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Abstract. Secure multi-party computation (MPC) is a central cryptographic task
that allows a set of mutually distrustful parties to jointly compute some function
of their private inputs where security should hold in the presence of a malicious
adversary that can corrupt any number of parties. Despite extensive research,
the precise round complexity of this “standard-bearer” cryptographic primitive
is unknown. Recently, Garg, Mukherjee, Pandey and Polychroniadou, in EURO-
CRYPT 2016 demonstrated that the round complexity of any MPC protocol rely-
ing on black-box proofs of security in the plain model must be at least four. Fol-
lowing this work, independently Ananth, Choudhuri and Jain, CRYPTO 2017 and
Brakerski, Halevi, and Polychroniadou, TCC 2017 made progress towards solv-
ing this question and constructed four-round protocols based on non-polynomial
time assumptions. More recently, Ciampi, Ostrovsky, Siniscalchi and Visconti in
TCC 2017 closed the gap for two-party protocols by constructing a four-round
protocol from polynomial-time assumptions. In another work, Ciampi, Ostro-
vsky, Siniscalchi and Visconti TCC 2017 showed how to design a four-round
multi-party protocol for the specific case of multi-party coin-tossing.
In this work, we resolve this question by designing a four-round actively secure
multi-party (two or more parties) protocol for general functionalities under stan-
dard polynomial-time hardness assumptions with a black-box proof of security.

Keywords: Secure Multi-Party Computation, Garbled Circuits, Round Complexity, Additive Er-
rors

1 Introduction

Secure multi-party computation. A central cryptographic task, secure multi-party
computation (MPC), considers a set of parties with private inputs that wish to jointly
compute some function of their inputs while preserving privacy and correctness to a
maximal extent [Yao86, CCD87, GMW87, BGW88].

In this work, we consider MPC protocols that may involve two or more parties for
which security should hold in the presence of active adversaries that may corrupt any



number of parties (i.e. dishonest majority). More concretely, we are interested in iden-
tifying the precise round complexity of MPC protocols for securely computing arbitrary
functions in the plain model.

In [GMPP16], Garg, et al., proved a lower bound of four rounds for MPC protocols
that relies on black-box simulation. Following this work, in independent works, Ananth,
Choudhuri and Jain [ACJ17] and Brakerski, Halevi and Polychroniadou, [BHP17] showed
a matching upper bound by constructing four-round protocols based on the Decisional
Diffie-Hellman (DDH) and Learning With Error (LWE) assumptions, respectively, al-
beit with super-polynomial hardness. More recently, Ciampi, Ostrovsky, Siniscalchi and
Visconti in [COSV17b] closed the gap for two-party protocols by constructing a four-
round protocol from standard polynomial-time assumptions. The same authors in an-
other work [COSV17a] showed how to design a four-round multi-party protocol for the
specific case of multi-party coin-tossing.

The state-of-affairs leaves the following fundamental question regarding round com-
plexity of cryptographic primitives open:

Does there exist four-round secure multi-party computation protocols for gen-
eral functionalities based on standard polynomial-time hardness assumptions
and black-box simulation in the plain model?

We remark that tight answers have been obtained in prior works where one or more
of the requirements in the motivating question are relaxed. In the two-party setting, the
recent work of Ciampi et al. [COSV17b] showed how to obtain a four-round protocol
based on trapdoor permutations. Assuming trusted setup, namely, a common reference
string, two-round constructions can be obtained [GGHR14, MW16] or three-round as-
suming tamper-proof hardware tokens [HPV16].5 In the case of passive adversaries, (or
even the slightly stronger setting of semi-malicious6 adversaries) three round protocols
based on the Learning With Errors assumption have been constructed by Brakerski et
al. [BHP17]. Ananth et al. gave a five-round protocol based on DDH [ACJ17]. Un-
der subexponential hardness assumptions, four-round constructions were demonstrated
in [BHP17, ACJ17]. Under some relaxations of superpolynomial simulation, the work
of Badrinarayanan et al. [BGJ+17] shows how to obtain three-round MPC assuming
subexponentially secure LWE and DDH. For specific multi-party functionalities four-
round constructions have been obtained, e.g., coin-tossing by Ciampi et al. [COSV17b].
Finally, if we assume an honest majority, the work of Damgard and Ishai [DI05] pro-
vided a three-round MPC protocol. If we allow trusted setup (i.e. not the plain model)
then a series of works [CLOS02, ?, MW16, BL18, GS17] have shown how to achieve
two-round multiparty computation protocols in the common reference string model
under minimal assumptions. In the tamper proof setup model, the work of [HPV16]
show how to achieve three round secure multiparty computation assuming only one-
way functions.

5 Where in this model the lower bound is two rounds.
6 A semi-malicious adversary is allowed to invoke a corrupted party with arbitrary chosen in-

put and random tape, but otherwise follows the protocol specification honestly as a passive
adversary.



1.1 Our Results

The main result we establish is a four-round multi-party computation protocol for gen-
eral functionalities in the plain model based on standard polynomial-time hardness as-
sumptions. Slightly more formally, we establish the following theorem.

Theorem 1.1 (Informal) Assuming the existence of injective one-way functions, ZAPs
and a certain affine homomorphic encryption scheme, there exists a four-round multi-
party protocol that securely realizes arbitrary functionalities in the presence of active
adversaries corrupting any number of parties.

This theorem addresses our motivating question and resolves the round complexity of
multiparty computation protocols. The encryption scheme that we need admits a homo-
morphic affine transformation

c = Enc(m) 7→ c′ = Enc(a ·m+ b) for plaintext a, b,

as well as some equivocation property. Roughly, given the secret key and encryption
randomness, it should be possible to “explain” the result c′ as coming from c′ =
Enc(a′ · m + b′), for any a′, b′ satisfying am + b = a′m + b′. We show how to in-
stantiate such an encryption scheme by relying on standard additively homomorphic
encryption schemes (or slight variants thereof). More precisely, we instantiate such
an encryption scheme using LWE, DDH, Quadratic Residuosity (QR) and Decisional
Composite Residuosity (DCR) hardness assumptions. ZAPs on the other hand can be
instantiated using the QR assumption or any (doubly) enhanced trapdoor permutation
such as RSA or bilinear maps. Injective one-way functions are required to instantiate
the non-malleable commitment scheme from [GRRV14] and can be instantiated using
the QR. In summary, all our primitives can be instantiated by the single QR assumptions
and therefore we have the following corollary

Corollary 1.2 Assuming QR, there exists a four-round multi-party protocol that se-
curely realizes arbitrary functionalities in the presence of active adversaries corrupting
any number of parties.

1.2 Our Techniques

Starting point: the [ACJ17] protocol. We begin from the beautiful work of Ananth,
Choudhuri and Jain [ACJ17], where they used randomized encoding [AIK06] to reduce
the task of securely computing an arbitrary functionality to securely computing the sum
of many three-bit multiplications. To implement the required three-bit multiplications,
Ananth et al. used an elegant three-round protocol, consisting of three instances of a
two-round oblivious-transfer subprotocol, as illustrated in Figure 1.

Using this three-round multiplication subprotocol, Ananth et al. constructed a four-
round protocol for the semi-honest model, then enforced correctness in the third and
fourth rounds using zero-knowledge proofs to get security against a malicious adver-
sary. In particular, the proof of correct behavior in the third round required a special



P2(x2, r2, s2) P3(x3)P1(x1, s1)

OTα

[
P1(x1), P2(−r2,x2−r2)

]
u = x1x2 − r2 v = r2x3 − s2

OTβ

[
P3(x3), P2(−s2,r2−s2)

]
OTγ

[
P3(x3), P1(−s1,u−s1)

]
w = ux3 − s1

s2s1 s3 = v + w

Fig. 1. The three-bit multiplication protocol from [ACJ17], using two-round oblivious transfer.
The OT sub-protocols are denoted by OT[Receiver(b), Sender(m0,m1)], and u, v, w are the
receivers’ outputs in the three OT protocols. The outputs of P1, P2, P3 are s1, s2, s3, respectively.
The first message in OTγ can be sent in the second round, together with the sender messages in
OTα and OTβ . The sum of s1, s2, s3 results into the output x1x2x3.

three-round non-malleable zero-knowledge proof, for which they had to rely on super-
polynomial hardness assumptions. (A four-round proof to enforce correctness in the last
round can be done based on standard assumptions.) To eliminate the need for super-
polynomial assumptions, our very high level approach is to weaken the correctness
guarantees needed in the third round, so that we can use simpler proofs. Specifically
we would like to be able to use two-round (resettable) witness indistinguishable proofs
(aka ZAPs [DN07]).

WI using the Naor-Yung approach. To replace zero-knowledge proofs by ZAPs, we
must be able to use the honest prover strategy (since ZAPs have no simulator), even
as we slowly remove the honest parties’ input from the game. We achieve this using
the Naor-Yung approach: We modify the three-bit multiplication protocol by repeating
each OT instance twice, with the receiver using the same choice bit in both copies and
the sender secret-sharing its input bits between the two. (Thus we have a total of six OT
instances in the modified protocol.) Crucially, while we require that the sender proves
correct behavior relative to its inputs in both instances, we only ask the receiver to prove
that it behaves correctly in at least one of the two.

In the security proof, this change allows us to switch in two steps from the real
world where honest parties use their real inputs as the choice bit, to a simulated world
where they are simulated using random inputs. In each step we change the choice bit in
just one of the two OT instances, and use the other bit that we did not switch to generate
the ZAP proofs on behalf of the honest parties.7

We note that intuitively, this change does not add much power to a real-world ad-
versary: Although an adversarial receiver can use different bits in the two OT instances,
this will only result in the receiver getting random bits from the protocol, since the
sender secret-shares its input bits between the two instances.

Extraction via rewinding. While the adversary cannot gain much by using different
bits in different OT instances, we crucially rely on the challenger in our hybrid games

7 We do not need to apply a similar trick to the sender role in the OT subprotocols, since the
sender bits are always random.



to use that option. Hence we must compensate somehow for the fact that the received
bits in those OT protocols are meaningless. To that end, the challenger (as well as the
simulator in the ideal model) will use rewinding to extract the necessary information
from the adversary.

