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Abstract. We study Authenticated Encryption with Associated Data
(AEAD) from the viewpoint of composition in arbitrary (single-stage)
environments. We use the indifferentiability framework to formalize the
intuition that a “good” AEAD scheme should have random ciphertexts
subject to decryptability. Within this framework, we can then apply the
indifferentiability composition theorem to show that such schemes offer
extra safeguards wherever the relevant security properties are not known,
or cannot be predicted in advance, as in general-purpose crypto libraries
and standards.

We show, on the negative side, that generic composition (in many of its
configurations) and well-known classical and recent schemes fail to achieve
indifferentiability. On the positive side, we give a provably indifferentiable
Feistel-based construction, which reduces the round complexity from at
least 6, needed for blockciphers, to only 3 for encryption. This result is not
too far off the theoretical optimum as we give a lower bound that rules
out the indifferentiability of any construction with less than 2 rounds.

Keywords. Authenticated encryption, indifferentiability, composition,
Feistel, lower bound, CAESAR.

1 Introduction

Authenticated Encryption with Associated Data (AEAD) [54,10] is a funda-
mental building block in cryptographic protocols, notably those enabling secure
communication over untrusted networks. The syntax, security, and constructions
of AEAD have been studied in numerous works. Recent, ongoing standardization
processes, such as the CAESAR competition [14] and TLS 1.3, have revived
interest in this direction. Security notions such as misuse-resilience [52,38,43,56],
robustness [6,2,41], multi-user security [19], reforgeability [36], and unverified
plaintext release [5], as well as syntactic variants such as online operation [43]
and variable stretch [41,57] have been studied in recent works.

Building on these developments, and using the indifferentiability framework
of Maurer, Renner, and Holenstein [48], we propose new definitions that bring a
new perspective to the design of AEAD schemes. In place of focusing on specific
property-based definitions, we formalize when an AEAD behaves like a random
one. A central property of indifferentiable schemes is that they offer security with
respect to a wide class of games. This class includes all the games above plus



many others, including new unforeseen ones. Indifferentiability has been used to
study the security of hash functions [21,15] and blockciphers [24,44,4,33], where
constructions have been shown to behave like random oracles or ideal ciphers
respectively. We investigate this question for authenticated encryption and ask if,
and how efficiently, can indifferentiable AEAD schemes be built.
Our main contributions are as follows.

Definitions: We define ideal authenticated-encryption as one that is indiffer-
entiable from a random keyed injection. This definition gives rise to a new
model that is intermediate between the random-oracle and the ideal-cipher
models. Accordingly, the random-injection model offers new efficiency and
security trade-offs when compared to the ideal-cipher model.

Constructions: We obtain both positive and negative results for indifferentiable
AEAD schemes. For most well-known constructions our results are negative.
However, our main positive result is a Feistel construction that reduces the
number of rounds from eight for ideal ciphers to only three for ideal keyed
injections. This result improves the concrete parameters involved as well. We
also give a transformation from offline to online ideal AEADs.

Lower bounds: Three rounds of Feistel are necessary to build injections. How-
ever, we prove a stronger result that lower bounds the number of primitive
queries as a function of message blocks in any construction. This, in turn,
shows that the rate of our construction is not too far off the optimal solution.
For this we combine two lower bound techniques, one for collision resistance
and the other for pseudorandomness, which may be of independent interest.

1.1 Background on Indifferentiability

A common paradigm in the design of symmetric schemes is to start from some
simple primitive, such as a public permutation or a compression function, and
through some “mode of operation” build a more complex scheme, such as a
blockcipher or a variable-length hash function. The provable-security of such
constructions has been analyzed mainly through two approaches. One is to
formulate specific game-based properties, and then show that the construction
satisfies them if its underlying primitives are secure. This methodology has
been successfully applied to AEAD schemes. (See works cited in the opening
paragraph of the paper.) Following this approach, higher-level protocols need to
choose from a catalog of explicit properties offered by various AEAD schemes.
For example, one would use an MRAE scheme whenever nonce-reuse cannot be
excluded [52,38,43,56] or a key-dependent message (KDM) secure one when the
scheme is required to securely encrypt its own keys [7,18].

The seminal work of Maurer, Renner, and Holenstein (MRH) on the indifferen-
tiability of random systems [48] provides an alternative path to study the security
of symmetric schemes. In this framework, a public primitive f is available. The
goal is to build another primitive F from f via a construction Cf . Indifferentia-
bility formalizes a set of necessary and sufficient conditions for the construction
Cf to securely replace its ideal counterpart F in a wide range of environments:
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there exists a simulator S such that the systems (Cf , f) and (F, SF ) are indistin-
guishable, even when the distinguisher has access to f . Indeed, the composition
theorem proved by MRH states that, if Cf is indifferentiable from F , then Cf

can securely replace F in arbitrary (single-stage) contexts. Thus, proving that
a construction C is indifferentiable from an ideal object F amounts to proving
that Cf retains essentially all security properties implicit in F . This approach
has been successfully applied to the analysis of many symmetric cryptographic
constructions in various ideal-primitive models; see, e.g., [21,44,33,26]. Our work
is motivated by this composition property.

1.2 Motivation

Maurer, Renner, and Holenstein proposed indifferentiability as an alternative to
the Universal Composability (UC) framework [20] for compositional reasoning
in idealized models of computation such as the random-oracle (RO) and the
ideal-cipher (IC) models. Indifferentiability permits finding constructions that
can safely replace ideal primitives (e.g., the random oracle) in various schemes.

The UC framework provides another general composition theorem, which has
motivated the study of many UC-secure cryptographic protocols. Küsters and
Tuengerthal [47] considered UC-secure symmetric encryption and defined an ideal
functionality on par with standard notions of symmetric encryption security. This,
however, resulted in an intricate functionality definition that adds complexity
to the analysis of higher-level protocols. By adopting indifferentiability for the
study of AEADs, we follow an approach that has been successfully applied to the
study of other symmetric primitives. As random oracles formalize the intuition
that well-designed hash functions have random-looking outputs, ideal encryption
formalizes random-looking ciphertexts subject to decryptability. This results in a
simple and easy-to-use definition. We discuss the benefits of this approach next
and give limitations and open problems at the end of the section.

Once a primitive is standardized for general use, it is hard to predict in which
environments it will be deployed, and which security properties may be intuitively
expected from it. For example, consider a setting where a protocol designer follows
the intuition that an AEAD scheme “essentially behaves randomly” and, while not
knowing that AE security does not cover key-dependent message attacks [7,40,18]
(KDM), uses a standardized general-purpose scheme for disk encryption. In
other settings, a designer might create correlations among keys (as in 3GPP)
expecting the underlying scheme to offer security against related-key attacks [8]
(RKAs). Certain protocols rely on AE schemes that need to be committing against
malicious adversaries, which can choose all inputs and thus also the keys. This has
lead to the formalizations of committing [39] and key-robust [34] authenticated
encryption. When there is leakage, parts of the key and/or randomness might
be revealed [9]. All of these lie beyond standard notions of AE security, so the
question is how should one deal with such a multitude of security properties.

One approach would be to formulate a new “super” notion that encompasses
all features of the models above. This is clearly not practical. The model (and
analyses using it) will be error-prone and, moreover, properties that have not
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yet been formalized will not be accounted for. Instead, and as mentioned above,
we consider the following approach: a good AEAD scheme should behave like a
random oracle, except that its ciphertexts are invertible. We formulate this in the
language of indifferentiability, which results in a simple, unified, and easy to use
definition. In indifferentiability, all inputs are under the control of the adversary.
This means that the security guarantees offered extend to notions that allow
for tampering with keys or creation of dependencies among the inputs. Once
indifferentiability is proved, security with respect to all these games, combinations
thereof and new unforeseen ones, jointly follows from the composition theorem.

Therefore one use-case for indifferentiable schemes would be to provision
additional safeguards against primitive misuse in various deployment scenarios,
such as general-purpose crypto libraries or standards, where the relevant security
properties for target applications are complex or not known. We discussed some
of these in the paragraph above. Protocol designers can rely on the intuition
given by an ideal view of AEADs when integrating schemes into higher-level
protocols, keeping game-based formulations implicit. Other applications include
symbolic protocol analysis, where such idealizations are intrinsic [49] and security
models where proof techniques such as programmability may be required [59].

A concrete example. In Facebook’s message-franking protocol, an adversary
attempts to compute a ciphertext that it can later open in two ways by revealing
different keys, messages and header information. (Facebook sees one (harmless)
message, whereas the receiver gets another (possibly abusive) message.) Grubbs,
Lu, and Ristenpart [39] formalize the security of such protocols and show that a
standard AEAD can be used here, provided that it satisfies an additional security
property called r-BIND [39, Fig. 17 (left)].

One important feature of this definition is that it relies on a single-stage
game in the sense of [53]. The single-stage property immediately implies that any
indifferentiable scheme is r-BIND if the ideal encryption scheme itself satisfies the
r-BIND property. In contrast, not every AE-secure scheme is r-BIND secure [39].
Interestingly, it is easy to see that the ideal encryption scheme (a keyed random
injection) indeed satisfies r-BIND and this is what, intuitively, the protocol
designers seem to have assumed: that ciphertexts look random and thus collisions
are hard to find, even if keys are adversarially chosen.

Indifferentiable AEADs therefore allow designers to rely on the above (ar-
guably pragmatic) random-behavior intuition much in the same way as they do
when using hash functions as random oracles. As the practicality of random ora-
cles stems from their random output behavior (beyond PRF security or collision
resistance) indifferentiable AEAD offers similar benefits: instead of focusing on a
specific game-based property, it considers a fairly wide class of games for which
the random behavior provably holds.

Thus an indifferentiable AE can be used as a safety net to ensure any existing
or future single-stage assumptions one may later need is satisfied (with the caveat
of possibly weaker bounds). However, we note that for RO indifferentiability
there is the additional motivation that a fair number of security proofs involving
hash functions rely on modeling the hash as RO. Our work also unlocks the
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possibility to use the full power of random injections in a similar way (see [46]
and footnote 5).

