
Limits on the Power of Garbling Techniques
for Public-Key Encryption

Sanjam Garg1?, Mohammad Hajiabadi1,2??, Mohammad Mahmoody2? ? ?, and
Ameer Mohammed2†

1 University of California, Berkeley
2 University of Virginia

Abstract. Understanding whether public-key encryption can be based
on one-way functions is a fundamental open problem in cryptography.
The seminal work of Impagliazzo and Rudich [STOC’89] shows that
black-box constructions of public-key encryption from one-way functions
are impossible. However, this impossibility result leaves open the possi-
bility of using non-black-box techniques for achieving this goal.

One of the most powerful classes of non-black-box techniques, which can
be based on one-way functions (OWFs) alone, is Yao’s garbled circuit
technique [FOCS’86]. As for the non-black-box power of this technique,
the recent work of Döttling and Garg [CRYPTO’17] shows that the use of
garbling allows us to circumvent known black-box barriers in the context
of identity-based encryption.

We prove that garbling of circuits that have OWF (or even random or-
acle) gates in them are insufficient for obtaining public-key encryption.
Additionally, we show that this model also captures (non-interactive)
zero-knowledge proofs for relations with OWF gates. This indicates that
currently known OWF-based non-black-box techniques are perhaps in-
sufficient for realizing public-key encryption.

1 Introduction

Public-key encryption (PKE) [15,33] is a fundamental primitive in cryptography
and understanding what assumptions are sufficient for realizing it is a founda-
tional goal. Decades of research have provided us with numerous constructions of

? Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies.

?? Supported by NSF award CCF-1350939 and AFOSR Award FA9550-15-1-0274.
? ? ? Supported by NSF CAREER award CCF-1350939, a subcontract on AFOSR Award

FA9550-15-1-0274, and University of Virginia’s SEAS Research Innovation Award.
† Supported by Kuwait University and the Kuwait Foundation for the Advancement

of Science. Work done while at University of Virginia and visiting University of
California, Berkeley.

2

PKE from a variety of assumptions; see a recent survey by Barak [5]. However,
all known constructions of PKE require computational assumptions that rely
on rich structure and are stronger than what is necessary and sufficient for pri-
vate-key cryptography, namely the mere existence of one-way functions (OWF).
The seminal work of Impagliazzo and Rudich [23] provides some evidence that
this gap between the assumption complexity of private-key and public-key en-
cryption may be inherent. In particular, the work of [23] shows that there is no
black-box construction of PKE from OWFs.3

When studying the impossibility of basing PKE on OWFs, focusing on a class
of constructions (e.g., black-box constructions as in [23]) is indeed necessary. The
reason is that to rule out “OWFs implying PKE” in a logical sense, we have to
first prove the existence of OWFs unconditionally (thus, proving P 6= NP) and
then rule out the existence of PKE altogether (thus breaking all assumptions
under which PKE exists). That is why this line of separation results focuses on
ruling out the possibility of using certain techniques or generic proof methods
(here black-box techniques) as possible natural paths from OWFs to PKE.

Garbled circuits. Over the past few decades, garbling techniques [35,25,9,1] (or
randomized encodings [24] more generally) have been extensively used to build
many cryptographic schemes. Roughly speaking, in a circuit garbling mechanism,
a PPT encoder Garb(C) takes a circuit C as input, and outputs a garbled circuit

C̃ and a set of input labels {labeli,b}i∈[m],b∈{0,1} where m is the number of input

wires of C. Using another algorithm Eval(·), one can use the garbled circuit C̃
and input labels {labeli,xi}i∈[m] for an input x = (x1, ..., xm), to compute C(x)
without learning any other information. Note that if the original circuit C needs
to run a cryptographic primitive f internally (e.g., a circuit C for a pseudorandom
generator built from a OWF f), this use of garbling leads to a non-black-box
construction. This is because the algorithm Garb needs to work with an actual
circuit description of C, whose circuit description is in turn obtained by the
circuit description of f , hence making non-black-box use of f .

Garbling, as a primitive, may itself be realized using one-way functions
[35,25]. This puts forward the intriguing possibility of basing PKE solely on
OWFs by making black-box use of garbling mechanisms over circuits that can
run the one-way function. As stated above, such constructions will make non-
black-box use of the underlying OWF (caused by garbling circuits that run the
OWF internally) and hence the impossibility result of Impagliazzo and Rudich
[23] has no bearing on such potential constructions. In fact, such non-black-box
garbling techniques, combined with the Computational Diffie-Hellman assump-
tion, have recently been used by Döttling and Garg [16] to circumvent black-box
impossibility results [11,29] in the context of identity-based encryption (IBE).
Thus, it is natural to ask:

Can non-black-box garbling techniques be used to realize PKE from OWFs?

3 A (fully) black-box construction is one that treats the OWF as an oracle, and the
security proof uses the OWF and the adversary both as oracles; see the surveys of
[32,4] for formal definitions.

3

Our model. We study the above question in the model of Brakerski, Katz, Segev
and Yerukhimovich [12] (see also follow up works [2,3,10]) which gives a general
way of capturing non-black-box techniques via circuits with cryptographic gates
(e.g., OWF gates). More formally, we will model the above-stated garbling-based
non-black-box use of one-way functions as black-box use of garbling mechanisms
that can take as input circuits C with one-way function (or even random oracle)
gates planted in them. Such constructions are indeed non-black-box according to
the taxonomy of [32] if viewed as standalone constructions solely based on the
OWF itself. We stress that the allowed access to the garbling mechanism itself
is black-box; the non-black-box feature arises from the fact that circuits with
OWF gates may now be garbled.

A more sophisticated scenario is when the circuits being garbled have garbling
gates, in addition to OWF gates, planted in them. We do not, however, consider
such a recursive scenario and we leave it to future work. It is crucial to note that,
to the best of our knowledge, all known constructions that make use of garbling
schemes together with one-way functions (e.g., [8,26,17]) fall into our model, and
thus, understanding the limitations of such techniques towards obtaining PKE
is impactful.

1.1 Our Result

In this work, we show that black-box use of garbling mechanisms that allow
circuits with OWF gates to be garbled is not sufficient for constructing PKE.
More precisely, we prove the following.

Theorem 1 (Main result – informally stated). There exists no black-box
construction of public-key encryption schemes from any one-way function (or
even a random oracle) f together with a garbling mechanism that can garble
oracle-aided circuits with f -gates embedded in them.

Comparison with prior work: Impossibility from weaker garbling. The
work of Asharov and Segev [2] showed that secret-key functional encryption
with one-way function gates cannot be used (as a black-box) to obtain public-
key encryption (or even key agreement). This result implies that for the special
case of such weaker garbling schemes, called non-decomposable garbling, where
the entire input is considered as a single unit (rather that as bit-by-bit input
labels) is insufficient for realizing PKE.

On the other hand, throughout this work we use garbling to refer to a notion
that supports bit-by-bit input labels, a notion that Bellare, Hoang and Rogaway
[9] refer to as projective garbling (a.k.a. decomposable garbling). Under projec-
tive garbling, for a circuit C of input size m, one generates two garbled label
{labeli,b}i∈[m],b∈{0,1} for the ith input wire of the circuit. An important property
enabled by this bit-by-bit garbling is the decomposability property: one can pick
a garbled label for each input wire to form a garbled input for a long string. In

4

contrast, under non-decomposable garbling, for each input X to the circuit, one
independently generates a corresponding garbled input X̃. As a result, different
strings have independent garbled inputs.

We note that projective garbling is crucial for many applications of garbling.
For example, even the most basic application of garbling in two party secure
computation based on oblivious transfer uses the projective property. We refer
the reader to [9, Figure 3] for a detailed list of applications that require projective
garbling. As a recent example, we note that the IBE construction of Döttling and
Garg [16] (that circumvents a black-box impossibility result of Papakonstantinou
et al. [29] using garbling) uses projective garbling crucially. Specifically, in [DG17]
the encryptor provides a sequence of garbled circuits with no knowledge of what
input each of those garbled circuits are later evaluated on by the decryptor.
This input-obliviousness property is enabled by the encryptor sending all the
bit-by-bit garbled labels in some encrypted form to the decryptor. Later, the
decryptor can open exactly one garbled label for each input wire, hence obtaining
a garbled input for the whole string. This input-obliviousness technique cannot
be enabled using non-decomposable garbling. This is because a whole garbled
input cannot be formed there by putting together smaller pieces. As a result,
the party who generates a garbled circuit must be aware of the input on which
this garbled circuit is to be evaluated on, in order for him to be able to provide
the corresponding garbled input.

1.2 Extensions

Extension to key agreements. Our proof extends to rule out any black-box
construction of constant-round key-agreement protocols from OWFs and gar-
bling schemes for oracle-aided circuits. However, the proof of the separation for
key-agreement beyond the case of two message protocols (which are equivalent
to PKE) becomes much more involved. Therefore, for clarity of the presentation,
and because the most interesting special case of constant-round key-agreement
protocols happens to be PKE itself, in this presentation, we focus on the case of
separation for PKE. See Section the full version for more details.

Resolving an open question of [12]. The work of [12] proved non-black-
box limitations for one-way functions when used as part of zero knowledge
(ZK) proofs for relations with one-way function gates. They showed that key-
agreement protocols with perfect completeness cannot be realized in a ‘black-box’
way from oracles that provide a one-way function f together with ZK proofs of
satisfiability for f -aided circuits. They left ruling out the possibility of proto-
cols with imperfect (e.g., negligible) completeness as an open problem, as their
techniques indeed crucially relied on the perfect completeness assumption. We
demonstrate the power of our new techniques in this work by resolving the open
problem of [12] along the way, for the case of PKE schemes (or even constant-
round key-agreement schemes). In particular, in the full version of the paper,
we observe that the oracles we use for proving our separations for the case of

5

garbling, indeed imply the existence of NIZK proofs for satisfiability of circuits
with OWF-gates. The extension of the result of [12] explained above then follows
from the above observation.