But rewinding takes rounds, so the challenger/simulator can only extract this infor-
mation at the end of the third round.8 Thus we must rearrange the simulater so that it
does not need the extracted information — in particular the bits received in the OT pro-
tocols — until after the third round. Looking at the protocol in Figure 1, there is only
one place where a value received in one of the OTs is used before the end of the third
round. To wit, the value u received in the second round by P1 in OTα is used in the
third round when P1 plays the sender in OTγ .

This causes a real problem in the security proof: Consider the case where P2 is an
adversarial sender and P1 an honest receiver. In some hybrid we would want to switch
the choice bit of P1 from its real input to a random bit, and argue that these hybrids
are close by reduction to the OT receiver privacy. Inside the reduction, we will have no
access to the values received in the OT, so we cannot ensure that it is consistent with
the value that P1 uses as the sender in OTγ (with P3 as the receiver). We would like
to extract the value of u from the adversary, but we are at a bind: we must send to the
adversary the last message of OTγ before we can extract u, but we cannot compute that
message without knowing u.

Relaxing the correctness guarantees. To overcome the difficulty from above, we relax
the correctness guarantees of the three-bit multiplication protocol, allowing the value
that P1 sends in OTγ (which we denote by u′) to differ from the value that it received
in OTα (denoted u). The honest parties will still use u′ = u, but the protocol no longer
includes a proof for that fact (so the adversary can use u′ 6= u, and so can the chal-
lenger). This modification lets us introduce into the proof an earlier hybrid in which the
challenger uses u′ 6= u, even on behalf of an honest P1. (That hybrid is justified by the
sender privacy of OTγ .) Then, we can switch the choice bit of P1 in OTα from real to
random, and the reduction to the OT receiver privacy in OTα will not need to use the
value u. 9

Dealing with additive errors. Since the modified protocol no longer requires proofs
that u′ = u, an adversarial P1 is free to use u′ 6= u, thereby introducing an error into the
three-bit multiplication protocol. Namely, instead of computing the product x1x2x3, an
adversarialP1 can cause the result of the protocol to be (x1x2+(u′−u))x3. Importantly,
the error term e = u′ − u cannot depend on the input of the honest parties. (The reason
is that the value u received by P1 in OTα is masked by r2 and hence independent of
P2’s input x2, so any change made by P1 must also be independent of x2.).

To deal with this adversarial error, we want to use a randomized encoding scheme
which is resilient to such additive attacks. Indeed, Genkin et al. presented transfor-
mations that do exactly this in [GIP+14, GIP15, GIW16]. Namely, they described a

8 To get it by then, the ZAPs are performed in parallel to the second and third rounds of the
three-bit multiplication protocol.

9 The reduction will still need to use u in the fourth round of the simulation, but by then we have
already extracted the information that we need from the adversary.



compiler that transforms an arbitrary circuit C to another circuit C′ that is resilient to
additive attacks. Unfortunately, using these transformations does not work out of the
box, since they do not preserve the degree of the circuit. So even if after using random-
ized encoding we get a degree-three function, making it resilient to additive attacks will
blow up the degree, and we will not be able to use the three-bit multiplication protocol
as before.

What we would like, instead, is to first transform the original function f that we
want to compute into a resilient form f̂ , then apply randomized encoding to f̂ to get
a degree-three encoding g that we can use in our protocol. But this too does not work
out of the box: The adversary can introduce additive errors in the circuit of g, but we
only know that f̂ is resilient to additive attacks, not its randomized encoding g. In a
nutshell, we need distributed randomized encoding that has offline (input independent)
and online (input dependent) procedures that satisfies the following three conditions:

– The offline encoding has degree-3 (in the randomness);
– The online procedure is decomposable (encodes each bit separately);
– The offline procedure is resilient to additive attacks on the internal wires of the

computation.

As such the encoding procedure in [AIK06] does not meet these conditions.

BMR to the rescue. To tackle this last problem, we forgo “generic” randomized en-
coding, relying instead on the specific multiparty garbling due to Beaver, Micali and
Rogaway [BMR90] (referred to as “BMR encoding”) and show how it can be mas-
saged to satisfy the required properties.10 For this specific encoding, we carefully align
the roles in the BMR protocol to those in the three-bit multiplication protocol, and show
that the errors in the three-bit multiplication instances with a corrupted P1 can be ef-
fectively translated to an additive attack against the underlying computation of f̂ , see
Lemma 3.2. Our final protocol, therefore, precompiles the original function f to f̂ using
the transformations of Genkin et al., then applies the BMR encoding to get f̂ ′ which is
of degree-three and still resilient to the additive errors by a corrupted P1. We remark
here that another advantage of relying on BMR encoding as opposed to the randomized
encoding from [AIK06] is that it can be instantiated based on any one-way function. In
contrast the randomized encoding of [AIK06] requires the assumption of PRGs in NC1.

A Sketch of the Final Protocol Combining all these ideas, our (almost) final protocol
proceeds as follows: Let C be a circuit that we want to evaluate securely, we first apply
to it the transformation of Genkin et al. to get resilience against additive attacks, then
apply BMR encoding to the result. This gives us a randomized encoding for our original
circuit C. We use the fact that the BMR encoding has the form CBMR(x; (λ, ρ)) =
(x ⊕ λ, g(λ, ρ)) where each output bit of g has degree three (or less) in the (λ, ρ).
Given the inputs x = (x1, . . . , xn), the parties choose their respective pieces of the
BMR randomness λi, ρi, and engage in our modified three-bit multiplication protocol
Π ′ (with a pair of OT’s for each one in Figure 1), to compute the outputs of g(λ, ρ).

10 We remark that our BMR encoding differs from general randomized encoding as we allow
some “local computation” on the inputs before it is fed into the offline encoding procedure.



In addition to the third round message of Π ′, each party Pi also broadcasts its masked
input xi ⊕ λi.

Let witi be a witness of “correct behavior” of party Pi in Π ′ (where the witness
of an OT-receiver includes the randomness for only one of the two instances in an OT
pair). In parallel with the execution of Π ′, each party Pi also engages in three-round
non-malleable commitment protocols for witi, and two-round ZAP proofs that witi is
indeed a valid witness for “correct behavior” (in parallel to rounds 2,3). Once all the
proofs are verified, the parties broadcast their final messages si in the protocol Π ′,
allowing them to complete the computation of the encoding output g(λ, ρ). They now all
have the BMR encoding CBMR(x; (λ, ρ)), so they can locally apply the corresponding
BMR decoding procedure to compute C(x).

Other Technical Issues Non-malleable commitments. Recall that we need a mech-
anism to extract information from the adversary before the fourth round, while simul-
taneously providing proofs of correct behavior for honest parties via ZAPs. In fact, we
need the stronger property of non-malleability, namely the extracted information must
not change when the witness in the ZAP proofs changes.

Ideally, we would want to use standard non-malleable commitments and recent
work of Khurana [Khu17] shows how to construct such commitments in three rounds.
However, our proof approach demands additional properties of the underlying non-
malleable commitment, but we do not know how to construct such commitments in
three rounds. Hence we relax the conditions of standard non-malleable commitments.
Specifically, we allow for the non-malleable commitment scheme to admit invalid com-
mitments. (Such weaker commitments are often used as the main tool in constructing
full-fledged non-malleable commitments, see [GRRV14, Khu17] for few examples.)

A consequence of this relaxation is the problem of “over-extraction” where an ex-
tractor extracts the wrong message from an invalid commitment. We resolve this in our
setting by making each party provide two independent commitments to its witness, and
modify the ZAP proofs to show that at least one of these two commitments is a valid
commitment to a valid witness.

This still falls short of yeilding full-fledged non-malleable commitments, but it en-
sures that the witness extracted in at least one of the two commitments is valid. Since
the witness in our case includes the input and randomness of the OT subprotocols, the
challenger in our hybrids can compare the extracted witness against the transcript of the
relevant OT instances and discard invalid witnesses.

Another obstacle is that in some intermediate hybrids, some of the information that
the challenger should commit to is only known in later rounds of the protocol, hence we
need the commitments to be input-delayed. For this we rely on a technique of Ciampi et
al. [COSV16] for making non-malleable commitments into input-delayed ones. Finally,
we observe that we can instantiate the “weak simulation extractable non-malleable com-
mitments” that we need from the three-round non-malleable commitment scheme im-
plicit in the work of Goyal et al. [GRRV14].

Equivocable oblivious transfer. In some hybrids in the security proof, we need to
switch the sender bits in the OT subprotocols. For example in one step we switch the



P2 sender inputs in OTα from (−r2, x2−r2) to (−r2, x̃2−r2) where x2 is the real input
of P2 and x̃2 is a random bit. (We also have a similarly step for P1’s input in OTγ .)

For every instance of OT, the challenger needs to commit to the OT randomness on
behalf of the honest party and prove via ZAP that it behaved correctly in the protocol.
Since ZAPs are not simulatable, the challenger can only provide these proofs by fol-
lowing the honest prover strategy, so it needs to actually have the sender randomness
for these OT protocols. Recalling that we commit twice to the randomness, our security
proof goes through some hybrids where in one commitment we have the OT sender
randomness for one set of values and in the other we have the randomness for another
set. (This is used to switch the ZAP proof from one witness to another).

But how can there be two sets of randomness values that explain the same OT tran-
script? To this end, we use an equivocable oblivious transfer protocol. Namely, given
the receiver’s randomness, it is possible to explain the OT transcript after the fact, in
such a way that the “other sender bit” (the one that the receiver does not get) can be
opened both ways. In all these hybrids, the OT receiver gets a random output bit. So the
challenger first runs the protocol according to the values in one hybrid, then rewinds
the adversary to extract the randomness of the receiver, where it can then explain (and
hence prove) the sender’s actions in any way that it needs, while keeping the OT tran-
script fixed.

We show how to instantiate the equivocable OT that we need from (a slightly weak
variant of) additive homomorphic encryption, with an additional equivocation prop-
erty. Such encryption schemes can in turn be constructed under standard (polynomial)
hardness assumptions such as LWE, DDH, Quadratic Residuosity (QR) and Decisional
Composite Residuosity (DCR).