To summarize, in the context of Facebook’s protocol, if an indifferentiable
scheme was used from the start, it would have automatically met the required
binding property. The same holds for RKA security (in 3GPP), KDM security
(in disk encryption), and other single-stage AEAD applications.

1.3 Overview of technical contributions

Definitions. The MRH framework has been formulated with respect to a
general class of random systems. We make this definition explicit for AEAD
schemes by formulating an adequate ideal reference object. This object has been
gradually emerging through the notion of a pseudorandom injection (PRI) in a
number of works [56,41,43], and has been used to study the security of offline
and online AEADs [41,43]. We lift these notions to the indifferentiability setting
by introducing offline and online random injections, which may be also keyed
or tweaked. As a result, we obtain a new idealized model of computation: the
ideal-encryption (or ideal-injection) model, which is intermediate between the RO
and IC models. Along the way, we give an extension of the composition theorem
to include game-based properties with multiple adversaries.

Analysis of known schemes. We examine generic and specific constructions
of AEADs that appear in the literature. Since indifferentiability implies security
in the presence of nonce-misuse (MRAE) as well as its recent strengthening to
variable ciphertext stretch, RAE security,4 we rule out the indifferentiability
of a number of (classical) schemes that do not achieve these levels of security.
This includes OCB [55], CCM, GCM, and EAX [13], and all but two of the
third-round CAESAR candidates [14]. The remaining two candidates, AEZ [42]
and DEOXYS-II [45], are also ruled out, but only using specific indifferentiability
attacks. We discuss our conclusions for CAESAR submissions in [1, Section 4.2].

We then turn our attention to generic composition [10,51]. We study the
well-known Encrypt-then-MAC and MAC-then-Encrypt constructions via the
composition patterns of Namprempre, Rogaway and Shrimpton [51]. These
include Synthetic Initialization Vector (SIV) [56] and EAX [13]. To simplify and
generalize the analysis, we start by presenting a template for generic composition,
consisting of a preprocessing and a post-processing phase, that encompasses a
number of schemes that we have found in the literature. We show that if there
is an insufficient flow of information in a scheme—a notion that we formalize—
differentiating attacks exist. Our attacks render all of these constructions except
A8 and key reusing variants of A2 and A6 as indifferentiability candidates.

In short, contrarily to our expectations based on known results for hash
functions and permutations, we could not find a well-known AEAD construction

4 The notion of RAE security that we use deviates from the original notion proposed
in [41] by not considering benevolous leakage of information during decryption. This
is because all indifferentiable constructions must guarantee that, like the ideal object,
decryption gives the stronger guarantee that ⊥ is returned for all invalid ciphertexts.
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that meets the stronger notion of indifferentiability. We stress that these findings
do not contradict existing security claims. However, an indifferentiability attack
can point to environments in which the scheme will not offer the expected levels
of security. For example, some of our differentiators stem from the fact that
ciphertexts do not depend on all keying material, giving way to related-key
attacks. In others, the attacks target intermediate computation values and are
reminiscent of padding oracles. For these reasons, and even though our results
do not single out any of the CAESAR candidates as being better or worse than
the others, we pose that our results are aligned with the fundamental goal of
CAESAR and prior competitions such as AES and SHA-3, to “boost to the
cryptographic research community’s understanding” of the primitive [14].

Building injections. We revisit the classical Encode-then-Encipher (EtE) trans-
form [11]. Given expansion τ , which indicates the required level of authenticity,
EtE pads the input message with 0τ and enciphers it with a variable-input-length
(VIL) blockcipher. Decryption checks the consistency of the padding after recov-
ering the message. We show that EtE is indifferentiable from a random injection
in the VIL ideal-cipher model for any (possibly small) value of τ .

The ideal cipher underlying EtE can be instantiated via the Feistel construc-
tion [23] in the random-oracle model or via the confusion-diffusion construc-
tion [33] in the random-permutation model. In a series of works, the number
of rounds needed for indifferentiability of Feistel has been gradually reduced
from 14 [44,23] to 10 [27,25] and recently to 8 [28]. Due to the existence of
differentiators [24,23], the number of rounds must be at least 6. For confusion-
diffusion, 7 rounds are needed for good security bounds [33]. This renders the
above approach to construct random injections somewhat suboptimal in terms of
queries per message block to their underlying ideal primitives (i.e., their rate).

Our main positive result is the indifferentiability of three-round Feistel for
large (but variable) expansion values τ . Three rounds are also necessary, as we
give a differentiator against the 2-round Feistel network for any τ . In light of
the above results, and state-of-the-art 2.5-round constructions such as AEZ, this
is a surprisingly small price to pay to achieve indifferentiability. Our results,
therefore, support inclusion of redundancy for achieving authenticity (as opposed
to generic composition). Furthermore, when using a blockcipher for encryption
with redundancy, a significantly reduced number of rounds may suffice.

The simulator. Our main construction is an unbalanced 3-round Feistel net-
work Φ3 with independent round functions where an input X1 is encoded with
redundancy as (0τ , X1) (see Figure 1). The main task of our indifferentiabil-
ity simulator is to consistently respond to round-function oracle queries that
correspond to those that the construction makes for some (possibly unknown)
input X1. We show that with overwhelming probability the simulator can detect
when consistency with the construction must be enforced; the remaining isolated
queries can be simulated using random and independent values.

Take, for example, a differentiator that computes (X ′3, X
′
4) := Φ3(X1) for

some random X1, then computes the corresponding round-function outputs
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X2 := F1(X1), Y2 := F2(X2), Y3 := F3(X1⊕Y2), and finally checks if (X ′3, X
′
4) =

(X1 ⊕ Y2, X2 ⊕ Y3). Note that these queries need not arrive in this particular
order. Indeed, querying F1(X1) first gives the simulator an advantage as it can
preemptively complete this chain of queries and use its ideal injection to give
consistent responses. A better (and essentially the only) alternative for the
differentiator would be to check the consistency of outputs by going through the
construction in the backward direction. We show, however, that whatever query
strategy is adopted by the differentiator, the simulator can take output values
fixed by the ideal injection and work out answers for the round function oracles
that are consistent with the construction in the real world.

X1

0⌧

X3 := X1 � F2(X2)X2 := F1(X1) X4 := X2 � F3(X3)

F1 F2 F3

Fig. 1. Injection from 3-round Feistel.

A crucial part of this analysis
hinges on the fact that the output of
the first round function is directly fed
as input to the second round function
as a consequence of fixing parts of
the input to 0τ .5 As corollaries of our
results we obtain efficient and (simul-
taneously) RKA and KDM-secure of-
fline (and, as we shall see, online)
AEAD schemes in the random-permutation model under natural, yet practically
relevant restrictions on these security models. For example, if the ideal AEAD
AE is secure under encryptions of φAE (K) for some oracle machine φAE , then so
is an indifferentiable construction Cπ in presence of encryptions of φC

π

(K), the
restriction being that φ does not directly access π.

Bounds. Security bounds, including simulator query complexity, are important
considerations for practice. Our bound for the Encode-then-Encipher construction
is essentially tight. Our simulator for the 3-round Feistel construction has a
quadratic query complexity and overall bounds are birthday-type. Improving
these bounds, or proving lower bounds for them [32], remain open for subsequent
work.

Our construction of an ideal encryption scheme from a non-keyed ideal
injection introduces an additional multiplicative factor related to the number of
different ideal injection keys queried by the differentiator, resulting from a hybrid
argument over keys. Furthermore, the number of ideal injection keys used in the
construction is bound to the number of encryption and decryption operations
that are carried out. This means that the overall bound for our authenticated
encryption construction includes a multiplicative factor of q3 (see Section 5.3).

We note that the concrete constructions that we analyze may satisfy (R)AE,
RKA or KDM security with improved bounds (via game-specific security analyses),

5 Padding with 0τ has also been used by Kiltz, Pietrzak, and Szegedy [46] who study
the public indifferentiability of injections while building digital signature schemes with
message recovery. The motivation there is to design schemes with optimal overhead
that also come with tight security reductions. However, this level of indifferentiability
is not sufficient in the AEAD setting as it does not even imply CPA security.
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while remaining compatible with the single proof and bound that we present for
all single-stage games.

Online AEADs. We give simple solutions to the problem of constructing an
indifferentiable segment-oriented online AEAD scheme from an offline AEAD. Fol-
lowing [43], we define ideal online AEAD scheme via initialization, next-segment
encryption/decryption, and last-segment encryption/decryption procedures. The
difference between next-segment and last-segment operations is that the former
propagates state values, whereas the latter does not. Since a differentiator typi-
cally has access to all interfaces of a system, the state values become under its
control/view. For this we restrict the state size of the ideal object to be finite and
hence definitionally deviate from [43] in this aspect. Therefore our constructions
have the extra security property that the state value hides all information about
past segments.

The most natural way to construct an ideal online AEAD would be to chain
encryptions of the segments by tweaking the underlying encryption primitive with
the input history so far, as in the CHAIN transform of HRRV [43, Figure 8].
We show, however, that standard XOR-based tweaking techniques are not sound
in the indifferentiability setting and, in particular, we present a differentiating
attack on CHAIN. However, by decomposing the ideal object for online AEAD
into simpler ones [48,29], we recover an indifferentiable variant of the construction
called HashCHAIN, where a random oracle is used to prepare the state for the
next segment. Via optimizations specific to 3-round Feistel, we reduce overheads
to a constant number of hashes per segment.

Lower bounds. The indifferentiability of Sponge [15] allows us to instantiate the
round functions in 3-round Feistel with this construction and derive a random in-
jection in the random-permutation model.6 This construction requires roughly 3w
calls to its underlying (one-block) permutation, where w is the total number of
input blocks. This is slightly higher than 2.5w for AEZ (which shares some of
its design principles with us, but does not offer indifferentiability). This leads us
to ask whether or not an indifferentiable construction with rate less than 3 is
achievable. Our second main result is a lower bound showing the impossibility
of any such construction with rate (strictly) less than 2. To prove this lower
bound, we combine negative results for constructions of collision-resistant hash
functions [58,17] and pseudorandom number generators by Gennaro and Tre-
visan [37], and put critical use to the existence of an indifferentiability simulator.
To the best of our knowledge, this is the first impossibility result that exploits
indifferentiability, so the proof technique may be of independent interest.

