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Abstract. At CRYPTO 2016, Cogliati and Seurin have proposed a
highly secure nonce-based MAC called Encrypted Wegman-Carter with
Davies-Meyer (EWCDM) construction, as EK2

(
EK1(N)⊕N ⊕HKh(M)

)
for a nonce N and a message M . This construction achieves roughly
22n/3 bit MAC security with the assumption that E is a PRP secure
n-bit block cipher and H is an almost xor universal n-bit hash function.
In this paper we propose Decrypted Wegman-Carter with Davies-Meyer
(DWCDM) construction, which is structurally very similar to its pre-
decessor EWCDM except that the outer encryption call is replaced by
decryption. The biggest advantage of DWCDM is that we can make a
truly single key MAC: the two block cipher calls can use the same block
cipher key K = K1 = K2. Moreover, we can derive the hash key as
Kh = EK(1), as long as |Kh| = n. Whether we use encryption or de-
cryption in the outer layer makes a huge difference; using the decryption
instead enables us to apply an extended version of the mirror theory
by Patarin to the security analysis of the construction. DWCDM is se-
cure beyond the birthday bound, roughly up to 22n/3 MAC queries and
2n verification queries against nonce-respecting adversaries. DWCDM re-
mains secure up to 2n/2 MAC queries and 2n verification queries against
nonce-misusing adversaries.

Keywords: EDM, EWCDM, Mirror Theory, Extended Mirror Theory,
H-Coefficient.

1 Introduction

Pseudo-Random Functions or in short PRF is an important tool for studying al-
most all symmetric-key cryptographic systems that use secret keys, including en-
cryption, authentication and authenticated-encryption. But unfortunately, very
few PRFs are actually available in practice, and it is not easy to construct a
sufficiently secure PRF. As a result, Pseudo-Random Permutations or in short
PRPs or block ciphers, which are available in plenty [15, 20, 10, 9], replace the
PRF and are deployed as building blocks for almost every cryptographic systems.
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Although various available block ciphers [15, 20, 10, 9] can be assumed to be
PRFs, but such an assumption comes at the cost of quadratic security degrada-
tion due to the PRF-PRP switch [5], which is often called the “birthday bound
security degradation”. This loss of security is sometimes acceptable in prac-
tice if the block size of the cipher is large enough (e.g. AES-128). But with
lightweight block ciphers with relatively small block sizes (e.g. 64-bit), whose
number has grown tremendously in recent years (e.g. [9, 20, 10, 2, 1]), this secu-
rity loss severely limits their applicability, and as a result it seems to be chal-
lenging to use these small ciphers in modern-day lightweight cryptography (e.g.
Smart Card, RFID etc.).

In order to save these ciphers from obsolescence, various PRP-to-PRF con-
structions have been proposed in recent years that guarantee higher security than
the usual birthday bound security. Such constructions are often called BBB (Be-
yond Birthday Bound)—i.e., security against more than 2n/2 queries where n is
the block size of the underlying cipher. A popular BBB construction is the XOR
of permutations [6, 23, 3, 28].

XOR of Permutations. Bellare et al. [6] suggested a way to construct a PRF
from PRPs by taking the xor (more generally sum) of two independent PRPs,

XOREK1
,EK2

(x) = EK1
(x)⊕ EK2

(x).

This construction was later analyzed by Lucks [23] who proved its security up to
22n/3 queries. Bellare and Impagliazzo have shown a BBB security O(nq/2n) of
single-keyed variant of this construction [3]. However, their proof was sketchy
and hard to verify. Subsequently, a lot of efforts have been invested towards
improving the bound of XOR construction and its single-keyed variant (even
proving up to n-bit security) by Patarin [28, 32, 31], but the proof contains se-
rious gaps. Later Cogliati et al. generalized this result to the xor of three or
more independent PRPs [12]. Recently, Dai et al. [16] have provided a verifiable
n-bit security proof of the XOR construction using the chi-squared method. Al-
though, the original proof contained a glitch, as pointed out by Bhattacharya
and Nandi [8], it was later fixed in the full version of [16].

The XOR construction provides a solution for encryption by combining itself
with the counter (CTR) mode of encryption, resulting in a BBB secure nonce-
based encryption mode, called CENC, proposed by Iwata [21], who showed its
security upto O(22n/3) queries against all nonce-respecting adversaries. Later,
Iwata et al. [22] provided its optimal security bound based on the mirror theory
technique [32]. Recently, Bhattacharya and Nandi [8] have given its optimal
security bound by analysing the PRF security of variable output length xor of
permutations using chi-squared method.

Though useful for encryption, the XOR construction does not seem to be
directly usable for authentication as we have to extend the domain size, so that
the construction can authenticate long messages. This can be done by hashing
the message, but with the XOR construction it seems that we need some subtle
combination with a double-block hash function, as employed in PMAC Plus [33],
1K-PMAC Plus [17] and LightMAC Plus [26].
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Encrypted Davies-Meyer. The above problem with the XOR construction
in authentication was solved by Cogliati and Seurin [13], who proposed a PRP-
to-PRF conversion method, called Encrypted Davies-Meyer (EDM). The EDM
construction is defined as follows:

EDMEK1
,EK2

(x) = EK2
(EK1

(x)⊕ x).

EDM uses two independent block-cipher keys and achievesO(q3/22n) security [13].
Soon after, Dai et al. [16] improved its bound to O(q4/23n) by applying chi-
squared method. Concurrently, Mennink and Neves [24] proved its almost opti-
mal security, i.e. O(2n/67n), using mirror theory technique. Recently, Cogliati
and Seurin have proved a BBB security O(q/22n/3) of single-keyed EDM [14], as
originally conjectured by themselves [13].

Encrypted Wegman-Carter with Davies-Meyer. Following the construc-
tion of EDM, Cogliati and Seurin extended the idea to construct EWCDM, a
nonce-based BBB secure MAC, which is defined as follows:

EWCDMEK1
,EK2

,HKh
(N,M) = EK2

(
EK1

(N)⊕N ⊕ HK(M)
)
,

where N is the nonce and M is the message to be authenticated. Note that,
EWCDM uses two independent block-cipher keys, K1 and K2, and also another
independent hash-key Kh for the AXU hash function. 4 In this way, EDM ob-
viated the necessity of using double-block hash function that existed with the
XOR construction. It has been proved that EWCDM is secure against all nonce-
respecting MAC adversaries5 that make at most 22n/3 MAC queries and 2n

verification queries. Cogliati and Seurin also proved O(2n/2) security of the con-
struction against nonce-misusing adversaries. Later, Mennink and Neves [24]
proved its n-bit PRF security using mirror theory in the nonce respecting setting
and mentioned that the analysis straightforwardly generalizes to the analysis for
unforgeability or for the nonce-misusing setting of the construction. The trick
involved in proving the optimal security of EWCDM is by replacing the last block
cipher call with its inverse. This subtle change does not make any difference in
the output distribution and as a bonus, it trivially allows one to express the
output of the construction as a sum of two random permutations (or in general
a bi-variate affine equation 6). It is only this feature which is captured by the
mirror theory to derive the security bound of the construction.

Motivation behind This Work. As evident from the definition of the con-
struction, EWCDM requires three keys; two block cipher keysK1 andK2 and one
hash key Kh. Constructions with multiple keys necessarily demand larger storage

4 An AXU hash function is a keyed hash function such that for any two distinct
messages, the probability, over a random draw of a hash key, of the hash differential
being equal to a specific output is small.

5 adversaries who never repeat the same value of N in their MAC queries
6 For two variables, P,Q and λ ∈ GF(2n) we call an equation of the form P ⊕Q = λ,

a bi-variate affine equation
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space for storing the secret keys, which is sometimes infeasible for lightweight
crypto devices. All popular MACs, including CMAC [27] and HMAC [4], re-
quire only a single secret key. But most of the time reducing the number of keys
without compromising the security is not a trivial task.

Cogliati and Seurin [13] believed that BBB security should hold for single-
keyed EWCDM (with K1 = K2) but be likely cumbersome to prove. As men-
tioned earlier, Cogliati and Seurin recently proved that single-keyed EDM (not
EWCDM) is BBB secure, but the proof is highly complicated. Moreover, it is not
clear at all how to build on this result to prove the MAC security of EWCDM
construction with K1 = K2. In fact, Cogliati and Seurin, in their proof of single-
keyed EDM [14], state that

“For now, we have been unable to extend the current (already cumbersome)
counting used for the proof of the single-permutation EDM construction to the
more complicated case of single-key EWCDM.”

Thus, we expect that proving the MAC security of single-keyed EWCDM should
be a notably hard task and very likely require heavy mathematical tools like
Sum Capture Lemma as already used for single-keyed EDM. This motivates us to
design an another single-keyed, nonce-based MAC built from block ciphers (and
a hash function) with BBB security that can be proven by a simpler approach.