1.3 Related Work and Future Directions

There are quite a few results that prove limitations for a broad class of non-
black-box techniques [30,31,20], so long as the security reduction is black-box.
In other words, these results are proved against basing certain primitives on
any falsifiable assumption. However, when it comes to the case of non-black-box
constructions of PKE from OWFs, no such general separations are known (and
proving such results might in fact be impossible).

As described earlier, the works of [12,2] proved limitations of certain non-
black-box constructions of PKE from OWFs. This is indeed the direction pursued
in this work. The work of Dachman-Soled [14] takes yet another path, showing
that certain non-black-box uses of one-way functions in the security proof are
incapable of obtaining PKE from OWFs.

We note that we only consider a setting in which circuits with random oracle
gates are garbled. We do not allow garbling of circuits which themselves include
garbling gates. Such techniques are captured by the so called monolithic model
of Garg, Mahmoody, and Mohammed [18,19]. We leave open the problem of
ruling out such constructions.

Finally, as noted above, the extension of our results to the key-agreement
setting (discussed in the full version) only cover the constant-round case. The
reason is that, during the proof of our main result, we modify the protocol
iteratively, once for each round, which increases the parameters of the protocol
by a polynomial factor each time. We leave the extension to general polynomial-
round protocols as an interesting future direction.

Organization. In Section 2 we give an overview of our approach and tech-
niques. In Section 3 we give some definitions and basic lemmas. In Section 4 we
will go over the proof steps of our main impossibility result. See the full version
of the paper for full proofs of the main result and the extensions.

2 Technical Overview

For brevity, we refer to the primitive of a one-way function f and garbling circuits
with f gates as GC-OWF. As usual in black-box separation results, we will prove
our main theorem by providing an oracle O relative to which secure GC-OWF
exists, but secure PKE does not.

2.1 Big Picture: Reducing the Problem to the Result of [23]

At a very high level, our approach is to reduce our problem to the result of [23].
Namely, we aim to show that one can always modify the PKE construction that

6

is based on the GC-OWF oracle O into a new one that is almost as secure, but
which no longer uses the garbling part of the oracle O. In other words, we modify
the construction so that it becomes a construction from an OWF oracle alone.
Our main result, then, follows from the impossibility result of [23] which rules
out the possibility of getting PKE from one-way (or even random) functions. We
call this process ‘compiling out the garbling part’ from the PKE construction.

As a technical remark, our transformation does not result in a normal black-
box construction of PKE from OWFs, but rather results in an inefficient one
which nonetheless makes a polynomial number of queries to the OWF oracle.
The key point is that the proof of the work of Impagliazzo and Rudich [23] allows
us to break any such (even inefficient, but still polynomial-query) constructions
of PKE in the random oracle model using a polynomial number of queries during
the attack. Our actual result follows by combining our compilation result with
the result of [23], to get a polynomial query attack against the security of the
original PKE. This will be sufficient for a black-box separation.

At a high level, our approach also bears similarities to recent impossibility
results for indistinguishability obfuscation [18] as we also compile out the more
powerful (and structured) parts of the oracle, ending up with a scheme that uses
a much simpler oracle, for which an impossibility is known. However, there is
a subtle distinction here. Unlike the results of [13,28,27,18], when we compile
out the garbling-related queries from the PKE construction, we end up with
an inefficient scheme that potentially runs in exponential time but nevertheless
makes a polynomial number of queries. However, as mentioned above, this is fine
for deriving our separation, because we can still rely on the fact that the result
of [23] does something stronger and handles inefficient constructions as well.

2.2 Our Separating Idealized GC-OWF Oracle

In this subsection, we will first describe our oracle O that gives an intuitive way
of obtaining GC-OWFs. The natural first version of this oracle is too strong as
it also implies virtual black-box (VBB) obfuscation. We will then add a careful
weakening subroutine to this oracle O to prevent it from implying obfuscation.
In the next subsection we describe the ideas behind how to compile out the
garbling-related subroutines of O from the PKE construction, while keeping the
PKE construction “secure”.

Our 1st oracle for GC-OWF. Our first version of the separating oracle
O = (f, Lf) will consist of a random oracle f (giving the OWF part) as well
a garbling part Lf = (gc, evalf) with two subroutines. The encoding/garbling
subroutine gc(s,C) is simply a random (injective) function that takes a seed

s and a circuit C and maps them into a garbled circuit C̃ as well as labels
{labeli,b}i∈[n],b∈{0,1} for the input wires of C where n is the number of input

wires in C.4 The evaluation subroutine evalf takes as input a garbled circuit C̃

4 In the main body, we will use two separate subroutines gc, gi for encoding circuits
vs input labels, but for brevity here we combine them into one subroutine.

7

as well as a vector of input labels X̃ = (x̃1 · · · x̃n) and only if they were all
encoded using the same seed s, evalf returns the right output Cf (x1, . . . , xn).
Note that we include f in the representation of evalf but not in that of gc; the
reason is gc is simply a random oracle (independent of f), while evalf needs to
call f in order to compute Cf (x1, . . . , xn).

Adding the weakening subroutine rev. It is easy to see that this first version
of the oracle O as described above can realize a secure GC-OWF, but it can do
much more than that! In fact this oracle implies even VBB obfuscation of circuits
with f gates (which in turn does imply PKE [34]). We will, therefore, weaken
the power of the oracle O later on by adding an extra subroutine to it (which we
will call rev), which roughly speaking allows an attacker to break the garbling
scheme if she has access to two labels for the same wire. We will describe this
subroutine after it becomes clear how it will be useful for our main goal of
compiling out the garbling aspect of O. Also note that, since we are defining
our oracle after the (supposed) construction of PKE from GC-OWF is fixed,
without loss of generality, the PKE construction from GC-OWF does not call
the extra subroutine rev. This separation technique was also used before in the
work of [21] and is reminiscent of the “two-oracle” approach of [22].

2.3 Compiling Out the Garbling Power of O from the Construction

Suppose EO = (GO, EO, DO) is a fully black-box construction of PKE using the
oracle O described above. Our goal here is to ‘reduce’ our problem (of breaking
EO using a polynomial number of queries) to the result of [23] by compiling out
the ‘garbling power’ of the oracle O from the scheme EO. But what subroutines
do we have to compile out from E? As it turns out, we do not have to eliminate
both gc and evalf subroutines; removing only evalf queries will suffice.

Compiling out evalf queries from PKE constructions EO. If we make sure
that (the modified but “equally”-secure version of) E does not make any calls
to the evalf subroutine of the oracle O, it would be sufficient for our purposes,
because the oracle O′ = (f, gc) is just a random oracle, and by the result of
[23] we know that such oracle is not enough for getting PKE in a black-box way.
Therefore, in what follows, our goal reduces to (solely) removing the evalf queries
from PKE constructions EO in a way that we can argue the new construction is
‘as secure’ as the original one.

In order to make our proof more modular, we compile out evalf queries from
the different components (i.e., key-generation G, encryption E, and decryption
D) of the construction EO = (GO, EO, DO) one at a time. First, we may easily
see that GO does not need to call evalf at all. This is because GO is the first
algorithm to get executed in the system, and so GO knows all the generated
garbled circuits/labels. Therefore,GO can, instead of calling evalf queries, simply

8

run Cf (X) on its own by further calls to f .5 Now, we proceed to compile out
evalf queries from the remaining two subroutines E and D in two steps. In
each step, we assume that we are starting off with a construction that has no
evalf queries in some of its subroutines, and then we modify the construction to
remove evalf queries from the next subroutine.

– Step 1: Starting with E = (Gf,gc, EO, DO), we will compile E into a new
scheme Ė = (Ġf,gc, Ėf,gc, DO), removing evalf queries asked by EO. We have
to make sure Ė is ‘almost as secure’ as the original scheme E . This step is
detailed in Section 4.1.

– Step 2: Given E = (Gf,gc, Ef,gc, DO), we compile E into a new scheme
Ë = (G̈f,gc, Ëf,gc, D̈f,gc), removing evalf queries asked by DO. Again, we
have to make sure Ë is ‘almost as secure’ as the original one. This step is
detailed in Section 4.2.

Once we accomplish both of the steps above, we will combine them into
a single compiler that removes evalf queries from EO, obtaining another PKE
construction that is secure in the random oracle model (which we already know
is impossible by the result of [23]).

Overview of Step 1. Let us start by looking at eval queries of the encryption
algorithm EO(pk, b). Since the subroutine gc of oracle O is just a random map-

ping, for any eval query on inputs (C̃, X̃), denoted qu = ((C̃, X̃) −−→
eval

?), made

by EO and whose answer is not trivially ⊥, we must have either of the following
cases. Either (a) C̃ was produced as a result of a gc query during the execution

of E itself or (b) C̃ was produced during the execution of G which has led to the
generation of the public key pk. If case (a) holds, then E does not need to make
that particular eval query at all. If case (b) holds, then in order to allow Ėf,gc to
simulate EO without calling evalf , the algorithm Ėf,gc will resort to some ‘hint
list’ H attached to pk by Ġf,gc. That is, a compiled public key ṗk produced by
Ġf,gc will now contain the original pk as well as a hint list H. Below, we further
explain how the hint H is formed.

How Ġf,gc forms the hint list H. A naive idea is to let H contain all the
query/response pairs made by Gf,gc to generate pk. This method hurts security.

A better idea is to provide in H answers to individual eval queries like eval(C̃, X̃)

that are likely to be asked by EO(pk, b), and where C̃ was generated by Gf,gc.
That is, Ġf,gc would run EO(pk, b) many times and would let H contain all
encountered eval queries as well as their answers. Note that Ġf,gc could simulate
almost perfectly a random execution of EO(pk, b) without calling eval since Ġ
knows the randomness seeds of all the garbled circuits so far. However, this
approach also fails! To see the difficulty, recall that a whole garbled input X̃ =

5 More formally, because of the huge output space of gc, calling evalf on a garbled
circuit C̃ that is produced on the fly is bound to be responded with ⊥ with over-
whelming probability as C̃ will not be an encoding of any circuit.

