e., Equation 17) under a similar uniformity assumption.

— The empirical HI (eHI), which is Equation 16 taking as model m,,(I|y)
the empirical distribution, that we denote by €, (I|y), under a similar
uniformity assumption:

eHL,(Y;L) =H(Y)+ > p(y)- Y _&n(lly) -logy&n(yll).  (19)
yey leL
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Note that the eHI is exactly the biased maximum likelihood estimator
of the MI that is used in the leakage detection test of Chatzikokolaki et
al. [6], applied in the SCA setting by Mather et al [24]. As detailed next,
under our uniformity assumption this estimator of the MI is biased up-
wards everywhere, which explains why the eHI provides an upper bound
of the unknown MI.

3.1 Technical lemmas

We start with a few technical lemmas that we need to prove our two
main theorems. Note that some of them are variations of well-known
results given in textbooks such as [8]. We provide the proofs for the sake
of completeness and for readers not familiar with information theory.
Considering a discrete random variable taking values 1,2,...,t, we next
denote the actual probability of a value v as p(v), and the ¢-dimensional
vector containing these probabilities as p.

Lemma 1. Denoting by €, the empirical distribution estimated from n
i.1.d. leakage samples indexed 1,2,...,n, and by &, the empirical dis-
tribution estimated from the same samples excluding the sample j, the
following equality holds:

and each empirical distribution &, follows the same distribution as €,_1.

Proof. Let x € {1,2,...,t}" be the random i.i.d. samples. For any subset
S of {1,...,n}, we denote by és the empirical distribution of the sample
whose indices are in §. Observe that:

s = g o

1€S

with I, the indicator function taking the value 1 for the entry z; and 0
otherwise. We then have:

IELEE > k.

. X n
j=1n J=1 \ue{lm}\{j}

12



69 )

n n
:n_ln Q_Z%,
7=1
1 n
- _w-1(Y1
o (z )

n

= %ZILBZ :éna

i=1

which proves the equality in the lemma. Moreover, since the samples
are i.i.d., all &, follow the same distribution, and in particular the same
dlstrlbutlon as €] = €,_1. O

Lemma 2. Let v :[0,1]' = R be a convex function. Then for anyn > 1,

we have:
1p) < E(v(8)) < E(7(E0n)).

Moreover, if y is continuous at p and bounded from above on [0, 1], then:

E(v(&n)) = 7(p).

monotonically with n. Similarly, if v is concave and under the assumption
that it is continuous and bounded from below, the same result holds with
reverse inequalities.

Proof. We focus on the convex case and begin with the first inequality.
Observe that:

p=E(&,). (20)
Indeed, by linearity of the expected value, we have E (&,) = 1 >°" | E(I,,),

n
with I, the indicator function, whose ¢-dimensional value is 1 for the

entry z; and 0 otherwise. Therefore, for any i and entry v € {1,...,t}:
E(Iz,)v =1 -Pr(z; =v) + 0 Pr(z; #v) = p(v),
from which (20) follows. Hence, due to the convexity of v, we have:
1) =7(E@) ) <E(v(E0).

13



For the second inequality, it follows from Lemma 1 that:

Hence we have:

Moreover, each &), has the same distribution as &,_;. Hence:

E(v(én)>§E AZ:LV(@%) :

Jj=1ln
Let us now show the convergence under the assumption that v is contin-
uous at p and uniformly bounded by some M. By continuity of v at p,
for every e there is a ¢ such that ||&, — p|| < § implies |y(&,) —v(p)| < e.
Moreover, &, converges in probability to p, meaning that for every (4, €')
there is a n’ such that Pr(||&, — p|| > §) < € for any n > n’. As a
consequence, for n > n/, we have:

Pr(|v(&:) —v(p)| > €) < €.
Remembering that v(.) < M, we then have that for every n > n':
E(v(™) =) = E(1(En) = 7()),
< ePr{[v(&) —(p)| < 6) + (M - v(p)) Pr (Iv(én) —7(p)| > 6)7
Se(l—€)+¢ (M - v(p))’
for every n > n’. Combining this with vy(p) < E <v(én)> yields the desired
convergence result. O

Lemma 3. Let y € R be a vector of positive entries. Then for any
positive x € R"*, we have:

Z Ui log2 - < Z Ui log2

with equality if and only if x; = kyi for some k > 0.