Premature rewinding. One subtle issue with relying on equivocable OT is that equiv-
ocation requires knowing the randomness of the OT receiver. To get this randomness,
the challenger in our hybrids must rewind the receiver, so we introduce in some of the
hybrids another phase of rewinding, which we call “premature rewinding.” This phase
has nothing to do with the adversary’s input, and it has no effect on the transcript used
in the main thread. All it does is extract some keys and randomness, which are needed
to equivocate.

No four-round proofs. A side benefit of using BMR garbling is that the authentication
properties of BMR let us do away completely with the four-round proofs from [ACJ17].
In our protocol, at the end of the third round the parties hold a secret sharing of the
garbled circuit, its input labels, and the translation table to interpret the results of the
garbled evaluation. Then in the last round they just broadcast their shares and input
labels, then reconstruct the circuit, evaluate the circuit, and recover the result.

Absent a proof in the fourth round, the adversary can report arbitrary values as its
shares, even after seeing the shares of the honest parties, but we argue that it still can not
violate privacy or correctness. It was observed in prior work [LPSY15] that faulty shares
for the garbled circuit itself or the input labels can at worst cause an honest party to
abort, and such an event will be independent of the inputs of the honest parties. Roughly
speaking, this is because the so called “active path” in the evaluation is randomized by
masks from each party. Furthermore, if an honest party does not abort and completes
evaluation, then the result is correct. This was further strengthened in [HSS17], and was



shown to hold even when the adversary is rushing. One course of action still available
to the adversary is to modify the translation tables, arbitrarily making the honest party
output the wrong answer. This can be fixed by a standard technique of precompiling f
to additionally receive a MAC key from each party and output the MACs of the output
under all keys along with the output. Each honest party can then verify the garbled-
circuit result using its private MAC key.

A modular presentation with a “defensible” adversary. In order to make our presen-
tation more modular, we separate the issues of extraction and non-malleability from the
overall structure of the protocol by introducing the notion of a “defensible” adversary.
Specifically, we first prove security in a simpler model in which the adversary vol-
untarily provides the simulator with some extra information. In a few more details, we
consider an “explaining adversary” that at the end of the third round outputs a “defense”
(or explanation) for its actions so far.11

This model is somewhat similar to the semi-malicious adversary model of Asharov
et al. [AJL+12] where the adversary outputs its internal randomness with every mes-
sage. The main difference is that here we (the protocol designers) get to decide what
information the adversary needs to provide and when. We suspect that our model is
also somewhat related to the notion of robust semi-honest security defined in [ACJ17],
where, if a protocol is secure against defensible adversaries and a defense is required
after the kth round of the protocol, then it is plausible that the first k rounds admits
robust semi-honest security.

Once we have a secure protocol in this weaker model, we add to it commitment
and proofs that would let us extract from the adversary the same information that was
provided in the “defense”. As we hinted above, this is done by having the adversary
commit to that information using (a weaker variant of) simulation extractable commit-
ments, and also prove that the committed values are indeed a valid “defense” for its
actions. While in this work we introduce “defensible” adversaries merely as a conve-
nience to make the presentation more modular, we believe that it is a useful tool for
obtaining round-efficient protocols.

1.3 Related and Concurrent Work

The earliest MPC protocol is due to Goldreich, Micali and Wigderson [GMW87]. The
round complexity of this approach is proportional to the circuit’s multiplication depth
(namely, the largest number of multiplication gates in the circuit on any path from
input to output) and can be non-constant for most functions. In Table 1, we list relevant
prior works that design secure multiparty computation for arbitrary number parties in
the stand-alone plain model emphasizing on the works that have improved the round
complexity or cryptographic assumptions.

In concurrent work, simultaneously Benhamouda and Lin [BL18] and Garg and
Srinivasan [GS17] construct a five-round MPC protocol based on minimal assumptions.
While these protocols rely on the minimal assumption of 4-round OT protocol, they
require an additional round to construct their MPC.

11 The name “defensible adversaries” is adapted from the work of Haitner et al. [HIK+11].



Protocol Functionality Round Assumptions Sub-exponential
[BMR90, KOS03] General O(1) CRHF, ETDP Yes

[Pas04] General O(1) CRHF, ETDP No
[PW10] General O(1) ETDP Yes

[LP11, Goy11] General O(1) ETDP No
[LPV12] General O(1) OT No

[GMPP16] General 6 LWE Yes
5 iO Yes

[ACJ17] General 5 DDH No
4 DDH Yes

[BHP17] General 4 LWE Yes
[COSV17b] Coin Tossing 4 ETDP No

Table 1. Prior works that design secure computation protocols for arbitrary number of parties in
the plain model where we focus on constant round constructions.

In another concurrent work, Badrinarayanan et al. [BGJ+18] establish the main
feasibility result presented in this work, albeit with different techniques and slightly
different assumptions. Their work compiles the semi-malicious protocol of [BL18,
GS17] while we build on modified variants of BMR and the 3-bit multiplication due
to [ACJ17]. Both works rely on injective OWFs, and whereas we also need ZAPs and
affine homomorphic encryption scheme, they also need dense cryptosystems and two-
round OT.

2 Preliminaries

2.1 Affine Homomorphic PKE

We rely on public-key encryption schemes that admit an affine homomorphism and an
equivocation property. As we demonstrate via our instantiations, most standard addi-
tively homomorphic encryption schemes satisfy these properties. Specifically, we pro-
vide instantiations based on Learning With Errors (LWE), Decisional Diffie-Hellman
(DDH), Quadratic Residuosity (QR) and Decisional Composite Residuosity (DCR)
hardness assumptions.

Definition 2.1 (Affine homomorphic PKE) We say that a public key encryption scheme
(M = {Mκ}κ,Gen,Enc,Dec) is affine homomorphic if

– Affine transformation: There exists an algorithm AT such that for every (PK, SK)←
Gen(1κ),m ∈Mκ, rc ← Drand(1κ) and every a, b ∈Mκ, DecSK(AT(PK, c, a, b)) =
am + b holds with probability 1, and c = EncPK(m; rc), where Drand(1κ) is the
distribution of randomness used by Enc.

– Equivocation: There exists an algorithm Explain such that for every (PK, SK) ←
Gen(1κ), every m, a0, b0, a1, b1 ∈Mκ such that a0m+ b0 = a1m+ b1 and every
rc ← Drand(1κ), it holds that the following distributions are statistically close
over κ ∈ N:



• {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r) : (m, rc, c
∗, r, aσ, bσ)},

and
• {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r);

t← Explain(SK, aσ, bσ, a1−σ, b1−σ,m, rc, r) : (m, rc, c
∗, t, a1−σ, b1−σ)},

where c = EncPK(m; rc).

In the full version [HHPV17], we demonstrate how to meet Definition 2.1 under a
variety of hardness assumptions.

Definition 2.2 (Resettable reusable WI argument) We say that a two-message delayed-
input interactive argument (P, V ) for a language L is resettable reusable witness indis-
tinguishable, if for every PPT verifier V ∗, every z ∈ {0, 1}∗, P r[b = b′] ≤ 1/2 +
µ(κ) in the following experiment, where we denote the first round message function
by m1 = wi1(r1) and the second round message function by wi2(x,w,m1, r2). The
challenger samples b ← {0, 1}. V ∗ (with auxiliary input z) specifies (m1

1, x
1, w1

1, w
1
2)

where w1
1, w

1
2 are (not necessarily distinct) witnesses for x1. V ∗ then obtains sec-

ond round message wi2(x1, w1
b ,m

1
1, r) generated with uniform randomness r. Next,

the adversary specifies arbitrary (m2
1, x

2, w2
1, w

2
2), and obtains second round message

wi2(x2, w2
b ,m

2
1, r). This continues m(κ) = poly(κ) times for a-priori unbounded m,

and finally V ∗ outputs b.

ZAPs (and more generally, any two-message WI) can be modified to obtain reset-
table reusable WI, by having the prover apply a PRF on the verifier’s message and the
public statement in order to generate the randomness for the proof. This allows to argue,
via a hybrid argument, that fresh randomness can be used for each proof, and therefore
perform a hybrid argument so that each proof remains WI. In our construction, we will
use resettable reusable ZAPs. In general, any multitheorem NIZK protocol implies a
resettable reusable ZAP which inturn can be based on any (doubly) enhanced trapdoor
permutation.

2.2 Additive Attacks and AMD Circuits

In what follows we borrow the terminology and definitions verbatim from [GIP+14,
GIW16]. We note that in this work we work with binary fields F2.

Definition 2.3 (AMD code [CDF+08]) An (n, k, ε)-AMD code is a pair of circuits
(Encode,Decode) where Encode : Fn → Fk is randomized and Decode : Fk → Fn+1

is deterministic such that the following properties hold:

– Perfect completeness. For all x ∈ Fn,

Pr[Decode(Encode(x)) = (0,x)] = 1.

– Additive robustness. For any a ∈ Fk,a 6= 0, and for any x ∈ Fn it holds that

Pr[Decode(Encode(x) + a) /∈ ERROR] ≤ ε.



Definition 2.4 (Additive attack) An additive attack A on a circuit C is a fixed vector
of field elements which is independent from the inputs and internal values of C. A
contains an entry for every wire of C, and has the following effect on the evaluation
of the circuit. For every wire ω connecting gates a and b in C, the entry of A that
corresponds to ω is added to the output of a, and the computation of the gate b uses the
derived value. Similarly, for every output gate o, the entry of A that corresponds to the
wire in the output of o is added to the value of this output.

Definition 2.5 (Additively corruptible version of a circuit) Let C : FI1×. . .×FIn →
FO1 × . . . × FOn be an n-party circuit containing W wires. We define the additively
corruptible version of C to be the n-party functionality fA : FI1 × . . .× FIn × FW →
FO1 × . . .× FOn that takes an additional input from the adversary which indicates an
additive error for every wire of C. For all (x,A), fA(x,A) outputs the result of the
additively corrupted C, denoted by CA, as specified by the additive attack A (A is the
simulator’s attack on C) when invoked on the inputs x.

Definition 2.6 (Additively secure implementation) Let ε > 0. We say that a random-
ized circuit Ĉ : Fn → Ft × Fk is an ε-additively-secure implementation of a function
f : Fn → Fk if the following holds.