9

(x̃1, . . . , x̃m) is made up of a sequence of garbled labels x̃i, one for each input

wire. Now imagine that for a garbled circuit C̃ that was generated by Ġ, any
new execution of EO(pk, b) calls the oracle eval on C̃ and on a new garbled input

X̃ that is formed by picking each of the garbled labels uniformly at random
from the set of two lables for that corresponding input wire. If E behaves this
way, then no matter how many (polynomial) times we sample from EO(pk, b),
we cannot hope to predict the garbled-input part of the eval query of the next
execution of EO(pk, b). We refer to this as the garbled-input unperdictability
problem, which stems from the decomposability nature of our garbling oracle.
This is what makes our results different from those of [2], which dealt with
non-decomposable garbling, for which such a complication is absent.

In short, we could only hope to predict the garbled circuit part of an eval
query of EO(pk, b), and not necessarily the garbled-input part. To fix this garbled-
input unpredictability problem, Ġf,gc will do the following trick: while sampling
many executions of EO(pk, b), if Ġf,gc comes across two different eval queries

eval(C̃, X̃1), eval(C̃, X̃2) that are both answered with a value that is not ⊥ (i.e.,
both are valid garbled circuits and inputs), then Ġf,gc releases the corresponding

seed s and the plain circuit C of C̃. That is, if gc(s,C) = (C̃, · · ·), then G̃f,gc puts

the tuple (s,C, C̃) into the hint list H. If, however, during these sampling, C̃ is

evaluated upon at most one matching X̃, then Ġf,gc simply provides the answer
to the query eval(C̃, X̃) in H.

Looking ahead, the algorithm Ėf,gc((pk,H), b), when facing an eval query

qu = eval(C̃, X̃), will check whether qu is already answered in H, or whether the

corresponding seed s and plain-circuit C of C̃ could be retrieved from H. If so,
Ėf,gc will reply to qu accordingly; otherwise, it will reply to qu with ⊥.

Using the weakening subroutine rev to reduce the security of Ė to
E. Note that Ġf,gc does not query any oracle subroutines beyond f and gc in
order to form the hint list H attached to pk. This is because Ġf,gc has all the
(otherwise-hidden) query-answer pairs used to produce pk, and thus for any

encountered valid garbled circuit C̃ during those sampled executions of E, Ġf,gc

already knows the corresponding seed s and plain circuit C. Now we are left to
show that this additional information H attached to pk does not degrade the
security of the compiled scheme significantly. To this end, we will use the new
weakening oracle intended to capture the natural use of garbling: the security of
a garbled circuit C̃ is guaranteed to hold so long as C̃ is evaluated only on one
garbled input. Capturing this, our new oracle rev takes as input a garbled circuit
C̃ and two garbled inputs X̃1 and X̃2, and if all of C̃, X̃1 and X̃2 are encoded
using the same seed s, then rev simply outputs (s,C), where gc(s,C) = C̃. For
security, we will show that any adversary against the semantic security of Ė
may be used in a black-box way, along with oracle access to (f, gc, eval, rev),
to mount an attack against the original scheme E . This shows that the leakage
caused by revealing H was also attainable in the original scheme (in which all
parties including the attacker do have access to eval) if, in addition, access to

10

the oracle rev — which reflects the intuitive way in which garbled circuits are
supposed to be used — was also granted to the adversary. In our security proof
we will crucially make use of the rev subroutine in order to construct tuples
(s,C, C̃) to store in the simulated hint list whenever C̃ should be evaluated on

two different inputs. Tuples of the form (C̃, X̃, y) can in turn be simulated using
oracle access to eval.

Overview of Step 2. The main idea is similar to Step (1): Ëf,gc(pk, b) would
first run Ef,gc(pk, b) to get the ciphertext c and then appropriately attach a hint
H to c. The idea is that H should allow the eval-free algorithm D̈f,gc((sk,H), c)
to simulate Df,gc,eval(sk, c) well enough. Again, since we cannot simply copy the
entire private view of Ëf,gc(pk, b) into H (as that cannot be simulated by the
security reduction, and therefore would hurt security) we should instead ensure
that w.h.p. all eval queries during the execution of DO(sk, c), whose garbled
circuits were generated by Ëf,gc(pk, b), can be answered using H. Let us call
these eval queries Ë-tied queries. Unfortunately, when implementing this idea,
we run into the following problem: Ëf,gc(pk, b) cannot simply run DO(sk, c) to
get a sense of eval queries because sk is private; this was absent in Step (1).

In order to resolve this new challenge, the algorithm Ëf,gc(pk, b) needs to do
some more offline work in order to get an idea of Ë-tied eval queries that come
up during DO(sk, c). The main idea is that although the true secret key sk is
unknown to Ëf,gc(pk, b), in the eyes of Ëf,gc(pk, b), the value of sk is equally likely
to be any sk′ that agrees with the entire view of Ëf,gc(pk, b). Put differently,
the probability that an Ë-tied garbled circuit comes up during DO(sk, c) is close
to the probability that it comes up during the execution of DO′(sk′, c), where
O′ is an offline oracle that agrees with all the private information of Ë, and
also relative to which (pk, sk′) is valid public-key/secret-key. As a result, such a
fake sk′ that is consistent with the view of Ëf,gc(pk, b) will be used to learn the
answers of the evaluation queries asked by DO′(sk′, c)6.

Putting things together. Taken together, Steps (1) and (2) in conjunction
with the result of Imagliazzo and Rudich [23] imply the following.

Lemma 2 (Informal). The (claimed) semantic security of any candidate PKE
construction Ef,gc,eval can be broken by a poly-query adversary Af,gc,eval,rev.

Moreover, we can show that the oracle rev does not break the one-wayness
or the garbling-security aspects of (f, gc, eval).

Lemma 3 (Informal). The function f is one way against all poly-query ad-
versaries with oracle access (f, gc, eval, rev). Moreover, there exists a garbling
scheme Lf,gc,eval for garbling circuits with f gates that remains secure against
all poly-query adversaries Bf,gc,eval,rev.

Now Lemmas 2 and 3 imply our main theorem, Theorem 1.

6 The process of discovering such an sk′ is what makes Ė an inefficient algorithm.

11

3 Preliminaries

We use κ for the security parameter. By PPT we mean a probabilistic polynomial
time algorithm. By an oracle PPT/algorithm we mean a PPT that may make
oracle calls. For any oracle algorithm A that has access to some oracle O, we
denote a query qu asked by A to a subroutine T of O as (qu −→

T
?). If the returned

answer is β, then we denote the resulting query-answer pair as (qu −→
T
β). For a

set S of query/answer pairs, we will use intuitive notation such as (∗ −→
T
β) ∈ S

to mean that there exists a query qu such that (qu −→
T

β) ∈ S. We use || to

concatenate strings and we use “,” for attaching strings in a way they could be
retrieved. Namely, one can uniquely identify x and y from (x, y). For example
(00||11) = (0011), but (0, 011) 6= (001, 1). For any given string x, we denote xi to

be the i’th string of x. For (family of) random variables {Xκ, Yκ}κ, by X
c
≈ Y we

denote that they are computationally indistinguishable; namely, for any poly(κ)-
time adversary A there is a negligible function negl(κ) such that |Pr[A(Xκ) =
1] − Pr[A(Yκ) = 1]| ≤ negl(κ). When writing the probabilities, by putting an
algorithm A in the subscript of the probability (e.g., PrA[·]) we emphasize that
the probability is over A’s randomness. For any given probability distribution D,
we denote x ← D as sampling from this distribution and obtaining a sample x
from the support of D. We may also use x ∈ D to mean that x is in the support of
D. For any two random variables X,Y , we denote ∆(X,Y) to be the statistical
distance between the two random variables. Throughout the paper, whenever
we write f1(κ) ≤ f2(κ) we mean that this inequality holds asymptotically; i.e.,
there exists κ0 such that for all κ ≥ κ0, f1(κ) ≤ f2(κ).

3.1 Some Useful Lemmas

The following lemma shows that hitting the image of a sparse injective ran-
dom function without having called the function on the corresponding preimage
happens with negligible probability.

Lemma 4 (Hitting the image of random injective function). Let A be
an arbitrary polynomial-query algorithm with access to an oracle O : {0, 1}κ →
{0, 1}2κ chosen uniformly at random from the set of all injective functions from
{0, 1}κ to {0, 1}2κ. We have

Pr[y ← AO(1κ) | for some x : y = O(x) ∧ (∗ −→
O
y) /∈ QA] ≤ 2−κ/2,

where the probability is taken over the random choice of O as well as A’s random
coins, and where QA is the set of all A’s query-answer pairs.

We will also use the following standard information theoretic lemma fre-
quently in the paper.

Lemma 5. Let X1, . . . , Xt+1 be independent, Bernoulli random variables, where
Pr[Xi = 1] = p, for all i ≤ t+ 1. Then

Pr[X1 = 0 ∧ · · · ∧Xt = 0 ∧Xt+1 = 1] ≤ 1

t
.

12

3.2 Standard Primitives

The definition of a single-bit public key encryption scheme (G,E,D) with (1
2 + δ)-

correctness is standard. For γ = γ(κ) we say that an adversary A γ-breaks
(G,E,D) if the advantage of the adversary in the standard semantic-security
game is at least γ. See the full version for formal definitions.

Oracle aided circuits. A binary-output oracle-aided circuit C is a circuit with
Boolean gates as well as oracle gates, and where the output of the circuit is a
single bit. The input size, inpsize(C), is the number of input wires. The circuit
size, denoted |C|, denotes the number of gates and input wires of the circuit.
For a fixed function f we write Cf to denote the circuit C when the underlying
oracle is fixed to f .

Definition 6 (Garbling schemes for oracle-aided circuits). Fix a function
f . A circuit garbling scheme for oracle-aided circuits relative to f (or with f
gates) is a triple of algorithms (Garb,Eval,Sim) defined as follows:

– Garb (1κ,C): takes as input a security parameter κ, an oracle-aided circuit

C and outputs a garbled circuit C̃ with a set of labels {labeli,b}i∈[m],b∈{0,1},
where m = inpsize(C).

– Evalf
(
C̃, {labeli,bi}i∈[m]

)
: takes as input a garbled circuit C̃ and a sequence

of garbled input labels {labeli,bi}i∈[m] and outputs y ∈ {0, 1}∗ ∪ {⊥}.
We define the following notions.