Our Contribution. Our contribution in this paper is fourfold which we outline
as follows:

• DWCDM: New Nonce-Based MAC. We propose Decrypted Wegman-Carter
with Davies-Meyer, in short DWCDM, a nonce-based BBB secure MAC. The
design philosophy of DWCDM is inspired from the trick used in [24] while
proving the optimal security of EWCDM. Recall that, in [24], authors replace
the last block cipher call with its inverse so that the output of EWCDM can
be expressed as a sum of two independent PRPs. But the same trick does
not work at the time of using the same block cipher key in the construction.
This phenomenon triggers us to design a nonce based MAC, very similar
to EWCDM, in which instead of using the encryption algorithm in the last
block-cipher call, we use its decryption algorithm so that the output of the
construction can be expressed as a sum of two identical PRPs and hence the
name Decrypted Wegman-Carter with Davies-Meyer. The construction is
single-keyed in the sense that the same block cipher key is used for the two
cipher calls. Schematic diagram of DWCDM is shown in Fig.4.1 where the
last n/3 bits of the nonce N is zero, i.e. N = N∗‖0n/3. We would like to
mention here that one cannot use the full n-bit nonce in DWCDM as that
would end up with a birthday bound MAC attack which is described in sec-
tion 4.1. We show that DWCDM is secure up to 22n/3 MAC queries and 2n

verification queries against nonce-respecting adversaries. We also show that
DWCDM is secure up to 2n/2 MAC queries and 2n verification queries in
the nonce-misuse setting, where the bound is tight. As a concrete example
of DWCDM, we present an instantiation of DWCDM with the AXU hash
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function being realized via PolyHash [25]. We show that nPolyMAC achieves
22n/3-bit MAC security in the nonce-respecting setting.

• Extended Mirror Theory. Since, our study of interest is the MAC se-
curity of the construction, we require to analyze the number of solutions
of a system of affine bi-variate equations along with affine uni-variate and
bi-variate non-equations 7. Such a general treatment of analysing system of
affine equations with non-equations was only mentioned in [32] without giv-
ing any formal analysis. To the best of our knowledge, this is the first time
we analyse such a generic system of equations with non-equations, which we
regard to as extended mirror theory and our MAC security proofs of DWCDM
and 1K-DWCDM are crucially based on this new result.

• 1K-DWCDM: “Pure” Single-Keyed Variant of DWCDM. Moreover,
we exhibit a truly single-keyed nonce-based MAC construction, 1K-DWCDM.
Under the condition that the length of the hash key is equal to the block
size as |Kh| = n, we can even derive the hash key as Kh = EK(0n−1‖1),
which results in the construction 1K-DWCDM. We prove that 1K-DWCDM
is essentially as secure as DWCDM.

• Potentiality of Achieving Higher Security. Finally, we show how
one can boost the security for DWCDM type constructions using extended
generalized version of Mirror Theory.

Proof Approach. Our MAC security proof of DWCDM and 1K-DWCDM is
fundamentally relied on Patarin’s H-coefficient technique [29]. Similar to the
technique of [13, 19], we cast the unforgeability game of MAC to an equivalent
indistinguishablity game, with some suitable choice of ideal world, that allows us
to apply the H-coefficient technique for bounding the distinguishing advantage
of the construction of our concern.

As mentioned earlier that one can express the output of DWCDM as a sum
of two identical permutations. Thus, q many such evaluations of DWCDM gives
us a system of q many affine bi-variate equations

EK(N1)⊕ EK(T1) = N1 ⊕HKh
(M1)

EK(N2)⊕ EK(T2) = N2 ⊕HKh
(M2)

...

EK(Nq)⊕ EK(Tq) = Nq ⊕HKh
(Mq)

Along with this, we also need to ensure that the verification attempt of the
adversary should fail (as a part of the good transcript), i.e. for a verification
query (N ′,M ′, T ′), chosen by the adversary, we should always have

E−1
K (EK(N ′)⊕N ′ ⊕HKh

(M ′)) 6= T ′.

7 For two variables, P,Q and λ ∈ GF(2n) \ 0n we call P ⊕Q 6= λ, an affine bi-variate
non-equation and P 6= λ is an affine uni-variate non-equation.
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Hence, it tells us that we also need to incorporate affine non-equations along
with the system of bi-variate affine equations. This leads us to extend the mirror
theory technique (extension as in incorporating affine non-equations along with
affine bi-variate equations). We require the result of extended mirror theory while
lower bounding the real interpolation probability for a good transcript.

Remark 1. We would like to point out that a possible alternative approach is
to use the chi-square method, a recently discovered technique which has been
reported in [16, 7, 8]. It is interesting to observe that in some settings chi-square
outperforms H-coefficient technique in terms of guarranting security with quadratic
improvement on the number of queries that adversary can make [16]. However,
it is difficult to apply this technique in our construction. The reason behind this
is the lack of sufficient entropy of the conditional distribution when we condition
on the hash key. The same holds true for the analysis of EWCDM as well. In
fact, this negative phenomenon motivates us to consider DWCDM so that we
can represent the construction as a sum of permutations and eventually apply
extended mirror theory.

2 Preliminaries

Symbols and Notations. For a set X , X ←$X denotes that X is sampled
uniformly at random from X and independent to all random variables defined
so far. {0, 1}n denotes the set of all binary strings of length n. The set of all
functions from X to Y is denoted as Func(X ,Y) and the set of all permutations
over X is denoted as Perm(X ). FuncX denotes the set of all functions from X to
{0, 1}n and Perm denotes the set of all permutations over {0, 1}n. We often write
Func instead of FuncX when the domain of the functions is understood from the
context. We write [q] to refer to the set {1, . . . , q}.

For any binary string x, |x| denotes the length i.e. the number of bits in x. For
x, y ∈ {0, 1}n, we write z = x⊕y to denote the modulo 2 addition of x and y. We
write 0 to denote the zero element of the field {0, 1}n (i.e. 0n) and 1 to denote
0n−1‖1. For integers 1 ≤ b ≤ a, we write (a)b to denote a(a− 1) . . . (a− b+ 1),
where (a)0 = 1 by convention.

2.1 Security Definitions

PRF and PRP and SPRP. A keyed function with key space K, domain X
and range Y is a function F : K × X → Y and we denote F(K,X) by FK(X).
Similarly, a keyed permutation with key space K and domain X is a mapping
E : K × X → X such that for all key K ∈ K, X 7→ E(K,X) is a permutation
over X and we denote EK(X) for E(K,X).

PRF. Given an oracle algorithm A with oracle access to a function from X to
Y, making at most q queries, running time is at most t and outputting a single
bit. We define the prf-advantage of A against the family of keyed functions F as

AdvPRF
F (A) := |Pr[K ←$K : AFK = 1]− Pr[RF←$ Func(X ,Y) : ARF = 1]|.
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We say that F is a (q, t, ε) secure PRF, if AdvPRF
F (q, t) := max

A
AdvPRF

F (A) ≤ ε,
where the maximum is taken over all adversaries A that makes q many queries
and running time is at most t.

PRP. Given an oracle algorithm A with oracle access to a permutation of X ,
making at most q queries, running time is at most t and outputting a single bit.
We define the prp-advantage of A against the family of keyed permutations E as

AdvPRP
E (A) := |Pr[K ←$K : AEK = 1]− Pr[Π←$ Perm(X ) : AΠ = 1]|.

We say that E is a (q, t, ε) secure PRP, if AdvPRP
E (q, t) := max

A
AdvPRP

E (A) ≤ ε,
where the maximum is taken over all adversaries A that makes q many queries
and running time is at most t.

SPRP. Given an oracle algorithm A with oracle access to a permutation and
its inverse over X , making at most q+ queries to permutation and q− queries to
inverse permutation, running time is at most t and outputting a single bit. We
define the sprp-advantage of A against the family of keyed permutations E as

AdvSPRP
E (A) := |Pr[K ←$K : AEK ,E

−1
K = 1]− Pr[Π←$ Perm(X ) : AΠ,Π−1

= 1]|.

We say that E is a (q, t, ε) secure SPRP, if AdvSPRP
E (q, t) := max

A
AdvSPRP

E (A) ≤
ε, where the maximum is taken over all adversaries A that makes q many en-
cryption and decryption queries altogether and running time is at most t.

MACs. Given four non-empty finite sets K,N ,M and T , a nonce based keyed
function with key space K, nonce space N , message space M and range T is a
keyed function whose domain is N ×M and range is T and we write F(K,N,M)
as FK(N,M).

Definition 1 (Nonce Based MAC). Let K,N ,M and T be four non-empty
finite sets and F : K×N ×M→ T be a nonce based keyed function. For K ∈ K,
let VerK be the verification oracle that takes as input (N,M, T ) ∈ N ×M× T
and outputs 1 if FK(N,M) = T , otherwise outputs 0. A (qm, qv, t) adversary
against the MAC security of F is an adversary A with access to two oracles FK
and VerK for K ∈ K such that it makes at most qm many MAC queries to first
oracle and qv many verification queries to second oracle. We say that A forges
F if any of its queries to VerK returns 1. The advantage of A against the MAC
security of F is defined as

AdvMAC
F (A) := Pr[K ←$K : AFK ,VerK forges ],

where the probability is taken over the randomness of the underlying key and
the random coin of adversary A (if any). We assume that A does not make any
verification query (N,M, T ) to VerK if T is obtained in previous MAC query
with input (N,M) and it does not repeat any query. We call such an adversary
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as “non-trivial” adversary. The adversary is said to be “nonce respecting” if it
does not repeat nonces in its queries to the MAC oracle 8.