– Completeness. For every x ∈ Fn, Pr[Ĉ(x) = f(x)] = 1.
– Additive attack security. For any additive attack A there exist aIn ∈ Fn, and a

distribution AOut over Fk, such that for every x ∈ Fn,

SD(CA(x), f(x + aIn) + AOut) ≤ ε

where SD denotes statistical distance between two distributions.

Theorem 2.7 ( [GIW16], Theorem 2) For any boolean circuit C : {0, 1}n → {0, 1}m,
and any security parameter κ, there exists a 2−κ-additively-secure implementation Ĉ
of C, where |Ĉ| = poly(|C|, n, κ). Moreover, given any additive attack A and input x,
it is possible to identify aIn such that ĈA(x) = f(x + aIn).

Remark 2.1. Genkin et al. [GIW16] present a transformation that achieves tighter pa-
rameters, namely, better overhead than what is reported in the preceding theorem. We
state this theorem in weaker form as it is sufficient for our work.

Remark 2.2. Genkin et al. [GIW16] do not claim the stronger version where the equiv-
alent aIn is identifiable. However their transformation directly yields a procedure to
identify aIn. Namely each bit of the input to the function f needs to be preprocessed via
an AMD code before feeding it to Ĉ. aIn can be computed as Decode(xEncode+AIn)−x
where xEncode is the encoded input x via the AMD code and AIn is the additive attack
A restricted to the input wires. In other words, either the equivalent input is x or the
output of Ĉ will be ERROR.



Functionality FA
MULT

FA
MULT runs with parties P = {P1, P2, P3} and an adversary S who corrupts a subset

I ⊂ [3] of parties.

1. For each i ∈ {1, 2, 3}, the functionality receives xi from party Pi, and P1 also
sends another bit eIn.

2. Upon receiving the inputs from all parties, evaluate y = (x1x2 + eIn)x3 and sends
it to S.

3. Upon receiving (deliver, eOut) from S, the functionality sends y + eOut to all par-
ties.

Fig. 2. Additively corruptible 3-bit multiplication functionality.

3 Warmup MPC: The Case of Defensible Adversaries

For the sake of gradual introduction of our technical ideas, we begin with a warm-up,
we present a protocol and prove security in an easier model, in which the adversary
volunteers a “defense” of its actions, consisting of some of its inputs and randomness.
Specifically, instead of asking the adversary to prove an action, in this model we just
assume that the adversary reveals all its inputs and randomness for that action.

The goal of presenting a protocol in this easier model is to show that it is sufficient to
prove correct behavior in some but not all of the “OT subprotocols”. Later in Section 4
we will rely on our non-malleability and zero-knowledge machinery to achieve similar
results. Namely the adversary will be required to prove correct behavior, and we will
use rewinding to extract from it the “defense” that our final simulator will need.

3.1 Step 1: 3-Bit Multiplication with Additive Errors

The functionality that we realize in this section, FA
MULT is an additively corruptible ver-

sion of the 3-bit multiplication functionality. In addition to the three bits x1, x2, x3,
FA

MULT also takes as input an additive “error bit” eIn from P1, and eOut from the adver-
sary, and computes the function (x1x2 + eIn)x3 + eOut. The description of FA

MULT can
be found in Figure 2.

Our protocol relies on an equivocable affine-homomorphic-encryption scheme (Gen,
Enc,Dec,AT,Explain) (over F2) as per Definition 2.1, and an additive secret sharing
scheme (Share,Recover) for sharing 0. The details of our protocol are as follows. We
usually assume that randomness is implicit in the encryption scheme, unless specified
explicitly. See Figure 3 for a high level description of protocol ΠDMULT.

Protocol 1 (3-bit Multiplication protocol ΠDMULT)

Input & Randomness: Parties P1, P2, P3 are given inputs (x1, eIn), x2, x3, respec-
tively. P1 chooses a random bit s1 and P2 chooses two random bits s2, r2 (in addition
to the randomness needed for the sub-protocols below).



ROUND 1:
• Party P1 runs key generation twice, (PK1

a, SK1
a), (PK2

a, SK2
a) ← Gen, encrypts

C1
α[1] := EncPK1

a
(x1) and C2

α[1] := EncPK2
a
(x1), and broadcasts ((PK1

a,C
1
α[1]),

(PK2
a,C

2
α[1])) (to be used by P2).

• P3 runs key generation four times, (PK1
β , SK1

β), (PK2
β , SK2

β), (PK1
γ , SK1

γ), (PK2
γ ,

SK2
γ)← Gen(1κ).

Next it encrypts using the first two keys, C1
β [1] := EncPK1

β
(x3) and C2

β [1] :=

EncPK2
β
(x3), and broadcasts

(
(PK1

β ,C
1
β [1]), (PK2

β ,C
2
β [1])

)
(to be used by P2),

and (PK1
γ , PK2

γ) (to be used in round 3 by P1).
• Each party Pj samples random secret shares of 0, (z1

j , z
2
j , z

3
j ) ← Share(0, 3)

and sends zij to party Pi over a private channel.
ROUND 2:
• PartyP2 samples x1

α, x
2
α such that x1

α+x2
α = x2 and r1

α, r
2
α such that r1

α+r2
α =

r2. It use affine homomorphism to compute C1
α[2] := (x1

α � C1
α[1]) � r1

α and
C2
α[2] := (x2

α � C2
α[1]) � r2

α.
Party P2 also samples r1

β , r
2
β such that r1

β + r2
β = r2 and s1

β , s
2
β such that s1

β +

s2
β = s2, and uses affine homomorphism to compute C1

β [2] := (r1
β�C1

β [1])�s1
β

and C2
β [2] := (r2

β � C2
β [1]) � s2

β .

P2 broadcasts (C1
α[2],C2

α[2]) (to be used by P1) and (C1
β [2],C2

β [2]) (to be used
by P3).
• Party P3 encrypt C1

γ [1] := EncPK1
γ
(x3) and C2

γ [1] := EncPK2
γ
(x3) and broad-

cast (C1
γ [1],C2

γ [1]) (to be used by P1).
ROUND 3:
• Party P1 computes u := DecSK1

a
(C1
α[2]) + DecSK2

a
(C2
α[2]) and u′ = u+ eIn.

Then P1 samples u1
γ , u

2
γ such that u1

γ+u2
γ = u′ and s1

γ , s
2
γ such that s1

γ+s2
γ =

s1. It uses affine homomorphism to compute C1
γ [2] := (u1

γ � C1
γ [1]) � s1

γ and
C2
γ [2] := (u2

γ � C2
γ [1]) � s2

γ .

P1 broadcasts (C1
γ [2],C2

γ [2]) (to be used by P3).
DEFENSE: At this point, the adversary broadcasts its “defense:” It gives an input
for the protocol, namely x?. For every “OT protocol instance” where the adversary
was the sender (the one sending C??[2]), it gives all the inputs and randomness that it
used to generate these messages (i.e., the values and randomness used in the affine-
homomorphic computation). For instances where it was the receiver, the adversary
chooses one message of each pair (either C1

?[1] or C2
?[1]) and gives the inputs and

randomness for it (i.e., the plaintext, keys, and encryption randomness). Formally,
let trans be a transcript of the protocol up to and including the 3rd round

trans
def
=

(
PK1

a,C
1
α[1],C1

α[2], PK2
a,C

2
α[1],C2

α[2], PK1
β ,C

1
β [1],C1

β [2], PK2
β ,C

2
β [1],C2

β [2],

PK1
γ ,C

1
γ [1],C1

γ [2], PK2
γ ,C

2
γ [1],C2

γ [2]

)
transbP1

def
=
(

PKba,C
b
α[1], C1

γ [2],C2
γ [2]

)
trans0P2

= trans1P2

def
=
(
C1
α[2],C2

α[2], C1
β [2],C2

β [2]
)

transbP3

def
=
(

PKbβ ,C
b
β [1], PKbγ ,C

b
γ [1]
)



P2(x2, s2, r2)

x1α + x2α = x2, r
1
α + r2α = r2 = r1β + r2β , s

1
β + s2β = s2s1γ + s2γ = s1

P3(x3)P1(x1, s1, eIn)

PK1
a,Enc

1
α(x1) PK2

a,Enc
2
α(x1) PK2

β ,Enc
2
β(x3)PK1

β ,Enc
1
β(x3)

PK1
γ PK2

γ ,

Enc1α(x
1
αx1 − r1α) Enc2α(x

2
αx1 − r2α) Enc2β(r

2
βx3 − s2β)Enc1β(r

1
βx3 − s1β)

u′ := eIn + Dec1α(· · · ) + Dec2α(· · · )

u1
γ + u2

γ = u′ Enc1γ(x3) Enc2γ(x3)

Enc1γ(u
1
γx3 − s1γ)Enc2γ(u

2
γx3 − s2γ)

v := Dec1β(· · · ) + Dec2β(· · · )

w := Dec1γ(· · · ) + Dec2γ(· · · )
s3 := v + w

Fig. 3. Round 1, 2 and 3 of ΠDMULT protocol. In the fourth round each party Pi adds the zero
shares to sj and broadcasts the result.

we have three NP languages, one per party, with the defense for that party being
the witness:

LP1 =

trans

∣∣∣∣∣∣∣∣
∃ (x1, eIn, ρα, SKa, σα, u

1
γ , u

2
γ , s

1
γ , s

2
γ)

s.t.

(
(PK1

a, SKa = Gen(ρα) ∧ C1
α[1] = EncPK1

a
(x1;σα))

∨ (PK2
a, SKa = Gen(ρα) ∧ C2

α[1] = EncPK2
a
(x1;σα))

)
∧ C1

γ [2] = u1
γ � C1

γ [1]� s1γ ∧ C2
γ [2] = u2

γ � C2
γ [1]� s2γ

(1)

LP2 =

trans

∣∣∣∣∣∣
∃ (x1

α, x
2
α, s

1
β , s

2
β , r

1
α, r

2
α, r

1
γ , r

2
γ) s.t. r1

α + r2
α = r1

γ + r2
γ

∧ C1
α[2] = x1α � C1

α[1]� r1α ∧ C2
α[2] = x2α � C2

α[1]� r2α
∧ C1

β [2] = r1β � C1
β [1]� s1β ∧ C2

β [2] = r2β � C2
β [1]� r2β

(2)

LP3
=


trans

∣∣∣∣∣∣∣∣∣∣∣

∃ (x3, ρβ , SKβ , σβ , ργ , SKγ , σγ)

s.t.

