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Abstract. Fully homomorphic encryption schemes (FHE) allow to ap-
ply arbitrary efficient computation to encrypted data without decrypt-
ing it first. In Quantum FHE (QFHE) we may want to apply an ar-
bitrary quantumly efficient computation to (classical or quantum) en-
crypted data.
We present a QFHE scheme with classical key generation (and classi-
cal encryption and decryption if the encrypted message is itself classi-
cal) with comparable properties to classical FHE. Security relies on the
hardness of the learning with errors (LWE) problem with polynomial
modulus, which translates to the worst case hardness of approximating
short vector problems in lattices to within a polynomial factor. Up to
polynomial factors, this matches the best known assumption for classi-
cal FHE. Similarly to the classical setting, relying on LWE alone only
implies leveled QFHE (where the public key length depends linearly on
the maximal allowed evaluation depth). An additional circular security
assumption is required to support completely unbounded depth. Inter-
estingly, our circular security assumption is the same assumption that is
made to achieve unbounded depth multi-key classical FHE.
Technically, we rely on the outline of Mahadev (arXiv 2017) which achieves
this functionality by relying on super-polynomial LWE modulus and on
a new circular security assumption. We observe a connection between the
functionality of evaluating quantum gates and the circuit privacy prop-
erty of classical homomorphic encryption. While this connection is not
sufficient to imply QFHE by itself, it leads us to a path that ultimately
allows using classical FHE schemes with polynomial modulus towards
constructing QFHE with the same modulus.

1 Introduction

A fully homomorphic encryption (FHE) scheme [16, 31] is one where the trans-
formation Enc(x) → Enc(f(x)) can be performed efficiently for any efficiently
computable f , without violating the security of the scheme. This primitive is
very useful for cryptographic applications, and in particular it allows private
outsourcing of computation. That is, using the resources of a powerful third
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party to perform a computation without giving up privacy. In recent years it
was shown how to construct FHE based on standard cryptographic assumptions
(mostly lattice related), including ones that are assumed to be secure against
quantum adversaries. In particular, it was shown [1,5, 6, 9, 10,19] that FHE can
be based on the hardness of the learning with errors (LWE) problem introduced
by Regev [27]. LWE was proven to be as hard to solve as the hardness of finding
approximate shortest vectors in arbitrary worst-case lattices, a task for which no
significant quantum speedup is known. The approximation factor directly relates
to a parameter of the LWE problem known as the noise ratio, expressed as a
function of the dimension of the problem.1 Initial schemes [9] relied on LWE with
sub-exponential noise ratio, and thus the hardness of sub-exponential approxi-
mation for lattice problems. Extensive research effort improved the schemes all
the way down to only requiring a polynomial noise ratio [10], which is the gold
standard for LWE-based security.

Understanding the capabilities and boundaries of FHE in various computa-
tional models is a fundamental question in cryptographic study. In this work,
we focus on extending the set of supported functions f to the set of functions
computable in quantum polynomial time, at the necessary cost of the evaluation
process itself becoming quantum as well. This extension is called Quantum FHE
(QFHE).

With developments in quantum computing occurring at an increasing rate,
one could anticipate outsourcing of quantum computation becoming a quite com-
mon. Specifically it is quite likely that the first scalable quantum computers will
be very expensive and require specialized maintenance and thus will not be di-
rectly available to the public. Rather, users will need to send their inputs to be
processed by third party providers. If privacy is desired in this scenario, then
QFHE could become a useful tool. While current research on QFHE, including
this work, is well within the theoretical regime, developing theoretical tools and
techniques could serve as basis for the development of concrete systems in due
time.

Previous Works. Broadbent and Jeffery [11] showed that any classical FHE
scheme can be translated into a quantum one that supports a limited set of
gates (specifically, the evaluation of Clifford gates). Their idea is quite natural
and elegant, and while not explicitly stated in this way, is related to the well
established cryptographic notion of key encapsulation mechanisms (KEM). They
rely on the notion of quantum one time pad (QOTP) that allows to information
theoretically encrypt a quantum state using a single-use classical random pad.
They propose to encrypt a quantum state using a QOTP, and then encrypt the
pad itself using a classical homomorphic encryption scheme. They then show
that Clifford operations in the quantum regime translate into applying a public
operation on the quantum part of the QOTP ciphertext, and applying public
classical operations on the classical secret bits of the pad. The latter can be
applied homomorphically since the secret bits of the pad are encrypted using

1 To the informed reader we clarify that the noise ratio is the inverse of the Gaussian
parameter of the relative noise, i.e. 1/α in the common notation.
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a classical FHE scheme. They also show that evaluating an a-priori bounded
number of non-Clifford gates is possible at the cost of the ciphertext size blowing
up polynomially with the number of supported non-Clifford gates.

Dulek, Schaffner and Speelman [14] showed how to transfer the dependence
on the number of non-Clifford gates from the ciphertext to the key. Specifically,
their key generation involves generating a quantum gadget for every non-Clifford
gate to be evaluated throughout the lifetime of the scheme, and transferring these
gadgets to the homomorphic evaluator. The gadgets are consumed after a single
use and their quantum nature prevents them from being duplicated or shared.
This allowed for the first time to outsource quantum computation privately and
compactly, but at the cost of quantum preprocessing. The [14] solution used the
KEM approach as well, but required the decryption complexity of the classical
FHE scheme to be bounded (roughly logarithmic space). They instantiate their
scheme with the [9] FHE scheme, thus inheriting its unfavorable properties, but
we believe it can also be instantiated using newer schemes such as [5,6,19], but
it is not clear whether it applies to schemes based on the hardness of polynomial
lattice approximation due to the sequentialization technique of [10] used in these
schemes.

Mahadev [20] very recently presented a scheme whose key generation process
is completely classical. This immediately implies that the keys can be duplicated
and there is no longer a global bound on the total homomorphic capacity of the
system. This scheme also uses key encapsulation, and requires specific properties
of the underlying classical homomorphic encryption. An important property of
the [20] scheme is that the homomorphic evaluation of each quantum gate is not
necessarily perfectly correct, but rather it is only guaranteed to be within small
trace distance of the correct state. These errors accumulate so in the worst case
they are multiplied by the total circuit size. Thus, in order to achieve correctness
up to a negligible trace distance, the per-gate error needs to be negligible as
well. In the [20] solution, the per-gate error is (inversely) related to the noise
rate of the underlying LWE assumption, so in order to achieve correctness for all
polynomial size circuits, it is required to rely on the hardness of super-polynomial
approximation to lattice problems (or even larger, depending on the type of
computation and the user’s desired level of confidence).

Another unusual requirement of [20] from the underlying classical FHE scheme
is randomness recoverability. Namely, that using the secret key it is possible to
recover the randomness of a ciphertext. This is achieved using the dual scheme
to the [1,10,19] scheme, but requires changing the secret key from being a single
vector to a trapdoor to the lattice corresponding to the public key. This would
all be in the realm of low order technicalities, except for the issue of circular
security, which we explain next. Even in the classical setting, relying on LWE
alone only allows to construct leveled FHE, where an a-priori bound on the depth
(but not on the size) of evaluated circuits needs to be known. Overcoming this
issue to obtain a scheme that is secure for any depth requires encrypting the
scheme’s own secret key, and explicitly assuming that this does not adversely
impact the security of the scheme. Making this assumption for standard LWE-
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based encryption is by now the norm, but one might be less confident about
making this assumption for new distributions of secret keys.

To conclude this overview, we note that there is a distinction in the literature
between QFHE for classical vs. for quantum inputs. The former requires that the
encryption and key generation process are completely classical, so that quantum
computation on classical inputs can be outsourced by a classical entity. This
distinction could suggest that the two notions are incomparable, however we
believe that it is instructive to aspire to achieve a notion that generalizes both.
Specifically, we propose to aspire for QFHE with classical keys, that can encrypt
classical messages using a classical encryption process, and can encrypt quantum
messages using a quantum process, and likewise if the output of homomorphic
evaluation is classical then it should be decryptable by a classical decryption
process. This stronger notion is in fact achieved by [20], although this property
is not highlighted.

Our Results and Approach. We present a QFHE scheme using the high
level outline of [20], but with per-gate error that decays exponentially with the
noise rate of the underlying LWE assumption. Thus, using polynomial noise
rate we are able to achieve exponentially small per-gate error, which means that
we can securely evaluate any polynomial (or even super-polynomial) quantum
circuit while incurring only an exponentially small skew between the output of
homomorphic evaluation and the desired result. We do this by (again) relying
on key encapsulation, this time using the (primal) [1,10,19] scheme as the KEM
component. As for the distribution of secret keys, we do not require to use a
lattice trapdoor as secret key, but our scheme requires publishing an encryption
of the secret key of a [19]-style scheme, and keeping the randomness used to
generate this encryption as a part of its own secret key.