14



Proof. Let o' = x/(3_;%;) and y' = y/(3_,y;). These vectors can be
viewed as probability distributions since they are non-negative and sum
to 1. Hence we can compute the following KL-divergence, which is always
non-negative, and zero if and only if 2’ = 3/

0 < Dyl = 1 (sitox (%))

i (2

Using log(y;/x}) = logy, — log z;, we obtain:

> (wilogal) < (4 logy)),

3 3

from which the result follows by replacing , y; and multiplying by > y;.
Equality holds if and only if ' = ¢/, that is, if z = ky for some k > 0. [

3.2 Bound from the HI

We first recall the following standard result from Cover and Thomas:

Theorem 1 (Cover & Thomas, 2.7.4 [8]). The mutual information
MI(Y; L) is a concave function of p(y) for fixred p(lly) and a convex func-

tion of p(lly) for fived p(y).

Combined with the technical Lemma 2, it leads to our main result:

Theorem 2. On average over the profiling sets M wused to estimate the
eHI and assuming that the target random variable Y has (constant) uni-
form probability, we have:

E <eHIn(Y; L)) > E (eHIn,l(Y;L)) > MI(Y; L).
MEp(lly) M p(ily)
Moreover, h_)m eHL,(Y; L) = MI(Y; L) (i.e., the eHI monotonically con-
n—oo
verges towards the MI).

Proof. Observe that eHI,,(Y; L) is the mutual information between Y and
the empirical distribution of the leakages. Hence (thanks to Theorem 1),
it is convex in &,(l|y) for a fixed distribution of y (which we have by
assumption). The result then follows from Lemma 2. O
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3.3 Bound from the PI

Theorem 3. Assuming that the target random variable Y has (constant)
uniform probability and given any model m,,(l|y) for the conditional prob-
abilities p(l|y), we have:

o My (U]y)
PL,(Y;L) +Z Zl: p(l]y)1 g2z Ly (ly) < MI(Y; L).

Proof. Since p(y) is a constant ¢, we have:
My (1]y)
PL,(Y;L) =H(Y) + ¢ p(lly)logy =———— | - (21)
2. | 2pltoes 5= 70 TS
Now for any [, it follows from Lemma 3 that:
My (1]y) p(lly)
p(lly)logy == <> p(l|y)logy =— 71— (22)
2 S ] < '3, pllly)

Re-introducing this in Equation 21 leads to:

P1,(Y; L) +CZ (Z (Ily) logQZ%), (23)
o plly)
V)4 2 pl) 2 plll) ogs 5= S0
:MI(Y;L).
O

Additional observation. It would be nice to know that PL,(Y; L) = MI(Y; L)
if and only if m,(I|y) = p(l]y). However, this is not true in general. Sup-
pose for example that | and y only take two values l1,ls and 1,2, and
that p(l;ly;) = 1/2 for all four cases. Then consider the model defined

by m,(l1]y;) = a and m,(l2]y;) = 1 — a for both y; and some a € [0,1].
Again assuming a constant p(y) = 1/2, the perceived information of any
such model would be:

mn (ly)

PL,(Y; L) 222 272 o)
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Mn (l]y1) Mo (l1]y2)
My, (I ]y1) + My (l]y2) 2 (lafyr) + M (la]yz)
My (l2]y1) My (l2]y2)
+10 = = +10 ~ = )
82 B (alyn) + mallaly) | 22 i (lalyr) + mn(lz|y2))

1 « «
=H()+ 1 <10g2 ara + log, ata

+ log

1
=H(Y)+ 5 (1og2

11—« 11—«
+10g217a+17a+10g217a+17a ’

1
= H(Y) +log, 5,

irrespectively of a. The value obtained for any « is the same as for a =
1/2 (i.e., the only value for which m,,(I|y) = p(I|y)). We therefore conclude
that PI,(Y;L) = MI(Y; L) does not imply that the model accurately
describes the distribution of leakage.

As a complement of this observation, we next characterize the condi-
tions under which m,,(l|y) = p(l|y) is the only maximum.

