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Abstract. We present new constructions of multi-input functional en-
cryption (MIFE) schemes for the inner-product functionality that im-
prove the state of the art solution of Abdalla et al. (Eurocrypt 2017) in
two main directions.
First, we put forward a novel methodology to convert single-input func-
tional encryption for inner products into multi-input schemes for the
same functionality. Our transformation is surprisingly simple, general
and efficient. In particular, it does not require pairings and it can be in-
stantiated with all known single-input schemes. This leads to two main
advances. First, we enlarge the set of assumptions this primitive can be
based on, notably, obtaining new MIFEs for inner products from plain
DDH, LWE, and Decisional Composite Residuosity. Second, we obtain
the first MIFE schemes from standard assumptions where decryption
works efficiently even for messages of super-polynomial size.
Our second main contribution is the first function-hiding MIFE scheme
for inner products based on standard assumptions. To this end, we show
how to extend the original, pairing-based, MIFE by Abdalla et al. in
order to make it function hiding, thus obtaining a function-hiding MIFE
from the MDDH assumption.

1 Introduction
Functional Encryption (FE) [15,14,7] is an emerging cryptographic paradigm
that allows fine-grained access control over encrypted data. Functional encryp-
tion schemes come equipped with a key generation mechanism that allows the
owner of a master secret key to generate decryption keys that have a somehow re-
stricted capability. Namely, each decryption key skf is associated with a function
f and using skf to decrypt a ciphertext Enc(x) allows for recovering f(x), with
the guarantee that no more information about x is revealed. The basic notion of
functional encryption considers functionalities where all the inputs are provided
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and encrypted by a single party. The more general case of multi-input function-
alities is captured by the notion of multi-input functional encryption (MIFE, for
short) [11]. Informally, this notion can be thought of as an FE scheme where
n encryption slots are explicitly given, in the sense that a user who is assigned
the i-th slot can, independently, create a ciphertext Enc(xi) from his own plain-
text xi. Given ciphertexts Enc(x1), . . . ,Enc(xn), one can use a secret key skf
to retrieve f(x1, . . . , xn), similarly to the basic FE notion. This multi-input ca-
pability makes MIFE particularly well suited for many real life scenarios (such
as data mining over encrypted data or multi-client delegation of computation)
where the (encrypted) data may come from different and unrelated sources.

The security requirement for both FE and MIFE imposes that decryption
keys should be collusion resistant. This means that a group of users, holding
different decryption keys, should not be able to gain information about the en-
crypted messages, beyond the union of what they can individually learn. More
precisely, the standard notion of security for functional encryption is indistin-
guishability. Informally, this states that an adversary that obtains the secret keys
corresponding to functions f1, . . . , fn should not be able to decide which of the
challenge messages x0, x1 was encrypted, as long as fi(x0) = fi(x1) for all i.
This indistinguishability notion has been put forward in [7,14] and it has been
shown inadequate for certain cases (see [7,14] for details). They also proposed
an alternative simulation-based security notion which is also problematic as, for
instance, it cannot be satisfied in general.

As an additional security property, functional encryption schemes might also
be required to guarantee so-called function hiding. Intuitively, this means that
a secret key skf should not reveal information about the function f it encodes,
beyond what is implicitly leaked by f(x). Slightly more in detail, in the indis-
tinguishability setting, this is formalized by imposing that the adversary should

not be able to decide for which of the challenge functions f
(0)
i , f

(1)
i it is holding

secret keys, as long as as f
(0)
i (x0) = f

(1)
i (x1) for all i. Over the last few years,

functional encryption has attracted a lot of interest, both in its basic and in its
multi-input incarnations. Known results can be broadly categorized as focusing
on (1) feasibility results for general functionalities, and on (2) concrete, efficient
realizations for restricted functionalities of practical interest.

For the specific case of MIFE, which is the focus of this paper, construc-
tions of the first type [11,6,5,8] all rely on quite unstable assumptions, such as
indistinguishability obfuscation or multilinear maps6. The only known construc-
tion of the second category has been recently proposed by Abdalla et al. in [3].
There, they propose a (secret-key) MIFE scheme for the inner product function-
ality that relies on the standard k-linear assumption in (prime-order) bilinear
groups7. Remarkably, their scheme allows for unbounded collusions and supports

6Here we only consider schemes where unbounded collusions are allowed. See [8] and
references therein for the bounded collusions case.