Therefore, if we wish to create a scheme that works for a-priori unbounded
depth, we need to assume circular security respective to a key containing a
standard LWE key as well as randomness that was used to generate encryptions
of this key. Interestingly, this exact assumption is required in order to construct
unbounded depth classical multi-key FHE from [19]-style encryption [8, 12, 23,
26].2

In terms of our approach, we observe that the [20] method is implicitly in-
timately connected to the circuit privacy property of the underlying classical
homomorphic scheme. Circuit privacy is the property that after homomorphi-
cally evaluating a function f , the resulting ciphertext Enc(f(x)) does not contain
any information about f except the value f(x) (even statistically). While cir-
cuit privacy is not a sufficient condition, it appears to be necessary for ensuring
functionality in the [20] method.

Circuit private homomorphic encryption schemes are useful for various ap-
plications and this property has been extensively studied in the FHE literature,
e.g. in [4,13,15,17]. However, this property is usually considered to be a security

2 Curiously, there is a syntactic resemblance between the randomness of a [1, 10, 19]
ciphertext and lattice trapdoors generated using the method of [21].
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feature, and we find it quite curious that in the quantum setting it turns out to
be related to the correctness of homomorphic evaluation.

Through the circuit privacy lens, the [20] scheme can be viewed as applying
the most rudimentary method for achieving function privacy, known as noise
flooding [15]. This method guarantees privacy that is roughly relative to the noise
rate of the underlying LWE assumption, hence super-polynomial rate is required
to achieve privacy with all but negligible probability. It is not immediately clear
how to apply more modern circuit privacy approaches in the QFHE setting (due
to the additional properties required for quantum homomorphic evaluation), and
the bulk of our technical work goes towards developing techniques to allow this
application. We elaborate more on our techniques below.

1.1 Technical Overview

Our basic approach, traced back to [11], is to rely on key encapsulation. The
ciphertext is encrypted using a quantum one time pad (QOPT), and the (classi-
cal) secret pad is encrypted using a classical FHE. QOTP encryption of a qubit
can be expressed as applying a random Pauli operation, namely a random bit
flip and a random phase flip. This allows to easily evaluate Clifford gates. As
observed in previous works [14,20], a missing piece that would imply QFHE is be-
ing able to homomorphically evaluate the CNOT operation on a given quantum
state, but given a classical control bit in encrypted form. To be more explicit,
given a 2-qubit superposition

∑
a,b αa,b|a, b〉 and an encrypted control bit x, out-

put an encapsulated encryption of
∑
a,b αa,b|a, b⊕ ax〉, i.e. a two-qubit register

and a classically encrypted pad that would decrypt the quantum register to
the aforementioned superposition. The encapsulated version we produce will be
a superposition of the form

∑
a,b(−1)aγphaseαa,b|a, b⊕ ax⊕ γflip〉 for some bits

γflip, γphase, together with encryptions of the bits γflip, γphase. One can verify that
indeed

∑
a,b(−1)aγphaseαa,b|a, b⊕ ax⊕ γflip〉 can be corrected to the prescribed

output using a proper bit flip and phase flip. We start by describing at a high
level the [20] approach and its relation to circuit privacy.

The [20] Approach and Circuit Privacy. Given
∑
a,b αa,b|a, b〉 and Enc(x),

the idea is to apply classical homomorphic evaluation to generate a superposition
of the form ∑

a,b,µ

αa,b|a, b⊕ µ〉|Enc(ax⊕ µ)〉|µ〉

(we ignore normalization factors). This can be done using the properties of the
classical FHE by applying to Enc(x) the function fa,µ(x) = ax ⊕ µ. Now, mea-
sure the register containing |Enc(ax⊕ µ)〉 to obtain some ciphertext c′, let γflip

denote the bit that it encrypts and note that µ = ax ⊕ γflip. Then the remain-
der superposition is:

∑
a,b αa,b|a, b⊕ ax⊕ γflip〉|ax⊕ γflip〉. So far we used the

homomorphic ciphertext to introduce an added ax term into the |b〉 register.
Finally, to remove the last register |ax⊕ γflip〉, measure it in the Hadamard ba-
sis, or alternatively, apply Fourier Transform and measure the result. We get a
measured bit w and the state

∑
a,b(−1)(wx)aαa,b|a, b⊕ ax⊕ γflip〉 (with a global
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factor (−1)wγflip that can be ignored). Therefore, setting γphase = wx should
complete the proof.

Unfortunately, this outline is too simplistic. We ignored the fact that there
are many possible ciphertexts of the form Enc(ax⊕ µ), and the specific cipher-
text output by homomorphically evaluating fa,µ might depend on a, µ, which
means that measuring it might collapse the superposition completely. This is
why circuit privacy seems useful, since it will ensure that regardless of a, µ the
distribution of Enc(ax⊕µ) depends only on the bit it encrypts. However, making
a ciphertext private necessarily requires randomness, and we cannot use classi-
cal randomness since it will cause the superposition to collapse just as before.
Therefore, the randomness is taken in superposition, and after measuring c′ we
are left with an additional register containing the randomness conditioned on
c′. In a sense the privacy transformation transferred the information about the
applied circuit from the ciphertext to the randomness register. We are thus left
with

∑
a,b(−1)aγphaseαa,b|a, b⊕ ax⊕ γflip〉|ra〉 and we need to find a way to get

rid of this additional randomness register.
In [20] it is shown that using their specific scheme, it is possible to express

ra as r0 ⊕ (ar1) where r0, r1 are binary vectors, and thus again measuring this
register in the Hadamard basis will be effective. This crucially relies on having a
one-to-one mapping between the randomness in the privacy transformation and
the ciphertext c′. This property indeed holds for noise flooding, but not for later
privacy techniques.

To complete this description, we note that after the Hadamard measurement,
the value of r1 now contributes to γphase, and an additional process involving
the lattice trapdoor is introduced in order to show that a classical encryption of
the new γphase can be recovered.

Our Solution. We are inspired by the circuit privacy argument of Bourse et
al. [4] which is applicable to encryption schemes of the type introduced in [19]
(henceforth referred to as GSW) and shows how to achieve circuit privacy with
polynomial noise rate. In GSW an encryption of a bit x is represented by a matrix
over Zq for some modulus q of the form C = ARc + xG, where A is the public
key of the scheme, Rc is a matrix of low norm (say all entries are� q) and G is a
special “gadget” matrix. For our purposes it will be useful to choose the modulus
q to be even (this does not have an effect on the resulting hardness assumption).
The circuit privacy argument of [4] implies that if we sample a integer vector
r from a discrete Gaussian distribution over the set {r : Gr = a q2∆ (mod q)}
(for some vector ∆), and compute the vector c′ = Cr + ( q2µ+ y)∆, where y is
a discrete Gaussian over Z, then c′ is a circuit private representation of ax⊕ µ,
i.e. c′ does not reveal information about a, µ beyond the value ax⊕ µ.3

Let us now see how this method fits into the [20] outline. Specifically, every c′

in this setting will have multiple randomness values associated with it, so there
is no longer a single ra associated with each c′. We will therefore try to find
an alternative structural property of the randomness register that will allow us

3 Indeed, c′ does not have the same form as the original ciphertext C, but it can be
correctly decrypted, which is the property we care about.
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to remove it without collapsing the superposition. Looking closely, we see that
the randomness consistent with c′ is a discrete Gaussian over variables r, y, µ s.t.
{r : Gr = a q2∆ (mod q)} and c′ = Cr+( q2µ+y)∆ = ARcr+( q2 (ax⊕µ)+y)∆.
Indeed we observe that this is a Gaussian superposition over the solutions of a
set of linear equations modulo q. In other words over a coset of a q-ary lattice,
where the coset is determined by c′ and by a q2∆. This suggests a way out, if we
are willing to replace the binary Fourier Transform with q-ary Fourier Transform(
FTq : |x〉 →

∑
|w〉e−

2πi
q 〈w,x〉

)
. As a rule of thumb, applying FTq on different

cosets of the same lattice, results in the same output, up to a phase that depends
on the difference between the cosets. In our case, the difference is a multiple of
a, just like we wanted.

Unfortunately, things are not so simple. First of all, indeed the phase is a
multiple of a, but since we applied FTq, this phase might be relative to a q-ary
root of unity, and not to (−1) as we require for our key encapsulation.4 Luckily,
in our case the difference between the cosets is a multiple of q

2 , which translates
to a phase relative to (−1). A greater difficulty comes from the fact that we are
not actually uniform over a the coset, but rather Gaussian, which makes the
transference between the pre-FTq and post-FTq regimes more messy. In par-
ticular, instead of all points having the same phase shift, each measured value
receives phase contributions from many sources which can interfere with each
other. It is known that if the Gaussian parameter is large enough (larger than
the so called “smoothing parameter” of the lattice), then the interference is neg-
ligible. Unfortunately this is not the case here, and we need to explicitly analyze
the post-FTq superposition in order to show that the effect of the interference
only amounts to exponentially small trace distance.