Regular And AXU Hash Function. Let Kh,X ,Y be three non-empty finite
sets and H be a keyed function H : Kh ×X → Y. Then,

(1) H is said to be an ε regular hash function, if for any X ∈ X and any Y ∈ Y,

Pr[Kh←$Kh : HKh
(X) = Y ] ≤ ε. (1)

(2) H is said to be an ε almost xor universal (AXU) hash function if for any
distinct X,X ′ ∈ X and for any Y ∈ Y,

Pr[Kh←$Kh : HKh
(X)⊕ HKh

(X ′) = Y ] ≤ ε. (2)

(3) H is said to be an ε 3-way regular hash function if for any distinctX1, X2, , X3 ∈
X and for any non-zero Y ∈ Y,

Pr[Kh←$Kh : HKh
(X1)⊕ HKh

(X2)⊕ HKh
(X3) = Y ] ≤ ε. (3)

In the following, we state that PolyHash [25] is one of the examples of algebraic
hash function which is `/2n regular, AXU as well as 3-way regular hash function.

Proposition 1. Let Poly : {0, 1}n × ({0, 1}n)∗ → {0, 1}n be a hash function
defined as follows: For a fixed key Kh ∈ {0, 1}n and for a fixed message M ,
we first apply an injective padding such as 10∗ i.e., pad 1 followed by minimum
number of zeros so that the total number of bits in the padded message becomes
multiple of n. Let the padded message be M∗ = M1‖M2‖ . . . ‖Ml where for each
i, |Mi| = n. Then we define

PolyKh
(M) = Ml ·Kh ⊕Ml−1 ·K2

h ⊕ . . .⊕M1 ·Kl
h, (4)

where l is the number of n-bit blocks. Then, Poly is `/2n regular, AXU and 3-way
regular hash function, where ` denotes the maximum number of message blocks
of size n-bits.

The proof of the result lies around in finding the number of roots of a non-
zero polynomial over the hash key Kh with message blocks being the coefficients
of the polynomial. The details of the proof of can be found in [18].

3 Patarin’s Mirror Theory

Mirror theory, as defined in [32] is the theory of evaluating the number of solu-
tions of affine system of equalities and non-equalities in a finite group. Patarin,
who coined this theory, has given a lower bound on the number of solutions of

8 Similar to nonce respecting adversary, we say that an adversary is nonce misusing
if the adversary is not restricted to make queries to the MAC oracle with distinct
nonces.
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a finite system of affine bi-variate equations using an inductive proof when the
variables in the equations are wor samples [30]. The proof is tractable upto the
order of 22n/3 security bound, but the proof becomes highly complex and too
difficult to verify in the case of deriving the optimal security bound. In specific,
once the first-order recursion is considered, one needs to consider a second-order
recursion, and so on, until the n-th recursion. For the i-th order recursion, there
are O(2i) many cases and Patarin’s proof only addresses the first (and perhaps
the second) order recursion by a tedious analysis, but the cases of the higher-
order ones are quite different, and it’s not at all clear how to bridge the gap,
given an exponential number of cases that one has to consider. Moreover, to
the best of our knowledge, the proof did not consider any affine non-equation as
well.

In this section we extend the Mirror theory in the context of our MAC
security to incorporate the affine non-equations (that includes uni-variate and
bi-variate non-equations) along with a system of affine bi-variate equations. In
the following, we prove that when the number of affine bi-variate equations is
q ≤ 22n/3 and the number of non-equations is v ≤ 2n (v is the total number
of affine uni-variate and bi-variate non equations), then the number of solutions
becomes at least (2n)3q/2/2

nq. For the sake of presentation and interoperability
with the results in the remainder of the paper, we use different parameterization
and naming convention.

3.1 General Setting of Mirror Theory

Given a bi-variate affine equation P ⊕Q = λ over GF(2n), the associated linear
equation of this affine equation is P ⊕Q = 0. Now, given λ1, . . . , λq ∈ GF(2n)\0
which we write as Λ = (λ1, . . . , λq), let us consider a system of q many bi-variate
affine equations over GF(2n):

EΛ = {Pn1
⊕ Pt1 = λ1, Pn2

⊕ Pt2 = λ2, . . . , Pnq
⊕ Ptq = λq}.

Given a function φ : {n1, t1, . . . , nq, tq} → I, called index mapping function, we
associate another system of bi-variate affine equations:

EΛ,φ = {Pφ(n1) ⊕ Pφ(t1) = λ1, Pφ(n2) ⊕ Pφ(t2) = λ2, . . . , Pφ(nq) ⊕ Pφ(tq) = λq}.

Let α denotes the cardinality of the image set of φ. Then, EΛ,φ is a system of
bi-variate affine equations over α variables. In our paper, a specific choice of I
would be {0, 1}n.

Example. Consider a system of equations:

{P1 ⊕ P2 = λ1, P1 ⊕ P3 = λ2, P2 ⊕ P4 = λ3}.

Then, the index mapping function for the above system of equations is φ(n1) =
1, φ(t1) = 2, φ(n2) = 1, φ(t2) = 3, φ(n3) = 2, φ(t3) = 4. For this system of
equations α = 4.
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Equation-Dependent Graph. For index mapping function φ : {n1, t1, . . . , nq, tq} →
I, we associate a undirected graph Gφ = ([q],S) where {i, j} ∈ S if

|{φ(ni), φ(ti)} ∩ {φ(nj), φ(tj)} | ≥ 1

or if i = j and φ(ni) = φ(ti). We call such an edge a self-loop. In other words, we
introduce an edge between two equations (node represents the equation number)
in the equation-dependent graph if the corresponding equations have at least one
common unknown variable. Note that the set {φ(ni), φ(ti)} can be a multi-set.

For a subset {i1, . . . , ic} ⊆ [q], let

{Pφ(ni1
) ⊕ Pφ(ti1 ) = 0, Pφ(ni2

) ⊕ Pφ(ti2 ) = 0, . . . , Pφ(nic ) ⊕ Pφ(tic ) = 0}

be the sub-system of associated linear equations. We say this sub-system of
associated linear equations is linearly dependent if {i1, . . . , ic} is the minimal set
and all variables Px, which appeared in the above sub-system, appears exactly
twice. Depending on the value of c (for the minimal linearly dependent sub-
system), we have the following three cases;

(i) c = 1: Self-loop. If there exists i such that φ(ni) = φ(ti).

(ii) c = 2: Parallel-edge. If there exists i 6= j such that either:

(a) φ(ni) = φ(nj) and φ(ti) = φ(tj) or (b) φ(ni) = φ(tj) and φ(ti) = φ(nj).

(iii) c ≥ 3: Alternating-cycle. If there exists distinct i1, i2, . . . , ic such that
for every j ∈ [c] either

- φ(nij ) ∈ {φ(nij+1), φ(tij+1)} and φ(tij ) ∈ {φ(nij−1), φ(tij−1)} or

- φ(tij ) ∈ {φ(nij+1
), φ(tij+1

)} and φ(nij ) ∈ {φ(nij−1
), φ(tij−1

)}.

When i = 1, i − 1 is considered as c and when i = c, i + 1 is considered as
1. We say that φ is dependent if any one of the above condition holds. Other-
wise, we call it independent. Given an independent φ, the graph Gφ becomes a
simple graph and EΛ,φ becomes linearly independent. In this case, the number
of variables present in a connected component C = {i1, . . . , ic} of Gφ (i.e., the
size of the set {φ(ni1), φ(ti1), . . . , φ(nic), φ(tic)}) is exactly c + 1. We call the
set {φ(ni1), φ(ti1), . . . , φ(nic), φ(tic)} a block. The block maximality, denoted by
ξmax, of an independent φ is defined as ζmax+1 where ζmax is the size of the max-
imum connected components of Gφ (Note that, a block with p many elements
introduces p− 1 many affine equations.).

3.2 Extended Mirror Theory

In this section, we introduce the extended Mirror theory technique by incor-
porating two types of non-equations with a finite number of bi-variate affine
equations. We consider (i) uni-variate affine non-equation of the form Xi 6= c
and (ii) bi-variate affine non-equation of the form Xi ⊕ Yi 6= c, where c is a
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non-zero constant. In particular, we lower bound the number of solutions of a
finite number of affine equations 9 and uni(bi-) variate affine non-equations. To
begin with, let us investigate what happens when we introduce a single uni(bi-)
variate affine non-equation with a finite number of affine equations.

Let E= be a system of q many affine equations of the form

E= = {Pn1 ⊕ Pt1 = λ1, . . . , Pnq ⊕ Ptq = λq}. (5)

Let φ be an index mapping function that maps from {n1, t1, . . . , nq, tq} → I.
Let Λ= = (λ1, λ2, . . . , λq), where each λi ∈ GF(2n) \0. Now, for an independent
choice of φ, E=

φ,Λ=
is a linearly independent set of q many affine equations. Let E 6=

be a system of r many bi-variate affine non-equations and v−r many uni-variate
affine non-equations of the form

E 6= = {Pnq+1
⊕ Ptq+1

6= λ′1, . . . , Pn(q+r)
⊕ Pt(q+r)

6= λ′r}⋃
{Pnq+r+1

6= λ′r+1, . . . , Pn(q+v)
6= λ′v}.

We denote Λ6= = (λ′1, λ
′
2, . . . , λ

′
v), where each λ′i ∈ GF(2n) \ 0, and Λ′ =

(λ1, λ2, . . . , λq, λ
′
1, λ
′
2, . . . , λ

′
v). Now, for the system of affine equations and non-

equations E := E= ∪ E 6=, we consider the index mapping function

φ′ : {n1, t1, . . . , nq, tq, nq+1, tq+1, . . . , nq+v, tq+v} → I.