Limitations and future work. As clarified by Ristenpart, Shacham, and
Shrimpton [53], the indifferentiability composition theorem may not apply to
multi-stage games where multiple adversaries cannot be collapsed into a single
central adversary. Indifferentiable AEAD schemes come with similar limitations.

6 The intermediate (expanding) round function can alternatively be fully parallelized.

8



Indifferentiability typically operates in an ideal model of computation. This
leaves open the question of standard-model security. However, it does not exclude
a “best of the two worlds” construction, which is both indifferentiable and is
RAE secure in the standard-model. For example, chop-Merkle–Damg̊ard [21] can
be proven both indifferentiable from a random oracle and collision resistant in
the standard model. We leave exploring this for future work.

2 Basic Definitions

We let {0, 1}∗ denote the set of all finite-length bit strings, including the empty
string ε. For bit strings X and Y , X|Y denotes concatenation and (X,Y ) denotes
a decodable encoding of X and Y . The length of a string X is denoted by |X|.
Games. An n-adversary game G is a Turing machine GΣ,A1,...,An where Σ is a
system (or functionality) and Ai are adversarial procedures that can keep full
local state but may only communicate with each other through G. We say an
n-adversary game Gn is reducible to an m-adversary game if there is a Gm such
that for any (A1, . . . ,An) there are (A ′1 , . . . ,A

′
m) such that for all Σ we have that

GΣ,A1,...,An
n = G

Σ,A ′1 ,...,A
′
m

m . Two games are equivalent if they are reducible in
both directions. An n-adversary game is called n-stage [53] if it is not equivalent
to any m-adversary game with m < n. Any single-stage game GΣ,A can be also

written as Ā G
Σ

for some oracle machine G and a class of adversarial procedures
Ā compatible with a modified syntax in which the game is called as an oracle.

Reference objects. Underlying the security definition for a cryptographic
primitive there often lies an ideal primitive that is used as a reference object to
formalize security. For instance, the security of PRFs is defined with respect to a
random oracle, PRPs with respect to an ideal cipher, and as mentioned above,
AEADs with respect to a random injection. Given the syntax and the correctness
condition of a cryptographic primitive, we will define its ideal counterpart as the
uniform distribution over the set of all functions that meet these syntactic and
correctness requirements (but without any efficiency requirements). We start by
formalizing a general class of ideal functions—that may be keyed, admit auxiliary
data (such as nonces or authenticated data), or allow for variable-length outputs—
and derive distributions of interest to us by imposing structural restrictions over
the class of considered functions. This approach has also been used in [16].

Ideal functions. A variable-output-length (VOL) function F with auxiliary
input has signature F : A ×M × X −→ R, where A is the auxiliary-input
space, M is the message space, X ⊆ N is the expansion space, and R is the
range. We let Fun[A×M× X −→ R] be the set of all such functions satisfying
∀(A,M, τ) ∈ A ×M× X : |F(A,M, τ)| = τ , We endow the above set with the
uniform distribution and denote the action of sampling a uniform function F
via F←←Fun[A×M×X −→ R] (and analogously for expanding functions). To
ease notation, given a function F , we define Fun[F ] to be the set of all functions
with signature identical to that of F . Granting oracle access to F to all parties
(honest or otherwise) results in an ideal model of computation.
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Injections. We define Inj[A ×M × X −→ R] to be the set of all expand-
ing functions that are injective on M: ∀(A,M, τ), (A,M ′, τ) ∈ A ×M × X :
M 6= M ′ =⇒ F(A,M, τ) 6= F(A,M ′, τ), and satisfy the length restriction
∀(A,M, τ) ∈ A ×M × X : |F(A,M, τ)| = |M | + τ . Each injective function
defines a unique inverse function F− that maps (A,C, τ) to either a unique M if
and only if C is within the range of F (A, ·, τ), or to ⊥ otherwise. (Such functions
are therefore tidy in the sense of [51].) This gives rise to a strong induced model
for injections where oracle access is extended to include F−, which we always
assume to be the case when working with injections.

When k = 0 the key space contains the single ε key and we recover unkeyed
functions. We use the following abbreviations: Fun[n,m] is the set of functions
mapping n bits to m bits and Perm[n] is the set of permutations over n bits.

Lazy samplers. Various ideal objects (such as random oracles) often appear as
algorithmic procedures that lazily sample function values at each point. These pro-
cedures can be extended to admit auxiliary data and respect either of our length-
expansion requirements above. Furthermore, given a list L of input-output pairs,
these samplers can be modified to sample a function that is also consistent with
the points defined in L (i.e., the conditional distribution given L is also samplable).
We denote the lazy sampler for random oracles with (Y ;L)←←LazyRO(A,X, τ ;L)
and that for ideal ciphers with (Y ;L)←←LazyIC±(A,X;L). The case of random
injection is less well known, but such a procedure appears in [56, Figure 6]. We
denote this sampler with (Y ;L)←←LazyRI±(A,X, τ ;L).

2.1 Authenticated-Encryption with Associated-Data

We follow [43] in formalizing the syntax of (offline) AEAD schemes.7 We allow for
arbitrary plaintexts and associated data, and also include an explicit expansion
parameter τ specifying the level of authenticity. Associated data may contain
information that may be needed in the clear by a higher-level protocol that
nevertheless should be authentic. We also only allow for public nonces as the
benefits of the AE5 syntax with a private nonce are unclear [50].

Syntax and correctness. An AEAD scheme is a triple of algorithms Π :=
(K,AE ,AD) where: (1) K is the randomized key-generation algorithm which
returns a key K. This algorithm defines a non-empty set, the support of K, and
an associated distribution on it. Slightly abusing notation, we denote all these by
K. (2) AE is the deterministic encryption algorithm with signature AE : K×N ×
H×{0, 1}∗×X −→ {0, 1}∗. Here N ⊆ {0, 1}∗ is the nonce space, H ⊆ {0, 1}∗ is
the associated data space, and X ⊆ N is the set of allowed expansion values. We
typically have that K = {0, 1}k, N = {0, 1}n for k, n ∈ N, H = {0, 1}∗, and the
expansion space contains a single value. (3) AD is the deterministic decryption
algorithm with signature AD : K ×N ×H × {0, 1}∗ × X −→ {0, 1}∗ ∪ {⊥}. As
usual we demand that AD(K,N,A,AE(K,N,A,M, τ), τ) = M for all inputs

7 When referring to an AEAD without specifying its type, we mean an offline AEAD.
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Game RAE-RealAΠ
K←←K
b←←A AE(K,·,·,·,·),AD(K,·,·,·,·)

return b

Game RAE-IdealAΠ
(AE ′,AD′)←←AE[Π]
K←←K
b←←A AE′(K,·,·,·,·),AD′(K,·,·,·,·)

return b

Fig. 2. Games defining RAE security. The adversary queries its oracles on inputs that
belong to appropriate spaces.

from the appropriate spaces. We also impose the ciphertext expansion restriction
that for all inputs from the appropriate spaces |AE(K,N,A,M, τ)| − |M | = τ .

Ideal AEAD. An ideal AEAD is an injection with signature (K ×N ×H)×
M × X −→ C and satisfying the ciphertext-expansion restriction. Therefore an
ideal AEAD is a random injection in Inj[(K ×N ×H)×M × X −→ C]. Given
a concrete AEAD scheme Π with signature K × N × H ×M × X −→ C we
associate the space AE[Π] := Inj[(K ×N ×H)×M × X −→ C] to it.

Naming conventions. When referring to AEAD schemes we use (AE ,AD)
instead of (F ,F−). When the associated-data space is empty, we use (E ,D)
for (encryption without associated data), when the nonce space is also empty
we use (F ,F−) (for keyed injection), when τ = 0 as well we use (E,E−) (for
blockcipher), and if these are also unkeyed we use (ρ, ρ−) and (π, π−) respectively.
For a random function (without inverse) we use H.

RAE security. Robust AE (RAE) security [41,43] requires that an AEAD
scheme behaves indistinguishably from an ideal AEAD under a random key.
Formally, for scheme Π = (K,AE ,AD) and adversary A we define

Advrae
Π (A ) := Pr

[
RAE-RealAΠ

]
− Pr

[
RAE-IdealAΠ

]
,

where games RAE-RealAΠ and RAE-IdealAΠ are defined in Figure 2. Informally,
we say Π is RAE secure if Advrae

Π (A ) is “small” for any “reasonable” A . Misuse-
resilient AE (MRAE) security [56] weakens RAE security by constraining the
adversary to a fixed and sufficiently large value of expansion τ . AE security [54]
weakens MRAE security and requires that the adversary does not repeat nonces in
its queries to either oracle. These definitions lift to idealized models of computation
where, for example, access to an ideal injection in both the forward and backward
directions is provided.

The proposition below formalizes the intuition that the ideal AEAD, i.e., the
trivial AEAD scheme in the ideal AEAD model, is RAE secure. This fact will be
used when studying the relation between indifferentiability and RAE security.
The proof follows from the fact that unless the attacker can discover the secret
key, the construction oracle behaves independently from the ideal AEAD oracle.

Proposition 1 (Ideal AEAD is RAE secure). For any q-query adversary
A attacking the trivial ideal AEAD Π in the ideal AEAD model we have that
Advrae

Π (A ) ≤ q/2k.
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Game Diff -RealDΣ1

b←←DConst,Prim; return b

Proc. Const(X)

return Σ1.hon(X)

Proc. Prim(X)

return Σ1.adv(X)

Game Diff -IdealDΣ2,S
b←←DConst,Prim; return b

Proc. Const(X)

return Σ2.hon(X)

Proc. Prim(X)

return SΣ2.adv(X)

Fig. 3. Games defining the indifferentiability of two systems.