Finally, we note that in order to make the analysis go through, we add an
additional component to the privacy transformation and actually set c′ = Cr +
Ar̂ + ( q2µ + y)∆, with r̂ being an additional Gaussian parameter. This allows
us to prove useful properties for the resulting lattice, as well as provides us with
a way to recover the new γphase without requiring lattice trapdoors, but rather
using only an encrypted form of Rc and the LWE secret key.

1.2 Paper Organization

The main technical contribution of this paper is the homomorphic evaluation of
classically controlled CNOT, which is outlined above in Section 1.1 and formally
analyzed in Section 5.

General preliminaries appear in Section 2, preliminaries related to the defi-
nition of homomorphic encryption and results from previous works that we use
appear in Section 3. In Section 4 we describe how to put together the components
from previous works together with our classically controlled CNOT to create the
QFHE scheme.

4 One could consider using q-ary QOTP, but this introduces other difficulties since
it changes the class of circuits that are “easy”, analogous to Clifford in the binary
setting.
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2 Preliminaries

We denote the unit ball by Bm = {x ∈ Rm : ‖x‖2 ≤ 1}, we omit the subscript
when m is clear from the context. Similarly we denote the unit cube by Hm =
{x ∈ Rm : ∀i. x[i] ∈ (−1, 1]}. We will sometimes use the shorthand Btm, Htm to
denote t · Bm, t · Hm respectively.

Let F : X → C, and let W ⊆ X, then we denote F (W ) =
∑
x∈W F (x). For

all q ∈ N we let Zq denote the ring of integers modulo q. We represent elements
in Zq using numbers in the range (− q2 ,

q
2 ]∩Z. We denote by [x]q the value y s.t.

y = x (mod q) and y ∈ (− q2 ,
q
2 ]. We let [Z]q denote the set Z ∩ (− q2 ,

q
2 ].

We say that we δ-compute a quantum state if we compute a superposition
that is within trace distance O(δ) of that state.

Quantum Rejection Sampling. We recall that quantum rejection sampling
allows to take a superposition

∑
x∈X αx|x〉 and any sequence {α′x}x s.t. |α′x| ≤ 1

for all x, and produce a superposition 1
A

∑
x∈X αxα

′
x|x〉, whereA =

∑
x∈X |αxα′x|

2
.

The success probability of this procedure (i.e. the probability of not rejecting)
is A. If it is efficient to generate the original superposition then the process can
be repeated until successful, 1/A times in expectation.

Log-Infinity Uniformity. It will be convenient for us to consider a measure
we call log-infinity variance.5

Definition 2.1. The log-infinity variance of a vector v ∈ (R+)m is defined as

loginf(v) = ln

(
maxi v[i]

mini v[i]

)
. (1)

If loginf(v) ≤ ε, we say that v is ε-loginf uniform.

We will often use loginf-uniformity for general indexed sets V = {vz ∈ R+}z∈M ,
where M is some set of indices.

The following properties are easy to verify by definition.

Lemma 2.2. Let V = {vz}z∈M be ε-loginf uniform. Then the following hold:

1. Conditioning. ∀M ′ ⊆M the sequence V ′ = {vz}z∈M ′ is ε-loginf uniform.
2. Aggregation. ∀a1, . . . , ak ∈ R+ the sequence {a1vz1 + · · ·+akvzk}z1,...,zk∈M

is ε-loginf uniform.
3. `pp-Uniformity. Let p ∈ R+. The distribution defined on M by assigning

probabilities Pr[z] ∝ vpz is within statistical distance O(pε) of uniform.

2.1 Quantum One Time Pad

The quantum one time pad (QOTP) allows to encrypt a qubit in an information
theoretically secure manner using two random classical bits as symmetric key.
Encrypting a multi-qubit state can be done in a bit by bit manner (using an
independently sampled symmetric key for each qubit in the state).

5 We suspect that this measure has been considered before, but were not able to find
any reference or a well established name for it.
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– QOTP.Keygen(). Sample two classical bits x, z
$← {0, 1} and outputs (x, z).

– QOTP.Enc((x, z), φ). Given a qubit φ apply the Pauli transformation XxZz

to φ and output the resulting φ̂. More explicitly, the applied transformation
is: (α0|0〉+ α1|1〉)→ (α0|x〉+ (−1)zα1|x̄〉).

– QOTP.Dec((x, z), φ̂). Apply the reverse transformation ZzXx to φ̂.

We note that if the message to be encrypted φ is classical, then it is possible to
generate a syntactically correct and unconditionally secure QOTP of φ using a
classical algorithm by simply applying a classical one time pad using randomness
x, and setting z = 0. Furthermore, given any QOTP encryption of a classical
value, it is possible to measure φ̂ and the resulting classical value can be correctly
decrypted using the key (x, z) (or even (x, 0)) by the standard classical one time
pad decryption.

2.2 Discrete and Periodic Gaussians

For s > 0 we define the Gaussian density function ρs(x) := e−π(‖x‖/s)2 , where
x ∈ Rn. For a set of points X ⊆ Rn we denote ρs(X) =

∑
x∈X ρs(x). The

discrete Gaussian distribution DZn,s is one that is supported only over x ∈ Zn
and such that Pr[DZn,s = x] ∝ ρs(x).

Definition 2.3 (Periodic Gaussian). The q-periodic Gaussian function ρs,q
is the periodic continuation of ρs. Namely ρs,q(x) = ρs(x + qZm).

We show next that when s is sufficiently smaller than q, ρs,q(x) is close to
the non-periodic (but truncated) Gaussian.

Lemma 2.4. Let s > 0, q ∈ N, x ∈ Zm be such that ‖[x]q‖ < q/4. Then

1 ≤ ρs,q(x)

ρs([x]q)
< 1 + 2−( 1

2 (q/s)2−m) (2)

Proof. The lower bound holds by definition. For the upper bound,

ρs,q(x)

ρs([x]q)
=

∑
v∈Zm(ρs([x]q + qv)

ρs([x]q)
(3)

=
∑

v∈Zm
exp

(
−π
(
‖[x]q + qv‖2 − ‖[x]q‖

2
)
/s2
)

(4)

= 1 +
∑

v∈Zm\{0}

exp
(
−π
(
‖[x]q + qv‖2 − ‖[x]q‖

2
)
/s2
)

︸ ︷︷ ︸
denote by δ

(5)

However, since ‖[x]q‖ < q/4, it holds that for all v ∈ Zm \ {0}

‖[x]q + qv‖2 − ‖[x]q‖
2 ≥ ‖qv‖ · (‖qv‖ − 2‖[x]q‖) (6)

> ‖qv‖ · (‖qv‖ − q/2) (7)

≥ ‖qv‖ · (‖qv‖/2) (8)

= ‖qv‖2/2 (9)
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Therefore

δ ≤ ρ
((

q

s
√

2
Zm
)
\ {0}

)
(10)

≤ 2m−
1
2 (q/s)2 , (11)

where the last inequality follows by Lemma 2.10, with t = q

s
√

2
. �

For one dimensional Gaussians, another bound can be achieved.

Lemma 2.5. Let q ∈ N, s > 0 and x ∈ [Z]q. Then

ρs,q(x) ≤ 2ρs(x)/(1− ρs(q)) (12)

Proof. We expand the expression:

ρs,q(x) =
∑
j∈Z

e−π( x+jqs )
2

(13)

=
∑
j∈N

e−π( |x|+jqs )
2

+
∑
j∈N

e−π( (q−|x|)+jq
s )

2

(14)

≤
∑
j∈N

e−π( xs )
2

· e−πj(
q
s )

2

+
∑
j∈N

e−π( (q−|x|)
s )

2

· e−πj(
q
s )

2

. (15)

Since e−π( (q−|x|)
s )

2

≤ e−π( xs )
2

, and
∑
j∈N e

−πj( qs )
2

= 1/(1−e−π( qs )
2

), the lemma
follows. �

Corollary 2.6. Let s > 0, q ∈ N, x ∈ Zm be such that ‖[x]q‖ ≥ t. Then

ρs,q(x) ≤ 2mρs(t)

1−mρs(q)
, (16)

Proof. We will use Lemma 2.5 as follows:

ρs,q(x) ≤
m∏
i=1

ρs,q(xi) ≤
m∏
i=1

2ρs(x)

1− ρs(q)
≤ 2m

1−mρs(q)
· ρs(x) ≤ 2mρs(t)

1−mρs(q)
.