Moreover, we denote φ := φ′|q to be the index mapping function that maps

{n1, t1, . . . , nq, tq} → I and Λ= := Λ′|q to be (λ1, λ2, . . . , λq).

Characterizing Good (φ′,Λ′). We say that a pair (φ′,Λ′) is good if

- (C1) φ is independent and for all x 6= y, Pφ(x) = Pφ(y) cannot be generated
from the system of equations E=

φ,Λ=
.

- (C2) for all j ∈ [v] and i1, . . . , ic ∈ [q], c ≥ 0, such that {i1, . . . , ic, q + j} is
dependent system then λi1 ⊕ · · · ⊕ λic ⊕ λ′j 6= 0.

In words, a good (φ′,Λ′) says that: (i) the system of equation Eφ,Λ=
is linearly

independent system of equations and one cannot generate an equation of the
form Pφ(x) = Pφ(y) by linearly combining the equation of Eφ,Λ=

. Moreover, (ii)
by linearly combining the equation of Eφ,Λ=

, one cannot generate an equation of

the form Px ⊕ Py = λx,y such that Px ⊕ Py 6= λx,y already exist in E 6=φ′,Λ′ .
Summarizing above, we state and prove the following main theorem, which we
call as Extended Mirror Theorem for ξmax = 3. For the notational simplicity we
assume the index set I = [α].

9 when we consider affine equation, we actually refer to the bi-variate affine equation.
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Theorem 1. Let (E=∪E 6=, φ′,Λ′) be a system of q many affine equations and v
many uni(bi-) variate affine non-equations associated with index mapping func-
tion φ′ over GF(2n) which are of the form

(a)Pφ(ni) ⊕ Pφ(ti) = λi(6= 0), ∀i ∈ [q]

(b)Pφ(nj) ⊕ Pφ(tj) 6= λ′j(6= 0), ∀j ∈ [q + 1, q + r]

(c)Pφ(nj) 6= λ′′j (6= 0), ∀j ∈ [q + r + 1, q + v]

over the set of α many unknown variables P = {P1, . . . , Pα} such that Pa may
be equals to some Pφ(ni) or Pφ(ti), where a ∈ {φ(nj), φ(tj)}, j ∈ [q + 1, q + v].
Now, if

- (i) (φ′,Λ′) is good and
- (ii) ξmax = 3

then the number of solutions for P, denoted by h 3q
2

such that Pi 6= Pj for all

distinct i, j ∈ {1, . . . , α} is

h 3q
2
≥

(2n) 3q
2

2nq

(
1− 5q3

22n
− v

2n

)
. (6)

Proof. As mentioned, our proof is an inductive proof based on the number of
blocks u. Our first observation is that as (φ′,Λ′) is good, φ is independent and
thus ξmax = ζmax + 1 and hence, the maximum number of variables Pi that can
reside in the same block is 3. For the simplicity of the proof, assume that we
have exactly 3 variables at each blocks. Now, it is easy to see that Eqn. (6) holds
when u = 1.

As the next step of the proof, let h3u be the solutions for first 2u many
affine equations, which we denote as E=

2u. Now as soon as we add the (u + 1)th

block, we consider the following bi-variate affine equations P3u+1 ⊕ P3u+2 =
λ2u+1, P3u+1⊕P3u+3 = λ2u+2 and those bi-variate affine non-equations which are
of the form Pσi⊕Pδi 6= λ′i, where σi ∈ {1, . . . , 3u+3}, δi ∈ {3u+1, 3u+2, 3u+3}
and also those uni-variate affine non-equations of the form Pδi 6= λ′′i , where δi ∈
{3u + 1, 3u + 2, 3u + 3}. Let v′ and v′′ be the number of such bi-variate and
uni-variate affine non-equations. Now, note that each such bi-variate affine non-
equation of the form Pσi ⊕ Pδi 6= λ′i where σi ∈ {1, . . . , 3u + 3}, δi ∈ {3u +
1, 3u+ 2, 3u+ 3} can be written as P3u+1 6= Pσi ⊕λ?i , where σi ∈ {1, . . . , 3u+ 3}
and λ?i ∈ {λ′i, λ′i ⊕ λ2u+1, λ

′
i ⊕ λ2u+2}. Moreover, each such uni-variate affine

non-equation of the form Pδi 6= λ′′i where δi ∈ {3u + 1, 3u + 2, 3u + 3} can be
written as P3u+1 6= λ??i , where λ??i ∈ {λ′′i , λ′′i ⊕ λ2u+1, λ

′′
i ⊕ λ2u+2}.

Now h3u+3 counts for the number of solutions to {P1, . . . , P3u, P3u+1, P3u+2, P3u+3}
such that

- {P1, . . . , P3u} is a valid solution of E=
2u.

- P3u+1 ⊕ P3u+2 = λ2u+1, P3u+1 ⊕ P3u+3 = λ2u+2.
- P3u+1 /∈ {P1, . . . , P3u, P1 ⊕ λ2u+1, . . . , P3u ⊕ λ2u+1, P1 ⊕ λ2u+2, . . . , P3u ⊕
λ2u+2}.
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- P3u+1 /∈ {Pσ1 ⊕ λ?1, . . . , Pσv′ ⊕ λ
?
v′}.

- P3u+1 /∈ {λ??1 , . . . , λ??v′′}.
Let V1 = {P1, . . . , P3u}, V2 = {P1 ⊕ λ2u+1, . . . , P3u ⊕ λ2u+1}, V3 = {P1 ⊕
λ2u+2, . . . , P3u⊕λ2u+2}, V4 = {Pσ1

⊕λ?1, . . . , Pσv′⊕λ
?
v′} and V5 = {λ??1 , . . . , λ??v′′}.

Note that, |Vi| = 3u, i = 1, 2, 3 and |V4| = v′, |V5| = v′′. Therefore, we can write

h3u+3 = h3u(2n − |V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5|) ≥ h3u(2n − |V1| − |V2| − |V3| − |V4| − |V5|)
≥ h3u(2n − 9u− v′ − v′′).

By applying repeated induction, we obtain

h 3q
2
≥
(

2n − 9(
q

2
− 1)− v′ − v′′

)
h3( q

2−1) ≥ . . . ≥
q/2−1∏
u=0

(2n − 9u− v′ − v′′)

for which we have,

h 3q
2

2nq

(2n) 3q
2

≥
q/2−1∏
u=0

22n(2n − 9u− v′ − v′′)
(2n − 3u)(2n − 3u− 1)(2n − 3u− 2)

≥
q/2−1∏
u=0

22n(2n − 9u− v′ − v′′)
23n − (9u+ 3)22n + (27u2 + 18u+ 2)2n

[1]

≥
q/2−1∏
u=0

(
1 +

3

2n
− 27u2 + 18u+ 2

22n
− v′ + v′′

2n

)
[2]

≥
q/2−1∏
u=0

(
1− 27u2

22n
− 9u2

22n
− v′ + v′′

2n

)
≥
q/2−1∏
u=0

(
1− 36u2

22n
− v′ + v′′

2n

)

≥

(
1−

q/2−1∑
u=0

36u2

22n
−
q/2−1∑
u=0

v′ + v′′

2n

)
[3]

≥

(
1− 5q3

22n
− v

2n

)
where [1] follows from the assumptions u ≤ 2n/9, [2] follows as 9u2

22n ≥ (18u+3)
22n − 3

2n

and [3] follows as
q/2−1∑
u=0

(v′ + v′′) ≤ v. ut

4 DWCDM and Its Security Result

In this section, we discuss our proposed construction DWCDM and state its
security in nonce respecting and nonce misuse setting. Let us recall the DWCDM
construction DWCDM[E,E−1,H](N,M) := E−1

K (EK(N) ⊕ N ⊕ HKh
(M)) where

N = N∗‖0n/3. EK is a n-bit block cipher and HKh
is an ε1-regular, ε2-AXU and

ε3-3-way regular n-bit keyed hash function. A schematic diagram of DWCDM
is shown in Fig.4.1. Note that, DWCDM is structurally similar to EWCDM, but
unlike EWCDM, our construction uses the same block cipher key and the last
block cipher call of EWCDM is replaced by its decryption function. Moreover,
DWCDM cannot exploit the full nonce space like EWCDM, otherwise its beyond
birthday security will be compromised as explained below.
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N EK ⊕ E−1
K T

HKh

M

Fig. 4.1. Decrypted Wegman-Carter with Davies-Meyer Construction.

4.1 Why DWCDM Cannot Accommodate Full n-bit Nonce

As mentioned above, for DWCDM we need to reduce the nonce space to 2n/3-
bits. If it uses the full nonce space then using a nonce respecting adversary A
who set the tags as nonce repeatedly, can mount a birthday bound forging attack
on DWCDM as follows:

Suppose, an adversary starts with query (N,M) and then makes a chain of
queries of the form (Ti−1,M) where (Ti−1,M) is the i-th query and Ti−1 is the
response of the previous (i − 1)-th query, until the first time collision occurs
(i.e. a responce matches with one of the previous responses). If the adversary
makes upto q ≈ 2n/2 queries, it gets a collision Ti = Tj with high probability.
Interestingly, if (j − i) 10 is even (which holds with probability 1/2), then

Tj = Ti iff (Ti + Ti+1 + · · ·+ Tj−1 = 0).