(
(PK1

β , SKβ = Gen(ρβ) ∧ C1
β [1] = EncPK1

β
(x3;σβ))

∨ (PK2
β , SKβ = Gen(ρβ) ∧ C2

β [1] = EncPK2
β
(x3;σβ))

)
∧
(
(PK1

γ , SKγ = Gen(ργ) ∧ C1
γ [1] = EncPK1

γ
(x3;σγ))

∨ (PK2
γ , SKγ = Gen(ργ) ∧ C2

γ [1] = EncPK2
γ
(x3;σγ))

)


(3)

ROUND 4:
• P3 computes v := DecSK1

β
(C1
β [2]) + DecSK2

β
(C2
β [2]), w := DecSK1

γ
(C1
γ [2]) +

DecSK2
γ
(C2
γ [2]), and s3 := v + w.

• Every party Pj adds the zero shares to sj , broadcasting Sj := sj +
∑3
i=1 z

j
i .

– OUTPUT: All parties set the final output to Z = S1 + S2 + S3.

Lemma 3.1 Protocol ΠDMULT securely realizes the functionality FA
MULT (cf. Figure 2)

in the presence of a “defensible adversary” that always broadcasts valid defense at the
end of the third round.



Proof. We first show that the protocol is correct with a benign adversary. Observe that
u′ = eIn + x1(x1

α + x2
α)− (r1

α + r2
α) = eIn + x1x2 − r2, and similarly v = x3r2 − s2

and w = x3u
′ − s1. Therefore,

S1 + S2 + S3 = s1 + s2 + s3 = s1 + s2 + (v + w)

= s1 + s2 + (x3r2 − s2) + (x3u
′ − s1)

= x3r2 + x3(x1x2 − r2 + eIn)

= (x1x2 + eIn)x3

as required. We continue with the security proof.
To argue security we need to describe a simulator and prove that the simulated view

is indistinguishable from the real one. Below fix inputs x1, eIn, x2, x3, and a defensible
PPT adversary A controlling a fixed subset of parties I ⊆ [3] (and also an auxiliary
input z).

The simulator S chooses random inputs for each honest party (denote these values
by x̂i), and then follows the honest protocol execution using these random inputs until
the end of the 3rd round. Upon receiving a valid “defense” that includes the inputs
and randomness that the adversary used to generate (some of) the messages Ci

?[j], the
simulator extracts from that defense the effective inputs of the adversary to send to the
functionality, and other values to help with the rest of the simulation. Specifically:

– If P3 is corrupted then its defense (for one of the Ci
β [1]’s and one of the Ci

γ [1]’s)
includes a value for x3, that we denote x∗3. (A defensible adversary is guaranteed
to use the same value in the defense for C?β [1] and in the defense for C

?

γ [1]’s.)
– If P2 is corrupted then the defense that it provides includes all of its inputs and

randomness (since it always plays the “OT sender”), hence the simulator learns a
value for x2 that we denote x∗2, and also some values r2, s2. (If P2 is honest then
by r2, s2 we denote below the values that the simulator chose for it.)

– If P1 is corrupted then its defense (for either of the Ci
α[1]’s) includes a value for x1

that we denote x∗1.
From the defense for both C1

γ [2],C2
γ [2] the simulator learns the uγi ’s and sγi ’s, and

it sets u′ := u1
γ + u2

γ and s1 := s1
γ + s2

γ .
The simulator sets u := x∗1x

∗
2 − r2 if P2 is corrupted and u := x∗1x̂2 − r2 if P2 is

honest, and then computes the effective value e∗In := u′ − u. (If P1 is honest then
by s1, u, u

′ we denote below the values that the simulator used for it.)

Let x∗i and e∗In be the values received by the functionality. (These are computed as
above if the corresponding party is corrupted, and are equal to xi, eIn if it is honest.)
The simulator gets back from the functionality the answer y = (x∗1x

∗
2 + e∗In)x∗3.

Having values for s1, s2 as described above, the simulator computes s3 := y −
s1 − s2 if P3 is honest, and if P3 is corrupted then the simulator sets v := r2x

∗
3 − s2,

w := ux∗3 − s1 and s3 := v + w. It then proceeds to compute the values Sj that the
honest parties broadcast in the last round.

Let s be the sum of the si values for all the corrupted parties, and let z be the sum
of the zero-shares that the simulator sent to the adversary (on behalf of all the honest
parties), and z′ be the sum of zero-shared that the simulator received from the adversary.



The values that the simulator broadcasts for the honest parties in the fourth round are
chosen at random, subject to them summing up to y − (s+ z − z′).

If the adversary sends its fourth round messages, an additive output error is com-
puted as eOut := y −

∑
j S̃j where S̃j are the values that were broadcast in the fourth

round. The simulator finally sends (deliver, eOut) to the ideal functionality.
This concludes the description of the simulator, it remains to prove indistinguisha-

bility. Namely, we need to show that for the simulator S above, the two distributions
REALΠDMULT,A(z),I(κ, (x1, eIn), x2, x3) and IDEALFA

MULT,S(z),I(κ, (x1, eIn), x2, x3)
are indistinguishable. We argue this via a standard hybrid argument. We provide a brief
sketch below.

High-level sketch of the proof. On a high-level, in the first two intermediate hybrids,
we modify the fourth message of the honest parties to be generated using the defense
and the inputs chosen for the honest parties, rather than the internal randomness and
values obtained in the first three rounds of the protocol. Then in the next hybrid below
we modify the messages Si that are broadcast in the last round. In the hybrid following
this, we modify P3 to use fake inputs instead of its real inputs where indistinguishability
relies on the semantic security of the underlying encryption scheme. In the next hybrid,
the value u is set to random u′ rather than the result of the computation using C2

α[1] and
C2
α[2]. This is important because only then we carry out the reduction for modifying
P1’s input.Indistinguishability follows from the equivocation property of the encryption
scheme. Then we modify the input x1 and indistinguishability relies on the semantic
security. Then, we modify the input of P2 from real to fake which again relies on the
equivocation property. Finally we modify the Si’s again to use the output from the
functionality FA

MULT which is a statistical argument and this is the ideal world. A formal
proof appears in the full version [HHPV17].

Between Defensible and Real Security. In Section 4 below we show how to augment
the protocol above to provide security against general adversaries, not just defensible
ones, by adding proofs of correct behavior and using rewinding for extraction.

There is, however, one difference between having a defensible adversary and hav-
ing a general adversary that proves correct behavior: Having a proof in the protocol
cannot ensure correct behavior, it only ensures that deviation from the protocol will be
detected (since the adversary cannot complete the proof). So we still must worry about
the deviation causing information to be leaked to the adversary before it is caught.

Specifically for the protocol above, we relied in the proof on at least one in each
pair of ciphertexts being valid. Indeed for an invalid ciphertext C, it could be the case
that C ′ := (u� C) � s reveals both u and s. If that was the case, then (for example) a
corrupt P1 could send invalid ciphertexts C1,2

α [1] to P2, then learn both x1,2
α (and hence

x2) from P2’s reply.
One way of addressing this concern would be to rely on maliciously secure encryp-

tion (as defined in [OPP14]), but this is a strong requirement, much harder to realize
than our Definition 2.1. Instead, in our BMR-based protocol we ensure that all the in-
puts to the multiplication gates are just random bits, and have parties broadcast their
real inputs masked by these random bits later in the protocol. We then use ZAP proofs
of correct ciphertexts before the parties broadcast their masked real inputs. Hence, an



adversary that sends two invalid ciphertexts can indeed learn the input of (say) P2 in the
multiplication protocol, but this is just a random bit, and P2 will abort before outputting
anything related to its real input in the big protocol. For that, we consider the following
two NP languages:

L′P1
=

trans2

∣∣∣∣∣∣
∃ (x1, ρα, SKa, σα)

s.t.

(
(PK1

a, SKa = Gen(ρα) ∧ C1
α[1] = EncPK1

a
(x1;σα))

∨ (PK2
a, SKa = Gen(ρα) ∧ C2

α[1] = EncPK2
a
(x1;σα))

) 
L′P3

=

trans2

∣∣∣∣∣∣∣∣∣
∃ (x3, ρβ , SKβ , σβ , ργ , SKγ)

s.t.

(
(PK1

β , SKβ = Gen(ρβ) ∧ C1
β [1] = EncPK1

β
(x3;σβ))

∨ (PK2
β , SKβ = Gen(ρβ) ∧ C2

β [1] = EncPK2
β
(x3;σβ))

)
∧
(
(PK1

γ , SKγ = Gen(ργ)))
)


where trans2 is a transcript of the protocol up to and including the 2rd round. Note that
P2 does not generate any public keys and thus need not prove anything.

3.2 Step 2: Arbitrary Degree-3 Polynomials

The protocol ΠDMULT from above can be directly used to securely compute any degree-
3 polynomial for any number of parties in this “defensible” model, roughly by just
expressing the polynomial as a sum of degree-3 monomials and running ΠDMULT to
compute each one, with some added shares of zero so that only the sum is revealed.

Namely, party Pi chooses an n-of-n additive sharing of zero zi = (z1
i , . . . , z

n
j ) ←

Share(0, n), and sends zji to party j. Then the parties run one instance of the protocol
ΠDMULT for each monomial, up to the end of the third round. Let si,m be the value that
Pi would have computed in the mth instance of ΠDMULT (where si,m := 0 if Pi’s is
not a party that participates in the protocol for computing the mth monomial). Then Pi
only broadcasts the single value

Si =
∑

m∈[M ]

si,m +
∑
j∈[n]

zij .

where M denotes the number of degree-3 monomials. To compute multiple degree-
3 polynomials on the same input bits, the parties just repeat the same protocol for each
output bit (of course using an independent sharing of zero for each output bit).

In terms of security, we add the requirement that a valid “defense” for the adver-
sary is not only valid for each instance of ΠDMULT separately, but all these “defenses”
are consistent: If some input bit is a part of multiple monomials (possibly in different
polynomials), then we require that the same value for that bit is used in all the corre-
sponding instances of ΠDMULT. We denote this modified protocol by ΠDPOLY and note
that the proof of security is exactly the same as the proof in the previous section.