7As discussed in detail in [3], we stress that in the public key setting, MIFE for
inner products is both easy to achieve (from its single-input counterpart) and of very
limited interest, because of its inherent leakage.
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any (polynomially bounded) number of encryption slots. On the negative side,
as in previous discrete-log-based constructions of functional inner-product en-
cryption schemes, it employs an inefficient decryption procedure that requires to
extract discrete logarithms and thus imposes serious restrictions on the size of
supported messages. Moreover, the scheme is not function hiding as decryption
requires the function f to be provided explicitly in the clear.

1.1 Our Contributions

In this paper we propose new constructions of multi-input functional encryption
schemes for the inner product functionality that address the aforementioned
shortcomings of the state-of-the-art solution of Abdalla et al. [3].

MIFE for inner products without pairings. Our first contribution consists
of (secret-key) MIFE schemes for inner products based on a variety of assump-
tions, notably without the need of bilinear maps, and where decryption works
efficiently, even for messages of super-polynomial size. We achieve this result
by proposing a generic construction of MIFE from any single-input FE (for in-
ner products) in which the encryption algorithm is linearly-homomorphic. Our
transformation is surprisingly simple, general and efficient. In particular, it does
not require pairings (as in the case of [3]), and it can be instantiated with all
known single-input functional encryption schemes (e.g., [1,2,4]). This allows us
to obtain new MIFE for inner products from plain DDH, composite residuosity,
and LWE. Beyond the obvious advantage of enlarging the set of assumptions on
which MIFE can be based, this result yields schemes that can be used with a
much larger message space. Indeed, dropping the bilinear groups requirement al-
lows us to employ schemes where the decryption time is polynomial, rather than
exponential, in the message bit size. From a more theoretical perspective, our
results also show that, contrary to what was previously conjectured [3], MIFE
for inner product does not need any (qualitatively) stronger assumption than
their single-input counterpart.

Our solution, in more detail. To better describe our solution, let us first
explain the basic ideas behind Abdalla et al.’s scheme [3]. Informally, the lat-
ter builds upon a clever two-step decryption blueprint. The ciphertexts ct1 =
Enc(x1), . . . , ctn = Enc(xn) (corresponding to slots 1, . . . , n) are all created using
different instances of a single-input FE. Decryption is performed in two stages.
One first decrypts each single cti separately using the secret key skyi of the un-
derlying single-input FE, and then the outputs of these decryptions are added
up to get the final result.

The main technical challenge of this approach is that the stage one of the
above decryption algorithm leaks information on each partial inner product
〈xi,yi〉. To avoid this leakage, their idea is to let source i encrypt its plain-
text vector xi augmented with some fixed (random) value ui, which is part
of the secret key. Moreover, skyi are built by running the single-input FE key
generation algorithm on input yi||r, i.e., the vector yi augmented with fresh
randomness r.
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By these modifications, and skipping many technical details, stage-one de-
cryption then consists of using pairings to compute, in GT , the values8 [〈xi,yi〉+
uir]T for every slot i. From these quantities, the result [〈x,y〉]T is obtained as

n∏
i=1

[〈xi,yi〉+ uir]T · [−(

n∑
i=1

ui)r]T

which can be easily computed if [−(
∑n
i=1 ui)r]T is included in the secret key.

Intuitively, the scheme is secure as the quantities [uir]T are all pseudo random
(under the DDH assumption) and thus hide all the partial information [〈xi,yi〉+
uir]T may leak. Notice that, in order for this argument to go through, it is crucial
that the quantities [〈xi,yi〉 + uir]T are all encoded in the exponent, and thus
decoding is possible only for small norm exponents. Furthermore, this technique
seems to inherently require pairings, as both ui and r have to remain hidden
while allowing to compute an encoding of their product at decryption time. This
is why the possibility of a scheme without pairings was considered as “quite
surprising” in [3].

We overcome these difficulties via a new FE to MIFE transform, which man-
ages to avoid leakage in a much simpler and efficient way. Our transformation
works in two steps. First, we consider a simplified scheme where only one ci-
phertext query is allowed and messages live in the ring ZL, for some integer L.
In this setting, we build the following multi-input scheme. For each slot i the
(master) secret key for slot i consists of one random vector ui ∈ ZmL . Encrypting
xi merely consists in computing ci = xi+ui mod L. The secret key for function
y = (y1, . . . ,yn), is just zy =

∑n
i=1〈ui,yi〉 mod L. To decrypt, one computes

〈x,y〉 mod L = 〈(c1, . . . , cn),y〉 − zy mod L

Security comes from the fact that, if only one ciphertext query is allowed, the
above can be seen as the functional encryption equivalent of the one-time pad9.