Now, this property can be easily used A to predict Ti = Tj if it finds Ti +Ti+1 +
· · ·+ Tj−1 = 0 for some i, j such that (j − i) is even.

However, if we restrict the nonce space to 2n/3 bits, then this attack doesn’t
work because now using the tag as a valid nonce is a probabilistic event. Prob-
ability that a tag is a valid nonce is 2−n/3. This restricts the adversary from
forming a chain as used in the attack. In fact, if adversary makes 22n/3 many
MAC queries then the expected number of tags whose last n/3 bits are all zeros
is 2n/3. Now, if adversary uses these 2n/3 tags as the nonces, then the expected
number of tags whose last n/3 bits are zeros is 1 and then adversary cannot
proceed further. This phenomenon effectively invalidates the above attack to
happen.

4.2 Nonce Respecting Security of DWCDM

In this section, we state that DWCDM is secure up to 22n/3 MAC queries and
2n verification queries against nonce respecting adversaries. Formally, the fol-
lowing result bounds the MAC advantage of DWCDM against nonce respecting
adversaries.
10 we assume j > i.
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Theorem 2. Let M,K and Kh be finite and non-empty sets. Let E : K ×
{0, 1}n → {0, 1}n be a block cipher and H : Kh ×M→ {0, 1}n be an ε1 regular,
ε2 AXU and ε3 3-way regular hash function. Then, the MAC advantage for any
(qm, qv, t) nonce respecting adversary against DWCDM[E,E−1,H] is given by,

AdvMAC
DWCDM[E,E−1,H](qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) +

2qm
22n/3

+ qmε1 +
2qmε2
2n/3

+ max{qvε1, 2qvε2, 2qvε3,
qm

22n/3
}+

(qm + qv)

2n
+

5q3
m

22n
,

where t′ = O(t+ (qm + qv)tH), tH be the time for computing the hash function.
By assuming ε1, ε2, ε3 ≈ 2−n and qm ≤ 22n/3, DWCDM is secured up to roughly
qm ≈ 22n/3 MAC queries and qv ≈ 2n verification queries.

4.3 Nonce Misuse Security of DWCDM

Similar to EWCDM [13], one can prove that DWCDM[E,E−1,H] is birthday bound
secure MAC against nonce misuse adversaries. In particular, DWCDM is secure
up to 2n/2 MAC queries and 2n verification queries against nonce misuse adver-
saries and that the security bound is essentially tight. More formally, we have
the following MAC security result of DWCDM in nonce misuse setting.

Theorem 3. Let M,K and Kh be finite and non-empty sets, E : K×{0, 1}n →
{0, 1}n be a block cipher and H : Kh×M→ {0, 1}n be an ε1 regular and ε2 AXU
hash function. Then, the MAC security of DWCDM[E,E−1,H] in nonce misuse
setting is given by

AdvMAC
DWCDM(qm, qv, t) ≤ AdvSPRP

E (qm+qv, t
′)+q2

mε2 +
4q2
m

2n
+qmε1 +

(qm + qv)

2n
,

where t′ = O(t+ q(qm + qv)tH), tH be the time for computing hash function.

By assuming ε1 ≈ 2−n and ε2 ≈ 2−n, DWCDM is secure up to roughly qm ≈ 2n/2

MAC queries and qv ≈ 2n verification queries. The proof of this theorem can be
found in the full version [18].

Tightness of the Bound

We show that the above bound of DWCDM is tight by demonstrating a forging
attack which shows thats roughly 2n/2 MAC queries are enough to break the
MAC security of DWCDM when an adversary is allowed to repeat nonce only
for once. The attack is as follows:

1. Adversary A makes q many MAC queries (Ni,Mi) with distinct nonces where
a collision in the response, i.e. Ti = Tj for some i < j occurs.

2. Make a MAC query (Nj ,Mi). Let Tq+1 be the response.
3. Forge with (Ni,Mj , Tq+1).
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As Π(Tq+1) = Π(Ni) ⊕ Ni ⊕ HKh
(Mj), (Ni,Mj , Tq+1) is a valid forgery. If we

make q = 2n/2 many queries, with very high probability, we will get a collision in
step 1, and mount the attack. Note that, the attack does not exploit any specific
properties of the hash function and a single time repitition of nonce makes the
construction vulnerable above birthday bound security.

4.4 nPolyMAC: An Instantiation of DWCDM

In this section, we propose nPolyMAC, an algebraic hash function based instan-
tiation of DWCDM, as defined in Eqn. (4), as the underlying hash function of
DWCDM construction.

PolyHash [25] is one of the popular examples of algebraic hash function. For
a hash key Kh and a for a fixed message M , we first apply an injective padding
such as 10∗ i.e., pad 1 followed by minimum number of zeros so that the total
number of bits in the padded message becomes mutiple of n. Let the padded
message be M∗ = M1‖M2‖ . . . ‖Ml where for each i, |Mi| = n. Then we define

PolyKh
(M) = Ml ·Kh ⊕Ml−1 ·K2

h ⊕ . . .⊕M1 ·Kl
h.

It has already been shown in Proposition 1 that Poly is a `/2n regular, AXU
and 3-way regular hash function. Following these results, we show in the follow-
ing that nPolyMAC[Poly,E,E−1] is secure up to 22n/3 MAC and 2n verification
queries against nonce respecting adversaries.

Theorem 4. Let K,Kh and M be three non-empty finite sets. Let E : K ×
{0, 1}n → {0, 1}n be a block cipher. Then, the MAC security of nPolyMAC in
nonce respeting setting is given by

AdvMAC
nPolyMAC(qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) +

11qm`

22n/3
+

3qv`

2n
,

where t′ = O(t+(qm+qv)`), ` be the maximum number of message blocks among
all q queries.

The proof of the theorem directly follows from Proposition 1 and Theorem 2
with the assumption qm ≤ 22n/3.

5 Proof of Theorem 2

In this section, we prove Theorem 2. We would like to note that we will often refer
to the construction DWCDM[E,E−1,H] as simply DWCDM where the underlying
primitives are assumed to be understood.

The first step of the proof is the standard switch from the computational setting
to the information theoretic one by replacing EK and E−1

K with an n-bit uniform
random permutation Π and Π−1 at the cost of AdvSPRP

E (qm+ qv, t
′) and denote

the construction as DWCDM∗[Π,Π−1,H]. Hence,

AdvMAC
DWCDM(qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) + AdvMAC

DWCDM∗(qm, qv, t)︸ ︷︷ ︸
δ∗

. (7)
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To upper bound δ∗, we consider that Rand be a perfect random oracle that on
input (N,M) returns T , sampled uniformly at random from {0, 1}n, whereas
Rej be an oracle with inputs (N,M, T ), returns always ⊥ (i.e. rejects). Now, due
to [13, 19] we write

δ∗:= max
D

Pr[DTG[Π,Π−1,HKh
],VF[Π,Π−1,HKh

] = 1]− Pr[DRand,Rej = 1],

where the maximum is taken over all non-trivial distinguishers D. This formula-
tion allows us to apply the H-Coefficient Technique [29], as we explain in more
detail below, to prove

δ∗ ≤ 2qm
22n/3

+ qmε1 +
2qmε2
2n/3

+ max{qvε1, 2qvε2, 2qvε3,
qm

22n/3
}+

(qm + qv)

2n
+

5q3
m

22n
.

(8)
H-Coefficient Technique. From now on, we fix a non-trivial distinguisher D
that interacts with either (1) the real oracle (TG[Π,Π−1,HKh

],VF[Π,Π−1,HKh
])

for a random permutation Π, its inverse Π−1 and a random hashing key Kh or
(2) the ideal oracle (Rand,Rej) making at most qm queries to its left (MAC)
oracle and at most qv queries to its right (verification) oracle, and outputting a
single bit. We let

Adv(D) = Pr[DTG[Π,Π−1,HKh
],VF[Π,Π−1,HKh

] = 1]− Pr[DRand,Rej = 1].

We assume that D is computationally unbounded and hence wlog deterministic
and that it never repeats a query. Let

τm := {(N1,M1, T1), (N2,M2, T2), . . . , (Nqm ,Mqm , Tqm)}

be the list of MAC queries of D and its corresponding responses. Note that, as
D is nonce respecting, there cannot be any repetition of triplet in τm. Let also

τv := {(N ′1,M ′1, T ′1, b′1), (N ′2,M
′
2, T

′
2, b
′
2), . . . , (N ′qv ,M

′
qv , T

′
qv , b

′
qv )}

be the list of verification queries of D and its corresponding responses, where
for all j, b′j ∈ {>,⊥} denotes the accept (b′j = >) or reject (b′j = ⊥). The
pair (τm, τv) constitutes the query transcript of the attack. For convenience, we
slightly modify the experiment where we reveal to the distinguisher (after it
made all its queries and obtains corresponding responses but before it output its
decision) the hashing key Kh, if we are in the real world, or a uniformly random
dummy key Kh if we are in the ideal world. All in all, the transcript of the attack
is τ = (τm, τv,Kh) where τm and τv is the tuple of MAC and verification queries
respectively. We will often simply name a tuple (N,M, T ) ∈ τm a MAC query,
and a tuple (N ′,M ′, T ′, b) ∈ τv a verification query.