Proposition 1. Let P be the matriz defined by Py, = p(l|y). If P is full
row rank, then PL,(Y;L) = MI(Y; L) if and only if m,(l|ly) = p(lly). If
P is not full row rank then one can build alternative models leading to
PL,(Y;L) = MI(Y; L).

Proof. Let m,(I|y) be a conditional probability distribution. Keeping the
notations of Theorem 3, PL,(Y; L) = MI(Y; L) holds if and only if equal-
ity holds in Equation 23, and therefore if and only if it holds in Equa-
tion 22 for every [. By Lemma 3, this is equivalent to the existence of
a positive vector k such that m,(lly) = k; - p(lly) holds for every y,I.
Clearly, m,(lly) = p(lly) for all y,l if and only if all k;’s are equal to
1 (i.e., K = 1). Now, for an arbitrary positive vector k, the quantities
my,(l|y) = k; p(lly) define valid conditional probabilities if and only if (i)
they all belong to [0,1], and (ii) >, m,(l{ly) = 1 for every y. We show
next that these conditions imply k = 1 if and only if P is full row-rank,
which will imply our result. Define the matrix M as M, , = m,(l|y) and
the diagonal matrix K as Kj; = k; (so that k = K1)). Condition (ii)
can be rewritten as 17 M = 17 = 17 P, and m,,(I|y) = k; p(l]y) can be
re-expressed as M = K P. Therefore:

k-1)TP=a"K 1Y P=1"KP-1"P=1"M-1"P=1"-17 = 0.

That is, the vector (k—1)7 is in the left-kernel of P. Hence, if P has full-
row rank, the only vector k for which (ii) is satisfied is k = 1. Otherwise,
any vector of the form k =1 + av for a # 0 and v # 0 in the left-kernel
of P would lead m,,(I|y) to satisfy condition (ii). To finish the proof, we
show that we can also have condition (i) satisfied. By taking a sufficiently
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small o, we can ensure that k is positive, and therefore that the m,,(I|y)’s
are non-negative. Because ), m,(/ly) = 1 by condition (ii), this implies
that m,,(l|y) <1 for every [,y and that condition (i) is satisfied. O

Note that this full row rank condition may not be achieved in so-
called Simple Power Analysis (SPA) attacks with “compressive” leakage
functions. For example, imagine an implementation leaking the noise-free
Hamming weight of an n-bit key. Then, the number of leakages (i.e., n+1)
is lower then the number of keys (i.e., 2") and P cannot have full row
rank. By contrast, in the DPA setting, the amount of leakages that the
adversary can observe is multiplied by the number of plaintexts (i.e., 2")
and the matrix P, 1, = p(l, z|k) is expected to be of full row rank.

3.4 Discussion and application of the results

The previous theorems can be quite directly applied in a side-channel eval-
uation context. Yet the following clarifications are worth being pointed
out before moving to experiments.

First and as previously mentioned, one technical difficulty that may
arise is the presence of outliers (or simply rare events) leading to zero
probabilities for the good key candidate, and therefore to a log(0) in the
PI equation (for the HI equation, we assume 0 - log(0) = 0). A simple
heuristic to deal with these cases is to lower-bound such probabilities to

m and to report the fraction of corrected probabilities (which vanishes

as n increases) with the experimental results.

Second, the HI bound of Section 3.2 is stated for the empirical dis-
tribution that is straightforward to estimate in a discrete case with finite
support thanks to histograms. In this respect, we observe that actual
leakages are measured thanks to sampling devices (hence are inherently
discrete and finite). We also refer to the fast leakage assessment method-
ology in [31] for a motivation why this may lead to performance gains
for the evaluator. Yet, there is actually nothing specific to discrete dis-
tributions in the way we obtain this bound (up to the slightly different
convergences discussed in the full version of the paper [3]). So it is appli-
cable to continuous distributions and estimators. For example, we could
replace the estimation of the discrete MI based on histograms that we use
to compute the eHI by a Kernel-based one such as used in [7,24]). In the
next section, we also consider a simplified (Gaussian) model family and
show how the HI bound can be useful in this context.
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4 Empirical confirmation
4.1 Simulated experiments