Next, to guarantee security in the more challenging setting where many ci-
phertext queries are allowed, we just add a layer of (functional) encryption on
top of the above one-time encryption. More specifically, we encrypt each ci using
a FE (supporting inner products) that is both linearly homomorphic and whose
message space is compatible with L. So, given ciphertexts {cti = Enc(ci)} and
secret key sky = ({skyi}i, zy), one can first obtain {〈ci,yi〉 = Dec(cti, skyi)},
and then extract the result as 〈x,y〉 =

∑n
i=1〈ci,yi〉 − 〈u,y〉.

Our transformation actually comes in two flavors: the first one addresses the
case where the underlying FE computes inner products over some finite ring ZL;
the second one instead considers FE schemes that compute bounded-norm inner
products over the integers. In both cases the transformations are generic enough

8Here we implicitly adopt the, by now standard, bracket notation from [10].
9We remark that a similar information theoretic construction was put forward by

Wee in [16], as a warm-up scheme towards an FE for inner products achieving simula-
tion security.
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to be instantiated with known single-input FE schemes for inner products. This
gives us new MIFE relying on plain DDH [1], LWE [4] and Composite residuosity
[4,2]. Moreover, the proposed transform is security-preserving in the sense that,
if the underlying FE achieves adaptive security, so does our resulting MIFE.

Function-Hiding MIFE for inner products. Our second contribution are
new MIFE schemes for inner products that achieve function hiding. Our con-
structions build on the pairing-based solution from [3] and, as such, they also
rely on pairings. More precisely, we propose transformations that, starting from
the MIFE from [3], build function hiding MIFEs using single input FE for inner
products as additional building block. Ours transforms are generic with respect
to this latter component, in the sense that they can be instantiated using any
single input FE satisfying some natural additional requirements (details of which
are given in Section 4).

Our methods build from the two-layer encryption technique recently devel-
oped by Lin [12] to generically achieve function hiding in the context of (single
input) FE for inner products. Intuitively, Lin’s idea consists in doing similar
operations both at encryption and at key derivation time. Starting from two
independent instances of the underlying FE, an “inner” one and an “outer” one,
the idea is to encrypt the plaintext x in two steps. One first uses the “inner”
FE to compute ct1 = Enc(msk1,x) and then “extracts” the key corresponding
to ct1, i.e., ct2 = KeyGen(msk2, ct1). Key derivation is done similarly, one first
computes sk1 = KeyGen(msk1,y) and then encrypts sk1 using the outer scheme,
i.e., sk2 = Enc(msk2, sk1).

If one encodes ciphertexts in G1 and secret keys in G2, then one can use pair-
ings to compute an encoding, in GT , of [〈ct2, sk2〉]T . Since decryption essentially
performs inner product, the latter computation actually decrypts also the inner
ct1 component using secret key sk1, thus yielding an encoding of 〈x,y〉. More-
over, since now y is encrypted, the FE security also provides function hiding10.

An obvious drawback of Lin’s transformation is that, when applied generi-
cally, it would induce an extra-level of multilinearity in the process. This means
that, starting from a pairing-free FE for inner products, one ends up with a
scheme that is function hiding but also pairing-based.

We propose similar two-layer encryption techniques that do not, inherently,
induce extra levels of multi-linearity with respect to those of the underlying prim-
itives. Our transforms achieve this by using the MIFE from [3] as inner scheme
and, several instances of, a single input FE, one for each encryption slot, as outer
schemes. In particular, by carefully exploiting the specific algebraic properties
of the MIFE, we manage to achieve function hiding from the Matrix Decisional
Diffie Hellman assumption over standard bilinear groups (i.e., without resorting
to multi-linear maps). Specifically, our schemes come in two flavors: a simpler
one for selective security and a more convoluted one achieving adaptive security.
A high level overview of our technique appears in Section 4. The MIFE schemes

10Actually the transform sketched here only manages to guarantee a weaker form of
function hiding. However this can be generically turned into standard function hiding
[13], as described in the full version of the paper.
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from Lin [12] are selectively secure and function-hiding, but are based on multi-
linear maps (d−1 slots require a multilinear map of degree d). In comparison, our
schemes support a polynomial number of inputs and achieve adaptive-security,
while using only pairings and while being based only on standard assumptions.