A transcript τ is said to be an attainable (with respect to D) transcript if the
probability to realize this transcript in ideal world is non-zero. For an attainable
transcript τ = (τm, τv,Kh), any verification query (N ′i ,M

′
i , T
′
i , b
′
i) ∈ τv is such

that b′i = ⊥. We denote Θ to be the set of all attainable transcripts and Xre
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and Xid denotes the probability distribution of transcript τ induced by the real
world and ideal world respectively. In the following we state the main lemma of
the H-coefficient technique (see e.g. [11] for the proof).

Lemma 1. Let D be a fixed deterministic distinguisher and Θ = Θg tΘb (dis-
joint union) be some partition of the set of all attainable transcripts. Suppose
there exists εratio ≥ 0 such that for any τ ∈ Θg,

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Θb] ≤ εbad. Then, Adv(D) ≤
εratio + εbad.

The remaining of the proof of Theorem 2 is structured as follows: in section 5.1
we define the transcript graph; in section. 5.2 we define bad transcripts and
upper bound their probability in the ideal world; in section 5.3, we analyze good
transcripts and prove that they are almost as likely in the real and the ideal
world. Theorem 2 follows easily by combining Lemma 1, Eqn. (7) and (8) above,
and Lemmas 3 and 4 proven below.

5.1 Transcript Graph

Given a transcript τ = (τm, τv,Kh), we define the following two types of graphs:
(a) MAC Graph and (b) Verification Graph.

MAC Graph. Given a transcript τ = (τm, τv,Kh), we define the MAC graph,
denoted as Gm

τ as follows:

Gm
τ = ([qm], Em) where Em = {(i, j) ∈ [qm]× [qm] : Ni = Tj ∨Nj = Ti ∨Ti = Tj}.

For the sake of convenience, we denote the edge (i, j) as a dotted line when
Ti = Tj , else we denote it as a continuous line. Thus, the edge set of Gm

τ consists
of two different types of edges as depicted in Fig. 5.1 (a) and (b). Note that, for
a MAC graph we cannot have edges of type (c).

i j i j i j

(a) (b) (c)

Fig. 5.1. Different types of edges of MAC and Verification Graphs. (a) : Ni = Tj/Ti =
Nj , (b) : Ti = Tj , (c) : Ni = Nj .

Given such a MAC graph, we can partition the set of vertices in the following
way: if vertex i and j are connected by an edge then they belong to the same
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partition. Each partition is called a component of the graph and the number of
vertices in the component is called its size, which we denote as ζ.

Verification Graph. Given a MAC graph Gm
τ , we define Verification graph,

denoted as Gv
τ , by extending Gm

τ with adding one more vertex and at most
two edges for incorporating a verification query as follows: For convenience, we
reorder the set of MAC queries and verification queries so that all verification
queries appears after all MAC queries. Therefore, after such a reordering, j-
th verification query becomes (qm + j)-th verification query. Let (qm + j)-th
verification query be (N ′qm+j ,M

′
qm+j , T

′
qm+j , b

′
qm+j) ∈ τv and Gm

τ be the MAC
graph corresponding to τ = (τm, τv,Kh). Then we define Gv

τ = ([qm] ∪ {qm +
j}, Ev) where Ev is defined as follows:

Ev = Em ∪ {(qm+j, r), (qm+j, s) : r 6= s ∈ [qm] such that either of (1)-(4) holds}.


(1) N ′qm+j = Nr ∧ T ′qm+j = Ns

(2) N ′qm+j = Nr ∧ T ′qm+j = Ts

(3) N ′qm+j = Tr ∧ T ′qm+j = Ns

(4) N ′qm+j = Tr ∧ T ′qm+j = Ts

Definition 2 (Valid Cycle). A cycle C = (i1, i2, . . . , ip) of length p in the
MAC graph Gm

τ is said to be valid if the imposed equality pattern of (N,T ),
generated out of C, derives

0 =
⊕
i∈C

(
Ni ⊕ HKh

(Mi)

)

equation from the given system of equations.

Similar to the definition of valid cycle of MAC graph, one can define the valid
cycle for the Verification graph also. Note that, the definition of valid cycle in
MAC graph or verification graph actually resembles to the alternating cycle as
stated in section. 3.1. Now, we make an important observations about the MAC
queries (in ideal oracle) as follows:

Lemma 2. For two MAC queries i, j, we have

(a) if i < j, Pr[Tj = Ni] =
1

2n
; (b) if i > j, Pr[Tj = Ni] =

1

2n/3
.

Proof. Proof of the first result holds due to the randomness of Tj , i.e a randomly
sampled value Tj is equal to a fixed nonce value Ni holds with probability 2−n.
For the later one, condition i > j ensures that one can set the nonce value Ni to
a previously sampled tag value Tj . But this would be valid only when the last
n/3 bits of Ti are all zero, probability of which is 2−n/3. ut
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5.2 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcript in ideal
world. But, before that we first briefly justify the reason about our identified
bad events and there after we define the bad transcript accordingly.

Let τ = (τm, τv,Kh) be an attainable transcript. Then, for all MAC queries
(Ni,Mi, Ti) in real oracle, we have

i ∈ {1, . . . , qm},Π(Ni)⊕ Π(Ti) = Ni ⊕ HKh
(Mi).

Moreover, for all verification queries (N ′a,M
′
a, T

′
a, ba) in real oracle, we have

a ∈ {1, . . . , qv},Π(N ′a)⊕ Π(T ′a) 6= N ′a ⊕ HKh
(M ′a).

We refer to the system of equations as “MAC Equations” which involve only the
MAC queries. Similarly, we refer to the system of non-equations as “Verification
non-equations” which involve only the verification queries.

Therefore, from a given attainable transcript τ , one can write exactly qm
many affine equations and qv many non-equations. Now, as one needs to lower
bound the number of solutions of this system of equations and non-equations (for
analyzing the real interpolation probability), it essentially leads us to the model
of extended Mirror theory where the equivalence of two set up is established as
follows:{

φ′(ni) = Ni, φ
′(ti) = Ti, λi = Ni ⊕ HKh

(Mi), i ∈ {1, . . . , qm}
φ′(na) = N ′a, φ

′(ta) = T ′a, λ
′
a = N ′a ⊕ HKh

(M ′a), a ∈ {1, . . . , qv}

Recall that, (φ′,Λ′) where Λ′ = (λ1, . . . , λqm , λ
′
1, . . . , λ

′
qv ), was characterized to

be bad if either of the following holds:

(i) φ(ni) = φ(ti).

(ii) - φ(ni) = φ(nj) and φ(ti) = φ(tj)
- φ(ni) = φ(tj) and φ(ti) = φ(nj) for i 6= j ∈ [qm].

(iii) there is an alternating cycle.

(iv) for all j ∈ [qv] and i1, . . . , ic ∈ [qm], c ≥ 0, such that {i1, . . . , ic, qm + j} is
dependent system then λi1 ⊕ · · · ⊕ λic ⊕ λ′j = 0.

where φ = φ′|qm . Therefore, with the help of equivalence of two set up as estab-
lished above, we justify our identified bad events:

- (i)⇒ Ni = Ti

- (ii)⇒ existence of a valid cycle in the MAC graph Gm
τ .

- (iii)⇒ Ni⊕HKh
(Mi) = Nj⊕HKh

(Mj), Ti = Tj or Ni = Tj , Ni⊕HKh
(Mi) =

Nj ⊕ HKh
(Mj) such that i 6= j ∈ [qm].
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Moreover, recall that while considering the non-equation then we considered
that any of qv non-equations can be determined from a subset of qm many affine
equations with their correponding sum of λ constant becomes zero, which is to
say that

- the verification graph Gv
τ contains any valid cycle.

Summarizing above, we now define the bad transcript.

Definition 3. A transcript τ = (τm, τv,Kh) is said to be bad if the associated
MAC graph Gm

τ and the Verification graph Gv
τ satisfies the either of the following

properties:

- B0 : ∃i ∈ [qm] such that Ti = 0.
- B1 : Gm

τ has a component of size 3 or more.
- B2 : Gm

τ contains a valid cycle of any arbitrary length that also includes the
self loop (that implicitly takes care of the condition Ni = Ti).

- B3 : Gv
τ contains a valid cycle of any arbitrary length that involves the veri-

fication query.

Moreover, τ is also said to be bad if

- B4 : ∃i 6= j ∈ [qm] such that Ni ⊕ HKh
(Mi) = Nj ⊕ HKh

(Mj), Ti = Tj.
- B5: ∃i 6= j ∈ [qm] such that Ni = Tj , Ni ⊕ HKh

(Mi) = Nj ⊕ HKh
(Mj).

- B6 : ∃i ∈ [qm] such that HKh
(Mi) = Ni.

Condition B1 actually imposes a restriction on the block maximality as we
do not allow to have a larger component size for a good transcript. Condi-
tion B6 ensures that for a good transcript, all the elements of the tuple

(
N1 ⊕

HKh
(M1), . . . , Nqm ⊕HKh

(Mqm)
)

are non-zero. Note that, if we do not consider
the condition B6, then for a good attainable transcript the real interpolation
probability would become zero.

We denote Θb ⊆ Θ be the set of all attainable bad transcripts and the event B
denotes B := B0 ∨ B1 ∨ B2 ∨ B3 ∨ B4 ∨ B5 ∨ B6, We bound the probability of
event B in the following lemma, proof of which is deffered to section 5.4.