– Correctness. For any oracle-aided circuit C and input x ∈ {0, 1}m, where
m = inpsize(C):

Pr
[
Cf (x) = Evalf

(
C̃, {labeli,xi}i∈[m]

)]
= 1

where the probability is taken over Garb (1κ,C) 7→ (C̃, {labeli,b}i∈[m],b∈{0,1}).
– Security. For any polynomial m = m(κ), any poly-size oracle circuit C with

input size m, and any input x ∈ {0, 1}m:(
C̃, {labeli,xi}i∈[m]

)
c
≈ Sim

(
1|C|,m,Cf (x)

)
where (C̃, {labeli,b}i∈[m],b∈{0,1})← Garb (1κ,C).

3.3 Black-box Constructions

Now, we recall the standard notion of black-box constructions [23,32,4]. We do
so in the context of building PKE from one-way functions and garbling.

Definition 7 (Black-box constructions of PKE from GC-OWF). A fully
black-box construction of a PKE scheme from a one-way function and a garbling
scheme for circuits with one-way function gates (shortly, from GC-OWF) con-
sists of a triple of PPT oracle algorithms (G,E,D) and a PPT oracle security-
reduction S = (S1, S2) such that for any function f and any correct garbling
scheme L = (Garb,Eval,Sim) relative to f , both the following hold:

13

– Correctness: Ef,L = (Gf,L, Ef,L, Df,L) is a (1− 1
2κ)-correct PKE scheme.

(See the remark after this definition.)
– Security: For any adversary any A that breaks the semantic security of the

PKE scheme Ef,L, either
• Sf,L,A1 breaks the one-wayness of f ; or

• Sf,L,A2 breaks the security of the scheme L = (Garb,Eval,Sim) relative to

f . That is, for some oracle-aided circuit C and input x, Sf,L,A2 can dis-

tinguish between the tuple
(
C̃, {labeli,xi}i∈[m]

)
and Sim

(
1|C|, 1|x|,Cf (x)

)
,

where m = inpsize(C) and (C̃, {labeli,b}i∈[m],b∈{0,1})← Garb (1κ,C).

Remark about the correctness condition in Definition 7. In Definition 7,
for correctness we require that the constructed PKE be (1− 1

2κ) correct. This is
without loss of generality since one may easily boost correctness using standard
techniques; i.e., let the new public key be a tuple of public keys under the
original scheme. Encrypt a given plaintext bit under each individual public key.
For decryption, we decrypt all the ciphertexts and go with the majority bit. The
semantic security of this expanded scheme reduces to that of the base scheme
using a hybrid argument, which is a fully-black-box reduction.

Calling the base primitives on the same security parameter. For sim-
plicity of exposition, for any given black-box construction Ef,L we assume that
Ef,L on the security parameter 1κ always calls f and L on the same security pa-
rameter 1κ. There are standard techniques for doing away with this restriction,
but those extensions will only complicate the proofs further. Looking ahead,
when we define our oracles (O′, rev)κ,n in Definition 10, which are parameterized
over a security parameter κ and a circuit size n = n(κ), the above restriction
means that EO′ on the security parameter 1κ always calls O′ on parameters such
as (κ, n1), (κ, n2), etc. That is, the value of κ will be the same across all queries,
but each query may use a different value for n.

4 Separating Public-Key Encryption from OWF-based
Garbling

In this section, we state our main impossibility result and describe at a high-level
the steps that we will take in order to prove our main theorem.

Theorem 8 (Main theorem). There exists no fully black-box construction of
a public-key encryption scheme from GC-OWFs; namely garbling schemes that
garble circuits with one-way function gates in them (see Definition 7).

Our theorem above follows from the following lemma.

Lemma 9. There exists an oracle O = (f, gc, gi, eval, rev) for which the follow-
ing holds (in what follows, let O′ = (f, gc, gi, eval)):

14

1. f is one-way relative to (O′, rev). That is, f is one-way against all polynomial
query (and even sub-exponential query) adversaries AO′,rev.

2. There exists a PPT GC-OWF construction (GarbO
′
,EvalO

′
,SimO′) for f -

aided circuits that is secure against any poly-query adversary AO′,rev.
3. For any PKE construction EO′ with access to the oracle O′, there exists an

attacker AO′,rev that breaks the semantic security of EO′ using a polynomial
number of queries.

Note that Lemma 9 immediately implies Theorem 8.

Roadmap: Proof of Lemma 9. As common in black-box impossibility results,
we will show the existence of the oracles required by Lemma 9 by proving results
with respect to oracles chosen randomly according to a distribution. We will
describe our oracle distribution below and will then outline the main steps we
will take in order to prove Lemma 9.

Definition 10 (The ideal model/oracle). Let O = (f, gc, gi, eval, rev)κ,n be
an ensemble of oracles parameterized by (κ, n), where κ denotes the security
parameter and n denotes the size of a circuit which we want to garble. We
describe the distribution O from which these oracles are sampled for fixed (κ, n).

– f : {0, 1}κ → {0, 1}κ: a uniformly chosen random function.
– gc(s, F) : {0, 1}κ×{0, 1}n → {0, 1}2(κ+n): an injective random function that,

given a key s ∈ {0, 1}κ and a single-bit-output oracle-aided circuit F , outputs

an encoding F̃ .
– gi(s, i, xi) : {0, 1}κ×{0, 1}logn×{0, 1} → {0, 1}2(κ+logn): an injective random

function that, given a key s ∈ {0, 1}κ, an index i ∈ {0, 1}logn, an input-
wire bit value xi ∈ {0, 1}, outputs an encoding x̃i. As notation, for any

X = (x1, ..., xn), we denote gi(s,X) := (gi(s, i, xi))i∈[n] = X̃.

– eval(F̃ , X̃): given as input F̃ and X̃ = (x̃1, ..., x̃m), if there is a string s ∈
{0, 1}κ and circuit F such that gc(s, F) = F̃ , that m = inpsize(F) and that
for every i ∈ [m] there exists xi ∈ {0, 1} such that gi(s, i, xi) = x̃i, then it
outputs F f (x1|| · · · ||xm). Otherwise, it outputs ⊥.

– rev(F̃ , X̃, X̃ ′): if there exists s ∈ {0, 1}κ and circuit F such that gc(s, F) = F̃

and that there exists X,X ′ ∈ {0, 1}inpsize(F) such that X 6= X ′, gi(s,X) = X̃

and gi(s,X ′) = X̃ ′, then it outputs (s, F). Otherwise, it outputs ⊥.

Remark 11. The size of a garbled circuit outputted by the gc oracle is roughly
twice the size of the corresponding input circuit. Current garbled circuits con-
structions are not capable of achieving such a short expansion factor. We are able
to do this as we model the garbling mechansim as a totally random function.
Nonetheless, working with such a short size expansion is without loss of general-
ity, because a general black-box PKE construction out of GC-OWF should work
with respect to any oracle that implements the GC-OWF securely. We should
also mention that all our results hold (without having to make any changes) if
the output of gc is bigger than the one specified in Definition 10.

15

First, we show that a random oracle O = (f, gc, gi, eval, rev) chosen according
to the distribution O allows us to implement an ideal version of garbling for
circuits with f gates. This is not surprising as O is indeed an idealized form of
implementing this primitive.

Lemma 12 (Secure OWF and garbling exists relative to O). Let O =
(f, gc, gi, eval, rev) be as in Definition 10 and let O′ = (f, gc, gi, eval). Then, with
probability (measure) one over the choice of O, the function f is one-way relative
to O — i.e., f is one-way against any PPT oracle adversary with access to the

oracle O. Moreover, there exists a PPT GC-OWF construction (GarbO
′
,EvalO

′
)

for f -aided circuits which is secure relative to O with probability one over the
choice of O ← O.

Proof. The fact that f is one-way relative to O with probability one over the
choice of O is now standard (see [23]). Given any oracle O = (O′, eval), we now

show how to construct a PPT garbling scheme LO
′

= (GarbO
′
,EvalO

′
,SimO′) for

f -aided circuits. The algorithm GarbO
′

on input (1κ, C) samples s ← {0, 1}κ,

sets m = inpsize(C) and outputs the garbled circuit C̃ = gc(s, C) as well as
a sequence of garbled inputs (x̃1,0, x̃1,1, . . . , x̃m,0, x̃m,1), where for i ∈ m and
b ∈ {0, 1} we have x̃i,b = gi(s, i, b).

The algorithm EvalO
′
(C̃, x̃1|| · · · ||x̃m) simply outputs eval(C̃, x̃1|| · · · ||x̃m).

Correctness holds by definition of the oracle.

For security, we will define SimO′ as follows: on input (1κ, n,m, y ∈ {0, 1}),
where n denotes the size of the circuit, m denotes the number of input wires and
y denotes the output value, we set C0 to be a canonical circuit of size n and with
m input wires that always outputs y. Sample s ← {0, 1}κ and let C̃ = gc(s, C)

and X̃ = gi(s, 0m). Output (C̃, X̃). Simulation security follows from the random
nature of the oracles. That is, for any polynomial-query distinguisher AO′,rev,
for any n, m and any circuit C of size n and of input size m and any input
X ∈ {0, 1}m, we have∣∣∣Pr[AO

′,rev(C̃, X̃) = 1]− Pr[AO
′,rev(C̃ ′, X̃ ′) = 1]

∣∣∣ = negl(κ), (1)

where s← {0, 1}κ, C̃ = gc(s, C), X̃ = gi(s,X), (C̃ ′, X̃ ′)← SimO′(1κ, n,m,Cf (X)).
We omit the details of the proof of Equation 1 as it can be obtained through a
simple information theoretic argument.

We are left with proving Part 3 of Lemma 9. Proving this part is the main
technical contribution of our paper, and is done via an oracle reducibility tech-
nique. In order to state this reducibility statement formally, we first need to
define the notions of correctness and attack advantage in the ideal model.

Definition 13 (Correctness in the ideal model). For a polynomial p = p(κ)
we say that a single-bit PKE scheme EO = (GO, EO, DO) is 1

2 + 1
p correct in the

ideal model if for both b ∈ {0, 1}:

Pr[DO(sk, c) = b] ≥ 1

2
+

1

p
, (2)

16

where the probability is over O ← O, (pk, sk)← GO(1κ), c← EO(pk, b).