Generality of our approach. As mentioned above, our function-hiding
transforms are not entirely generic as they impose restrictions on the underlying
MIFE. These restrictions, while compatible with the pairing-based realization
from [3], do not cope well with our newly constructed MIFEs without pairings.
Very informally, this is due to the fact that our transform relies on the two-step
decryption blueprint in which one learns [〈xi,yi〉 + zi], and each zi is “suffi-
ciently” random to guarantee security in the MIFE security experiment. Specifi-
cally, in Abdalla et al.’s scheme zi = uir whereas in our new scheme zi = 〈ui,yi〉.
While the latter value is sufficiently random in the MIFE indistinguishability ex-
periment, this is no longer the case in the function-hiding experiment, where the
adversary asks for pairs of keys (y0,y1), and zi = 〈ui,yβi 〉 may actually leak
information about which of the two keys was chosen (i.e. information about the
value of the bit β). With a different interpretation, if one sees [〈xi,yi〉 + zi] as
a secret sharing of 〈x,y〉, then in our new scheme this secret sharing depends
on the function y whereas in [3] this is function independent and more suitable
for function-hiding. We believe that coming up with more powerful transforms,
capable of exploiting the potential of our efficient MIFEs, is a very natural and
interesting open problem.

Concurrent work on function-hiding. Concurrently and independently of
our work, Datta et al. [9] proposed a multi-input function-hiding scheme for inner
products. Their construction uses the framework of dual pairing vector spaces
and require the use of pairings. They achieve slightly shorter ciphertexts and
decryption keys (ciphertexts are shorter by 2 group elements, while decryption
keys require 2n+1 less group elements). However, this comes at the expense of
a larger master secret key, which contains 4n(m2 − 1) more group elements (a
quadratic blow-up in m).

Interestingly, Datta et al. [9] also provide a technique based on pseudorandom
functions to extend their multi-input function-hiding scheme to an unbounded
number of slots. Although their techniques also appear to be applicable to our
schemes, hence capable of extending both the pairing-free and the pairing-based
constructions to the unbounded setting, we leave it as future work.

2 Preliminaries

Notation. We denote with λ ∈ N a security parameter. A probabilistic polyno-
mial time (PPT) algorithm A is a randomized algorithm for which there exists a
polynomial p(·) such that for every input x the running time of A(x) is bounded
by p(|x|). We say that a function ε : N → R+ is negligible if for every positive
polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0: ε(λ) < 1/p(λ). If
S is a set, x ←r S denotes the process of selecting x uniformly at random in
S. If A is a probabilistic algorithm, y ←r A(·) denotes the process of running
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A on some appropriate input and assigning its output to y. For a positive in-
teger n, we denote by [n] the set {1, . . . , n}. We denote vectors x = (xi) and
matrices A = (ai,j) in bold. For a set S (resp. vector x) |S| (resp. |x|) denotes
its cardinality (resp. number of entries). Also, given two vectors x and x′ we
denote by x‖x′ their concatenation. By ≡, we denote the equality of statistical
distributions, and for any ε > 0, we denote by ≈ε the ε-statistical difference of
two distributions.

2.1 Definitions for Multi-Input Functional Encryption

In this section we recall the definitions of multi-input functional encryption [11]
specialized to the private-key setting, as this is the one relevant for our construc-
tions.

Definition 1 (Multi-input Function Encryption). Let F = {Fn}n∈N be an
ensemble where each Fn is a family of n-ary functions. A function f ∈ Fn is
defined as follows f : X1 × . . . × Xn → Y. A multi-input functional encryption
scheme MIFE for F consists of the following algorithms:

– Setup(1λ,Fn) takes as input the security parameter λ and a description of
Fn ∈ F , and outputs a master public key mpk11 and a master secret key
msk. The master public key mpk is assumed to be part of the input of all the
remaining algorithms.

– Enc(msk, i, xi) takes as input the master secret key msk, an index i ∈ [n], and
a message xi ∈ Xi, and it outputs a ciphertext ct. Each ciphertext is assumed
to be associated with an index i denoting for which slot this ciphertext can
be used for. When n = 1, the input i is omitted.