Lemma 3. Let Xid and Θb be defined as above. If qm ≤ 22n/3 and qv ≤ 2n,
then

Pr[Xid ∈ Θb] ≤ εbad =
2qm
22n/3

+
qm
2n

+qmε1+
2qmε2
2n/3

+max
{
qvε1, 2qvε2, 2qvε3,

qm
22n/3

}
.

5.3 Analysis of Good Transcripts

In this section, we show that for a good transcript τ , realizing τ is almost as
likely in the real world as in the ideal world. Formally, we prove the following
lemma.
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Lemma 4. Let τ = (τm, τv,Kh) be a good transcript. Then

pre(τ)

pid(τ)
:=

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ (1− εratio) =

(
1− 5q3

m

22n
− qv

2n

)
.

Proof. Consider the good transcript τ = (τm, τv,Kh). Since in the ideal world
the MAC oracle is perfectly random and the verification always rejects, one
simply has

pid := Pr[Xid = τ ] =
1

|Kh|
· 1

2nqm
. (9)

We must now lower bound the probability of getting τ in real world. We say
that a permutation Π is compatible with τm if ∀i ∈ [qm], (i) happens and Π is
compatible with τv if ∀a ∈ [qv], (ii) happens

(i) Π(Ni)⊕ Π(Ti) = Ni ⊕ HKh
(Mi)︸ ︷︷ ︸

λi

, (ii) Π(N ′a)⊕ Π(T ′a) 6= N ′a ⊕ HKh
(M ′a)︸ ︷︷ ︸

λ′a

.

We simply say that Π is compatible with τ if it is compatible with τm and τv. We
denote Comp(τ) the set of permutations that are compatible with τ . Therefore,

pre(τ) =
1

|Kh|
· Pr[Π←$ Perm : Π ∈ Comp(τ)]

=
1

|Kh|
· Pr[Π(Ni)⊕ Π(Ti) = λi,∀i ∈ [qm],Π(N ′a)⊕ Π(T ′a) 6= λ′a,∀a ∈ [qv]]︸ ︷︷ ︸

Pmv

.

Lower Bounding Pmv: Observe that lower bounding Pmv implies lower bound-
ing the probability of the number of solutions to the following system of qm many
equations of the form Π(Ni)⊕Π(Ti) = λi and qv many non-equations of the form
Π(N ′a)⊕ Π(T ′a) 6= λ′a.
Let us assume the distinct number of random variables in the above set of
equations is α. As the transcript τ is good, we have the following properties:

- (i) all λi values are non-zero (otherwise condition B6 is satisfied).
- (ii) (φ′,Λ′) is good.
- (iii) Finally, block maximality ξmax is 3.

Above properties enable us directly to apply Theorem 1 to lower bound Pmv as
follows:

Pmv ≥
1

2nqm

(
1− 5q3

m

22n
− qv

2n

)
. (10)

Therefore, from Eqn. (10), we have

pre(τ) ≥ 1

|Kh|
· 1

2nqm
·
(

1− 5q3
m

22n
− qv

2n

)
. (11)

Finally, taking the ratio of Eqn. (11) to Eqn. (9), the result follows. ut
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5.4 Proof of Lemma 3

In this section, we prove Lemma 3. A more detailed version of this proof can be
found in the full version of this paper [18]. In order to bound Pr[Xid ∈ Θb], it is
enough to bound Pr[B]. Therefore, we write

Pr[B] ≤
∑

v∈{0,1,4,5,6}

Pr[Bv] + Pr[B2 | B1] + Pr[B3 | B0 ∧ B1 ∧ B2]. (12)

In the following, we bound the probabilities of all the bad events individually.

Bounding B0. As the responses are sampled uniformly and independently to
all other sampled random variables, Pr[B0] ≤ qm

2n .

Bounding B1. Event B1 occurs if there exists a component of size at least 3
in Gm

τ , i.e. there exist a chain of two edges. Depending on whether the edges are
dotted (Dot) or continuous (Con), there are three possible choices of components:
(Dot-Dot), (Dot-Con) and (Con-Con), as depicted in Fig. 5.2.

i j k i j k i j k

(a) (b) (c)

Fig. 5.2. Different components of size of three. (a)Ti = Tj = Tk, (b)Ti = Tj = Nk or
Ti = Tj , Nj = Tk and (c)Ni = Tj , Nj = Tk or Ti = Nj , Tj = Nk.

Using Lemma 2 and the fact that each Ti is sampled uniformly at random from
{0, 1}n, one can show that having any such component has a probability of qm

22n/3

and therefore, we have Pr[B1] ≤ qm
22n/3 .

Bounding B2 |B1. Here we bound the existence of a cycle of length one (self
loop) and two (parallel edges), as depicted in Fig. 5.3. (a) and (b). Again using
Lemma 2 and the fact that each Ti is sampled uniformly at random from {0, 1}n,
one can show that the probability of having a self loop or parallel edges can be
bounded by qm

22n/3 and therefore Pr[B2 | B1] ≤ qm
22n/3 .

i

(a)

i j

(b)

a a

(c)

a i

(d.1)

a i

(d.2)

Fig. 5.3. (a) Self Loop inGm
τ : whenNi = Ti, (b) Parallel Edges inGm

τ :Ni = Tj , Nj = Ti,
(c) Self Loop in Gv

τ : when N ′a = Ta, (d) Parallel Edges in Gv
τ : (d.1) N ′a = Ni, T

′
a = Ti,

(d.2) N ′a = Ti, T
′
a = Ni. Node with concentric circle denotes the verification query

node.
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Bounding B3 | B0 ∧ B1 ∧ B2. Recall that event B3 holds if there exists any
cycle in Gv

τ and the sum of the corresponding N ⊕ HKh
(M) is zero. But, as we

conditioned on B0 ∧ B1 ∧ B2, it is enough to bound the existence of a cycle of
length one (self loop), two (parallel edges) and three (closed triangle).

Self Loop. As the hash function is ε1 regular, the probability of having a self
loop can be bounded by qvε1.

Parallel Edges. A parallel edge or cycle of length 2 in Gv
τ implies that the

edges would be (i) one dotted and one dashed (Dot-Dash) or (ii) both continuous
(Con-Con), as depicted in Fig. 5.3. (d.1) and (d.2). Using Lemma 2 and the fact
that the hash function is ε2 AXU, one can show that the probability of having
parallel edges can be bounded by 2qvε2.

Closed Triangle. A closed triangle or cycle of length 3 in Gv
τ essentially

implies that the triangle must have been form having edges of the form (Con-
Dash-Dot), (Con-Con-Con) and (Dot-Dash-Con), as depicted in Fig. 5.4. Again

i

j

a

i

j

a

i

j

a

Fig. 5.4. Cycles of length 3 including the verification query which is denoted by the
concentric circle node.

using Lemma 2 and the fact that the hash function is ε3 3-way-regular, one
can show that the probability of having edges of the above form in Gv

τ is
max{2qvε3, qm

22n/3 }. Therefore, combining everything together, Pr[B3 | B0∧B1∧
B2] ≤ max{2qvε3, 2qvε2, qvε1, qm

22n/3 }.

Bounding B4: Since, in the ideal oracle the hash key is sampled independent

to all previously sampled MAC responses Ti, we have Pr[B4] ≤ q2m.ε2
2n .

Bounding B5: It is easy to see that for fixed i and j, Ni ⊕ HKh
(Mi) = Nj ⊕

HKh
(Mj) holds with probability ε2. Now summing over all possible choices of i

and j, using Lemma 2 and assuming qm ≤ 22n/3, we obtain Pr[B5] ≤ qmε2
2n/3 .

Bounding B6: For any fixed i the event Ni = HKh
(Mi) occurs with probability

ε1, due to the regular property of the hash function. Summing over all choices
of i, we have Pr[B6] ≤ qmε1.

Finally, by assuming qm ≤ 22n/3, Lemma 3 follows from all the above bounds.
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6 1K-DWCDM : A Single Keyed DWCDM

Recall that, our proposed construction DWCDM is instantiated with a hash
function and a block cipher where the hash key is independent to block cipher
keys, leading to have a two-keyed (counting hash key separately from block cipher
keys) nonce based MAC. In this section, we transform the DWCDM construction
to a purely single keyed construction by setting the underlying hash key Kh to
the encryption of 1 (i.e. Kh := EK(1)) and argue that the modified construction
(that we call as 1K-DWCDM) is secure.

Now, we state and prove that 1K-DWCDM is secure up to 22n/3 MAC queries
and 2n verification queries against all nonce respecting adversaries. We mainly
focus on the nonce respecting security of the construction, as its nonce misuse
security is very similar to that of DWCDM and hence we skip it.

Theorem 5. Let M and K be finite and non-empty sets. Let E : K×{0, 1}n →
{0, 1}n be a block cipher and H : EK(1)×M→ {0, 1}n be an ε1 regular, ε2 AXU
and ε3 3-way regular hash function. Then, the MAC advantage of 1K-DWCDM
is given by:

AdvMAC
1K-DWCDM[E,E−1,H](qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) +

3qm
22n/3

+
q2
mε2
2n

+
qv

2n − 1

+ max{qvε1, 2qvε2, 2qvε3,
qm

22n/3
}+ qvε1 +

qm
2n

+
5q3
m

22n
,

where t′ = O(t+(qm+qv)tH), tH being the time for computing hash function. As-
suming ε1, ε2 and ε3 ≈ 2−n and qm ≤ 22n/3, 1K-DWCDM[E,E−1,H] construction
is secured up to roughly 22n/3 MAC and 2n verification queries.