2.3 Lattices

A lattice, formally, is a discrete subgroup of Rm. In this work we focus on integer
lattices, which are subgroups of Zm. Any lattice can be represented as the Z-span
of a set of basis vectors. The basis is usually represented as a matrix B whose
columns are the elements of the basis. The lattice spanned by the basis B ∈ Zm×k
is denoted L(B) = {Bt : t ∈ Zk}. We will usually consider full rank lattices
where B is a square matrix. A coset of a lattice is defined by a vector c ∈ Rm
and denoted as c +Λ = {x : x− v ∈ Λ} (note that many different c vectors can
define the same coset). The dual of Λ is the set Λ∗ = {y : ∀x ∈ Λ. 〈y,x〉 ∈ Z}.

The following is an immediate corollary from Banaszczyk’s transference the-
orems [2].
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Corollary 2.7. Let Λ be a rank n lattice, and assume that Λ contains k linearly
independent vectors of length ≤ `. Then any set of (n−k+1) linearly independent
vectors in Λ∗ contains a vector of length ≥ 1/`.

Specifically, if Λ contains (n− 1) linearly independent vectors of length ≤ `,
then all vectors in Λ∗ of length < 1/` are on the same line.

Given a lattice Λ ⊆ Rm, we say that T ∈ Zm×m′ is a σ-trapdoor for Λ if

it has the same rank as Λ and its orthogonalized norm
∥∥∥T̃∥∥∥ is at most σ. The

orthogonalized norm is the maximal norm of the columns of T̃, which is in turn
the Gram-Schmidt orthogonalization of the columns of T. An upper bound on
the norm of the columns of T itself is also an upper bound for its trapdoor
quality.

The ε-smoothing parameter of the lattice Λ, denoted ηε(Λ) is defined as the
maximal Gaussian measure over Λ whose Fourier Transform is concentrated
around 0. For our purposes we will only require the following two properties
proven in [18,22,27].

Lemma 2.8. If Λ is of rank m and has a σ-trapdoor then for all ε < 1/2 it

holds that ηε(Λ) ≤ σ ·
√

1
π log(4m/ε).

Lemma 2.9. If ηε(Λ) ≤ s then the sequence {ρs(Λ + d)}d∈Rm is O(ε)-loginf
uniform.

We also use the following lemma, a parameterized version of [30, Lemma 7],
which is in turn a simplified version of [2], and follows by an identical proof.

Lemma 2.10. For any m dimensional lattice Λ, for all d ∈ Rm and for all s, t
it holds that

ρs((Λ+ d) \ Btm) ≤ 2m−(t/s)2ρs(Λ) . (17)

2.4 The Class of q-Ary Lattices

This class of lattices that is very useful in cryptography, and plays a prominent
role in this work as well. A lattice is q-ary, for a modulus q ∈ N, if it contains all
of the vectors in qI (where I is the identity matrix). All such lattices have full
rank.

Every matrix of the form L ∈ Zn×mq defines two useful q-ary lattices. The

“perp lattice” Λ⊥q (L) = {x : Lx = 0 (mod q)}, and the row span Spanq(L) =
{y ∈ Zm : ∃s ∈ Znq . y = sL (mod q)}, which contrary to our usual convention

will be considered as a lattice of row vectors. The dual of Spanq(L) is 1
qΛ
⊥
q (L).

For all v ∈ Znq define Λ⊥q (L,v) = {x : Lx = v (mod q)} and note that these are

cosets of Λ⊥q (L).
Translating Corollary 2.7, we get the following.

Corollary 2.11. If Λ⊥q (L) contains (n−1) linearly independent vectors of length
≤ `, then all vectors in Spanq(L) of length < q/` are on the same line.
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For all n, we define the gadget matrix G ∈ Zn×ndlog qe
q as the block ma-

trix G = [I‖2I‖ · · · ‖2dlog qe−1I] (where I is the n × n identity matrix). For all
V ∈ {0, 1}n×k we define G−1(V) ∈ {0, 1}ndlog qe×k to be the binary matrix s.t.
GG−1(V) = V (mod q). The matrix G has a

√
5-trapdoor (for any values of

n, q).
By the leftover hash lemma, for all m > (n log q + 2), all but 2−n fraction

of the matrices L ∈ Zn×mq have a
√
m-trapdoor. The matrix G also has a

√
m-

trapdoor (which is efficiently computable, but we will not require it for the
purpose of this work).

Lastly, the following is a direct corollary of the fact that 1
qSpanq(D) is the

dual of Λ⊥q (D), the Poisson summation formula and basic properties of the
Fourier Transform (see, e.g., [29]).

Corollary 2.12. For any full rank D ∈ Zn×mq , for all v ∈ Znq , w ∈ Zmq and
any σ ∈ R+ it holds that∑

x∈Λ⊥q (D,v)

ρσ(x)e−
2πi
q 〈w,x〉 = σm

qn ·
∑
t∈Zn

ρq/σ(w + tD) · e
2πi
q 〈t,v〉 (18)

= σm

qn ·
∑
t∈Znq

ρq/σ,q(w + tD) · e
2πi
q 〈t,v〉 . (19)

2.5 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [27]. In this
work we exclusively use the decisional version. The LWEn,m,q,χ problem, for
n,m, q ∈ N and for a distribution χ supported over Z is to distinguish between
the distributions (A, sA + e (mod q)) and (A,u), where A is uniform in Zn×mq ,
s is a uniform row vector in Znq , e is a uniform row vector drawn from χm, and
u is a uniform vector in Zmq . Often we consider the hardness of solving LWE for
any m = poly(n log q). This problem is denoted LWEn,q,χ.

As shown in [25,27], the LWEn,q,χ problem with χ being the discrete Gaus-
sian distribution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z

where the probability of x is proportional to e−π(|x|/σ)2 , see more details below),
is at least as hard as approximating the shortest independent vector problem
(SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices.
This is proven using a quantum reduction. Classical reductions (to a slightly
different problem) exist as well [7, 24] but with somewhat worse parameters.
The best known (classical or quantum) algorithm for these problems run in time

2Õ(n/ log γ), and in particular are conjectured to be intractable for γ = poly(n).

2.6 The q-Ary Fourier Transform

We will use the following flavor of Fourier Transform over the ring Zq for q ∈ N
(this is sometimes called discrete Fourier Transform) which maps functions f :
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Zn → C to f̂ : Znq → C as

f̂q(w) =
∑

x∈Zn
f(x) · e−

2πi
q 〈w,x〉 . (20)

We note that if f is only supported over the cube modulo q, i.e. over Hq/2n ∩Znq ,
then the q-ary Fourier Transform operator is unitary (up to a global normaliza-
tion factor).

2.7 Generating Gaussian Superpositions Over Lattices

It has been shown in previous works [7, 18] how to sample from a Gaussian su-
perposition over a lattice, or a coset of a lattice, given a good enough basis.
We observe that these methods can be extended to generating a Gaussian su-
perposition by carefully repeating the argument from [7, Section 5], replacing
rejection sampling with quantum rejection sampling, and neglecting the far tail
of the Gaussian distribution. We state the result only for integer lattices to avoid
handling matters of precision.

Lemma 2.13 (Lattice Superposition Generation). Let Λ = L(B) ⊆ Zm

be an m-dimensional lattice, let c ∈ Zm and let r ≥
√

ln(2m+ 4)/π · ‖B̃‖.
Let δ ∈ (0, 1). Then there exists a quantum expected polynomial time algorithm
GenGauss s.t. GenGauss(B, c, r, 1/δ) outputs a quantum state which is within
O(δ) trace distance of

1√
ρr(Λ+ c)

∑
x∈Λ+c

ρ√2r(x)|x〉 . (21)

Furthermore if r ≥
√

log(4m/δ)/π · ‖B̃‖ then the resulting quantum state is

supported only over Zm ∩ Br
√
m+log(1/δ)

m .

A proof is provided in the full version for the sake of completeness.

3 Homomorphic Encryption Tools and Techniques

3.1 Classical Homomorphic Encryption and Bootstrapping

We now define fully homomorphic encryption in the classical and quantum set-
ting, and introduce Gentry’s bootstrapping theorem.

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,
HE.Dec,HE.Eval) is a tuple of ppt algorithms as follows (λ is the security pa-
rameter):

– Key generation (pk, sk)←HE.Keygen(1λ): Outputs a public encryption key
pk and a secret decryption key sk.



14 Zvika Brakerski

– Encryption c←HE.Enc(pk, x): Using the public key pk, encrypts a single
bit message x ∈ {0, 1} into a ciphertext c.

– Decryption x←HE.Dec(sk, c): Using the secret key sk, decrypts a ciphertext
c to recover the message x ∈ {0, 1}.

– Homomorphic evaluation ĉ←HE.Eval(C, (c1, . . . , c`), pk): Using the pub-
lic key pk, applies a circuit C : {0, 1}` → {0, 1}`′ to c1, . . . , c`, and outputs
ciphertexts ĉ1, . . . , ĉ`′ .