– KeyGen(msk, f) takes as input the master secret key msk and a function
f ∈ Fn, and it outputs a decryption key skf .

– Dec(skf , ct1, . . . , ctn) takes as input a decryption key skf for function f and
n ciphertexts, and it outputs a value y ∈ Y.

A scheme MIFE as defined above is correct if for all n ∈ N, f ∈ Fn and all
xi ∈ Xi for 1 ≤ i ≤ n, we have

Pr

[
(mpk,msk)← Setup(1λ,Fn); skf ← KeyGen(msk, f);

Dec(skf ,Enc(msk, 1, x1), . . . ,Enc(msk, n, xn)) = f(x1, . . . , xn)

]
= 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.

Security notions. Here we recall the definitions of security for multi-input
functional encryption. We give both one-time and many-time indistinguishability-
based security definitions. Namely, we consider several security notions denoted
xx-AD-IND and xx-SEL-IND, where: xx ∈ {one,many}. We also give simulation-
based security definitions in the full version of the paper.

11In the private key setting, we think of mpk as some public parameters common to
all algorithms.
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Definition 2 (xx-AD-IND-secure MIFE). For every multi-input functional
encryption MIFE for F , every stateful adversary A, every security parameter
λ ∈ N, and every xx ∈ {one,many}, we define the following experiments for
β ∈ {0, 1}:

Experiment xx-AD-INDMIFEβ (1λ,A):

(mpk,msk)← Setup(1λ,Fn)
α← AKeyGen(msk,·),Enc(·,·,·) (mpk)
Output: α

where Enc is an oracle that on input (i, x0
i , x

1
i ) outputs Enc(msk, i, xβi ). Also,

A is restricted to only make queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xjn,0n ) = f(xj1,11 , . . . , xjn,1n )

for all j1, . . . , jn ∈ [Q1]×· · ·× [Qn], where for all i ∈ [n], Qi denotes the number
of encryption queries for input slot i. We denote by Qf the number of key queries.
Note that w.l.o.g. (as shown in [3, Lemma 3]), we can assume that for all i ∈ [n],
Qi > 0. When xx = one, we also require that A queries Enc(i, ·, ·) once per slot,
namely that Qi = 1, for all i ∈ [n].

A private-key multi-input functional encryptionMIFE for F is xx-AD-IND-
secure if every PPT adversary A has advantage negligible in λ, where the ad-
vantage is defined as:

Advxx-AD-IND
MIFE (λ,A) =∣∣Pr
[
xx-AD-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-AD-INDMIFE1 (1λ,A) = 1

]∣∣
Remark 1 (winning condition). The winning condition may not always efficiently
checkable because of the combinatorial explosion in the restrictions on the queries.

Definition 3 (xx-SEL-IND-secure MIFE). For every multi-input functional
encryption MIFE for F , every stateful adversary A, every security parameter
λ ∈ N, and every xx ∈ {one,many}, we define the following experiments for
β ∈ {0, 1}:

Experiment xx-SEL-INDMIFEβ (1λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)

ctji := Enc(msk, xj,βi )

α← AKeyGen(msk,·)
(
mpk, {ctji}i∈[n],j∈[Qi]

)
Output: α

where A is restricted to only make queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xjn,0n ) = f(xj1,11 , . . . , xjn,1n )
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for all j1, . . . , jn ∈ [Q1]×· · ·× [Qn]. When xx = one, we also require that Qi = 1,
for all i ∈ [n].

A MIFE for F is xx-SEL-IND-secure if every PPT adversary A has negli-
gible advantage in λ, where the advantage is defined as:

Advxx-SEL-IND
MIFE,A (λ) =∣∣Pr
[
xx-SEL-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-SEL-INDMIFE1 (1λ,A) = 1