Proof. The proof approach is similar to the one used in Theorem 2. Using stan-
dard argument, we can replace EK and E−1

K with an n-bit uniform random permu-
tation Π and its inverse Π−1, denote the construction as 1K-DWCDM∗[Π,E−1,H]
and bound AdvMAC

1K-DWCDM∗[Π,Π−1,H](A):

For this, we first define the ideal oracle which works as follows: for each MAC
query (N,M), it samples the response T from {0, 1}n uniformly at random and
returns it to the distinguisher and for each verification query it returns ⊥. As
before, we reveal the hashing key Kh to the distinguisher after it made all it’s
queries and before the final decision. Note that, the hash key is EK(1) in the real
world and a uniformly random dummy key Kh, sampled uniformly at random
from {0, 1}n in the ideal world. Let the transcript of the attack is τ = (τm, τv,Kh)
where τm and τv is the tuple of MAC and verification queries respectively.

Bad Transcript. The definition of bad transcript is similar to that of defined
in section 5.2 and therefore, we have the following result:

Let Xid and Θb be defined as above. If qm ≤ 22n/3 and qv ≤ 2n, then

Pr[Xid ∈ Θb] ≤
3qm
22n/3

+
q2
mε2
2n

+max
{
qvε1, 2qvε2, 2qvε3,

qm
22n/3

}
+qvε1+

qm
2n
. (13)
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Analysis of Good Transcripts. Similar to Lemma 4, we prove that for any
good transcript τ , realizing τ is almost as likely as real and in the ideal world.
As the transcript τ is good, each sampled Ti value is non-zero. Since, in the ideal
world the MAC oracle is perfectly random and the verification always rejects,
one simply has

pid := Pr[Xid = τ ] =
1

2n
· 1

(2n − 1)qm
. (14)

Now, for the real interpolation probability, we have

Pr[Π(Ni)⊕ Π(Ti) = λi,∀i ∈ [qm] and Π(N ′a)⊕ Π(T ′a) 6= λ′a,∀a ∈ [qv]].

Additionally, if the adversary makes any verification query (N ′a,M
′
a, T

′
a) with

tag T ′a set to 1, then we need to ensure that

Π(N ′a) 6= Π(1)⊕N ′a ⊕ HΠ(1)(M
′
a)︸ ︷︷ ︸

λ′′a

,∀a ∈ [qv]]. (15)

Since, the hash key, i.e., Π(1), is revealed to the adversary after the interaction
is over, the right hand side of the non-Eqn. (15) becomes a constant, which
makes it a uni-variate affine non-equation and then it is satisfied by condition
(c) of Theorem 1. Therefore, we have

pre(τ) =
1

2n
· Pr[Π(Ni)⊕ Π(Ti) = λi,∀i ∈ [qm],Π(N ′a)⊕ Π(T ′a) 6= λ′a,

Π(N ′a) 6= λ′′a,∀a ∈ [qv]]

≥ 1

2n
· 1

(2n − 1)qm
·
(

1− 5q3
m

22n
− qv

2n − 1

)
. (16)

The last inequality follows using similar to the proof of Lemma 4 and Eqn. (10).
Finally, from Eqn. (14) and Eqn. (16), we compute the ratio as follows:

pre(τ)

pid(τ)
≥
(

1− 5q3
m

22n
− qv

2n − 1

)
. (17)

Finally, Theorem 5 follows from Eqn. (13) and Eqn. (17). ut

7 Towards Higher Security of DWCDM

In this section, we briefly describe how to boost the security of DWCDM upto
(k−1)/k-bit for a general k. The underlying construction remains as it is, however
the nonce space is increased to (k − 1)n/k-bits i.e., DWCDM k[E,H](N,M) :=
E−1
K (EK(N)⊕N ⊕ HKh

(M)) but here we consider N = N∗‖0n/k where N∗ is a
(k − 1)n/k bit nonce. For this, we first state the following conjecture on Mirror
theory, which is a generalized version of extended Mirror theorem as introduced
in section 3.2.
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Conjecture 1 ( Extended Mirror Theorem for ξmax = k). Let (E=∪E 6=, φ′,Λ′) be
a system of q many affine equations and v many affine non-equations associated
with index mapping function φ′ over GF(2n) which are of the form Pφ(ni) ⊕
Pφ(ti) = λi for i ∈ [q] and Pφ(nj)⊕Pφ(tj) 6= λ′j(6= 0) for j ∈ [q+ 1, q+ v] over the
set of α many unknown variables P = {P1, . . . , Pα} such that Pa may be equals
to some Pφ(ni) or Pφ(bj), where a ∈ {φ(nj), φ(tj)}, j ∈ [q, q + v]. Now, if

- (i) (φ′,Λ′) is good and
- (ii) ξmax = k

then the number of solutions for P, denoted by hβ (where β = kq
k−1 ) such that

Pi 6= Pj for all distinct i, j ∈ {1, . . . , α} is

hβ ≥
(2n)β
2nq

(
1−O

(
qk

2(k−1)n
+

v

2n

))
. (18)

Assuming this conjecture holds, we have the following result on the MAC ad-
vantage of DWCDM k:

Theorem 6. Let E be a block cipher and H be an ε1 regular, ε2 AXU and εj j-
way regular hash function, 11 for all 3 ≤ j ≤ k (e.g., PolyHash). Then, the MAC
advantage for any (qm, qv, t) nonce-respecting adversary against DWCDM k is
given by,

AdvMAC
DWCDM k(qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) +O(qkm/2

n(k−1) + qv.ε),

where qv = max{ε1, ε2, εj} and t′ = O(t+ (qm + qv)tH).

The proof will be similar to the proof of Theorem 2. We first define the transcript,
associated MAC and the verification graph as before.

Now, we call a transcript τ = (τm, τv,Kh) to be bad if the associated MAC
graph Gm

τ and the Verification graph Gv
τ satisfies the either of the following

properties:

- B1′ : Gm
τ has a component of size k or more.

- B2′ : Gm
τ contains a valid cycle of length less than k.

- B3′ : Gv
τ contains a valid cycle of length less than or equals to k that involves

the verification query.

Moreover, τ is also said to be bad if it satisfies B0,B4,B5,B6 (as defined in
Definition 3).
Here we will mainly consider bounding B1’, B2’ and B3’, as the remaining ones
are already done. Here we provide a sketch for bounding each of this event:

Bounding B1’. Event B1’ occurs if there exists a component of size at least k
in Gm

τ . This essentially implies there is a chain of (k− 1) edges. Let there are c1
number of edges are of the form Ti = Nj with i < j. Here we claim that

Pr[B1’] ≤ qm.
(
qm
2n

)k−c1
.

(
1

2k/n

)c1
.

11 A Hash function H is said to be a ε j-way regular hash function if for all distinct
(X1, . . . , Xj) and for any non-zero Y , Pr[H(X1)⊕ . . .⊕ H(Xj) = Y ] ≤ ε.
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As k ≥ 4, the above bound is O(qkm/2
n(k−1)).

Bounding B2’. Event B2’ occurs if there exists a cycle of size less than k in Gm
τ .

Let us bound a cycle of length c < (k − 1). Again, assume there are c1 number
of edges of the form Ti = Nj with i < j. Using similar argument as above,

Pr[B2’] ≤
(
qm
2n

)c−c1
.

(
1

2k/n

)c1
.

It is easy to see that for any c, the above bound is O(qm/2
n).

Bounding B3’. Event B3’ occurs if there exists a cycle of size less than or equals
to k in Gv

τ . Extending similar arguments used in lemma 3 to bound the event
B3, one can show that if H is ε j-way regular for all j ≤ k then

Pr[B3’] ≈ O
(
qv.ε.q

c
m

2nc

)
, c ≥ 0.

Combining everything together, we have

Pr[B] ≈ O(qkm/2
n(k−1) + qv.ε).

Next, we fix a good transcript τ . Now, to obtain the lower bound of the prob-
ability of getting τ in real world, we need a lower bound on the probability of
the number of solutions to a system of qm many equations and qv many non-
equations. Again, we can do that using an extended Mirror theory result with
maximal block size ξmax = k. From Conjecture 1, we have

pre(τ) ≥ 1

|Kh|
· 1

2nqm
·
(

1−O
(

qkm
2(k−1)n

+
qv
2n

))
. (19)

The theorem follows by applying Patarin’s H-Coefficient Technique. ut

Remark 2. We would like to clarify that increasing the nonce space does not
have any relation with the increase in security. We have restricted the nonce
space of DWCDM to 2n/3-bit (note that this is minimum as we must allow
22n/3 many MAC queries with distinct nonces) purely because of the simplicity
of the extended mirror theory analysis. One can of course increase the nonce
space to (k − 1)n/k-bit for any k ≤ n, but that increases the block maximality
(ξmax) to k and hence the analysis of the extended mirror theory would become
tedious and involved.

8 Conclusion

In this paper we have proposed DWCDM, a single keyed nonce based MAC,
which is structurally identical to EWCDM except that the outer encryption call
is replaced by the decryption call and same key is used for both the block cipher
calls. Using an extended mirror theory results, we have shown that DWCDM is
secure roughly up to 2n/3-bit against nonce-respecting adversaries and n/2-bit
against nonce-misuse adversaries. We have also provided an intuition on how to
boost the nonce-respecting security of DWCDM upto (k− 1)/k-bit for a general
k.
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