We overload the functionality of the encryption and decryption procedures by
allowing the encryption to take multi-bit messages as input, and produce a se-
quence of ciphertexts corresponding to a bit-by-bit encryption. Similarly we allow
the decryption to take as input a sequence of ciphertexts, decrypt them one after
the other and output the result. We note that when we refer to the “decryption
complexity” of the scheme, we refer to the single ciphertext procedure (although
we will mostly be concerned with computation depth which remains the same
in the overloaded version.)

A homomorphic encryption scheme is said to be secure if it is semantically
secure.

Full homomorphism and leveled full homomorphism is defined next.6

Definition 3.1 (compactness and full homomorphism). A scheme HE is
fully homomorphic, if for any efficiently computable circuit C and any set of in-
puts x1, . . . , x`, letting (pk, sk)←HE.Keygen(1λ) and ci←HE.Enc(pk, xi), it holds
that

Pr [HE.Dec(sk,HE.Eval(C, (c1, . . . , c`), pk)) 6= C(x1, . . . , x`)] = negl(λ) .

A fully homomorphic encryption scheme is compact if its decryption circuit is
independent of the evaluated function. The scheme is leveled fully homomorphic
if it takes 1L as additional input in key generation, and can only evaluate depth L
Boolean circuits.

Gentry’s bootstrapping theorem shows how to go from limited amount of ho-
momorphism to full homomorphism. This method has to do with the augmented
decryption circuit and, in the case of pure fully homomorphism, relies on the
weak circular security property of the scheme.

Definition 3.2 (Bootstrappable Homomorphic Encryption). Consider a
homomorphic encryption scheme HE. Let (sk, pk) be properly generated keys and
let C be the set of properly decryptable ciphertexts. Then the set of augmented
decryption functions, {fc1,c2}c1,c2∈C is defined by

fc1,c2(x) = HE.Decx(c1) ∧ HE.Decx(c2) .

Namely, the function that uses its input as secret key, decrypts c1, c2 and returns
the NAND of the results.

The scheme HE is bootstrappable if it can homomorphically evaluate its
family of augmented decryption circuits.
6 An informed reader will notice that we define single-hop homomorphism. However

this notion is sufficient and implies the multi-hop version via bootstrapping.
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Definition 3.3. A public key encryption scheme PKE is said to be weakly cir-
cular secure if it is secure even against an adversary who gets encryptions of the
bits of the secret key.

The bootstrapping theorem is thus as follows.

Theorem 3.4 (bootstrapping [15, 16]). A bootstrappable homomorphic en-
cryption scheme can be transformed into a leveled fully homomorphic encryption
scheme with the same decryption circuit, ciphertext space and public key.

Furthermore, if the aforementioned scheme is also weakly circular secure,
then it can be made into a (non-leveled) fully homomorphic encryption scheme.

3.2 Quantum Fully Homomorphic Encryption

A quantum fully homomorphic encryption (QFHE) is one that can encrypt qubit
registers and apply quantum circuits to encrypted data. For the purpose of this
paper we will only consider QFHE schemes with classical keys.

We start by considering quantum homomorphic encryption. This is a scheme
with similar syntax to the classical setting described above, and is likewise de-
fined as a sequence of algorithms (HE.Keygen,QHE.Enc,QHE.Dec,QHE.Eval).
The syntactic differences are as follows.

1. HE.Keygen remains a classical probabilistic algorithm.

2. QHE.Enc takes as input a qubit x rather than a bit, and outputs a ciphertext
represented in qubits.

3. QHE.Dec takes as input a ciphertext represented as a quantum register and
outputs the plaintext as a qubit.

4. QHE.Eval takes as input a classical description of a quantum circuit with `
input qubits and `′ output qubits, and a sequence of ` quantum ciphertexts.
Its output is a sequence of `′ quantum ciphertexts.

A quantum homomorphic encryption scheme is secure if it is semantically secure.
For the definition of quantum semantic security see [11].

Definition 3.5 (compactness and full homomorphism). A scheme QHE
is fully homomorphic, if for any BQP circuit C and any `-qubit state x1, . . . , x`,
the states ρ1, ρ2 defined henceforth are within negligible trace distance.

We define ρ1 to be the `′-qubit state of the output of C(x1, . . . , x`). We define
ρ2 to be the `′-qubit state produced as follows. Generate (pk, sk)←HE.Keygen(1λ)
and ci←HE.Enc(pk, xi), and output QHE.Dec(sk,QHE.Eval(C, (c1, . . . , c`), pk)).
As in the classical case, a fully homomorphic encryption scheme is compact
if its decryption circuit is independent of the evaluated function. The scheme is
leveled fully homomorphic if it takes 1L as additional input in key generation,
and can only evaluate depth L Boolean circuits.
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3.3 GSW-Style Classical FHE with Polynomial Modulus

We consider the LWE based fully homomorphic encryption scheme of Gentry,
Sahai and Waters [19]. Specifically we use a result due to Brakerski and Vaikun-
tanathan [10] showing that it is possible to achieve secure FHE using polynomial
modulus.

Theorem 3.6 ( [10]). There exist polynomials q0(n), Br(n), Be(n), and a (clas-
sical) bootstrappable fully homomorphic encryption scheme parameterized by any
function q(n) s.t. ∀n. q(n) ∈ [q0(n), 2n], with the following properties.

1. The scheme is secure based on the LWEn,q,χ assumption, with χ = DZ,2
√
n,

and thus on the hardness of SIVPγ for γ = Õ(
√
n · q). Specifically if q is

polynomial then so is γ.
2. The public key of the scheme is a matrix A ∈ Zn×mq for some m = O(n log q),

for m > n(log q+2), of the form A =
[

B
sB+e

]
(mod q), where B ∈ Z(n−1)×m

q

is a random matrix, s
$← Zn−1

q , and ‖e‖ ≤ Be(n). The secret key is the vector
s.

3. When the output of a homomorphic evaluation is a ciphertext encrypting a

bit x ∈ {0, 1}, this ciphertext is a matrix C ∈ Zn×ndlog qe
q of the form C =

ARc + xG (mod q) where Rc ∈ Zm×ndlog qe. Furthermore, the maximum
Euclidean norm of any column in Rc is at most Br(n) (note that this bound
is independent on q, so long as q is in the aforementioned regime).

4. There exists a deterministic polynomial time computable function

TrackRand((C, (c1, . . . , c`), pk), (r1, . . . , r`), (x1, . . . , x`))

whose input consists of (C, (c1, . . . , c`), pk) which is an input to the homo-
morphic evaluation function, as well as the random tapes and messages ri, xi
used to generate each of the ciphertexts ci. Its output is the matrix Rc (where
C = ARc +xG is the output of the original homomorphic evaluation). Fur-
thermore, the depth of TrackRand is only dependent on the depth of C.

We note that property 4 was not proven directly in [10] but follows from analysis
of the GSW method in followups [1, 3].

3.4 A Randomness Propagating Classical FHE Scheme

We show that using the scheme from Theorem 3.6 it is possible to generate a
cryptosystem with the same properties, but that in addition produces, as the
output of Eval an encryption of the randomness Rc of the output ciphertext. We
call such a scheme randomness propagating.

Corollary 3.7 (Randomness Propagating Classical FHE). There exists
a (parameterized) scheme with the exact same properties as that of the scheme
from Theorem 3.6, but with an additional property:
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5. The output of homomorphic evaluation is a ciphertext C as above, in addition
to an encryption of Rc (in bit representation).

The idea for constructing the scheme relies on bootstrapping and is similar to
the construction of fully-dynamic multi-key FHE by [8] via bootstrapping the
schemes of [12,23].

Proof. Since the scheme from Theorem 3.6 is bootstrappable, it can be extended
to one that supports homomorphic evaluation of depth L circuits, for any a-priori
polynomial L. In the new scheme, we change the encryption procedure to first
encrypt the message and then encrypt the randomness that was used to generate
that first ciphertext. Then, to perform the new homomorphic evaluation, first
produce C using the homomorphic evaluation of the original scheme, and then
homomorphically evaluate TrackRand on the encryption of the randomness in
order to produce the encryption of Rc. Since the decryption function did not
change, it is possible to choose L large enough so that the scheme remains
bootstrappable. �

4 Our Quantum FHE Scheme

Our scheme follows an outline going back to Broadbent and Jeffery [11] and used
also in [14, 20]. The idea is to encrypt messages using a quantum one-time pad
(QOTP), and then encrypt the secret pad using a classical FHE scheme (this is
often called key encapsulation or hybrid encryption in cryptographic literature).
It is shown in [11] that applying Clifford gates on the encrypted message can
be carried out by applying it to the QOTP encrypted state, and applying an
appropriate classical operation on the encapsulated key. Since the encapsulated
key is encrypted using a classical FHE, this classical operation can be carried
out thus completing the homomorphic evaluation.