Definition 14 (Ideal model attack advantage). We say that an adversary
A breaks the semantic security of a single-bit PKE (GO, EO, DO) in the ideal
model with probability γ (or with advantage γ) if Pr[A(pk, c) = b] ≥ γ, where the
probability is taken over O ← O, (pk, sk)← GO(1κ), b← {0, 1}, c← EO(pk, b)
and over A’s random coins.

We are now ready to describe our oracle reducibility lemma.

Lemma 15 (Reducibility to the random oracle model). Let E be a given
PKE construction possibly making use of all the oracles O′ = (f, gc, gi, eval).
There exists a compilation procedure and a polynomial-query security-reduction
Red such that the compilation transforms EO′ into a new polynomial-query PKE
construction Ëf,gc,gi, where Ë makes no eval queries and for which both the fol-
lowing hold:

– Correctness: If EO′ is (1 − 1
2κ) correct in the ideal model, the compiled

scheme Ëf,gc,gi has at least (1− 1
κ7) correctness in the ideal model.

– Security reduction. For any constant c the following holds: if there exists
an adversary A that breaks the semantic security of Ëf,gc,gi in the ideal model

with probability η, the algorithm RedO
′,rev,A breaks the semantic security of

EO′ in the ideal model with probability η − 1
κc .

Let us first show how to use lemmas 12 and 15 to establish Lemma 9.

Completing proof of Lemma 9 and Theorem 8. Let E = (G,E,D) be
a candidate PKE construction. We will show that with probability one over
the choice of (O′, rev) ← O, the PKE construction EO′ can be broken by a
polynomial number of queries to (O′, rev). Let us first show how to use this
claim to complete the proof of Theorem 8, and we will then prove this claim.
By Lemma 12, we know that with probability one over the choice of O we

have (a) f is one-way relative to (O′, rev) and (b) (GarbO
′
,EvalO

′
,SimO′) is a

secure GC-OWF construction for f -aided circuits against all polynomial-query
adversaries with access to the oracles (O′, rev). Thus, the foregoing claim coupled
with Lemma 12 implies Lemma 9. In what follows we prove the foregoing claim.

By Definition 7 we know that EO′ has (1− 1
2κ)-correctness in the ideal model.

Thus, by Lemma 15 there exists a compiled scheme Ëf,gc,gi that has at least
(1 − 1

κ7)-correctness in the ideal model. Note that the oracles f, gc and gi are
nothing but three independent random oracles. By the results of [23,7] there
exists a polynomial query adversary Af,gc,gi which breaks the semantic security
of Ëf,gc,gi in the ideal model with probability (1− 1

κ6).7 (See Definition 14 for the
notion of “break in the ideal model.”) Invoking Lemma 15 again and choosing

7 The results of [23,7] show how to break the semantic security of any key exchange
(and hence PKE) construction in the random oracle model with a probability that is
at most 1

κc
′ less than the correctness probability, for any arbitrary constant c′ > 0.

17

the constant c appropriately, we will obtain a polynomial query adversary BO′,rev
which breaks the semantic security of EO′ in the ideal model with probability
(1− 1

κ5). That is,

Pr
O=(O′,rev),pk,b,c

[
BO
′,rev(pk, c) = b

]
≥ 1− 1

κ5
, (3)

where (pk, sk)← GO
′
(1κ), b← {0, 1} and c← EO

′
(pk, b).

Using a simple averaging argument we have

Pr
O=(O′,rev)

[
Pr
pk,b,c

[
BO
′,rev(pk, c) = b

]
≥ 1− 1

κ3

]
≥ 1− 1

κ2
. (4)

Equation 4 implies that for at most 1
κ2 fraction of the oracles O = (O′, rev), the

adversary BO′,rev(pk, c), on security parameter κ, recovers b with probability less
than 1− 1

κ3 . Since
∑∞
i=1

1
i2 converges, by the Borel-Cantelli Lemma we have that

for a measure-one fraction of oracles O = (O′, rev) ← O, the adversary BO′,rev
breaks the semantic security of EO′ . The proof is now complete. ut

Roadmap for the proof of Lemma 15. Finally, all that remains is proving
Lemma 15 which shows that we can compile out eval queries from any PKE
scheme without significantly hurting correctness or security. In the remainder
of this paper, we show that such a compilation procedure exists. We obtain
the compiled eval-free scheme (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi) in two steps. First, in
Section 4.1, we show how to compile out eval queries from EO

′
only. In particular,

we will prove the following lemma.

Lemma 16 (Compiling out eval from E). Let δ be an arbitrary polynomial
and parse O = (O′, rev). There exists a compilation procedure that achieves the
following for any constant c. Given any (1

2 + δ)-ideally-correct PKE scheme

E = (GO
′
, EO

′
, DO′), the compiled PKE scheme Ė = (Ġf,gc,gi, Ėf,gc,gi, DO′) is

(1
2 + δ − 1

κc)-ideally-correct. Moreover, there exists a polynomial-query algorithm
SecRed that satisfies the following: for any adversary A that breaks the semantic
security of Ė in the ideal model with advantage η, the adversary SecRedA,O breaks
the semantic security of E in the ideal model with advantage at least η − 1

κc .

Then, in Section 4.2 we show how to compile out eval from DO′ , assuming
neither of the algorithms G and E call eval. That is, we prove the following.

Lemma 17 (Compiling out eval from D). Let δ be an arbitrary polynomial.
There exists a compilation procedure that achieves the following for any constant
c. Given any (1

2+δ)-ideally-correct PKE scheme E = (Gf,gc,gi, Ef,gc,gi, Df,gc,gi,eval),

the compiled PKE scheme Ë = (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi) is (1
2 + δ − 1

κc)-ideally-
correct. Moreover, there exists a polynomial-query algorithm SecRed that satis-
fies the following: for any adversary A that breaks the semantic security of Ë in
the ideal model with advantage η, the adversary SecRedA,O breaks the semantic
security of E in the ideal model with advantage at least η − 1

κc .

Th proof of Lemma 15 immediately follows from Lemmas 16 and 17.

18

4.1 Removing Garbling Evaluation Queries from Encryption

In this section, we will prove Lemma 16. Namely, we will show how to compile
the PKE scheme E = (Gf,gc,gi,eval, Ef,gc,gi,eval, Df,gc,gi,eval) into a new PKE scheme
Ė = (Ġf,gc,gi, Ėf,gc,gi, Df,gc,gi,eval) with correctness and security comparable to
the original scheme E , but where Ė will not ask any eval queries. First, we may
assume without loss of generality that G does not make queries to eval — it can
predict the answer itself. Thus, we will focus on removing eval queries from E
assuming that G does not make any eval queries.

Before describing the compilation process, we need to give some definitions.

Definition 18 (Valid outputs). For any oracle O = (f, gc, gi, eval, rev), we

say that F̃ is a valid garbled circuit with respect to O if there exists (s, F) such

that gc(s, F) = F̃ . Similarly, we say that X̃ is a valid garbled input with respect

to O if there exists (s,X) such that gi(s,X) = X̃.

We also define the notion of normal form with respect to oracle-aided algo-
rithms. At a high-level, a normal form algorithm avoids asking any redundant
queries if it already knows the answer to such queries.

Definition 19 (Normal form). Let A be an oracle algorithm that accepts as
input a query-answer set QS and let QA be the query-answer pairs that A has
asked so far. We say that A is in normal-form if it satisfies these conditions:

1. A never asks duplicate queries.
2. Before it asks an ((F̃ , X̃) −−→

eval
?) query qu, A first checks if there exists a

query-answer pair ((s, F) −→
gc

F̃) in QA∪QS. If that is the case then it would

not issue qu to the oracle but would instead run F f (X) on its own where
X can be obtained bit-by-bit by searching gi(s, i, xi) for every index position
i ∈ n and every bit xi ∈ {0, 1}.

Recall that our goal is to remove eval queries from E to obtain an eval-free
algorithm Ė. To make this transformation possible, the new algorithm Ė needs
some help from its associated key generation algorithm Ġ so as to make up for
its lack of access to eval. This help is sent to Ė as part of a hint list H, attached
to the public key, by the key generation algorithm Ġ. The following definition
describes how Ġ forms the hint list H based on its inside information Aux and
based on information Q that G has collected about random executions of E.

Definition 20 (Building helper tuples). We define a function ConstHelp

that takes as input a query-answer set Q along with some query-answer set Aux
and outputs a set H as follows:

– If there exists ((F̃ , X̃) −−→
eval

y 6= ⊥) ∈ Q such that for no X̃ ′ 6= X̃ do we have

((F̃ , X̃ ′) −−→
eval

y′ 6= ⊥) ∈ Q, then add ((F̃ , X̃) −−→
eval

y) to H.

19

– If for two distinct X̃1 and X̃2 we have ((F̃ , X̃1) −−→
eval

y1 6= ⊥) ∈ Q and

((F̃ , X̃2) −−→
eval

y2 6= ⊥) ∈ Q, then if for some (s, F) we have ((s, F) −→
gc

F̃) ∈

Aux, add ((s, F) −→
gc

F̃) to H.

Having a hint list H, we give the following definition that describes the idea
of how the receiving algorithm Ė may use it to avoid making eval queries. In the
following definition one may think of Q as a hint list.

Definition 21 (Emulating eval queries). For O = (f, gc, gi, eval, rev), we de-
fine the function HandleEvalf,gi to be a subroutine that takes as input a set Q
of query-answer pairs to O and a query qu of the form ((F̃ , X̃) −−→

eval
?) then

performs the following steps to answer qu:

– If there exists a tuple ((F̃ , X̃) −−→
eval

y) in Q, then output y.

– If there exists ((s, F) −→
gc

F̃) ∈ Q, then find X such that gi(s,X) = X̃ and

output y = F f (X).
– If neither of the above cases happen, then return ⊥ as the answer to qu.