In order to demonstrate the relevance of the previous tools, we start by
investigating a standard simulation setting where the evaluator / adver-
sary exploits the leakages corresponding to several executions of the AES
S-box. Our first scenario corresponds to a univariate attack against an
unprotected implementation of this S-box, where the leakage samples are
of the form:

I = HW(S(x @ k:)) Fri

with HW the Hamming weight function, and r; a Gaussian distributed
noise sample with variance o2. The noise level is a parameter of our
simulations. For convenience (and simpler interpretation) we report it as
a Signal-to-Noise Ratio (SNR) which is defined as in [19] as the variance
of the signal (which is worth 2 in the case of a random 8-bit Hamming
weight value) divided by o2.

Our second simulated scenario corresponds to a bivariate attack against
the same unprotected implementation of the AES S-box, where the leak-
age vectors are of the form:

2= [HW(z @ k) + 4 HW(S(:L" ® k)) + rg] .

Finally, our third scenario corresponds to a univariate attack against
a masked (i.e., secret shared [4]) implementation of this S-box, where the
leakage samples are of the form:

B = [HW(S(QE ok @ q) FHW(q) + 4]

with ¢ a secret mask picked up uniformly at random by the leaking device.

The results of our first scenario for high and medium SNRs are in Fig-
ure 1, where we plot the MI (that is known since we are in a simulated
setting), the eHI, the ePI (considered in our bounds) and the Gaussian
PI (gPI) which is the PI corresponding to a Gaussian leakage model. The
IT metrics are plot in function of the number of traces in the profiling
set n.% As expected, the eHI provides an average upper bound that con-
verges monotonically towards the MI, and the ePI provides a lower bound.

5 We use n; = n, which leads to good estimations since the number of measurements

needed to estimate a model is usually larger than the number of leakages needed to
recover the key with a well-estimated model [32].
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Besides, the gPI converges rapidly towards the true MI since in our sim-
ulations, the leakages are generated based on a Gaussian distribution. So
making this additional assumption in such an ideal setting allows faster
model convergence without information loss.

0.6
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o
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n

(a) SNR =1 (lin. scale).
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n

(b) SNR = 0.1 (lin. scale).

Fig. 1: Simulations, unprotected S-box, high & medium SNRs, univariate.

These results are confirmed with the similar plots given in Figure 2
for a lower SNR of 0.01. For readability, the right plot switches to a
logarithmic scale for the Y axis. It illustrates a context where it is possible
to formally bound the mutual information to values lower than 10~2.
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(b) SNR = 0.01 (log. scale).

Fig. 2: Simulations, unprotected S-box, low SNR, univariate.
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Figure 1 and 2 correspond to simple (unprotected, univariate) cases
where the estimation of the empirical distribution (despite significantly
more expensive than the one of a Gaussian distribution) leads to rea-
sonably tight bounds for the MI. We complement this observation with
experiments corresponding to our second (unprotected, bivariate) con-
text. As illustrated in Figure 3 for medium and low SNRs, this more
challenging context leads to considerably less tight bounds, which can be
explained by the (much) slower convergence of multivariate histograms.
Note that we could not reach a positive ePI with n = 107 in this case
(and the gPT still does it rapidly).

10°
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— ePly
==—"gPl;
— M

107!
— eHl,
— ePl,
— gPl,
— M
102 107

104 10° 10° 107 104 10° 10° 107
n n

(a) SNR = 0.1 (log. scale). (b) SNR = 0.01 (log. scale).

IT Metric
IT Metric
=
<

H
2

Fig. 3: Simulations, unprotected S-box, medium & low SNR, bivariate.

We finally report the results of the simulated masked implementation
in Figure 4 for very high and high SNRs. The very high SNR case is
intended to illustrate a context where the Gaussian assumption is not
satisfied (since the masked leakage distribution is actually a Gaussian
mixture), so that the gPI is considerably lower than the ePI. By contrast,
and as observed (for example) in [14], Figure 1 (right), this Gaussian
approximation becomes correct and the gPI gets close to the ePI as the
noise increases, which we also see on the right part of Figure 4.

An open source code allowing to reproduce these results is given in [1].