However, to allow evaluating general BQP functionality, it is required to
evaluate gates beyond the Clifford family, in particular it is sufficient to evaluate
the Toffoli gate. It has been shown (see, e.g., [20, Appendix A.3]) that in order to
carry out this operation, it is sufficient to be able to evaluate a CNOT operation
on a quantum input with an encrypted classical control bit. Specifically, it is
sufficient to support the operation that takes as input a register encoding a
general 2-qubit superposition

∑
a,b αa,b|a, b〉 and an encrypted control bit x,

and output an encapsulated encryption of
∑
a,b αa,b|a, b⊕ ax〉. Namely a QOTP

encrypted state together with a classical encryption of the QOTP key.
Our encryption scheme will be based on the key encapsulation methodology,

using the randomness propagating scheme from Corollary 3.7 as the key encap-
sulation scheme (this is sometimes called a “key encapsulation mechanism”, or
KEM). To show that this scheme can indeed evaluate a CNOT with a classical
control bit we prove the following theorem which constitutes the main technical
contribution of this work. We present the theorem here and explain how to use it
to construct our quantum FHE scheme. The theorem is then proven in Section 5
below.
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Theorem 4.1. For all δ and an appropriately set value of q = poly(n, log(1/δ)),
let A =

[
B

sB+e

]
(mod q) and C = ARc + xG (mod q) be such that there exist

global poly(n log q) bounds on the norms of e,Rc and such that B has a
√
m-

trapdoor (which does not need to be known to any entity).
There exists a quantum polynomial time algorithm taking as input A,C and a

general superposition over two qubits
∑
a,b αa,b|a, b〉. Its output, with probability

1−O(δ), is a superposition over two qubits of the form∑
a,b

(−1)a·γphaseαa,b|a, b⊕ ax⊕ γflip〉 , (22)

as well as two vectors cflip, cphase and two implicit vectors sflip, sphase, defined as
a function of s, e,Rc, x, s.t.

|
[
〈cflip, sflip〉 − q

2γflip

]
q
| ≤ q/10 , (23)

and likewise for 〈cphase, sphase〉.

We note that we purposely provide a theorem with parameterized dependence
on δ, even though it would have been sufficient to just show that there exists a
negligible δ for which the theorem holds. We do this to emphasize the robustness
of our techniques that allow taking the error to be even exponentially small in
the security parameter while still keeping q polynomial.

Putting the Components Together. We follow a similar outline to [20],
with the required changes from our different method of evaluating classically
controlled CNOT. Security follows immediately from the KEM mechanism by
combining the security of the quantum one time pad and the security of the
classical homomorphic encryption. This argument is identical to previous works.

Let δ > 2−poly(n) be some negligible function. We start with instantiating
the randomness propagating scheme from Corollary 3.7. We let q be the (poly-
nomial in n) value implied by Theorem 4.1, when instantiated with the bounds
Be(n), Br(n) from Corollary 3.7 (note that these bounds are independent of q so
there is no circularity here), and instantiate the randomness propagating scheme
accordingly. We furthermore notice that since the matrix B in the public key
is uniformly sampled, it has a

√
m-trapdoor with all but negligible probabil-

ity. Since the scheme is bootstrappable, it can be extended to support depth L
computation for any predefined polynomial L. We will set a proper value for L
later.

As explained, we use this scheme as KEM (key encapsulator) for a QOTP.
As in previous works, homomorphically evaluating a BQP circuit is done gate by
gate (or rather layer by layer). Clifford gates are evaluated as in [11]. To evaluate
CNOT with classical control, we recall that by Corollary 3.7, and our definition
of q, the structure of the matrices A,C allows to apply Theorem 4.1 to obtain
an output 2-bit register, along with the values cflip, cphase.

From this point and on, our outline is again similar to [20]. We note that the
values γflip, γphase can be recovered via a (classical) polynomial time process out
of cflip, cphase using (s, e,Rc, x) by computing the vectors sflip, sphase, evaluating
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the respective inner product and rounding to the nearest multiple of q/2. Since
we have encryptions of these values, we can set L to be large enough to allow us
to apply this process homomorphically, followed by bootstrapping the resulting
value, thus getting a bootstrapped KEM encryption of γflip, γphase. In other
words, we set L to be large enough so that the resulting scheme is bootstrappable
even after evaluating the quantum circuit.

This completes the proof. We can use Theorem 3.4 to bootstrap the result-
ing scheme to a leveled FHE of any desired depth, while still relying on the
same LWE assumption as the original scheme. Recalling Theorem 3.6, the LWE
parameters used imply hardness under the hardness of approximating SIVP to
within a factor of Õ(

√
nq) = poly(n). Alternatively, if we assume circular secu-

rity, we get a (non-leveled) FHE scheme. We will need to assume the circular
security of the randomness propagating scheme, i.e. of a scheme that also en-
crypts the randomness used to generate ciphertexts. Interestingly, as we mention
above, this assumption was already proposed in the literature for bootstrapping
LWE-based multi-key FHE schemes [8, 12,23].

5 Evaluating a Classically Controlled CNOT

In this section we prove Theorem 4.1 by providing a BQP algorithm, setting
parameters and a value for q and proving that the requirements of the theorem
are met.

5.1 The Algorithm

We define m′ = m+n dlog qe+ 2. The choice of parameters for the values σ, q is
described in Section 5.2 below. We recall that we use the term “δ-computing a
quantum state” to refer to computing a state that is within O(δ) trace distance
of the prescribed state.

1. We start with a superposition
∑
a,b αa,b|a, b〉 stored in a register we denote

by INP.
2. Use the algorithm from Section 2.7 to δ-compute the superposition

|ψ〉 =
1√

ρ σ√
2
(Zm+2)

∑
r̂∈Zm
y,µ∈Z

ρσ(r̂, y, µ)|r̂, y, µ〉 . (24)

Specifically, our choice of parameters will ensure that we generate a quantum

state which is supported only over Zm+2∩Hq/2m+2 but is within trace distance
O(δ) from the above.

3. We note that it is possible to δ-compute, for any vector v ∈ Znq , the super-
position

|ψv〉 =
1√

ρ σ√
2
(Λ⊥q (G,v))

∑
r∈Λ⊥q (G,v)

ρσ(r)|r〉 , (25)
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again we will show that we generate a superposition supported only over

Zndlog qe ∩Hq/2ndlog qe which is within trace distance O(δ) from the above.

For all a ∈ {0, 1} we define va = a ·
[

0
q/2

]
∈ Znq , and using the above we

δ-compute the superposition∑
a,b

αa,b|a, b〉 |ψva〉|ψ〉︸ ︷︷ ︸
register Ψ

. (26)

4. Let µ0 denote the least significant bit of µ (the last coordinate in the Ψ
register), we apply the transformation |a, b〉 → |a, b⊕ µ0〉 to the INP register.

5. Consider the (classical, deterministic) ciphertext randomization function

RandCTA,C(r̃) : Zm′ → Zndlog qe
q which is defined as follows. Parse r̃ as a

concatenation of r ∈ Zndlog qe, r̂ ∈ Zm, y, µ ∈ Z and compute

RandCTA,C(r̃) = Cr + Ar̂ +
[

0
1

]
y +

[
0
q/2

]
µ (mod q) . (27)

Apply RandCT to the register Ψ , and add the output to a new |0〉 register.
Measure the new register to obtain a value c′.

6. Apply q-ary Fourier Transform (see Section 2.6) over Zq to the register Ψ ,
and measure the result to obtain a value w. We note that since Ψ contains a
superposition which is supported over Zm′ ∩Hq/2m′ , the q-ary Fourier Trans-
form is indeed a unitary transformation.

7. Output the register INP, and the vectors cflip = c′ and cphase = w, relative
to sflip = [−s, 1] and

sphase = υ =

[
G−1( q2∆)

−Rc·G−1( q2∆)
0
−x

]
.

5.2 Parameters and Definitions

The following matrix D ∈ Z2n×m′
q , where m′ = m+n dlog qe+2, and the lattices

induced by it will play a central role in our analysis. This matrix is defined as
follows.

D =

[
G 0 0 0

C A 0
1

0
q/2

]
. (28)

The m′ − 1 columns of the following matrix are all in the lattice Λ⊥q (D):

T′ =


TG 0 0

−RcTG TB 0
0 −eTB 0
0 0 2

 ∈ Zm
′×(m′−1) , (29)

where TG ∈ Zndlog qe×ndlog qe is a
√
n dlog qe-trapdoor for G and TB ∈ Zm×m

is a
√
m-trapdoor for B. Note that we will never need to explicitly compute T′.