We will also define the notion of a mixed oracle that uses O on non-eval
queries but uses HandleEval to answer eval queries without resorting to O. This
oracle is constructed and used in the newly compiled algorithms when we want
to avoid asking eval queries to O.

Definition 22 (Mixed oracle). For an oracle O = (f, gc, gi, eval) and a set
of query-answer pairs S, we denote O[S] to be an Eval-mixed oracle that an-
swers all f, gc, and gi queries by forwarding them to the real oracle O, but
for any eval query qu it will emulate the answer by calling and returning y =
HandleEvalf,gi(S, qu).

Compilation procedure. Let E = (Gf,gc,gi, Ef,gc,gi,eval, Df,gc,gi,eval) be the give
construction for which we want to remove eval queries from E. Without loss
of generality, we assume that all the algorithms of E are in normal form (see
Definition 19). For simplicity, we keep O as a superscript to all the algorithms
of E , but it is understood that the actual oracle access is of the form above.

We need the following definition as we will need to choose parameters in the
compilation construction based on the query complexity of the construction.

Definition 23 (Parameter q = q(κ): size-upperbound). Throughout this
section, fix q = q(κ) to be an arbitrary polynomial that satisfies the following.

1. q ≥ κ;
2. q is greater than the total number of queries that each of the algorithms

(GO, EO, DO) make on inputs corresponding to the security parameter 1κ

and on O ← O; and

20

3. q is greater than the size of any query made by any of (GO, EO, DO) on
inputs corresponding to the security parameter 1κ and on O ← O.

Construction 24 (compiled scheme Ė) The compiled scheme (Ġ, Ė,D) is
parameterized over a function t = t(κ), which we will instantiate later.

– Ġ(1κ) : Perform the following steps:

1. Run (pk, sk) ← GO(1κ). Add all query-answer pairs generated in this
step to OrigG.

2. Generating helper set H for Ė: Set LocalE = ∅.

(a) Do the following t times: Run EO[OrigG](pk, 0) and EO[OrigG](pk, 1)
and keep adding all the resulting query-answer pairs to LocalE.

(b) Set H := ConstHelp(LocalE,OrigG ∪ LocalE).

3. Output ṗk = (pk,H) and ṡk = sk.

– Ė(ṗk, b): Parse ṗk = (pk,H). Run ċ ← EO[H](pk, b) and add all the query-
response pairs to OrigE. Return ċ.

Remark about Ė. We note that, by the definition of O[H], all the eval queries
of EO[H](pk, b) will be emulated using H. Thus, Ė will not issue any eval queries.

Query complexity of Ė. It is immediate to see that the query complexity of
each of the compiled algorithms is polynomial in q and t, where q the query
complexity of (G,E,D). Thus, we have the following lemma.

Lemma 25. Let q be the size-upperbound of (G,E,D) as given in Definition 23.
The query complexity of Ė = (Ġ, Ė,D) is at most q + (2q2)t ≤ 3tq2.

Correctness and security. We now give the correctness and security state-
ments regarding the compiled scheme Ė = (Ġ, Ė,D) and prove them. By doing
so, we complete the proof of Lemma 16.

Lemma 26 (Correctness of Ė). Suppose the original scheme (G,E,D) is (1
2+

δ) correct in the ideal model. The compiled scheme (ĠO, ĖO, DO) has at least
(1
2 + δ − 2q

t − negl(κ)) correctness in the ideal model, where t is the number of

iterations performed in Ġ.

In particular, for any constant c > 0 by taking t = qc+2, the compiled scheme
(ĠO, ĖO, DO) has at least (1

2 + δ − 1
κc) correctness.

Lemma 27 (Security of Ė). There exists a polynomial-query algorithm SecRed

that satisfies the following. For any adversary A that breaks the semantic secu-
rity of (ĠO, ĖO, ḊO) in the ideal model with probability at least γ, the algorithm
SecRedA,O breaks the semantic security of (GO, EO, DO) with probability at least
γ − 1

2κ/4
− 1

κc for any constant c > 0.

21

Proof of correctness for Ė. We first prove Lemma 26, which states that
Ė = (Ġ, Ė,D) is still a correct PKE after removing the eval queries from E.

Parsing ṗk = (pk,H), recall that ĖO(ṗk, b) simply runs EO[H](pk, b). With
this in mind, to prove Lemma 26, we give the following lemma, which shows that
the distribution of outpouts of EO[H](pk, b) and EO(pk, b) are close.

Lemma 28. For b ∈ {0, 1} we have

Pr
O,r,pk,H

[EO(pk, b; r) 6= EO[H](pk, b; r)] ≤ 2q

t
+

1

2κ/3

where O ← O, ((pk,H), sk)← ĠO(1κ) and r ← {0, 1}∗.

We first show how to derive Lemma 26 from Lemma 28.

Proof (of Lemma 26). Parse ṗk = (pk,H). All the probabilities below are taken
over the random choices of ṗk, O and r. We have

Pr[DO(sk, ĖO(ṗk, b; r)) 6= b] = Pr[DO(sk,EO[H](pk, b; r)) 6= b]

≤ Pr[DO(sk,EO(pk, b; r)) 6= b] + 2q/t+ negl(κ)

≤ 1

2
− δ + 2q/t+ negl(κ)

where the first inequality follows from Lemma 28. ut

We now focus on proving Lemma 28. Fix b ∈ {0, 1}. For compactness, we
define the following experiment that outputs some random variables that will be
later used to define some events.

Experiment Expr(1κ) for fixed b ∈ {0, 1}: Output the tuple of variables
Vars = (pk,OrigG, LocalE,H, r), where pk,OrigG, LocalE and H are sampled as in
Ġ(1κ) and r ← {0, 1}∗ is the randomness to Ė(pk, b).

We define the following bad events. Note that all these bad events as well as
those that appear later are defined based on the output of Vars, and so we make
this dependence implicit henceforth.

– Bad1: The event that EO(pk, b; r) makes a query qu = ((F̃ , X̃) −−→
eval

?), where

((∗, ∗) −→
gc

F̃) /∈ OrigG and eval(F̃ , X̃) 6= ⊥.

– Bad2: The event that the execution of EO(pk, b; r) queries qu = ((F̃ , X̃) −−→
eval

?) for which we have ((∗, ∗) −→
gc

F̃) ∈ OrigG, eval(F̃ , X̃) 6= ⊥ and O[H](qu) =

HandleEval(H, qu) = ⊥.

Roadmap for the proof of Lemma 28. The proof of Lemma 28 now follows
from the following lemmas.

22

Lemma 29. PrO,Vars[E
O(pk, b; r) 6= EO[H](pk, b; r)] ≤ Pr[Bad1 ∨ Bad2] where

O ← O and Vars = (pk,OrigG, LocalE,H, r)← Expr(1κ).

Lemma 30. PrO,Vars[Bad1] ≤ 1
2κ/3

where O ← O and Vars← Expr(1κ).

Lemma 31. PrO,Vars[Bad2 ∧ Bad1] ≤ 2q
t where O ← O and Vars← Expr(1κ)

The proof of Lemma 28 follows immediately from Lemmas 29, 30, and 31.
We now prove all these lemmas below.

Proof (of Lemma 29). Let Bad be the event EO(pk, b; r) 6= EO[H](pk, b; r). We
show that whenever Bad holds, then either Bad1 happens or Bad2 happens, hence
proving the lemma. Notice that the only difference between the executions of
EO(pk, b; r) and EO[H](pk, b; r) is how eval queries are handled. Specifically, in
EO[H](pk, b; r), the eval queries are simulated with respect to the set H whereas
in EO(pk, b; r), the real oracle O is used to reply to these queries. All of f, gc, and
gi queries will be handled identically in both experiments by forwarding them
to O. Thus, we only need to consider what happens in either execution when a
new query qu = ((F̃ , X̃) −−→

eval
?) is asked.

Suppose Bad holds and let qu = ((F̃ , X̃) −−→
eval

?) be the first eval query that

will be answered differently between the two executions. That is, qu will be
replied to with ⊥ under O[H], but receives an answer y 6= ⊥ from the real oracle
O. We will now show that either Bad1 or Bad2 must hold. Consider two cases:

1. ((∗, ∗) −→
gc

F̃) /∈ OrigG: In this case, the fact that eval(F̃ , X̃) 6= ⊥ implies

that Bad1 holds.
2. ((∗, ∗) −→

gc
F̃) ∈ OrigG: In this case the facts that eval(F̃ , X̃) 6= ⊥, that qu is

a query during the execution of EO(pk, b; r), and that O[H](qu) = ⊥ imply
that Bad2 holds.

ut

Proof (of Lemma 30). The proof of this lemma follows by a simple reduction
to Lemma 4. Letting α = Pr[Bad1], we will show how to build an adversary
Af,gc,gi(1κ) in the sense of Lemma 4 that will win with probability α · 1

poly(κ) .

Let i be the index of the first query qu during the execution of EO(pk, b; r)
for which the event Bad1 holds. Note that up to the query index i, the executions
of EO(pk, b; r) and EO[OrigG](pk, b; r) are identical. With this in mind, we build
the adversary Af,gc,gi(1κ) as follows.

The adversary Af,gc,gi(1κ) samples (pk, sk)← Gf,gc,gi(1κ), forming the set of
query/response pairs OrigG. ThenAf,gc,gi guesses i← [q] and runs EO[OrigG](pk, b; r)
for a random r. Notice that A makes no queries to eval whatsoever, as it handles
eval queries using OrigG. If the ith query of this execution is ((F̃ , ∗) −−→

eval
?) for

some F̃ , then Af,gc,gi returns F̃ ; otherwise, A returns ⊥.
Af,gc,gi(1κ) wins with probability at least α · 1

q . On the other hand, by

Lemma 4 we know A’s success probability is at most 1
2κ/2

. Thus, we have

α ≤ 1
2κ/3

, and the proof is complete. ut

23

Proof (of Lemma 31). We claim that whenever the event Bad2∧Bad1 holds then
the event Miss, defined as follows, also holds. Miss is the event that during the
execution of EO[OrigG](pk, b; r) there is a query qu = ((F̃ , X̃) −−→

eval
?), such that

1. ((∗, ∗) −→
gc

F̃) ∈ OrigG;

2. eval(F̃ , X̃) 6= ⊥;

3. ((∗, ∗) −→
gc

F̃) /∈ H and ((F̃ , X̃) −−→
eval
∗) /∈ H.