3.3 Step 3: Arbitrary Functionalities

We recall from the works of [BMR90, DI06, LPSY15] that securely realizing arbi-
trary functionalities f can be reduced to securely realizing the “BMR-encoding” of



the Boolean circuit C that computes f . Our starting point is the observation that the
BMR encoding of a Boolean circuit C can be reduced to computing many degree-3
polynomials. However, our protocol for realizing degree-3 polynomials from above lets
the adversary introduce additive errors (cf. Functionality FA

MULT), so we rely on a pre-
processing step to make the BMR functionality resilient to such additive attacks. We
will immunize the circuit to these attacks by relying on the following primitives and
tools:

Information theoretic MAC {MACα}: This will be required to protect the output trans-
lation tables from being manipulated by a rushing adversary. Namely, each party
contributes a MAC key and along with the output of the function its authentication
under each of the parties keys. The idea here is that an adversary cannot simply
change the output without forging the authenticated values.

AMD codes (Definition 2.3): This will be required to protect the inputs and outputs of
the computation from an additive attack by the adversary. Namely, each party en-
codes its input using an AMD code. The original computed circuit is then modified
so that it first decodes these encoded inputs, then runs the original computation and
finally, encodes the outcome.

Additive attack resilient circuits (i.e. AMD circuits, Section 2.2): This will be required
to protect the computation of the internal wire values from an additive attack by the
adversary. Recall from Section 3.1 that the adversary may introduce additive errors
to the computed polynomials whenever corrupting party P1. To combat with such
errors we only evaluate circuits that are resilient to additive attacks.

Family of pairwise independent hash functions: We will need this to mask the key
values of the BMR encoding. The parties broadcast all keys in a masked format,
namely, h, h(T )⊕ k for a random string T , key k and hash function h. Then, when
decrypting a garbled row, only T is revealed. T and h can be combined with the
broadcast message to reveal k.

Next we explain how to embed these tools in the BMR garbling computation. Let
f(x̂1, . . . , x̂n) be an n-party function that the parties want to compute securely. At
the onset of the protocol, the parties locally apply the following transformation to the
function f and their inputs:

1. Define

f1

(
(x̂1, α1), . . . , (x̂n, αn)

)
=
(
f(x),MACα1(f(x)), . . . ,MACαn(f(x))

)
where x = (x̂1, . . . , x̂n) are the parties’ inputs.
The MAC verification is meant to detect adversarial modifications to output wires
(since our basic model allows arbitrary manipulation to the output wires).

2. Let (Encode,Decode) be the encoding and decoding functions for an AMD code,
and define

Encode′(x̂1, . . . , x̂n) = (Encode(x̂1), . . . ,Encode(x̂n))

and
Decode′(y1, . . . , yn) = (Decode(y1), . . . ,Decode(yn)).



Then define a modified function fucntion

f2(x) = Encode′(f1(Decode′(x))).

Let C be a Boolean circuit that computes f2.

3. Next we apply the transformations of Genkin et al. [GIP+14, GIW16] to circuit C
to obtain Ĉ that is resilient to additive attacks on its internal wire values.

4. We denote by BMR.EncodeĈ((x1, R1), ..., (xn, Rn)) our modified BMR random-
ized encoding of circuit Ĉ with inputs xi and randomness Ri, as described below.
We denote by BMR.Decode the corresponding decoding function for the random-
ized encoding, where, for all i, we have

BMR.Decode(BMR.EncodeĈ((x1, R1), ..., (xn, Rn)), Ri) = Ĉ(x1, . . . , xn).

In the protocol for computing f , each honest party Pi with input x̂i begins by locally
encoding its input via an AMD code, xi := Encode(x̂i; $) (where $ is some fresh
randomness). Pi then engages in a protocol for evaluating the circuit Ĉ (as defined
below), with local input xi and a randomly chosen MAC key αi. Upon receiving an
output yi from the protocol (which is supposed to be AMD encoded, as per the definition
of f2 above), Pi decodes and parses it to get y′i := Decode(yi) = (z, t1, . . . , tn).
Finally Pi checks whether ti = MACαi(z), outputting z if the verification succeeds,
and ⊥ otherwise.

A modified BMR encoding. We describe the modified BMR encoding for a general cir-
cuit D with n inputs x1, . . . , xn. Without loss of generality, we assume D is a Boolean
circuit comprising only of fan-in two NAND gates. Let W be the total number of
wires and G the total number of gates in the circuit D. Let F = {Fk : {0, 1}κ →
{0, 1}4κ}k∈{0,1}∗,κ∈N be a family of PRFs.

The encoding procedure takes the inputs x1, . . . , xn and additional random inputs
R1, . . . , Rn. Each Rj comprises of PRF keys, key masks and hash functions from pair-
wise independent family for every wire. More precisely, Rj (j ∈ [n]) can be expressed
as {λjw, k

j
w,0, k

j
w,1, T

j
w,0, T

j
w,1, h

j
w,0, h

j
w,1}w∈[W ] where λjw are bits, kjw,b are κ bit PRF

keys, T jw,b are 4κ bits key masks, and hjw,b are hash functions from a pairwise indepen-
dent family from 4κ to κ bits.

The encoding procedure BMR.EncodeĈ on input ((x1, R1), ..., (xn, Rn)) outputs


(Rg,j00 , R

g,j
01 , R

g,j
10 , R

g,j
11 )g∈[G],j∈[n],r1,r2∈{0,1} // Garbled Tables

(hjw,b, Γ
j
w,b)w∈[W ],j∈[n],b∈{0,1}, // masked key values

(Λw, k
1
w,Λw

, . . . , knw,Λw)w∈Inp, // keys and masks for input wires
(λw)w∈Out // Output translation table





where

Rg,jr1,r2 =
( n⊕
i=1

Fkia,r1
(g, j, r1, r2)

)
⊕
( n⊕
i=1

Fkib,r2
(g, j, r1, r2)

)
⊕ Sg,jr1,r2

Sg,jr1,r2 = T jc,0 ⊕ χr1,r2 · (T
j
c,1 ⊕ T

j
c,0)

χr1,r2 = NAND
(
λa ⊕ r1, λb ⊕ r2

)
⊕ λc = [(λa ⊕ r1) · (λb ⊕ r2)⊕ 1]⊕ λc

Γ jw,b = hjw,b(T
j
w,b)⊕ k

j
w,b

λw =

{
λjww if w ∈ Inp // input wire
λ1
w ⊕ · · · ⊕ λnw if w ∈ [W ]/Inp // internal wire

Λw = λw ⊕ xw for all w ∈ Inp // masked input bit

and wires a, b and c ∈ [W ] denote the input and output wires respectively for gate
g ∈ [G]. Inp ⊆ [W ] denotes the set of input wires to the circuit, jw ∈ [n] denotes
the party whose input flows the wire w and xw the corresponding input. Out ⊆ [W ]
denotes the set of output wires.

We remark that the main difference with standard BMR encoding is that when de-
crypting a garbled row, a value T ??,? is revealed and the key is obtained by unmasking the
corresponding h??,?, h

?
?,?(T

?
?,?)⊕ k??,? value that is part of the encoding. This additional

level of indirection of receiving the mask T and then unmasking the key is required to
tackle errors to individual bits of the plaintext encrypted in each garbled row.

The decoding procedure basically corresponds to the evaluation of the garbled cir-
cuit. More formally, the decoding procedure BMR.Decode is defined iteratively gate by
gate according to some standard (arbitrary) topological ordering of the gates. In partic-
ular, given an encoding information kjw,Λw for every input wire w and j ∈ [n], of some
input x, then for each gate g with input wires a and b and output wire c compute

T jc = Rg,jr1,r2 ⊕
n⊕
i=1

(
Fkia,Λa

(g, j, Λa, Λb)⊕ Fkib,Λb
(g, j, Λa, Λb)

)
Let Λc denote the bit for which T jc = T jc,Λc and define kjc = Γ jc,Λc ⊕ hjc,Λc(T

j
c ).

Finally given Λw for every output wire w, compute the output carried in wire w as
Λw ⊕

(⊕n
j=1 λ

j
w

)
.

Securely computing BMR.Encode using ΠDPOLY. We decompose the computation of
BMR.Encode into an offline and online phase. The offline part of the computation will
only involve computing the “plaintexts” in each garbled row, i.e. S?,??,? values and visible
mask Λw values for input wires. More precisely, the parties compute

{(Sg,j00 , S
g,j
01 , S

g,j
10 , S

g,j
11 )g∈[G],j∈[n],r1,r2∈{0,1}, (Λw)w∈Inp}.

Observe that the S?,??,? values are all degree-3 computations over the randomnessR1, . . . ,
Rn and therefore can be computed using ΠDPOLY. Since the Λw values for the input
wires depend only on the inputs and internal randomness of party Pjw , the Λw value
can be broadcast by that party Pjw . The offline phase comprises of executing all in-
stances of ΠDPOLY in parallel in the first three rounds. Additionally, the Λw values are



broadcast in the third round. At the end of the offline phase, in addition to the Λw values
for the input wires, the parties obtain XOR shares of the S?,??,? values.

In the online phase which is carried out in rounds 3 and 4, each party Pj broadcasts
the following values:

– R̃?,j?,? values that correspond to the shares of the S?,j?,? values masked with Pj’s local
PRF computations.

– hj?,?, Γ
j
?,? = hj?,?(T

j
?,?)⊕ kj?,? that are the masked key values.

– λjw for each output wire w that are shares of the output translation table.

Handling errors. Recall that our ΠDPOLY protocol will allow an adversary to introduce
errors into the computation, namely, for any degree-3 monomial x1x2x3, if the party
playing the role of P1 in the multiplication sub-protocol is corrupted, it can introduce
an error eIn and the product is modified to (x1x2 + eIn)x3. The adversary can also
introduce an error eOut that is simply added to the result of the computation, namely
the S?,??,? values. Finally, the adversary can reveal arbitrary values for λjw, which in turn
means the output translation table can arbitrarily assign the keys to output values.