3 AEAD Indifferentiability

The indifferentiability framework of Maurer, Renner, and Holenstein (MRH) [48]
formalizes a set of necessary and sufficient conditions for one system to securely
replace another in a wide class of environments. This framework has been
successfully used to justify the structural soundness of a number of cryptographic
constructions, including hash functions [21,31], blockciphers [4,23,33], and domain
extenders for them [22]. The indifferentiability framework is formulated with
respect to general systems. When the ideal AEAD object defined in Section 2.1
is used, a notion of indifferentiability for AEAD schemes emerges. In this section,
we recall indifferentiability of systems and make it explicit for AEAD schemes.
We will then discuss some of its implications that motivate our work.

3.1 Definition

A random system or functionality Σ := (Σ.hon,Σ.adv) is accessible via two
interfaces Σ.hon and Σ.adv. Here, Σ.hon provides a public interface through
which the system can be accessed. Σ.adv corresponds to a (possibly extended)
interface that models adversarial access to the inner workings of the system,
which may be exploited during an attack on constructions. A system typically
implements some ideal object F , or it is itself a construction CF

′
relying on some

underlying (lower-level) ideal object F ′.
Indifferentiability [48]. Let Σ1 and Σ2 be two systems and S be an algorithm
called the simulator. The (strong) indifferentiability advantage of a (possibly
unbounded) differentiator D against (Σ1,Σ2) with respect to S is

Advindiff
Σ1,Σ2,S(D) := Pr

[
Diff -RealDΣ1

]
− Pr

[
Diff -IdealDΣ2,S

]
,

where games Diff -RealDΣ1
and Diff -IdealDΣ2,S are defined in Figure 3. Informally,

we call Σ1 indifferentiable from Σ2 if, for an “efficient” S , the advantage above
is “small” for all “reasonable” D .

In the rest of the paper we consider a specific application of this definition
to two systems with interfaces (Σ1.hon(X),Σ1.adv(x)) := (CF1(X),F1(x)) and
(Σ2.hon(X),Σ2.adv(x)) := (F2(X),F2(x)), where F1 and F2 are two ideal
cryptographic objects sampled from their associated distributions and CF1 is a
construction of F2 from F1. To ease notation, we denote the advantage function
by Advindiff

C,S (D) when F1 and F2 are clear from context. Typically F2 will be
an ideal AEAD and F1 a random oracle or an ideal cipher.

12



3.2 Consequences

MRH [48] prove the following composition theorem for indifferentiable systems.
Here we state a game-based formulation from [53].

Theorem 1 (Indifferentiability composition). Let Σ1 := (CF1 ,F1) and
Σ2 := (F2,F2) be two indifferentiable systems with simulator S. Let G be a
single-stage game. Then for any adversary A there exist an adversary B and a
differentiator D such that

Pr
[
GCF1 ,A F1

]
≤ Pr

[
GF2,B

F2
]

+ Advindiff
C,S (D) .

As discussed in [53], the above composition does not necessarily extend to multi-
stage games since the simulator often needs to keep local state in order to
guarantee consistency. However, some (seemingly) multi-stage games can be
written as equivalent single-stage games (see Section 2 for a definition of game
equivalence). Indeed, any n-adversary game where only one adversary can call
the primitive directly and the rest call it indirectly via the construction can be
written as a single-stage game as the game itself has access to the construction.
We summarize this observation in the following theorem, which generalizes a
result for related-key security in [35].

Theorem 2. Let Σ1 := (CF1 ,F1) and Σ2 := (F2,F2) be two indifferentiable
systems with simulator S. Let G be an n-adversary game and A := (A1, . . . ,An)
be an n-tuple of adversaries where A1 can access F1 but Ai for i > 1 can only
access CF1 . Then there is an n-adversary B and a differentiator D such that

Pr

[
GCF1 ,A F1 ,A CF1

2 ,...,A CF1
n

]
≤ Pr

[
GF2,B

F2
1 ,B

F2
2 ,...,BF2

n

]
+ Advindiff

C,S (D) .

Remark 1. There is a strong practical motivation for the restriction imposed
on the class of games above. Consider, for example, security against related-key
attacks (RKAs) where the related-key deriving (RKD) function φF1 may depend
on the ideal primitive [3]. The RKA game is not known to be equivalent to a
single-stage game. The authors in [35] consider a restricted form of this game
where dependence of φ on the ideal primitive F1 is constrained to be through
the construction CF1 only. In other words, an RKD function takes the form

φCF1 rather than φF1 . When comparing the RKA security of a construction
CF1 to the RKA security of its ideal counterpart, one would expect the set of
RKD functions from which φ is drawn in two games to be syntactically fixed
and hence comparable. Since no underlying ideal primitive for F2 exists, RKD
functions take the form φF2 and hence it is natural to consider RKD functions

of the form φCF1 with respect to CF1 . The same line of reasoning shows that
an indifferentiable construction would resist key-dependent message (KDM)
attacks for key-dependent deriving functions that depend on the underlying
ideal primitive via the construction only. Other (multi-stage) security notions
that have a practically relevant single-stage formulation include security against
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bad-randomness attacks, where malicious random coins are computed using the
construction, and leakage-resilient encryption where leakage functions may rely on
the construction. Therefore from a practical point of view, composition extends
well beyond 1-adversary games.

Remark 2. Theorem 1 reduces the security of one system to that of another.For
instance, one can deduce the RKA (resp., KDM or leakage-resilient) security of
an indifferentiable construction CF1 of F2 if F2 itself can be proven to be RKA
(resp., KDM or leakage-resilient) secure. We have seen an example of the latter
in Proposition 1, where the ideal AEAD scheme is shown to be RAE secure.
Hence Theorem 1 and Proposition 1 immediately allow us to deduce that an
indifferentiable AEAD construction CF1 will be RAE secure in the idealized
model of computation induced by its underlying ideal primitive F1. Analogous
propositions for RKA, KDM, leakage resilience of the ideal AEAD scheme (for
quantified classes of related-key deriving functions, key-dependent deriving, and
leakage functions) can be formulated. This in turn implies that an indifferentiable
AEAD scheme will resist strong forms of related-key, KDM, and leakage attacks.

4 Differentiators

Having defined AEAD indifferentiability, we ask whether or not (plausibly)
indifferentiable constructions of AEAD schemes in the literature exist. In this
section we present a number of generic and specific attacks that essentially
rule out the indifferentiability of many constructions that we have found in the
literature. We emphasize that existing schemes were not designed with the goal of
meeting indifferentiability, and our attacks do not contradict any security claims
made under the standard RAE, MRAE, or AE models. Indeed, many AEAD
schemes are designed with the goal of maximizing efficiency, forsaking stronger
security goals such as misuse resilience or robustness.

4.1 Generic composition

Any construction that is not (M)RAE secure (in the sense of [56,41]) can be
immediately excluded as one that is indifferentiable: the ideal AEAD is RAE
secure (Proposition 1), furthermore RAE is a single-stage game and hence
implied by indifferentiability (Theorem 1). This simple observation rules out the
indifferentiability of a number notable AEAD schemes such as OCB [55], CCM,
GCM, EAX [13], and many others. The MRAE insecurity of these schemes are
discussed in the respective works.

RAE insecurity can be used to also rule out the indifferentiability of some
generic AEAD constructions. In this section, we present a more general result
by giving differentiators against a wide class of generically composed schemes,
some of which have been proven to achieve RAE security. This class consists of
schemes built from a hash function H, which we treat as a random oracle, and
an encryption scheme (E ,D), which we consider to be an ideal AEAD without
associated data. We assume that the encryption algorithm of the composed
scheme operates as follows. An initialization procedure Ie is used to prepare the
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Algo. AE(K,N,A,M, τ)

(est0, est1)← Ie(K,N,A,M, τ)

(K′, N ′,M ′, τ ′)← EH0 (est0)
C′ ← E(K′, N ′, ε,M ′, τ ′)

C ← EH1 (C′, est1)
return C

Algo. DConst+,Prim2
1 (τ)

(K,N,A,M)←←{0, 1}4n
C ← Const+(K,N,A,M, τ)
(est0, est1)← Ie(K,N,A,M, τ)
C′ ← R1(C)

C̃ ← EPrim2
1 (C′, est1)

return (C̃ = C)

Fig. 4. Template for generically composed AEAD (AE ,AD) (left) and a differentiator
for type-I schemes (right).

inputs to a preprocessing algorithm EH0 and a post-processing algorithm EH1 . The
preprocessing algorithm prepares the inputs to the underlying E algorithm. The
post-processing algorithm gets the output ciphertext and completes encryption
(e.g., by appending a tag value). The decryption algorithm operates analogously
by reversing this process via an initialization procedure Id, a preprocessing
algorithm DH0 and a post-processing algorithm DH1 . See Figure 4 for the details.

The next theorem shows that this class of schemes are differentiable if certain
conditions on information passed between the above sub-procedures are met.

Theorem 3 (Differentiability of generic composition). Let Π be a gener-
ically composed AEAD scheme from an encryption scheme (without associated
data) (E ,D) and a hash function H following the structure shown in Figure 4
for some algorithms (Ie, E0, E1, Id,D0,D1). Let ∆C := |C| − |C ′| denote the
ciphertext overhead. Suppose that the following condition holds.

Type-I : Let est1 be the state passed to E1. We require that for all inputs
(K,N,A,M) and for a sufficiently large ∆1 we have that |(K,N,A,M)| −
|est1| ≥ ∆1.8 Furthermore, there is a recovery algorithm R1 (with no oracle
access) that on input C recovers C ′, the internal ciphertext output by E .

Then Π is differentiable. More precisely, for any type-I scheme Π there exists a
differentiator D1 such that for any simulator S making at most q queries in total
to its ideal AEAD oracles

Advindiff
Π,S (D1) ≥ 1− q/2∆1 − (q + 1)/2∆C .

The complete version of this theorem in [1, Section 4.1] covers also type-II
schemes, where decryption omits ∆2 bits of information about (K,N,A,C) from
the partial information used to recover plaintexts.