The reason for the above claim is that if Bad2 ∧Bad1 holds, then Bad1 must
necessarily hold, and thus the two executions EO(pk, b; r) and EO[OrigG](pk, b; r)
are identical. The rest follows by the definition of the event Bad2. We will prove

Pr[Miss] ≤ 2q

t
, (5)

which yields the proof of this lemma. Thus, we focus on proving Equation 5.
We break Miss into smaller events. We give some notation first. Let i ∈ [n],

d ∈ {0, 1}, F be circuit with input size n and let F̃ = gc(s, F), for some s. We say

a garbled input X̃ = (x̃1, . . . , x̃n) is an (i, d)-match for F̃ if X̃ is a valid garbled

input of F̃ and the ith garbled bit of X̃ corresponds to the bit d. Formally,

– for all j ∈ [n] and j 6= i: x̃j = gi(s, j, 0) or x̃j = gi(s, j, 1);
– x̃i = gi(s, i, d).

We say that a set of query/response pairs U contains an (i, d)-match for F̃

if there exists ((F̃ , X̃) −−→
eval
∗) ∈ U such that X̃ is an (i, d)-match for F̃ .

We also give the following notation. Recalling the way in which LocalE is
constructed in Ġ through t iterations, for i ∈ [t] let LocalEi be the set formed
after the i-th iteration. Also, let OrigE∗ be the set of all query/response pairs
during the execution of EO[OrigG](pk, b; r).

We now define a series of events, Missi,d, for i ∈ [q] and d ∈ {0, 1}, and will
show that if Miss holds then for some i and d the event Missi,d must hold.

Event Missi,d is the event that for some F̃ that ((∗, ∗) −→
gc

F̃) ∈ OrigG, both

the following hold:

1. OrigE∗ contains an (i, d)-match for F̃ ;

2. none of the sets LocalE1, · · · , LocalEt do contain an (i, d)-match for F̃ .

We claim that if Miss holds then Missi,d must hold, for some i ∈ [q] and

d ∈ {0, 1}. Suppose the event Miss holds for the query qu = ((F̃ , X̃) −−→
eval

?) (see

above for the definition of Miss). We consider all possible cases:

– For no (i, d) does the set LocalE = LocalE1 ∪ · · · ∪ LocalEt contain an (i, d)-

match for F̃ . Since the set OrigE∗ contains ((F̃ , X̃) −−→
eval
∗), there would be

an (i, d)-match for F̃ for all i ∈ [q], so Missi,d holds for some d and all i ∈ [q].

24

– There is one and only one garbled input X̃1 which is valid for F̃ and for
which we have ((F̃ , X̃1) −−→

eval
?) ∈ LocalE. In this case, we must have X̃1 6= X̃,

because otherwise we would have ((F̃ , X̃) −−→
eval
∗) ∈ H, a contradiction to the

fact that Miss holds. Thus, for some (i, d) both the following must hold: (A)

X̃ is an (i, d)-match for F̃ and (B) X̃1 is not an (i, d)-match for F̃ . Thus,
for some i and d, the event Missi,d must hold.

– There are at least two different garbled inputs X̃1 and X̃2 which both are
valid for F̃ and which ((F̃ , X̃1) −−→

eval
?) ∈ LocalE and ((F̃ , X̃2) −−→

eval
?) ∈

LocalE: This case cannot happen because otherwise we would have (∗, ∗ −→
gc

F̃) ∈ H, a contradiction to the fact that Miss holds.

Having proved Pr[Miss] ≤
∑
i,d Pr[Missi,d], we bound the probability of each

individual Missi,d. To bound the probability of the event Missi,d, note that since
all of LocalE1, . . . , LocalEt and OrigE∗ are obtained via independent and identical
processes, by Lemma 3.1 we have

Pr[Missi,d] ≤
1

t
.

Using a union bound, Pr[Miss] ≤ 2q
t , and Equation 5 is now proved. This com-

pletes the proof. ut

Proof of security for Ė. We now give the proof of security.

Proof (of Lemma 27). To define the reduction algorithm SecRed we need to in-
troduce the following procedure, overloading the definition of ConstHelp (Def-
inition 20). In Definition 20 the procedure ConstHelp was given as input an
auxiliary information set Aux which helps the procedure in finding answers to
the eval queries provided in the given set Q. In the definition below, however,
there is no auxiliary information set, but the procedure could use the oracle rev.

Definition 32. Procedure ConstHelp:

– Input: A set of query/answer pairs Q.

– Oracle: O = (f, gc, gi, eval, rev).

– Output: A “hint” set H formed as follows:

• If there exists ((F̃ , X̃) −−→
eval

y 6= ⊥) ∈ Q such that for no X̃ ′ 6= X̃ do we

have ((F̃ , X̃ ′) −−→
eval

y′ 6= ⊥) ∈ Q, then add ((F̃ , X̃) −−→
eval

y) to H.

• If for two distinct X̃1 and X̃2 we have ((F̃ , X̃1) −−→
eval

y1 6= ⊥) ∈ Q

and ((F̃ , X̃2) −−→
eval

y2 6= ⊥) ∈ Q, then add (((s, F)) −→
gc

F̃) to H, where

(s, F) = rev(F̃ , X̃1, X̃2).

25

We will now describe the attack oracle-aided algorithm SecRed against the
semantic security of (GO, EO, DO). The input to SecRed is pair of challenge
(pk, c) sampled under EO. Moreover, SecRed has oracle access to O as well as
an adversary against ĖO.

Description of SecRedA,O(pk, c):

1. Initialize LocalE∗ = ∅. For i = [1, t], do the following: Run EO(pk, 0) and
EO(pk, 1) and add all the resulting query-answer pairs to LocalE∗.

2. Set H∗ ← ConstHelpO(LocalE∗).
3. Return b′ ← A(pk,H∗, c).

We will now show that the following holds for both b = 0 and b = 1:
The distribution Dist1 = (pk,H∗, c) is statistically close to Dist2 = (ṗk, ċ),
where (pk, sk) ← GO(1κ), c ← EO(pk, b), and (ṗk, ∗) ← ĠO(1κ) and ċ ←
ĖO(ṗk, b). Also, H∗ is sampled as in the execution of the security reduction
SecRedA,O(pk, c). Let all the variables that appear below be sampled as in the
above. First, it is easy to show that

∆((pk,H∗), ṗk) ≤ poly(κ)× 1

2κ/2
≤ 1

2κ/3
.

Moreover, by Lemma 29 we have

∆(c, ċ) ≤ 2q

t
+

1

2κ/3
. (6)

Thus, SecRedA,O(pk, c) breaks the semantic security of (GO, EO, DO) with prob-
ability at least γ − 2q

t −
1

2κ/4
. ut

4.2 Removing Garbling Evaluation Queries from Decryption

In this section, we will prove Lemma 17. Namely, we will present a procedure
that compiles a PKE scheme E = (Gf,gc,gi, Ef,gc,gi, Df,gc,gi,eval) into a new PKE
scheme Ë = (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi) with correctness and security comparable
to the original scheme E , but where D̈ will not ask any eval queries.

Again, for simplicity we use the following convention where we keep the
entire oracle O as a superscript to all the algorithms (GO, EO, DO) as well as
(G̈O, ËO, D̈O) with the understanding that the actual oracle access is of the form
given above. We also make the following assumption without loss of generality.

Assumption 33 We assume that all the algorithms (G,E,D) are in normal
form (Definition 19). Also, we assume w.l.o.g. that the secret key outputted by
G contains all the query-response pairs made by G.

Definition 34 (Query set). For an oracle algorithm AO, Query(AO(x; r)) de-
notes the set of all queries asked during the execution of AO on input x and
randomness r. We write Query(AO(x)) to indicate the random variable formed
by returning Query(AO(x; r)) for r ← {0, 1}∗.

26

Definition 35 (Valid partial oracles). We say that a partial oracle O1 is
valid if for some O2 ∈ Supp(O): O1 ⊆ O2.

Definition 36 (Oracle consistency/sampling notation). We say a partial
oracle O1 is consistent with a set of query/response pairs S if O1 ∪ S is valid.

For a partial oracle O1 and randomness r we say that (O1, r) agrees with a
public key pk if (1) GO1(r) = (pk, ∗) and (2) all the queries in Query(GO1(r))
are defined in O1. We say that (O1, r) minimally agrees with pk if (1) (O1, r)
agrees with pk and (2) O1 is defined only on the queries that occur during the
execution and nothing more: namely, O1(qu) is defined iff qu ∈ Query(GO1(r)).

We let Partial(pk,S) denote the set of all (O1, r) where (1) (O1, r) mini-
mally agrees with pk and (2) O1 agrees with S. We sometimes abuse notation
and write (O1, sk) ← Partial(pk,S) to mean the following sampling: (O1, r) ←
Partial(pk,S) and (pk, sk) = GO1(r).

Definition 37 (Composed oracle). Given a partial oracle Op and full oracle
O (an oracle that is defined on all points in its domain) we define Op♦O to be
the composed oracle that uses Op to reply if the corresponding query is defined
there, and uses O otherwise. Note that Op♦O is not necessarily in Supp(O).

Compilation procedure.

Construction 38 The scheme Ë = (G̈, Ë, D̈) is parameterized over two func-
tions ε = ε(κ) and t = t(κ), which we will instantiate later.

– G̈(1κ) : Do the following steps:
1. Set OrigG = ∅. Run (pk, sk)← GO(1κ), and add all query-answer pairs

that are encountered during this execution to OrigG.
2. Set LearnG = ∅. While there exists a query qu /∈ LearnG such that

Pr
O′←O

[qu ∈ Query(GO
′
(1κ)) | pk, LearnG] ≥ ε,

then choose the lexicographically first such qu and add (qu −→
T
O′(qu)) to

LearnG. Note that T ∈ {f, gc, gi}.
3. Output p̈k = (pk, LearnG) and s̈k = sk. (By Assumption 33, s̈k contains

OrigG.)
– Ë(p̈k, b): Given p̈k = (pk, LearnG) and b ∈ {0, 1} do the following:

1. Set OrigE = ∅. Run c ← EO(pk, b) and add all the query-answer pairs
that are observed during this execution to OrigE.

2. Generating helper set H for D̈: Sample t′ ← [1, t]. Set S = OrigE ∪
LearnG. For i ∈ [1, t′], do the following:

(a) Offline phase: Sample (Ôi, ŝki)← Partial(pk, S).