4.2 Real measurements

We complement the previous simulated experiments with analyzes per-
formed on actual measurements obtained from an FPGA implementation
of the AES S-box. In order to instantiate a noise parameter as in our
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simulations, we consider different architectures for this purpose: the tar-
get S-box is computed in parallel with 7 € {0,3,7,11) other S-boxes
whose computations (for random inputs) generate “algorithmic noise”.
We implemented our design on a SAKURA-X board embedding a Xilinx
Kintex-7 FPGA. The target device was running at 4 MHz and sampled
at 500 Ms/s (i.e., 125 leakage points per cycle). We split our experiments
in two parts. In a first part, we consider a univariate evaluation (simi-
lar to the first setting of our simulated setup) allowing reasonably tight
worst-case bounds. In a second part, we consider a highly multivariate
evaluation (i.e., an adversary exploiting all the 125 points of each clock
cycle) and discuss how to connect this context with nearly worst-case
security arguments for (e.g., masked) cryptographic implementations.

Univariate analyses & theoretical worst-case bounds. The eHI/ePI
bounds computed for the most informative leakage points of our measure-
ments for 7 = 0 and 7 are in Figure 5. The 7 = 3 and 11 cases are given in
the full version of the paper [3]. We again observe that it is possible to ob-
tain reasonably tight bounds (e.g., to bound the MI below 10~! which is
a sufficient noise for the masking countermeasure to be effective). Yet, as
7 increases and the MI decreases, we also see that tightening the bounds
becomes increasingly data-intensive.

In view of the important amount of samples n needed to bound the
MI, and of the popularity of the Gaussian assumption in SCAs [5], we ad-
ditionally considered the Gaussian HI (gHI) which is the HI corresponding
to a Gaussian model, and evaluated it based on the formula:

1
approx-gHI, (Y, L) = 5 log, (1 — p(M, L)Q)a (24)
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where p is Pearson’s correlation coefficient, L the leakage random variable
(as previously) and M the model random variable. As discussed in [19],
p(Y, M) can be related to the leakages’ SNR, which (in the case of Gaus-
sian leakages) can be linked to the MI metric [11]. As observed in [21],
the formula holds well for noisy Hamming weight leakages in case of “rea-
sonably small” correlations values (i.e., typically p < 0.1). The latter is
confirmed in our experiments of Figures 5. Namely, these figures first il-
lustrate that the gHI is also an upper bound for the gPI and converges
monotonically (as expected from the results in Section 3). They addition-
ally show that the gHI and gPI are very close to the worst-case MI in our
experimental setting. The latter is particularly interesting since the gHI
converges very fast compared to the other metrics.

Multivariate analyzes and efficient evaluations. Ultimately, an
evaluator would be interested in efficiently and tightly bounding the total
amount of information provided by his leakage points. As clear from the
Section 4.1 (and the bivariate analysis of Figure 3), obtaining tight MI
bounds with two dimensions is already data-intensive. Hence, applying
such a straightforward approach to our measurements where each clock
cycle has 125 points is unlikely to provide any tight result. So here as
well, we considered the multivariate gHI as a useful alternative (yet, this
time without possibility to compare it to the eHI). For this purpose, we
use the formula for the differential entropy of a multivariate Gaussian
distribution:

1log (det(27re£’))

gH(Z) = 0g(2)

(25)
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where 3 is the covariance matrix of the Gaussian-distributed random
variable Z, det(.) denotes the matrix determinant and the log(2) of the
denominator is to obtain a value in bits. We then used this standard
formula to approximate the multivariate gHI as:

MV approx-gHL,, (Y, L) = gH(M) + gH(L) — gH(M; L), (26)

which is the multivariate generalization of Equation 24. Note that as in
Equation 24, this approximation is based on the (multivariate) model ran-
dom variable, which captures the possibility that different leakage points
can have different leakage behaviors despite depending on the same Y.

Note also that as the number of dimensions increases, using such an
approximation is increasingly useful from the time complexity viewpoint.
Indeed, while the univariate gHI can be computed directly by integration,
computing the multivariate gHI in our experimental case study (where we
exploit the measurements of two clock cycles corresponding to 250 leak-
age points) would require integrating a 250-dimension distribution. By
contrast, evaluating Equation 26 only requires estimating the covariances
matrices of the model, leakages and their joint distribution.