Proof. We give the proof for type-I schemes. The differentiator computes a
ciphertext for a random set of inputs using the construction in the forward
direction and then checks if the result matches that computed via the generic
composition using the provided primitive oracles. To rule out the existence
of successful simulators the differentiator must ensure that it does not reveal

8 We do not count the length of τ as our attack also works for fixed values of τ .

15



information that allows the simulator to use its ideal construction oracles to
compute a correct ciphertext. The restriction on the size of est1 (and the ability
to recompute the internal ciphertext C ′ via R1) will be used to show this. The
pseudocode for the differentiator, which we call D1, is shown in Figure 4 (left).
The attack works for any given value of τ and to simplify the presentation, we
have assumed all spaces consist of bit strings of length n.

Analysis of D1. It is easy to see that when D1 is run in the real world its
output will be always 1. This follows from the fact that R1(C) will correctly
recover the internal ciphertext C ′ and hence EPrim2

1 (C ′, est1), being run with
respect to correct inputs and hash oracle, will also output C.

We now consider the ideal world. We first modify the ideal game so that the
ideal object presented to the simulator is independent of that used to answer
construction queries placed by the differentiator. This game is identical to the ideal
world unless S queries the forward construction oracle on (K,N,A,M, τ) (call
this event E1) or the backward construction oracle on (K,N,A,C, τ) (call this
event E2). We will bound the probability of each of these events momentarily. In
the modified game, we claim that no algorithm S can compute C from (C ′, est1).
This is the only information about C that is revealed to a simulator and this
claim in particular means that running EPrim2

1 (C ′, est1) within D1 won’t output
the correct C either. The answers to oracle queries placed by S can be computed
independently of the ideal construction oracles. Furthermore, (C ′, est1) misses at
least ∆C bits of information about C as est1 is computed independently of C.
The simulator therefore has at most a probability of 1/2∆C of outputting C in
this game. The bound in the theorem statement follows from a simple analysis of
the probabilities of events E1 and E2 in the modified game.

The proof for type-II schemes follows along the same lines and yields similar
bounds. The full details for schemes of both types are given in [1, Section 4.1]. ut
Consequences for generic composition. Namprempre, Rogaway, and
Shrimpton [51] explore various methods to generically compose an AEAD scheme
from a nonce-based AE scheme (without associated data) and a MAC. In their
analysis the authors single out eight favored schemes A1–A8. Roughly speaking,
schemes A1, A2, and A3 correspond to Encrypt-and-MAC where, respectively,
N , (N,A), and (N,A,M) are used in the preparation of the input IV to the
base AE scheme. Scheme A4 is the Synthetic Initialization Vector (SIV) mode of
operation [56, Figure 5], which is misuse resilient. Schemes A5 and A6 correspond
to Encrypt-then-MAC, where IV is computed using N and (N,A), respectively.
Schemes A7 and A8 correspond to MAC-then-Encrypt, where IV is computed
using N and (N,A) respectively. The MAC component in all these schemes is
computed over (N,A,M). Key L is used for IV and MAC generation, and an
independent key K is used in encryption. We refer the reader to the original
paper [51, Figure 2] for further details. For convenience, we have also included
the diagrams for the A (as well as B and N) schemes in [1, Appendix A] with
the authors’ permission.

In [1, Section 4.1] we give an analysis of how each of these schemes, as well
as all the others discussed in [56], are affected by the generic attacks given in
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Theorem 3. We find that all A schemes except A8 (which generalizes the structure
of the constructions we give in the next section) are differentiable. When looking
at the same schemes but assuming that the encryption and authentication keys
are identical (i.e., under key reuse), schemes A2, A6, and A8 no longer fall prey
to our generic attacks. We leave analyzing their indifferentiability as an open
problem. Finally, all B-schemes and N-schemes are found to be differentiable as
well. In the literature, we also found a recent scheme called Robust Initialization
Vector (RIV) [2] that is MRAE secure and bears similarities to our constructions.
We show in [1, Appendix C] that RIV is type-I and hence differentiable.

5 Ideal Offline AEAD

We now give two constructions of ideal AEAD from simpler ideal primitives. The
first is based on a VIL blockcipher, it enjoys a simpler analysis and supports any
expansion τ . The second is based on the unbalanced 3-round Feistel network,
where round functions are alternatively compressing and expanding random
oracles. It achieves higher efficiency, but here τ must be sufficiently large.

We present our proofs in a modular way. We first build ideal AEADs that
achieve indifferentiability in a restricted setting where all parameters except the
input message are fixed. More precisely, we first show that there is a simulator S
that for any arbitrary but fixed value of K ′ := (K,N,A, τ) is successful against
all differentiators that are K ′-bound in the sense that they only query the
construction and primitive oracles on values specified by K ′. To this end, we also
begin with the simplifying assumption that the underlying ideal objects can be
keyed with keys of arbitrary length. We then show how these restrictions and
simplifying assumptions can be removed to obtain fully indifferentiable AEADs.

5.1 Indifferentiability of Encode-then-Encipher

Our first construction transforms a VIL ideal cipher with arbitrary key space
into an ideal AEAD. It follows the Encode-then-Encipher (EtE) transform of
Bellare and Rogaway [11]. In its most simple form, EtE fixes τ bits of the input
to 0τ and checks the correctness of the included redundancy upon inversion (see
Figure 5).9 The domain of the underlying blockcipher should therefore be at least
τ bits longer than that needed for the injection. This, in particular, is the case
when both objects have variable input lengths. The results of this section (in
contrast to the attacks against other generic schemes) support the soundness of
EtE-based schemes from an indifferentiability perspective.

Theorem 4 (EtE is indifferentiable). The EtE construction in Figure 5
is indifferentiable from an ideal AEAD for any fixed K ′ := (K,N,A, τ) when

9 In both the EtE construction and the Feistel construction in the next section, the
0τ constant can be replaced by any fixed constant ∆ of the same length. For EtE
the indifferentiability proof is the same. For the Feistel construction the proof can
be easily adapted. To see this, note that any round function F1(X) can be replaced
with an indifferentiable one F ′1(X) = ∆⊕F1(X). The resulting construction becomes
identical to the one using 0τ by cancellation.
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Algo. AE(K,N,A,M, τ)

K′ ← (K,N,A, τ)
C ← E(K′, 0τ |M)
return C

Algo. AD(K,N,A,C, τ)

K′ ← (K,N,A, τ)
T |M ← E−(K′, C), where |T | = τ
if T 6= 0τ return ⊥ else return M

Fig. 5. The (un-hashed) Encode-then-Encipher construction. In the full scheme we set
K′ ← H(K,N,A, τ) for a random oracle H.

instantiated with a VIL ideal cipher (E,E−). More precisely, there is an expected
4q-query simulator S( · ;K ′) that presents a perfect simulation of the underlying
permutation for any K ′-bound q/2-query differentiator D for q/2 ≤ 2n+τ/8.

Proof (Sketch). Since the key values are fixed, we denote (E,E−) with (ρ, ρ−), an
unkeyed VIL random injection. The simulator will simulate the permutation on
inputs of the form 0τ |M via the ideal AEAD oracle ρ and will use a lazily sampled
injection disjoint from ρ (i.e., one whose domain and range are disjoint from
those of ρ) for inputs of the form T |M with T 6= 0τ . The simulator can always
detect when a query must be consistent with the ideal AEAD oracle: such queries
will always correspond to inputs of the form 0τ |M in forward queries and outputs
that are invertible under ρ− in backward queries. All other queries are answered
by lazily sampling the disjoint injection. However, in order to offer a perfect
simulation, the simulator must condition this lazy sampling by rejecting any
sampled inverses of the form 0τ |M and sampled outputs that are invertible under
ρ−. This rejection sampling yields a simulator that runs in expected polynomial
time as stated in the theorem. This simulator can be converted into one that
runs in strict polynomial time in the standard way by capping the number of
samples to t tries. With q ≤ 2n+τ/4, this simulator fails with probability at most
(2/3)t for each differentiator query, and hence introduces a statistical distance of
q(2/3)t. The full proof and the simulator are given in [1, Section 5.1]. ut

5.2 Indifferentiability of 3-round Feistel

Algo. DConst+,Prim2

X1←←{0, 1}n
(X2, X3)← Const+(X1)
Y2 ← Prim2(X2)
Return (X1 ⊕ Y2 = X3)

Fig. 6. The 2-round Feistel dif-
ferentiator.

A variable-input-length (VIL) permutation can
be constructed via the Feistel construction [23]
from a VIL/VOL random oracle, or via the
confusion-diffusion construction [33] from a fixed-
input-length (FIL) random permutation.10 The
number of rounds needed for indifferentiability
of Feistel from an ideal cipher has been grad-
ually reduced to 8 [28]; whereas for confusion-
diffusion 7 rounds are needed for good security

10 Using a hybrid argument the indifferentiability of the Feistel and confusion-diffusion
constructions carry over to variable input lengths. The VIL/VOL hash function in
Feistel can itself be instantiated with the Sponge construction [15] in the random-
permutation model. Note that, when dealing with domain and range extension for
Sponge one needs to take care of encoding the lengths of inputs and outputs as part
of the inputs fed to the random oracle [29].
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bounds [33]. This state of affairs leaves the above approach to the design of
random injections somewhat suboptimal in terms of the number of queries per
message block to a random permutation.

We ask whether this rate can be improved for random injections. We start
from the observation that indifferentiability attacks against 5-round Feistel do
not necessarily translate to those that fix parts of the input to 0τ . Despite this,
we show that differentiating attacks against 2-round Feistel still exist.

Proposition 2 (Differentiability of 2-round Feistel). The 2-round unbal-
anced Feistel construction Φ2 (cf. Figure 1) with the left part of the input fixed to
0τ is differentiable from an ideal injection.

Proof (Sketch). Consider the differentiator D in Figure 6 that checks the consis-
tency of simulated output against the construction on a random input X. In the
real world, D will output 1 with probability 1. In the ideal world the simulator
has to guess value Y2, which it won’t be able to do except with probability
negligible in n as the query placed by D is hidden from its view. �

The simplicity of the above attack and the necessity for large number of
rounds in building indifferentiable permutations raise the undesirable possibility
that many rounds would also be needed for building random injections. We show,
perhaps surprisingly, that this is not the case and adding only one extra round
results in indifferentiability as long as τ and the input size are sufficiently large.
This means, somewhat counter-intuitively, that the efficiency of constructions of
ideal injections can be increased when a higher level of security is required. The
3-round Feistel construction and variable names are shown in Figure 1.