Our approach to tackle the “eIn” errors is to show that these errors can be translated
to additive errors on the wires of Ĉ and then rely on the additive resilience property
of Ĉ. Importantly, to apply this property, we need to demonstrate the errors are inde-
pendent of the actual wire value. We show this in two logical steps. First, by carefully
assigning the roles of the parties in the multiplication subprotocols, we can show that
the shares obtained by the parties combine to yield Sg,jr1,r2 + eg,jr1,r2 · (T

j
c,0⊕ T

j
c,1) where

eg,jr1,r2 is a 4κ bit string (and ‘·’ is applied bitwise). In other words, by introducing an
error, the adversary causes the decoding procedure of the randomized encoding to result
in a string where each bit comes from either T jc,b or T jc,1−b. Since an adversary can in-
corporate different errors in each bit of S?,??,? , it could get partial information from both
the T values. We use a pairwise independent hash function family to mask the actual
key, and by the left-over hash lemma, we can restrict the adversary from learning at
most one key. As a result, if the majority of the bits in eg,jr1,r2 are 1 then the “value” on
the wire flips, and otherwise it is “correct”.12 The second logical step is to rely on the
fact that there is at least one mask bit λjw chosen by an honest party to demonstrate that
the flip event on any wire will be independent of the actual wire value.

To address the “eOut” errors, following [LPSY15, HSS17], we show that the BMR
encoding is already resilient to such adaptive attacks (where the adversary may add
errors to the garbled circuit even after seeing the complete garbling and then deciding
on the error).

Finally, to tackle a rushing adversary that can modify the output of the translation
table arbitrarily, we rely on the MACs to ensure that the output value revealed can be
matched with the MACs revealed along with the output under each party’s private MAC
key.

12 Even if a particular gate computation is correctly evaluated, it does not necessarily mean this
is the correct wire value as the input wire values to the gate could themselves be incorrect due
to additive errors that occur earlier in the circuit.



Role assignment in the multiplication subprotocols. As described above, we care-
fully assign roles to parties to restrict the errors introduced in the multiplication proto-
col. Observe that χr1,r2 is a degree-2 computation, which in turn means the expressions
T jc,0 ⊕ χr1,r2(T jc,1 ⊕ T

j
c,0) over all garbled rows is a collection of polynomials of de-

gree at most 3. In particular, for every j ∈ [n], every gate g ∈ G with input wires a, b
and an output wire c, Sg,jr1,r2 involves the computation of one or more of the following
monomials:

- λj1a λ
j2
b (T jc,1 ⊕ T

j
c,0) for j, j1, j2 ∈ [n].

- λj1c (T jc,1 ⊕ T
j
c,0) for j, j1 ∈ [n].

- T jc,0.

We first describe some convention regarding how each multiplication triple is com-
puted, namely assign parties with roles P1, P2 and P3 in ΠDMULT (Section 3.1), and
what products are computed. Letting ∆j

c = (T jc,1 ⊕ T
j
c,0), we observe that every prod-

uct always involves ∆j
c as one of its operands. Moreover, every term can be expressed

as a product of three operands, where the product λj1c ∆
j
c will be (canonically) expressed

as (λj1c )2∆j
c and singleton monomials (e.g., the bits of the keys and PRF values) will be

raised to degree 3. Then, for every polynomial involving the variables λj1a , λ
j2
b and ∆j

c,
party Pj will be assigned with the role of P3 in ΠDMULT whereas the other parties Pj1
and Pj2 can be assigned arbitrarily as P1 and P2. In particular, the roles are chosen so
as to restrict the errors introduced by a corrupted P1 in the computation to only additive
errors of the form eInδ where δ is some bit in ∆j

c, where it follows from our simulation
that eIn will be independent of δ for honest Pj .

We now proceed to a formal description of our protocol.

Protocol 2 (Protocol ΠDMPC secure against defensible adversaries)

INPUT: Parties P1, . . . , Pn are given input x̂1, . . . , x̂n of length κ′, respectively, and a circuit Ĉ
as specified above.
LOCAL PRE-PROCESSING: Each partyPi chooses a random MAC keyαi and sets xi = Encode(x̂i,
αi). Let κ be the length of the resulting xi’s, and we fix the notation [xi]j as the jth bit of xi.
Next Pi chooses all the randomness that is needed for the BMR encoding of the circuit Ĉ. Namely,
for each wire w, Pi chooses the masking bit λiw ∈ {0, 1}, random wire PRF keys kiw,0, k

i
w,1 ∈

{0, 1}κ, random functions from a universal hash family hiw,0, h
i
w,1 : {0, 1}4κ → {0, 1}κ and

random hash inputs T iw,0, T
i
w,1 ∈ {0, 1}4κ.

Then, for every non-output wire w and every gate g for which w is one of the inputs, Pi compute
all the PRF values Θi,w,gj,r1,r2

= Fkiw,r1
(g, j, r1, r2) for j = 1, . . . , n and r1, r2 ∈ {0, 1}. (The

values λiw, T iw,r , and Θi,w,gj,r1,r2
, will play the role of Pi’s inputs to the protocol that realizes the

BMR encoding BMR.EncodeĈ.)

The parties identity the set of 3-monomials that should be computed by the BMR encoding
BMR.EncodeĈ and index them by 1, 2, . . . ,M . Each party Pi identifies the set of monomials,
denoted by Seti, that depends on any of its inputs (λiw, T iw,r , or Θi,w,gj,r1,r2

). As described above,
each Pi also determines the role, denoted by Role(t, i) ∈ {P1, P2, P3}, that it plays in the com-
putation of the t-th monomial (which is set to ⊥ if Pi does not participate in the computation of
the t-th monomial).



– ROUNDS 1,2,3: For each i ∈ [M ], parties P1, . . . , Pn execute ΠDPOLY for the mono-
mial pi up until the 3rd round of the protocol with random inputs for the BMR encoding
BMR.EncodeĈ. Along with the message transmitted in the 3rd round of ΠDPOLY, party Pj
broadcasts the following:
• For every input wire w ∈ W that carries some input bit [xj ]k from Pj’s input, Pj

broadcasts Λw = λw ⊕ [xj ]k.
For every j ∈ [n], let {S`,j}`∈M be the output of party Pj for the M degree-3 monomials.
It reassembles the output shares to obtain Sg,jr1,r2 for every garbled row r1, r2 and gate g.

– DEFENSE: At this point, the adversary broadcasts its “defense:” The defense for this pro-
tocol is a collection of defenses for every monomial that assembles the BMR encoding. The
defense for every monomial is as defined in protocol ΠDMULT from Section 3. Namely, for
each party Pi there is an NP language

L∗Pi =

(trans1, . . . , transM )

∣∣∣∣∣∣
transj ∈ Lp1 ,Lp2 ,Lp3 if Pi is assigned the role
P1, P2, P3, respectively, in the jth instance of ΠDMULT

∧ all the transj’s are consistent with the same value of xi


– ROUND 4: Finally for every gate g ∈ G and r1, r2 ∈ {0, 1}, Pj (j ∈ [n]) broadcasts the

following:
• R̃g,ir1,r2 = F

k
j
a,r1

(g, j, r1, r2)⊕ F
k
j
b,r2

(g, i, r1, r2)⊕ Sg,ir1,r2 for every i ∈ [n].

• kjw,Λw for every input wire w.
• λjw for every output wire w.
• (Γ jw,0, Γ

j
w,1) = (h(T jw,0)⊕ k

j
w,0, h(T

j
w,1)⊕ k

j
w,1) for every wire w.

– OUTPUT: Upon collecting {R̃g,jr1,r2}j∈[n],g∈[G],r1,r2∈{0,1}, the parties compute each gar-
bled row by Rg,jr1,r2 =

⊕n
j=1 R̃

g,j
r1,r2 and run the decoding procedure BMR.Decode on

some standard (arbitrary) topological ordering of the gates. Concretely, let g be a gate in
this order with input wires a, b and output wire c. If a party does not have masks Λa, Λb or
keys (ka, kb) corresponding to the input wires when processing gate g it aborts. Otherwise,
it will compute

T jc = Rg,jr1,r2 ⊕
n⊕
i=1

(
Fki
a,Λa

(g, j, Λa, Λb)⊕ Fki
b,Λb

(g, j, Λa, Λb)
)
.

Party Pj identifiesΛc such that T jc = T jc,Λc . If no suchΛc exists the party aborts. Otherwise,
each party defines kic = Γ ic,Λc ⊕ h(T

j
c ). The evaluation is completed when all the gates in

the topological order are processed. Finally given Λw for every output wire w, the parties
compute for every output wire w, Λw ⊕

(⊕n
j=1 λ

j
w

)
and decode the outcome using Dec.

This concludes the description of our protocol. We next prove the following Lemma.

Lemma 3.2 (MPC secure against defensible adversaries) Protocol ΠDMPC securely
realizes any n-input function f in the presence of a “defensible adversary” that always
broadcasts valid defense at the end of the third round.

Proof. Let A be a PPT defensible adversary corrupting a subset of parties I ⊂ [n],
then we prove that there exists a PPT simulator S with access to an ideal functionality
F that implements f , and simulates the adversary’s view whenever it outputs a valid
defense at the end of the third round. We use the terminology of active keys to denote



the keys of the BMR garbling that are revealed during the evaluation. Inactive keys are
the hidden keys. Denoting the set of honest parties by I , our simulator S is defined
below.

Description of the simulator.

– Simulating rounds 1-3. Recall that the parties engage in an instance of ΠDPOLY to
realize the BMR encoding BMR.EncodeĈ in the first three rounds. The simulator
samples random inputs for the honest parties and generates their messages using
these random inputs. For every input wire that is associated with an honest party’s
input, the simulator chooses a random Λw and sends these bits to the adversary
as part of the 3rd message. At this point, a defensible adversary outputs a valid
defense. Next the simulator executes the following procedure to compute the fourth
round messages of the honest parties.
SimGarble(defense):
1. The simulator extracts from the defense λjw and T jw,0, T

j
w,0 ⊕ T

j
w,1 for every

corrupted party Pj and internal wire w. Finally, it obtains the vector of errors
eg,jr1,r2 for every gate g, r1, r2 ∈ {0, 1} and j ∈ I , introduced by the adversary
for row (r1, r2) in the garbling of gate g.13

2. The simulator defines the inputs of the corrupted parties by using the Λw val-
ues revealed in round 3 corresponding to the wires w carrying inputs of the
corrupted parties. Namely, for each such input wire w ∈ W , the simulator
computes ρw = Λw ⊕ λw and the errors in the input wires and fixes the adver-
sary’s input {xI} to be the concatenation of these bits incorporating the errors.
S sends Decode(xI) to the trusted party computing f , receiving the output ỹ.
S fixes y = Encode(ỹ) (recall that Encode in the encoding of an AMD code).
Let y = (y1, . . . , ym).