(b) Semi-online phase: Run DÔi♦O[S](ŝki, c) and add all query/response

pairs made to the oracle O to the set S. Let ÔrigDi be the set of all
query-answer pairs made by this execution.

27

After all iterations, set H := ConstHelp(ÔrigD,S), where we define

ÔrigD = ÔrigD1 ∪ · · · ∪ ÔrigDt′ .
3. Output c̈ = (c,H).

– D̈(p̈k, s̈k, c̈) : Given p̈k = (pk, LearnG), s̈k, and c̈ = (c,H), output the value

of b̃← DO[H∪LearnG](s̈k, c).

Query complexity of Ë. The following lemma follows from the description of
the compilation procedure of Construction 38.

Lemma 39. Let q be as in Definition 23. Assuming ε = 1
poly(κ) and t = poly(κ),

all the algorithms of ËO make qO(1) queries. Concretely, the algorithm Ë makes
at most ν := 4tq2 queries.

We note that by taking ε = 1
poly(κ) the learning process of G̈ (i.e., for sampling

LearnG) could be done by making a polynomial number of queries [6].
We give the correctness and security statements regarding the compiled

scheme Ë = (G̈, Ë, D̈). See the full version for the proofs.

Lemma 40 (Correctness of Ë). Suppose the original PKE scheme (G,E,D)
is (1

2 + δ)-correct in the ideal model. The compiled PKE scheme (G̈, Ë, D̈) has
at least (1

2 + δ − η) correctness in the ideal model, where

η =
1

2κ/5
+

2q

t
+ 3ενt.

That is,

Pr[D̈O(sk, c̈) 6= b] ≤ 1
2 − δ + η (7)

where the probability is taken over O ← O, (p̈k, sk) ← G̈O(1κ), b ← {0, 1}
and c̈ = (c,H) ← ËO(p̈k, b). Here t and ε are the underlying parameters of
the compilation procedure, and ν is defined in Lemma 39. In particular, for any
constant c > 0 by taking t = 2qc+2 and ε = 1

q3c+8 , the compiled scheme (G̈, Ë, D̈)

has at least (1
2 + δ − 1/κc) correctness in the ideal model.

Lemma 41 (Security of Ë). Let p be an arbitrary polynomial which satisfies

8tq2ε+ 1
2κ/2−1 ≤ 1

p .

There exists a polynomial-query algorithm SecRed that satisfies the following.
For any adversary A that breaks the semantic security of (G̈O, ËO, D̈O) in the
ideal model O with probability at least γ, the adversary SecRedA,O breaks the
semantic security of (GO, EO, DO) with probability at least γ − β where

β = t · (1
p−1 + 4tq2ε+ 1

q2c+4 + 1
2κ/2−1).

In particular, for any constant c by taking t = 2qc+2 and ε = 1
q3c+8 we have the

following: For any A breaking the semantic security of (G̈O, ËO, D̈O) in the ideal
model with probability at least γ, the (polynomial-query) adversary SecRedA,O

breaks the semantic security of (GO, EO, DO) with probability at least γ − 22
κ2+c .

28

References

1. Benny Applebaum. Garbled circuits as randomized encodings of functions: a
primer. In Tutorials on the Foundations of Cryptography, pages 1–44. Springer,
2017. 2

2. Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfus-
cation and functional encryption. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 191–209. IEEE, 2015. 3, 5, 9

3. Gilad Asharov and Gil Segev. On constructing one-way permutations from indistin-
guishability obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A:
13th Theory of Cryptography Conference, Part II, volume 9563 of Lecture Notes in
Computer Science, pages 512–541, Tel Aviv, Israel, January 10–13, 2016. Springer,
Heidelberg, Germany. 3

4. Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box reduc-
tions, revisited. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 296–315. Springer, 2013. 2, 12

5. Boaz Barak. The complexity of public-key cryptography. In Tutorials on the
Foundations of Cryptography, pages 45–77. Springer, 2017. 2

6. Boaz Barak and Mohammad Mahmoody-Ghidary. Lower bounds on signatures
from symmetric primitives. In 48th Annual Symposium on Foundations of Com-
puter Science, pages 680–688, Providence, RI, USA, October 20–23, 2007. IEEE
Computer Society Press. 27

7. Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are optimal -
an O(n2)-query attack on any key exchange from a random oracle. In Shai Halevi,
editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 374–390, Santa Barbara, CA, USA, August 16–20, 2009.
Springer, Heidelberg, Germany. 16

8. Donald Beaver. Correlated pseudorandomness and the complexity of private com-
putations. In 28th Annual ACM Symposium on Theory of Computing, pages 479–
488, Philadephia, PA, USA, May 22–24, 1996. ACM Press. 3

9. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
12: 19th Conference on Computer and Communications Security, pages 784–796,
Raleigh, NC, USA, October 16–18, 2012. ACM Press. 2, 3, 4

10. Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. Structure vs. hard-
ness through the obfuscation lens. In Annual International Cryptology Conference,
pages 696–723. Springer, 2017. 3

11. Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, and
Brent Waters. On the impossibility of basing identity based encryption on trapdoor
permutations. In 49th Annual Symposium on Foundations of Computer Science,
pages 283–292, Philadelphia, PA, USA, October 25–28, 2008. IEEE Computer
Society Press. 2

12. Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits on
the power of zero-knowledge proofs in cryptographic constructions. In Theory of
Cryptography Conference, pages 559–578. Springer, 2011. 3, 4, 5

13. Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with ran-
dom oracles. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in
Computer Science, pages 456–467, Warsaw, Poland, March 23–25, 2015. Springer,
Heidelberg, Germany. 6

29

14. Dana Dachman-Soled. Towards non-black-box separations of public key encryption
and one way function. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B:
14th Theory of Cryptography Conference, Part II, volume 9986 of Lecture Notes
in Computer Science, pages 169–191, Beijing, China, October 31 – November 3,
2016. Springer, Heidelberg, Germany. 5

15. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. 1

16. Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptol-
ogy – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 537–569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidel-
berg, Germany. 2, 4

17. Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
Annual ACM Symposium on Theory of Computing, pages 449–458, Portland, OR,
USA, June 14–17, 2015. ACM Press. 3

18. Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds
on obfuscation from all-or-nothing encryption primitives. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume
10401 of Lecture Notes in Computer Science, pages 661–695, Santa Barbara, CA,
USA, August 20–24, 2017. Springer, Heidelberg, Germany. 5, 6

19. Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does func-
tional encryption imply obfuscation? In TCC 2017: 15th Theory of Cryptography
Conference, Part I, Lecture Notes in Computer Science, pages 82–115. Springer,
Heidelberg, Germany, March 2017. 5

20. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
43rd Annual ACM Symposium on Theory of Computing, pages 99–108, San Jose,
CA, USA, June 6–8, 2011. ACM Press. 5

21. Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing
trapdoor functions on trapdoor predicates. In 42nd Annual Symposium on Foun-
dations of Computer Science, pages 126–135, Las Vegas, NV, USA, October 14–17,
2001. IEEE Computer Society Press. 7

22. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In Matthew Franklin, editor, Advances in
Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 92–105, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg,
Germany. 7

23. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In 21st Annual ACM Symposium on Theory of Computing,
pages 44–61, Seattle, WA, USA, May 15–17, 1989. ACM Press. 2, 5, 6, 7, 8, 10,
12, 15, 16

24. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium
on Foundations of Computer Science, pages 294–304, Redondo Beach, CA, USA,
November 12–14, 2000. IEEE Computer Society Press. 2

25. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-
party computation. Journal of Cryptology, 22(2):161–188, April 2009. 2

26. Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johans-
son and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013,

30

volume 7881 of Lecture Notes in Computer Science, pages 719–734, Athens, Greece,
May 26–30, 2013. Springer, Heidelberg, Germany. 3

27. Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. On the im-
possibility of virtual black-box obfuscation in idealized models. In Eyal Kushilevitz
and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference,
Part I, volume 9562 of Lecture Notes in Computer Science, pages 18–48, Tel Aviv,
Israel, January 10–13, 2016. Springer, Heidelberg, Germany. 6

28. Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and
Abhi Shelat. Lower bounds on assumptions behind indistinguishability obfusca-
tion. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of
Cryptography Conference, Part I, volume 9562 of Lecture Notes in Computer Sci-
ence, pages 49–66, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg,
Germany. 6

29. Periklis A. Papakonstantinou, Charles W. Rackoff, and Yevgeniy Vahlis. How
powerful are the DDH hard groups? Cryptology ePrint Archive, Report 2012/653,
2012. http://eprint.iacr.org/2012/653. 2, 4

30. Rafael Pass. Limits of provable security from standard assumptions. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM Symposium on Theory of
Computing, pages 109–118, San Jose, CA, USA, June 6–8, 2011. ACM Press. 5

31. Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubrama-
niam. Towards non-black-box lower bounds in cryptography. In Yuval Ishai, editor,
TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of Lecture Notes
in Computer Science, pages 579–596, Providence, RI, USA, March 28–30, 2011.
Springer, Heidelberg, Germany. 5

32. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-
tween cryptographic primitives. In Moni Naor, editor, TCC 2004: 1st Theory
of Cryptography Conference, volume 2951 of Lecture Notes in Computer Science,
pages 1–20, Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg,
Germany. 2, 3, 12

33. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978. 1

34. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Sym-
posium on Theory of Computing, pages 475–484, New York, NY, USA, May 31 –
June 3, 2014. ACM Press. 7

35. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, pages 162–167,
Toronto, Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press. 2

http://eprint.iacr.org/2012/653

	Limits on the Power of Garbling Techniques for Public-Key Encryption