We present the more intricate part of the proof of the following theorem in the
code-based game-playing framework [12] to help its readability and verifiability.

Theorem 5 (Indifferentiability of 3-round Feistel). Take the 3-round Feis-
tel construction Φ3 shown in Figure 1 when it is instantiated with three inde-
pendent keyed random oracles (the round functions are all keyed with the same
key). This construction is indifferentiable from an ideal AEAD scheme for any
fixed key of the form K ′ := (K,N,A, τ). More precisely, there is a simula-
tor S such that for all (qe, qd, q1, q2, q3)-query K ′-bound differentiators D with
qe + qd + 2q1 + q2 + q3 ≤ q we have

Advindiff
Φ3,S (D) ≤ 9q2/2τ ,

as long as q2(q1 + q2 + q3) ≤ 2n+τ/2 and qe + q1 ≤ 2n/2. The simulator places at
most q2 queries to its oracles.

Proof. To make the notation lighter we omit the key input to the various
ideal objects (as we are dealing with K ′-bound differentiators) and indicate
forward/backward queries to the construction or ideal AEAD by C/C−, and
queries to the real or simulated round functions by F1, F2, and F3. To simplify
the analysis, we consider a restricted class of differentiators that (1) query C(X1)
before any query F1(X1), and (2) never query C−. We also call a simulator
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C-respecting if it calls C only when simulating F1(X1), in which case it places a
single query C(X1). The following lemma deals with this simplification.

Lemma 1 (Restricting D). For any (qe, qd, q1, q2, q3)-query differentiator D
there is a restricted (qe + q1, 0, q1, q2, q3)-query differentiator D ′ such that for any
C-respecting simulator S, and as long as qe + q1 ≤ 2n/2, we have

|Advindiff
Φ3,S (D ′)−Advindiff

Φ3,S (D)| ≤ 3qd/2
τ .

We give the proof of this auxilliary lemma in [1, Section 5.2]. Intuitively,
we can convert any distinguisher D into a restricted D ′ that always calls the
construction before it answers a query to F1 and intercepts all queries to the
inverse construction oracle and returns ⊥ if the queried value was never computed
by the construction in the forward direction. The lemma follows from bounding the
probability that D ′ provides a wrong answer in either world. The C-respecting
restriction is used to upper-bound the total number of forward construction
queries in the ideal world (including simulator calls).

We prove indifferentiability with respect to restricted differentiators via a
sequence of games as follows. We start with the real game, which includes
oracles for the construction and the round functions, and gradually modify the
implementations of these oracles until: (1) the construction no longer places any
queries to the round functions and is implemented as an ideal injection; and
(2) the round functions use this (ideal) construction oracle. We now describe
these games. We give the pseudocode in Figures 7 and 8.

G0 : This game is identical to the (restricted) real game. Here the construction
oracle C calls F1, F2 and F3 and adds entries to lists L1, L2, and L3.

G1 : This game introduces flag1. The game sets flag1 if F1 chooses an output
value that was already queried to F2. As we will see, we can easily bound
the probability of this flag getting set via the birthday bound.11

G2 : This game explicitly samples fresh values that are added to L1 and L2 as a
result of a non-repeat query X1 to C within the code of C rather than under
the corresponding round functions. This is a conceptual modification and the
game is identical to G1. Indeed, the sampled L1 entry is always guaranteed
to be fresh assuming a non-repeat value X1, and the L2 entry will be also
non-repeat or flag1 is set. List LC is used to deal with repeat queries and
avoid spurious samplings.

G3 : This game introduces a (conceptual) change of random variables. Instead of
choosing Y1 and Y2 (i.e., the outputs of F1 and F2) randomly and computing
the outputs (X3, X4) of the construction, it first chooses (X3, X4) and sets Y1

and Y2 based on these, the input, and Y3. This is done via a linear change of
variables that will not affect the distributions of Y1 and Y2, as we show below.
This game constitutes our first step in constructing the simulator by defining
the outputs of F1 and F2 in terms of those for C. The proof, however, is
not yet complete: although C is implemented independently of the round
functions, F2 and F3 need access to the list of queries made to C.

11 As usual, once a flag is set, nothing matters. E.g., we can assume the game returns 0.
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Proc. C(X1) G0

Y1 ← F1(X1)
X2 ← Y1

Y2 ← F2(X2); X3 ← X1 ⊕ Y2

X3 ← F3(X3); X4 ← X2 ⊕ Y3

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi) // i = 1, 2, 3

if ∃(Xi, Yi) ∈ Li return Yi
if (i = 1, 3) then Yi←←{0, 1}τ
if (i = 2) then Yi←←{0, 1}n
Li ← Li ∪ (Xi, Yi)
return Yi

Proc. C(X1) G1

Y1 ← F1(X1)
X2 ← Y1

if ∃(X2, Y
′
2 ) ∈ L2 then

flag1 ← 1

Y2 ← F2(X2); X3 ← X1 ⊕ Y2

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi): Unchanged

Proc. C(X1) G2

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

Y1←←{0, 1}n; L1←L1∪(X1, Y1)

X2 ← Y1

if ∃(X2, Y
′
2 ) ∈ L2 then

flag1 ← 1

Y2←←{0, 1}τ ; L2 ← L2 ∪ (X2, Y2)

Y2 ← F2(X2); X3 ← X1 ⊕ Y2

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi): Unchanged

Proc. C(X1) G3

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}n × {0, 1}τ
Y3 ← F3(X3)
Y1 ← X4 ⊕ Y3 // same distro.

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

if ∃(X2, Y
′
2 ) ∈ L2 then

flag1 ← 1

Y2 ← X3 ⊕X1 // same distro.

L2 ← L2 ∪ (X2, Y2)
// X3 = X1 ⊕ Y2 (redundant)
// Y3 = F3(X3) (redundant)
// X4 = X2 ⊕ Y3 (redundant)
LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi): Unchanged

Proc. C(X1) G4

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}n × {0, 1}τ
Y3 ← F3(X3)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

// if ∃(X2, Y
′
2 ) ∈ L2 then

// flag1 ← 1 (code removed)

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi): Unchanged

Proc. C(X1) G5

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}n × {0, 1}τ

LC ← LC ∪ (X1, (X3, X4))
Y1 ← F1(X1) // cannot remove

return (X3, X4)

Proc. F1(X1)

if ∃(X1, Y1) ∈ L1 return Y1

// Y1←←{0, 1}τ (code removed)
(X3, X4)← C(X1)
Y3 ← F3(X3)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)

return Y1

Proc. F2(X2), F3(X3): Unchanged

Fig. 7. Games G0 to G5.

G4 : This game removes flag1 (which allowed the previous transitions to be
carried out in a conservative way) as we wish to gradually construct the code
of the simulator, and this code is not needed in the final simulation.12

G5 : This game shifts most of the code from the C oracle to the F1 oracle. In
particular, the manipulations of L1 and L2 are now done within F1. The
outputs of C are still sampled within the construction procedure and C makes
a call to F1. Procedure F1 retrieves the necessary (X3, X4) values by calling
back the construction (note these are now added to LC prior to calling F1).
This modification is conceptual since (1) restricted differentiators always call
the construction oracle before calling F1 and hence the entry for X1 will
already be in the list LC , and (2) although some queries to F2 and F3 may no

12 We need not introduce additional terms here. Suppose games G and G′′ never set
flag, but game G′ does. If these games are identical until flag is set, then the distance
between G and G′′ is bounded by the probability of flag being set in any game.
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Proc. C(X1) G6

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}n × {0, 1}τ
LC ← LC ∪ (X1, (X3, X4))

// Y1 ← F1(X1)

return (X3, X4)

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

// Y2←←{0, 1}n (code removed)
for (X1, (X3, X4)) ∈ LC

Y3 ← F3(X3)
if (X2 = X4 ⊕ Y3) then

if ∃(X′1, X2)∈L1 ∧X′1 6=X1

flag2 ← 1
(X3, X4)← C(X1)
//Y3 ← F3(X3) (redundant)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}n
L2 ← L2 ∪ (X2, Y2)

return Y2 //well-defined due to flag2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1) G7

Unchanged

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

for (X1, (X3, X4)) ∈ LC
if ¬∃(X3, Y3) ∈ L3 then

Y3 ← F3(X3)

for (X1,(X3,X4))∈LC ,(X3,Y3)∈L3

Y3 ← F3(X3)
if (X2 = X4 ⊕ Y3) then

if ∃(X′1, X2) ∈ L1 ∧X′1 6= X1

flag2 ← 1
(X3, X4)← C(X1)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}n
L2 ← L2 ∪ (X2, Y2)

return Y2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1) G8

Unchanged

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

// for (X1, (X3, X4))∈LC
// if ¬∃(X3, Y3) ∈ L3 then
// Y3 ← F3(X3)
// if (X2 = X4 ⊕ Y3) then
// flag3 ← 1 (dummy)

for (X1, (X3, X4))∈LC , (X3, Y3)∈L3

Y3 ← F3(X3)
if (X2 = X4 ⊕ Y3) then

if ∃(X′1, X2) ∈ L1 ∧X′1 6= X1

flag2 ← 1
(X3, X4)← C(X1)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}n
L2 ← L2 ∪ (X2, Y2)

return Y2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1): Unchanged G9

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}n × {0, 1}τ
LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

for (X3, Y3) ∈ L3

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

if (X1, (X3, X4)) ∈ LC then

if ∃(X′1, X2) ∈ L1 ∧X′1 6= X1

flag2 ← 1
(X3, X4)← C(X1)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}n
L2 ← L2 ∪ (X2, Y2)

return Y2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1) G10

if ∃(X1, (X3, X4)) ∈ LC
return (X3, X4)

(X3, X4)←←{0, 1}n × {0, 1}τ

if ∃(X′1, (X3, X4)) ∈ LC then
flagC ← 1

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. C−(X3, X4)

if ∃(X1, (X3, X4))∈LC return X1

return ⊥

Proc. F2(X2): Unchanged

if ∃(X2, Y2) ∈ L2 return Y2

for (X3, Y3) ∈ L3

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

if (X1, (X3, X4)) ∈ LC then
if ∃(X′1, X2) ∈ L1 ∧X′1 6= X1

flag2 ← 1
(X3, X4)← C(X1)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}n
L2 ← L2 ∪ (X2, Y2)

return Y2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1), C−(X3, X4)

G11,G12

Unchanged in G11

Answered using LazyRI in G12

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

for (X3, Y3) ∈ L3

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

X1 ← C−(X3, X4)
if X1 6=⊥ then

if ∃(X′1, X2) ∈ L1 ∧X′1 6= X1

flag2 ← 1

// (X3, X4)←C(X1) (removed)

Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}n
L2 ← L2 ∪ (X2, Y2)

return Y2

Proc. F1(X1), F3(X3): Unchanged

Fig. 8. Games G6 to G12.
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longer be done, these oracles behave as random oracles and hence performing
such queries earlier or later does not affect the view of the adversary.