We furthermore notice that the columns of T′ are vectors in Λ⊥q (D) since

DT′ = 0 (mod q) . (30)
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An additional important vector is the offset vector:

υ =

[
G−1( q2∆)

−Rc·G−1( q2∆)
0
−x

]
, (31)

where ∆ =
[

0
1

]
∈ {0, 1}n (i.e. all zeros except the last coordinate). We note that

D · υ =

[
G 0 0 0

C A 0
1

0
q/2

]
·

[
G−1( q2∆)

−Rc·G−1( q2∆)
0
−x

]
=
[
q
2∆
0

]
. (32)

Finally we consider the row vector d∗ = [2eRc‖2e‖2‖0] (which we prove
below is the shortest vector in Spanq(D)).

Setting the Parameters. We let p = poly(n log q) denote a polynomial upper
bound on
max {‖T′‖, 10 · ‖υ‖, ‖d∗‖} (where ‖T′‖ refers to the maximal column norm),
and set

σ = p ·
√

2n log q +m′(log q + 1) + 2 log(4m′/δ) + 1 , (33)

finally we set q = 2 ·
⌈
10 · p · σ ·

√
m′ + log(1/δ)

⌉
, it will be useful for us that q

is even.
One might be worried about circularity of this definition, since p, σ are used

to determine the value of q but depend themselves on log q. Indeed this situation
frequently occurs when choosing parameters for LWE-based constructions, but
it is easily resolved since the dependence of p, σ on q is logarithmic. Specifically,
upper bound log q in the expressions for p, σ by, e.g., log2 n, and compute the
value of q that is implied by these values of p, σ. The result will be q = poly(n)
which indeed justifies the bound log q < log2 n.

Properties of Lattices Induced by D. We prove a few properties that will
be useful down the line.

We let p denote an upper bound on the `2 norm of the columns of T′, note
that p = poly(n log q) for a suitable polynomial. We now invoke Corollary 2.11
to conclude that Spanq(D) has at most a single nonzero vector of norm < q/p
(up to multiplication by scalar). The next claim identifies the shortest vector in
Spanq(D).

Claim 5.1. The shortest vector in Spanq(D) is the vector d∗ = [2eRc‖2e‖2‖0]
(where d∗ = t∗D (mod q) for t∗ = 2 · [−x(s,−1)‖(s,−1)]). All vectors in
Spanq(D) that are not integer multiples of d∗ are of length at least q/p.

Proof. Since T′ contains (m′ − 1) vectors in Λ⊥q (D) of length at most p, Corol-
lary 2.11 guarantees that Spanq(D) has at most a single nonzero vector of norm
< q/p (up to integer multiplications). We next verify that the shortest of these
vectors is d∗.

We can verify that indeed d∗ ∈ Spanq(D) since d∗ = t∗D (mod q). Further-
more, ‖d∗‖ ≤ p < q/p, and therefore either d∗ is the shortest vector, or is an
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integer multiple of a shorter vector. However, d∗ is only divisible by 2 (recall
that Spanq(D) is an integer lattice), and the vector d∗/2 = [eRc‖e‖1‖0] is not
in Spanq(D) since q|2. �

For the next claim we recall the definition of loginf-uniformity in Defini-
tion 2.1 and its properties from Lemma 2.2.

Claim 5.2. The sequence
{
ρσ̃(Λ⊥q (D, v̂))

}
v̂∈Z2n

q
is O(δ)-loginf uniform for any

σ̃ ≥ p ·
√

1
π log(4m′/δ).

Proof. Denote h = [eRc‖e‖1‖0] and notice that h is orthogonal to all columns
of T′. By definition it holds that ρσ̃(Λ⊥q (D, v̂)) =

∑
r̃∈Λ⊥q (D,v̂) ρσ̃(r̃), and we

can decompose each element in this sum to a component parallel to h and one
orthogonal to h:

ρσ̃(Λ⊥q (D, v̂)) =
∑

r̃∈Λ⊥q (D,v̂)

ρσ̃(r̃)

=
∑
k∈Z

ρσ̃(k/ ‖h‖)
∑

r̃∈Λ⊥q (D,v̂)

hr̃=k

ρσ̃(r̃− kh/ ‖h‖2) .

Fix a value of k ∈ Z and consider the sum
∑
ρσ̃(r̃− kh/ ‖h‖2) ranging over all

r̃ ∈ Λ⊥q (D, v̂) for which hr̃ = k. Consider the lattice Λ̂D containing all vectors in

Λ⊥q (D) which are orthogonal to h. Then the set of vectors S = {(r̃−kh/ ‖h‖2) :

r̃ ∈ Λ⊥q (D, v̂),hr̃ = k} is exactly a coset of Λ̂D, and furthermore is supported
only over the hyperplane that is orthogonal to h.

Since T′ is an p-trapdoor for Λ̂D (for p defined above), then ηδ(Λ̂D) ≤
p ·
√

1
π log(4(m′ − 1)/δ) ≤ σ̃. Lemma 2.9 implies therefore that the sequence

{ρσ̃(Λ̂D + d)}d⊥h is O(δ)-loginf uniform. Since the decomposition above shows
that ρσ̃(Λ⊥q (D, v̂)) is a linear combination of elements from the above sequence,
applying Lemma 2.2 concludes the proof. �

5.3 Analysis

We now prove that the algorithm described above indeed has the properties
required in the theorem statement.

Before Ciphertext Randomization. Recall that in the end of Step 3 of the
algorithm, we δ-compute the superposition∑

a,b

αa,b|a, b〉|ψva〉|ψ〉 , (34)

which can also be written as∑
a,b

αa,b|a, b〉 1√
ρ σ√

2
(Zm+2
q )ρ σ√

2
(Λ⊥q (G,va))

∑
r,r̂,y,µ

ρσ(r, r̂, y, µ)|r, r̂, y, µ〉 , (35)
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where the sum is over all r ∈ Λ⊥q (G,va), r̂ ∈ Zm, y, µ ∈ Z.

Recall that by Lemma 2.8, since G has a O(1)-trapdoor then ηδ(Λ
⊥
q (G)) ≤

O(log(n log q/δ)). It follows by Lemma 2.9 that the set
{
ρ σ√

2
(Λ⊥q (G,v))

}
v∈Znq

is δ-loginf uniform. Therefore, the above is within O(δ) trace distance of the
superposition

1√
ρ σ√

2
(Λ⊥q (G)×Zm+2)

∑
a,b

αa,b|a, b〉
∑

r,r̂,y,µ

ρσ(r, r̂, y, µ)|r, r̂, y, µ〉 , (36)

with r, r̂, y, µ as before.
After applying Step 4, the resulting superposition is thus (ignoring global

normalization) ∑
a,b

αa,b
∑

r,r̂,y,µ

ρσ(r, r̂, y, µ)|a, b⊕ µ0〉|r, r̂, y, µ〉 . (37)

Ciphertext Randomization. In Step 5 we compute∑
a,b

αa,b
∑

r,r̂,y,µ

ρσ(r, r̂, y, µ)|a, b⊕ µ0〉|r, r̂, y, µ〉 |RandCTA,C(r, r̂, y, µ)〉︸ ︷︷ ︸
c′

, (38)

and measure c′. We prove next that with all but O(δ) probability, c′ is a cipher-
text that decrypts to the value µ′ = µ0 ⊕ ax.

Claim 5.3. It holds that

|
[
(−s, 1) · c′ − q

2µ
′]
q
| < q/10 (39)

with probability 1−O(δ).

Proof. Consider the register holding c′ before it is measured, we have (recalling
that r is only supported over values where Gr = va (mod q) and that q is even)

c′ = Cr + Ar̂ +
[

0
1

]
y +

[
0
q/2

]
µ (mod q)

= ARcr + Ar̂ +
[

0
1

]
y +

[
0
q/2

]
(µ+ ax) (mod q)

= A(Rcr + r̂) +
[

0
1

]
y +

[
0
q/2

]
(µ⊕ ax) (mod q) .

Recalling that (−s, 1)A = e, we get that for c′ as above

(−s, 1)c′ = (eRcr + er̂ + y) + q
2µ
′ (mod q)

= hr̃ + q
2µ
′ (mod q) ,

where the vector h = [eRc‖e‖1‖0] (which also equals d∗/2) is as defined in
Claim 5.2. By definition of p we have that ‖h‖ ≤ p/2.