3. Next, the simulator defines the S?,??,? values, i.e the plaintexts in the garbled
rows. Recall that the shares of the S?,??,? values are computed using the ΠDPOLY

subprotocol. Then the simulator for the main protocol, uses the S?,??,? values that
are defined by the simulation of ΠDPOLY. Next, S chooses a random Λw ←
{0, 1} for every internal wire w ∈ W . Finally, it samples a single key kjw for
every honest party j ∈ I and wire w ∈W . We recall that in the standard BMR
garbling, the simulator sets the garbled row so that for every gate g with input
wires a, b and output wire c, only the row Λa, Λb is decryptable and decrypting
this row gives the single key chosen for wire c (denoted by an active key). In
our modified BMR garbling, we will essentially ensure the same, except that
we also need to simulate the errors introduced in the computation.
More formally, the simulator considers an arbitrary topological ordering on the
gates. Fix some gate g in this sequence with a, b as input wires and c as the
output wire. Then, for every honest party Pj and random values T jc,0 and T jc,1
that were involved in the computation of the S?,??,? values for this gate within
the above simulation of ΠDPOLY, the simulator defines the bits of Sg,jΛa,Λb to

13 The errors are bits and are extracted for each monomial where the corrupted party plays the
role of P1. For simplicity of notation we lump them all in a single vector.



be (eg,jΛa,Λb · T
j
c,Λc

) ⊕ (ēg,jΛa,Λb · T
j
c,Λ̄c

) if the majority of the bits in eg,jΛa,Λb is

1 and (ēg,jΛa,Λb · T
j
c,Λc

) ⊕ (eg,jΛa,Λb · T
j
c,Λ̄c

) otherwise. Here ēg,jΛa,Λb refers to the

complement of the vector eg,jΛa,Λb and “·” is bitwise multiplication.
4. Next, it generates the fourth message on behalf of the honest parties. Namely,

for every gate g and an active row Λa, Λb, the shares of the honest parties
are computed assuming the output of the polynomials defined in the BMR en-
coding are Sg,jΛa,Λb for every j masked with the PRF under the keys kja, k

j
b as

defined by R̃g,jΛa,Λb . For the remaining three rows the simulator sends random
strings. On behalf of every honest party Pj , in addition to the shares, the fourth
round message is appended with a broadcast of the message (r, h(T jw,Λw)⊕kjw)

if Λw = 1 and (h(T jw,Λw) ⊕ kjw, r) if Λw = 0 where r is sampled randomly.
Intuitively, upon decrypting Sg,jΛa,Λb for any gate g, the adversary learns the
majority of the bits of T jc,Λc with which it can learn only kjc .

– The simulator sends the messages as indicated by the procedure above on behalf of
the honest parties. If the adversary provides its fourth message, namely, R̃g,jr1,r2 for
j ∈ [n], g ∈ [G], r1, r2 ∈ {0, 1}, the simulator executes the following procedure
that takes as input all the messages exchanged in the fourth round, the Λw values
broadcast in the third round and the target output y. It determines whether the final
output needs to be delivered to the honest parties in the ideal world.
ReconGarble(4th round messages, Λw for every input wire w,y):
• The procedure reconstructs the garbling GCA using the shares and the keys

provided. First, the simulator checks that the output key of every key obtained
during the evaluation is the active key kjc,Λc encrypted by the simulator. In
addition, the simulator checks that the outcome of GCA is y. If both events
hold, the the procedure outputs the OK message, otherwise it outputs ⊥.

– Finally, if the procedure outputs OK the simulator instructs the trusted party to
deliver ỹ to the honest parties.

In the full version [HHPV17], we provide a formal proof of the following claim:

Claim 3.3 REALΠDMPC,A(z),I(κ, x̂1, . . . , x̂n)
c
≈ IDEALF,S(z),I(κ, x̂1, . . . , x̂n).

4 Four-Round Actively Secure MPC Protocol

In this section we formally describe our protocol.

Protocol 3 (Actively secure protocol ΠMPC)

INPUT: Parties P1, . . . , Pn are given input x̂1, . . . , x̂n of length κ′, respectively, and a circuit Ĉ.

– LOCAL PRE-PROCESSING: Each party Pi chooses a random MAC key αi and sets xi =
Encode(x̂i, αi). Let κ be the length of the resulting xi’s, and we fix the notation [xi]j as the
jth bit of xi. Next Pi chooses all the randomness that is needed for the BMR encoding of the
circuit Ĉ. Namely, for each wire w, Pi chooses the masking bit λiw ∈ {0, 1}, random wire
PRF keys kiw,0, k

i
w,1 ∈ {0, 1}κ, random functions from a pairwise independent hash family

hiw,0, h
i
w,1 : {0, 1}4κ → {0, 1}κ and random hash inputs T iw,0, T

i
w,1 ∈ {0, 1}4κ.



Then, for every non-output wire w and every gate g for which w is one of the inputs, Pi
computes all the PRF values Θi,w,gj,r1,r2

= Fkiw,r1
(g, j, r1, r2) for j = 1, . . . , n and r1, r2 ∈

{0, 1}. (The values λiw, T iw,r , and Θi,w,gj,r1,r2
, will play the role of Pi’s inputs to the protocol

that realizes the BMR encoding BMR.EncodeĈ.)

The parties identify the set of 3-monomials that should be computed by the BMR encod-
ing BMR.EncodeĈ and enumerate them by integers from [M ]. Moreover, each party Pi
identifies the set of monomials, denoted by Seti, that depends on any of its inputs (λiw,
T iw,r , or Θi,w,gj,r1,r2

). As described in Section 3.3, each Pi also determines the role, denoted by
Role(t, i) ∈ {P1, P2, P3}, that it plays in the computation of the t-th monomial(which is set
to ⊥ if Pi does not participate in the computation of the t-th monomial).

– ROUND 1: For i ∈ [n] each party Pi proceeds as follows:
• Engages in an instance of the three-round non-malleable commitment protocol nmcom

with every other party Pj , committing to arbitrarily chosen values w0,i, w1,i. Denote
the messages sent within the first round of this protocol by nmcom0

i,j [1],nmcom1
i,j [1],

respectively.
• Broadcasts the message Πi,j

DMPC[1] to every other party Pj .
• Engages in a ZAP protocol with every party other Pj for the NP language L′Role(t,i)

defined in Section 3.1, for every monomial in case Role(t, i) ∈ {P1, P3}. Note that the
first message, denoted by ZAPENC

i,j [1] is sent by Pj (so Pi sends the first message to all
the Pj’s for their respective ZAPs).

– ROUND 2: For i ∈ [n] each party Pi proceeds as follows:
• Sends the messages nmcom0

i,j [2] and nmcom1
i,j [2] for the second round of the respec-

tive non-malleable commitment.
• Engages in a ZAP protocol with every other party Pj for the NP language LRole(t,i)

defined in Section 3.1 for every monomial Mt. As above, the first message, denoted
by ZAPCOM

i,j [1] is sent by Pj (so Pi sends the first message to all the Pj’s for their
respective ZAPs).

• Sends the message Πi,j
DMPC[2] to every other party Pj .

• Sends the second message ZAPENC
i,j [2] of the ZAP proof for the language L′Role(t,i).

– ROUND 3: For i ∈ [n] each party Pi proceeds as follows:
• Sends the messages nmcom0

i,j [3], nmcom1
i,j [3] for the third round of the respective

non-malleable commitment. For b ∈ {0, 1} define the NP language:

Lnmcom =
{
nmcom∗i,j [1], nmcom∗i,j [2], nmcom∗i,j [3]|

∃ b ∈ {0, 1} and (wi, ρi) s.t. nmcomb
i,j = nmcom(wi; ρi)

}
.

• Chooses w̃0,i and w̃1,i such that ∀t ∈ [Seti], w0,i + w̃0,i = w1,i + w̃1,i = witi where
witi is the witness of transcript (trans0Role(1,i)|| . . . ||trans0Role(|Seti|,i)||trans

0
nmcom) and

Role(t, i) ∈ {P1, P2, P3}, where transb? is as defined in Section 3.1.
• Generates the message ZAPCOM

i,j [2] for the second round of the ZAP protocol relative
to the NP language

LRole(1,i) ∧ . . . ∧ LRole(|Seti|,i) ∧ Lnmcom ∧
(
wb,i + w̃b,i = witi

)
where LRole(·,i) is defined in protocol 1.

• Broadcasts the message Πi,j
DMPC[3] to every other party Pj .

For every j ∈ [n], let {S`,j}`∈M be the output of party Pj for the M degree-3 polynomials.
It reassembles the output shares to obtain Sg,jr1,r2 for every garbled row r1, r2 and gate g.



– ROUND 4: Finally, broadcasts the message Πi,j
DMPC[4] to every other party Pj .

– OUTPUT: As defined in ΠDMPC.

This concludes the description of our protocol. The proof for the following theorem
can be found in [HHPV17].

Theorem 4.1 (Main) Assuming the existence of affine homomorphic encryption (cf.
Definition 2.1) and enhanced trapdoor permutations, Protocol ΠMPC securely realizes
any n-input function f in the presence of static, active adversaries corrupting any num-
ber of parties.
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tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In EUROCRYPT, pages 483–501, 2012.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and
Amit Sahai. Round optimal concurrent MPC via strong simulation. To Appear TCC,
2017.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dak-
shita Khurana, and Amit Sahai. Promise zero knowledge and its applications to round
optimal mpc. 2018.



[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure com-
putation without setup. In TCC, pages 645–677, 2017.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In EUROCRYPT, pages 500–532,
2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

[CCD87] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally se-
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