G6 : This game removes the query to F1 from C and adds a bad event based
on flag2 to F2 that guarantees that this game is identical to G5 until flag2.
Removing the call to F1 from C has implications for F2, since the operation
of this oracle depends on entries that were added to L2 whenever a call to C
(and therefore a call to F1) occurred. For each F2 query, we therefore need to
ensure that processing left undone in this modified construction oracle (which
may influence the view of the adversary) is carried out as before. To this
end, we go through the entries in LC and check if an entry (X1, (X3, X4))
occurred that might have set the value of Y2. If more than one such entry
exists, then this is detected as a collision at the output of F1 and flag2 is set.
If only one candidate is found, this corresponds exactly to the query that
would have been made by the removed F1 call. If no candidate is found, then
the oracle simply samples a fresh value as before. The games are therefore
identical until flag2 is set, the probability of which we bound below.

G7 : This game introduces a conceptual change in the way the loops in F2 are
executed. First, all X3 values corresponding to entries in LC are queried
to F3 if they were not previously done so. This means that the subsequent
search for a good Y3 can be equivalently made by going through those entries
in LC whose X3 value is already present in L3. This change sets the ground
for the next game where we drop the first loop completely.

G8 : We now remove the code that corresponds to the first loop in F2 completely
and argue that there is a rare event that allows us to prove the games identical
until bad and bound the statistical distance between the two. This rare event
is explicitly shown, for convenience, as a dummy flag3: it is activated whenever
the first loop was adding to list L3 a freshly sampled entry (X3, Y3), which is
used by the second loop. Again we can bound the probability of this event
easily, as F3 implements a random oracle.

G9 : This game rewrites the loops in F2 and only looks in LC for values that will
be used by F2, i.e., only those entries with X4 = X2 ⊕ Y3 will be searched
over. This is a conceptual change.

G10 : This game introduces flagC , which is set if collisions in the outputs of C
are found. This prepares us to modify the implementation of C from a
random function to a random injection. We bound this via a standard RF/RI
switching lemma. This game also introduces a (partial and so far unused)
inverse C− to C that returns the preimage to (X3, X4) if this value was
queried to C. This will allow us to remove the dependency on the LC next.
(Recall that the differentiator is restricted and it cannot call C− at all.)

G11 : In this game F2 no longer uses LC ; instead it uses C− to check if a value
was queried to C. Since this partial inverse oracle always returns ⊥ for inputs
that are not on LC , this game is identical to the previous game. (Note also
that we may also omit the re-computation of (X3, X4).)

G12 : This game modifies C to the forward direction of a random injection oracle
and C− to its backward direction (which could return a non-⊥ value even if
an inverse is not found in LC). This modification can be bounded by looking
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at the probability that the simulator places an inverse query that was not
previously obtained from the forward construction oracle.

Now observe that G12 is the ideal game where procedures F1, F2 and F3

make use of random injection oracles (C,C−) but not its internal list LC . By
viewing the implementations of these procedures as three (sub-)simulators S1, S2

and S3 we arrive at our simulator. We note that S2 can omit flag2 in F2 with no
loss in advantage (cf. footnote in the conservative jump to G4 above). We also
note that this simulator is C-respecting as needed in Lemma 1 above, and that
it places at most q2 oracle queries (it is quadratic due to the loop in SC−2 ). The
remainder of the proof consists of bounding the probabilities of setting the four
flags in the game sequence above. The details of this analysis and the extracted
code for the simulator can be found in [1, Section 5.2]. ut

5.3 Removing restrictions and simplifications

Our AEAD schemes were analyzed with respect to differentiators that were
bound to a fixed (K,N,A, τ). We deal with arbitrary (K,N,A, τ) by applying a
hybrid argument. For this argument to hold, it is important to ensure that the
simulators do not “interfere” with each other: not only should they be run on
independent coins, but also their ideal AEAD oracles should be independent. We
formalize this argument in a more general form.

From key-wise to full indifferentiability. We call a keyed ideal object
F uniformly keyed if F(K,X) and F(K ′, X) are identically and independently
distributed for any X and distinct keys K and K ′. Let CF1 be a construction
of a uniformly keyed object F2 from a uniformly keyed object F1. We call the
construction key-respecting if for all inputs (K,X) it queries F1 on K only.
We call a simulator (for F1) key-respecting if for all inputs (K,X) it queries
F2 on K only. We call a differentiator key-respecting if it always queries both
the construction and the primitive oracles on K only. We call the construction
key-wise indifferentiable if it is indifferentiable with a key-respecting simulator
against all key-respecting differentiators. The following lemma follows from a
standard hybrid argument (see [1, Appendix D]).

Lemma 2 (Hybrid over keys). Let F1 and F2 be two uniformly keyed objects
and CF1 be a key-respecting construction of F2 from F1. Then if CF1 is key-wise
indifferentiable, it is also (fully) indifferentiable. More precisely, for any key-
respecting simulator S and any q-query (unrestricted) differentiator D there is a
key-respecting differentiator D ′ such that

Advindiff
C,S (D) ≤ q ·Advindiff

C,S (D ′) .

In order to apply this result to the EtE and 3-round Feistel it suffices to
syntactically express all underlying ideal objects as a single keyed primitive
and then show that they are key respecting. We note that the key-respecting
restriction forces the use of the same key on all underlying ideal objects, which
agrees with our observations on the benefits of key reuse in Section 4.1.
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Dealing with keys of arbitrary size. Objects with an arbitrarily large
key space can be indifferentiably built from those with a smaller key space in
the standard way by hashing the key using a random oracle. This means we can
remove the assumption of variable key lengths on the VIL ideal cipher in our
construction. We prove the following result in [1, Section 5.3].

Proposition 3 (Key extension via hashing). Let F1 and F2 be two uni-
formly keyed ideal objects with key spaces K1 and K2 respectively. Let H : K2 −→
K1 be a random oracle. Suppose further that for some (and hence any) K1 ∈ K1

and K2 ∈ K2 we have that F1(K1, X) is identically distributed to F2(K2, X).
Then CF1,H(K,X) := F1(H(K), X) is indifferentiable from F2. More precisely,
there is a simulator S such that for any q/3-query differentiator D ,

Advindiff
C,F2

(D) ≤ 2q2/|K1| .

The full construction. Our final AEAD construction can be written as
AE(K,N,A,M, τ) = Φ3(K ′,M), where K ′ = H(K,N,A, τ) and Φ3 is the ideal
injection instantiated with 3-round Feistel. The latter uses independent keyed
random oracles Fi all with key space K matching the co-domain of H. Combining
Theorem 5 with Lemmas 2 and 3 we obtain an overall bound 9q3/2τ + 2q2/|K|,
where q is an upper bound on the number of oracles queries.

5.4 Ideal Online AEAD

Offline AEAD schemes can fall short of providing adequate levels of functionality
or efficiency in settings where data arrives one segment at a time and should
be processed immediately without the knowledge of future segments. In an
online AEAD scheme, the encryption and decryption algorithms are replaced
by stateful segment-oriented ones that process the inputs one segment at a
time. We formalize ideal online AEAD next and briefly present our results in
indifferentiably constructing online AEAD schemes.

Online functions and ideal online AEAD. An online function(ality) is a
triple of functions with signatures

F0 : A0 −→ S , F1 : S×A×M×X −→ R1×S , F2 : S×A×M×X −→ R2 .

We define Onj+[A0,A,M,X ,S ,R1,R2] as the set of online functions for which
F1 and F2 are injective over M and respect the length-expansion requirement.
An ideal online AEAD is a uniform function in Onj+[A0,A,M,X ,S ,R1,R2]
where A0 := K ×N , A := H, and R1 := R2 := C.

Indifferentiable online AEAD. The CHAIN construction of [43] is trivially
differentiable from an ideal online AEAD as its initialization procedure AE .init
and state-update procedures are not random. Indeed, we need to modify this
and other aspects of its design (cf. [1, Section 7.2]) to achieve indifferentiability.
Intuitively, the computation of a ciphertext/state pair must be done in a way
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Fig. 9. The HashCHAIN transform.

that forces the differentiator to reveal all necessary information that is needed
to recompute them via the ideal objects accessible to the simulator. Following
this, we propose a new construction in Figure 9, which we call HashCHAIN.
Here, E is an offline ideal AEAD with key length k, and Hi are VIL/VOL keyed
random oracles with key size k that admit outputs of lengths k and 2k. These are
implemented from a single random oracle via domain separation. The nonce and
associated-data spaces of the online scheme are arbitrary. Its message, expansion
and ciphertext spaces match those of the offline scheme. The state space is
S := K. A formal statement and proof of the following theorem are given in [1,
Section 7.2]. In the proof we apply parallel composition of indifferentiability,
which permits modifying the ideal AEAD reference object until we arrive at
HashCHAIN.

Theorem 6 (HashCHAIN is indifferentiable). The HashCHAIN con-
struction in Figure 9 is indifferentiable from an ideal online AEAD.