The approximations of the multivariate gHI for the cases m = 3 and 11
are in Figure 6. The m = 0 and 7 cases are given in the full version of the
paper [3]. For completeness, the plots first report the univariate gHI for
each time sample (in red). The multivariate Gaussian approximations of
Equation 26 are then reported in purple in a cumulative manner: the value
for time sample x corresponds to the x-variate estimation for dimensions
1 to z. Eventually, we added a conservative bound in blue, based on the
assumption that each leakage point provides independent information and
is summed. Those results are practically-relevant for two main reasons:

— First, they allow estimating the information of a very powerful yet
realistic, close to worst-case adversary (since the univariate gHI is
close to the eHI) in a more accurate (and less conservative) manner
than bounds obtained based on an independence assumption. For ex-
ample, the most informative point of Figure 6(b) has a (univariate)
gHI of 4 - 1072 while our approximation of the multivariate gHI is
worth 2 - 1071 (i.e., a factor 5 more) and the bound would suggest a
gHI larger than one (i.e., no security). So it illustrates a case where
our approximation provides a useful intermediate between a too opti-
mistic univariate analysis and a too conservative bound based on an
independence assumption. We note that as for the univariate case, the
approximation of Equation 26 only holds for small HI values (i.e., typ-
ically below 0.1). For example, the approximation for the m = 0 case
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(given in the full version of the paper [3]) overestimates the informa-
tion leakages. Yet, the quantitative analysis of those cases is anyway
not very interesting (since they correspond to a too weak security).

— Second, these close to worst-case evaluations of the information leak-
ages are obtained very efficiently (from the data complexity view-
point). Taking again the m = 11 case for illustration, the Gaussian
approximation of the 250-variate gHI already reaches a good con-
vergence after approximately n = 10% samples (while the gPI is still
negative with this amount of measurements). For completeness, we re-
port the convergence plots of the multivariate gPI and gHI in the full
version of the paper [3], where we can observe this faster convergence
for lower number of dimensions (for which the gPI is positive).

5 Conclusions

This paper provides first quantitative tools to bound the information leak-
ages exploited in SCAs, taking into account the risk of a “false sense of
security” due to incorrect assumptions about the leakage distributions.
In case of low-dimensional leakages, we are able to formally bound the
amount of information obtained on a target random variable. In case of
high-dimensional leakages (which typically happen in case of strong ad-
versaries trying to exploit all the information in power or electromagnetic
measurements), tightening these bounds usually requires an unrealistic
amount of data. Yet, even in these cases, our tools can be used to approx-
imate the information provided by more specialized (close to worst-case)
adversaries, by exploiting simplifying (e.g., Gaussian) assumptions. As a
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result, a natural approach to leakage certification is to mix (i) a low-
dimension analysis estimating both the empirical and (for example) the
Gaussian HI and PI metrics, in order to gauge the quality of the sim-
plifying (e.g., Gaussian) assumption and (i) a high-dimension analysis
based on the simplifying assumption(s) only. Such an approach can con-
siderably speed up security evaluations. First, estimating an HI bound is
significantly less expensive than estimating the PI, both in terms of data
complexity (as clear from the convergence plots of the previous section)
and in terms of time complexity. For example, the multivariate gHI esti-
mations of Section 4.2 are obtained within minutes of computations on
a desktop computer whereas the gPI estimations take several hours (due
to their expensive cross-validation step). Next, such information theoretic
metrics can be used to bound the success rate of actual side-channel at-
tacks much faster than by directly mounting attacks. These bounds can
be used both in the context of standard divide-and-conquer adversaries as
usually considered in current security evaluations (e.g., using the formu-
las in [11]), and for analyzing more advanced adversaries trying to com-
bine the information leakages beyond the operations that can be easily
guessed by a divide-and-conquer adversary (e.g., using the Local Random
Probing Model in [16]). We believe these tools are important ingredients
to strengthen the understanding of side-channel security evaluations and
the design of countermeasures with strong security guarantees. We also
believe they are of general interest and could find applications in other
contexts such as timing attacks or privacy-related applications [23].
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