Therefore, it holds that in order for c′ to not comply with Eq. (39), it must
be the case that |hr̃| > q/10. Due to the bound on the norm of h, this means
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that it must be the case that ‖r̃‖ > q/(5p) ≥ σ
√
m′ + log(1/δ). The probability

that this happens, by Lemma 2.10, is at most

ρ σ√
2

(
Λ⊥q (G)× Zm+2 \ Bq/(5p)m′

)
ρ σ√

2
(Λ⊥q (G)× Zm+2)

≤ δ , (40)

and the claim follows. �

We note that by definition after measuring c′, it holds that r, r̂, y, µ are only
supported over values for which

D ·
[ r

r̂
y
µ

]
︸︷︷︸

denote r̃

= v̂a =
[

va
c′

]
(mod q) , (41)

where D is as defined in Eq. (28).
Namely, up to this point, we δ-computed the superposition∑

a,b

αa,b√
ρ σ√

2
(Λ⊥q (D, v̂a))

|a, b⊕ ax⊕ µ′〉
∑

r̃∈Λ⊥q (D,v̂a)

ρσ(r̃)|r̃〉 , (42)

where we note that since we defined µ′ = ax ⊕ µ0 then it holds that b ⊕ µ0 =
b⊕ ax⊕ µ′.
Fourier Transform and Measurement. From Claim 5.2 we deduce that we
can remove the v̂a-dependent normalization factor from Eq. (42) at the cost
of O(δ) trace distance, so we conclude that at this point, before Step 6 of the
algorithm, we δ-computed∑

a,b

αa,b|a, b⊕ ax⊕ µ′〉
∑

r̃∈Λ⊥q (D,v̂a)

ρσ(r̃)|r̃〉

︸ ︷︷ ︸
denote |φa〉

. (43)

In Step 6, we apply a q-ary Fourier transform on the register holding |r̃〉. We

recall that this register is actually supported only over Zm′ ∩Hq/2m′ , and therefore
we can perform q-ary Fourier Transform as a unitary operation. Since the state
of the register is O(δ)-close in trace distance to the superposition in Eq. (43),
the output of this operation will be O(δ) close in trace distance to the q-ary
Fourier transform of Eq. (43). Formally, the q-ary Fourier transform of |φa〉 is

|φ̂a〉 =
∑

w∈Zm′q

|w〉
∑

r̃∈Λ⊥q (D,v̂a)

ρσ(r̃)e−
2πi
q 〈w,r̃〉 . (44)

By Corollary 2.12 it holds that∑
r̃∈Λ⊥q (D,v̂a)

ρσ(r̃)e−
2πi
q 〈w,r̃〉 = σm

′

q2n ·
∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi
q 〈t,v̂a〉 , (45)
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where we recall the definition of periodic Gaussian from Section 2.2: ρσ′,q(x) =
ρσ′(x+ qZ). Therefore it holds that

|φ̂a〉 = σm
′

q2n ·
∑

w∈Zm′q

|w〉
∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi
q 〈t,v̂a〉 (46)

= σm
′

q2n ·
∑

w∈Zm′q

|w〉
∑

t∈Z2n
q

ρq/σ,q((w − dw) + tD) · e
2πi
q 〈t−tw,v̂a〉 . (47)

For all w, let dw denote the vector in Spanq(D) that is closest to w and let
tw ∈ Z2n

q be s.t. twD = dw (mod q). We let W denote the set of vectors that
are close to Spanq(D)

W = {w ∈ Zm
′

q : ‖w − dw‖ ≤ q/p} . (48)

We define

|φ̂′a〉 = σm
′

q2n

∑
w∈W

|w〉
∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q 〈kt

∗−tw,v̂a〉 . (49)

Claim 5.4. The trace distance between (the normalized versions of) the super-

positions |φ̂a〉 and |φ̂′a〉 is O(δ).

Proof. We start by bounding the norm of the difference ‖φ̂a − φ̂′a‖2. We first

consider w ∈ Zm′q \W . Then in particular it holds that
∥∥∥[w + d]q

∥∥∥ ≥ q/p for all

d ∈ Spanq(D) and therefore∣∣∣∣∣∣
∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi
q 〈t,v̂a〉

∣∣∣∣∣∣ ≤ q2n · 2m′ · ρq/σ(q/p)

(1−m′ρq/σ(q))
(50)

= 22n log q+m′ · e−π(σ/p)2

1−m′e−πσ2 . (51)

Since we chose σ = p ·
√

2n log q +m′(log q + 1) + 2 log(4m′/δ) + 1 then in par-

ticular m′e−πσ
2

< 1/2 and 22n log q+m′ ·e−π(σ/p)2 < δ ·q−m′/2 which implies that
the above is bounded by δ · q−m′ .

Now let us consider w ∈W , the absolute value of the difference between φ̂a,
φ̂′a at w is at most ∑

{t∈Z2n
q :

t6=kt∗ mod q}

ρq/σ,q((w − dw) + tD) . (52)

If t 6= kt∗ (mod q) then [tD]q ≥ q/p. This is since d∗ = [t∗D]q is the only
vector in Spanq(D) of length < q/p, up to integer multiples. Since ‖[x]q‖ ≤ ‖x‖
it follows that for all x, if ‖[x]q‖ < q/p then [x]q = [kd∗]q for some k ∈ Zq.
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By definition of W we have ‖w − dw‖ ≤ q/p and therefore by triangle in-
equality ‖[(w − dw) + tD]q‖ ≤ 2q/p. Using a similar argument to above we get

∑
{t∈Z2n

q :

t6=kt∗ mod q}

ρq/σ,q((w − dw) + tD) ≤
q2n · 2m′ · ρq/σ(2q/p)

(1−m′ρq/σ(q))
< δ · q−m

′
. (53)

It follows that:

‖φ̂a − φ̂′a‖2 ≤
(
σm
′

q2n

)2

qm
′
· (δ · q−m

′
)2 <

(
σm
′

q2n

)2

· δ . (54)

We now lower bound ‖φ̂a‖ by simply looking at w = 0:

‖φ̂a‖ ≥
∑

r̃∈Λ⊥q (D,v̂a)∩Hq/2
m′

ρσ,q(r̃) =
∑

r̃∈Λ⊥q (D,v̂a)

ρσ(r̃) , (55)

however by Claim 5.2, this is lower bounded by

(1−O(δ))ρσ(Λ⊥q (D)) = (1−O(δ))σ
m′

q2n ρq/σ(Spanq(D)) ≥ (1−O(δ))σ
m′

q2n .

Where the first equality follows from Corollary 2.12. The claim thus follows. �

We conclude that up to this point we δ-computed the superposition∑
a,b

αa,b|a, b⊕ ax⊕ µ′〉
∑

w∈W
|w〉

∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q 〈kt

∗−tw,v̂a〉 .

(56)

The next step is to measure the register |w〉. Since w ∈ W it holds that
‖w − dw‖ < q/p. We are left with the superposition∑

a,b

αa,b|a, b⊕ ax⊕ µ′〉
∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q 〈kt

∗−tw,v̂a〉 . (57)

We recall that v̂a can be written as v̂a = v̂0+a· q2 ·
[

∆
0

]
for ∆ =

[
0
1

]
∈ {0, 1}n.

Let us now analyze the term 〈kt∗ − tw, v̂a〉 (mod q) that is the exponent of the
above expression (the modq comes from this term bing in the exponent of the
q-th root of unity). We recall that t∗ = 2 · [−x(s,−1)‖(s,−1)] is a multiple
of 2, and therefore q

2t∗ = 0 (mod q). Let us also denote tw = [t1‖t2], where
t1, t2 ∈ Znq . We get that

〈kt∗ − tw, v̂a〉 = 〈kt∗ − tw, v̂0〉+ a · q
2
〈kt∗ − tw,

[
∆
0

]
〉 (58)

= 〈kt∗ − tw, v̂0〉 − a ·
q

2
〈t1,∆〉 (mod q) (59)

and plugging into the superposition above we have∑
a,b

αa,b|a, b⊕ ax⊕ µ′〉
∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q 〈kt

∗−tw,v̂0〉 · (−1)a·〈t1,∆〉 .
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Rearranging, we get that the above is equal to

∑
a,b

αa,b(−1)a·〈t1,∆〉|a, b⊕ ax⊕ µ′〉 ·

∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q 〈kt

∗−tw,v̂0〉


︸ ︷︷ ︸

Constant scaling factor, independent of a, b.

.

We can thus remove the constant scaling factor and remain with∑
a,b

αa,b(−1)a·〈t1,∆〉|a, b⊕ ax⊕ µ′〉 . (60)

It is left to be shown that 〈t1,∆〉 (mod 2) is efficiently recoverable given
Rc, x. We recall that we can write w = twD + ew (mod q) with ‖ew‖ ≤ q/p.
Next, we consider the vector

υ =

[
G−1( q2∆)

−Rc·G−1( q2∆)
0
−x

]
, (61)

and note that

D · υ =

[
G 0 0 0

C A 0
1

0
q/2

]
·

[
G−1( q2∆)

−Rc·G−1( q2∆)
0
−x

]
=
[
q
2∆
0

]
, (62)

which implies that

w · υ = (twD + ew) · υ = twDυ + ewυ = q
2 〈t1,∆〉+ ewυ (mod q) , (63)

and since |ewυ| ≤ ‖ew‖ · ‖υ‖ ≤ q/p · (p/10) ≤ q/10, the theorem follows.
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