6 Efficiency Lower Bounds

Suppose we instantiate the random oracles underlying our Feistel-based construc-
tion with the Sponge construction. Suppose also that the underlying Sponges
absorb inputs and expand outputs in blocks of n bits (i.e., the Sponge has bit-rate
n). Finally, assume that our input message is w blocks long. This means that
in both of our constructions roughly w primitive calls are used in each round of
Feistel. This adds up to 3w overall primitive calls for the second construction
and 8w calls for the first one. Our second construction is therefore almost 3 times
faster than the first. We next show that our more efficient construction is not
too far from the theoretically optimal solution by proving that at least 2w calls
are necessary for any indifferentiable construction. We do this by first giving a
lower bound for indifferentiable constructions of random oracles (which is tight
as it is essentially matched by Sponge) and then show how to derive the lower
bound for random injections from it.

Theorem 7 (Efficiency lower bound). Any indifferentiable construction of
a random function Cπ : {0, 1}wn −→ {0, 1}wn from a random permutation π :
{0, 1}n −→ {0, 1}n must place at least q ≥ 2w−2 queries to π. More precisely, for
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any such q-query construction Cπ and any qS-query indifferentiability simulator
S there is a w-query differentiator D such that

2 ·Advindiff
C,S (D) ≥ 1− 1/2(q−(2w−2))n − (q2 + qS)/2n .

Proof. We prove this result by constructing a differentiator against any construc-
tion Cπ that places q < 2w − 2 queries to π. Any such Cπ can be written using
(π-independent) functions f1, . . . fq+1 where

fi : {0, 1}(w+i−1)n −→ {0, 1}(w+i)n for 1 ≤ i ≤ q ,
fq+1 : {0, 1}(w+q)n −→ {0, 1}wn .

This reflects the fact that each fi can recompute everything that depends only on
the initial inputs, but also needs to take as additional inputs the values returned
by π at each of the previous calls. See [1, Section 6] for a schematic diagram.

Consider the first w − 1 calls to π. There are 2(w−1)n possible tuples P =
(P1, . . . , Pw−1) that can define the inputs to such queries. Since in total there
are 2wn possible inputs, by a counting argument, a subset D[C, π] of the input
values of size at least 2n = 2wn/2(w−1)n will be mapped by a construction C to
the same P[C, π], for any given π. Set D[C, π] and points P[C, π] can be found
by a (possibly unbounded) attacker D using only w − 2 queries to π. Algorithm
D proceeds in rounds as follows. There is at least one point P1 ∈ {0, 1}n such
that f1 always chooses P1 for at least 2wn/2n = 2(w−1)n of its inputs. No queries
to π are needed to find P1 and we set D[C, π] to a corresponding set of colliding
inputs. We then get Z1 := π(P1) and we use it to analyze the operation of f2.
Given Z1 and D[C, π], at least 2(w−1)n/2n of the inputs in D[C, π] are such that
f2 always chooses the same query point P2 to π. We update D[C, π] to this subset.
Continuing in this manner, we obtain a set D[C, π] of at least 2n points such that
fw−1 chooses a point Pw−1 for all inputs in D[C, π].

Put together, the restriction of Cπ to inputs in D[C, π] guarantees that the
construction always queries π at Pi for queries i = 1, . . . , w − 1 and then places
an arbitrary sequence of q− (w− 1) queries to π. Furthermore, from the previous
discussion we can assume that differentiator D knows the description of set
D[C, π] and values Z[C, π] := (Z1, . . . , Zw−1) = (π(P1), . . . , π(Pw−1)).

Now consider a pseudorandom generator PRG : D[C, π]×{0, 1}(q−(w−1))n −→
{0, 1}wn that has Z[C, π] hardwired in and operates as

PRG[Z[C, π]](X,Zw, . . . , Zq) := CZ1,...,Zq (X) ,

where CZ1,...,Zq(X) denotes running Cπ(X), answering the i-th query with Zi.
It is at this step that we follow the techniques of Gennaro and Trevisan [37].
If D can distinguish the output of PRG from a random string, this will allow
differentiating Cπ from a random function. We now show that such an attack is
guaranteed to exist if C does not make a sufficient number of queries to π.

Our first claim is that if Cπ is indifferentiable then PRG[Z[C, π]] is a secure
pseudorandom generator over a random choice of π. More precisely, our goal is
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to show that under the indifferentiability of Cπ, the distribution { (Y,Z[C, π]) :
π←←Perm[n]; Y ←←{0, 1}wn } is statistically close to

(PRG[Z[C, π]](X,Zw, . . . , Zq),Z[C, π]) :

π←←Perm[n]; X←←D[C, π]; Zw, . . . , Zq←←{0, 1}(q−(w−1))n

The points in Z[C, π] are computed using oracle access to π at the onset and,
being part of the description of the PRG, are in the view of a PRG distinguisher.
Take distribution {Cπ(X) : π←←Perm[n]; X←←D[C, π] }. We first argue this is
statistically close to

PRG[Z[C, π]](X,Zw, . . . , Zq) : π←←Perm[n];

X←←D[C, π]; Zw, . . . , Zq←←{0, 1}(q−(w−1))n

To see this, note that the simulation of π using Zi is fully consistent for
queries i = 1, . . . , w − 1. This is also the case for i ≥ w unless Z1, . . . , Zq are not
all distinct, which by the birthday bound occurs with probability at most q2/2n.

We are left with proving the following distributions statistically close.

(Cπ(X),Z[C, π]) : π←←Perm[n]; X←←D[C, π]

(Y,Z[C, π]) : π←←Perm[n]; Y ←←{0, 1}wn

Here we cannot directly apply indistinguishability of Cπ(X) from a truly random
wn-bit function H(X) (which follows from indifferentiability) as the hardwired
values Z[C, π] are in the distinguisher’s view. Instead we proceed via a sequence
of games as follows. First, we use the indifferentiability simulator S to deduce
that the following distributions are statistically close.

(Cπ(X),Z[C, π]) : π←←Perm[n]; X←←D[C, π]

(H(X),Z[C,SH]) : H←←Fun[wn,wn]; X←←D[C,SH]

This follows directly from the definition of indifferentiability. Consider a differentia-
tor that constructs Z[C,Prim] and D[C,Prim] using the real or simulated π-oracle
Prim, then queries its real or ideal construction oracle on X←←D[C,Prim] to
obtain the first component above. Any successful distinguisher for the above dis-
tributions could be used by this differentiator to contradict the indifferentiability
assumption with the same advantage. This differentiator places exactly w queries
(w−1 queries to the real or simulated π-oracle Prim to construct Z[C,Prim] and
one extra query to the real or ideal construction oracle). Note that this argument
also shows that D[C,SH] must also have at least 2n points.

The next step is to show that we can replaceH(X) with Y for an independently
sampled random string Y that is not computed via the random oracle. More
precisely, we argue that the following distributions are statistically close.

(H(X),Z[C,SH]) : H←←Fun[wn,wn]; X←←D[C,SH]

(Y,Z[C,SH]) : H←←Fun[wn,wn]; Y ←←{0, 1}wn

28



Suppose S places at most qS queries to H. The set D[C, π] has size at least 2n

and hence so does the set D[C,SH]. Now since X is chosen uniformly at random
from D[C,SH], the simulator S will query H on X with probability at most
qS/2

n. Hence H(X) is independent of the simulators view and we may replace it
with independent random value Y .

Finally, we use indifferentiability once more to show that we can replace
Z[C,SH] back by Z[C, π] in the presence of the independently sampled random
string Y . The differentiator we construct uses the real or simulated π-oracle
Prim to construct set Z[C, π] or Z[C,SH], respectively, and then samples value Y .
Again, any successful distinguisher for the above distributions will be translated
into a differentiating attack with the same advantage, resulting in a successful
differentiator that places exactly w − 1 queries.

This concludes the proof of our claim that PRG is secure over seed space
D′[C, π] := D[C, π] × {0, 1}(q−(w−1))n (of overall size at least 2(q−w+2)n) and
range R := {0, 1}wn with advantage at most (q2 + qS)/2n + 2δ, where δ is the
maximum advantage Advindiff

C,S (D) over all D placing at most w queries.

We now show that, unless Cπ makes a large number of queries to π the above
PRG cannot be secure. The queries of Cπ translate to the size of the seed space
of PRG as this does not make any queries to π beyond the initial w − 1 queries
used to hardwire the fixed Z[C, π] values. However, the outputs of any PRG with
domain D′[C, π] and range R can be information-theoretically distinguished from
random with advantage 1− |D′[C, π]|/|R|. We therefore must have that

1− |D[C, π]× {0, 1}(q−(w−1))n|/|{0, 1}wn| ≤ (q2 + qS)/2n + 2δ .

If Cπ is indifferentiable, we get q ≥ 2w − 2, when q2 + qS ≤ 2n/2 and δ = 1. ut

The above lower bound is essentially tight for random functions as the Sponge
construction meets it up to constant terms. The proof, however, does not directly
apply to random injections ρ, as the inverse oracle ρ− would allow an adversary
to invert the outputs of the PRG. The next proposition shows that by chopping
sufficiently many bits of the outputs of ρ, a random function can be indifferentiably
obtained from a random injection in a single query. Together with the above
result this extends the lower bound to random injections as well.

Proposition 4. Let ρ : {0, 1}wn −→ {0, 1}wn+n be a random injection with
inverse ρ−. Let Cρ(X) := ρ(X)[1..wn] be the construction that chops n bits of
ρ(X). Then Cρ is indifferentiable from a length-preserving random function.

The proof is given in [1, Section 6] where we construct a simulator that uses
the random oracle output and samples the extension bits independently, keeping
a list for consistency. Our construction of random injections via the 3-round
Feistel construction places 3w+O(1) queries to π. This is somewhat higher than
the 2w − 2 required by the lower bound. We leave bridging this gap for random
injections (and indeed also permutations) as the main open problem in this area.
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45. J. Jean, I. Nikolić, T. Peyrin, and Y. Seurin. Deoxys v1.41, 2016. https://

competitions.cr.yp.to/round3/deoxysv141.pdf.
46. E. Kiltz, K. Pietrzak, and M. Szegedy. Digital signatures with minimal overhead

from indifferentiable random invertible functions. In CRYPTO 2013, LNCS vol.
8042. Springer, 2013.
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