]∣∣.
Zero vs multiple queries in the private-key setting. A nice feature en-
joyed by all the schemes in Section 3 is that the owner of a decryption key sky
associated with the vector y = y1‖ · · · ‖yn does not need to know a specific value
cti of the ciphertext vector ct = (ct1, . . . , ctn) in order to decrypt ct if yi = 0.
In other words, Qi can be 0 whenever yi = 0. In this case, the adversary is only
allowed to obtain a secret key sky for a vector y satisfying the condition∑

i∈I
〈xj,0i ,yi〉 =

∑
i∈I
〈xj,1i ,yi〉,

for all queries j ∈ [Qi], where I ⊆ [n] denotes the set of slots for which the
adversary made at least one query to Enc, that is, for which Qi > 0. Though we
believe this feature can be useful in practice (for instance, if one of the encrypting
parties decides to stop collaborating), certain applications may require at least
one ciphertext for each encryption slot in order for decryption to be possible. In
such cases, one can apply to our schemes the simple generic compiler given in [3,
Lemma 3] to ensure that the set I = [n], thus obtaining new schemes which leak
no information in the setting where some Qi = 0. For this reason, we assume
without loss of generality that Qi > 0 in all our security definitions and proofs.

2.2 Function-Hiding Multi-Input Functional Encryption

For function-hiding, we focus on indistinguishability security notions. This is
because even single-input function-hiding inner-product encryption is known to
be unrealizable in a simulation sense under standard assumptions.

Definition 4 (xx-SEL-Function-hiding MIFE). For every multi-input func-
tional encryption MIFE for F , every security parameter λ, every stateful ad-
versary A, and every xx ∈ {one,many}, we define the following experiments for
β ∈ {0, 1}:

Experiment xx-SEL-FH-INDMIFEβ (1λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

{f j,b}j∈[Qf ],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)

ctji ← Enc(msk, i, xj,βi ) ∀i ∈ [n], j ∈ [Qi]
skj ← KeyGen(msk, f j,β) ∀j ∈ [Qf ]

α← A
(
mpk, (ctji )i∈[n],j∈[Qi], (sk

j)j∈[Qf ]

)
Output: α
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where A only makes Qi selective queries of plaintext pairs (xji,0i , xji,1i ) and
Qf selective queries of key pairs (f jf ,0, f jf ,1), that must satisfy:

f jf ,0(xj1,01 , . . . , xjn,0n ) = f jf ,1(xj1,11 , . . . , xjn,1n )

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf ].
AMIFE is xx-SEL-FH-IND-secure if every PPT adversary A has negligible

advantage in λ, where the advantage is defined as:

Advxx-SEL-FH-IND
MIFE,A (λ) =

∣∣Pr
[
xx-SEL-FH-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-SEL-FH-INDMIFE1 (1λ,A) = 1

]∣∣
Definition 5 (xx-AD-Function-hiding MIFE). For every multi-input func-
tional encryption MIFE := (Setup,Enc,KeyGen,Dec) for F , every security pa-
rameter λ, every stateful adversary A, and every xx ∈ {one,many}, we define
the following experiments for β ∈ {0, 1}:

Experiment xx-AD-FH-INDMIFEβ (1λ,A):

(mpk,msk)← Setup(1λ,Fn)
β′ ← AKeyGen(msk,·,·),Enc(msk,·,·) (mpk)
Output: α

where Enc is an oracle that on input (i, x0
i , x

1
i ) outputs Enc(msk, i, xβi ) and KeyGen

is an oracle that on input (f0, f1) outputs KeyGen(msk, fβ). Additionally, A
queries must satisfy:

f jf ,0(xj1,01 , . . . , xjn,0n ) = f jf ,1(xj1,11 , . . . , xjn,1n )

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf ].
A MIFE is xx-AD-FH-IND-secure if every PPT adversary has negligible

advantage in λ, where the advantage is defined as:

Advxx-AD-FH-IND
MIFE,A (λ) =

∣∣∣Pr
[
xx-AD-FH-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-AD-FH-INDMIFE1 (1λ,A) = 1

]∣∣
Definition 6 (Weak function hiding MIFE). Following the approach from
[13], we define the notion of weak function hiding (denoted xx-yy-wFH-IND) in
the multi-input case, which is as in Definitions 4 and 5, with the exception that
the previous constraints on ciphertext and key challenges:

f jf ,0(xj1,01 , . . . , xjn,0n ) =f jf ,1(xj1,11 , . . . , xjn,1n ),

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf ]

are extended with additional constraints to help with our hybrid proof:

f jf ,0(xj1,01 , . . . , xjn,0n ) =f jf ,0(xj1,11 , . . . , xjn,1n ) = f jf ,1(xj1,11 , . . . , xjn,1n ),

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf ].
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2.3 Inner-product functionality

In this paper we construct multi-input functional encryption schemes that sup-
port the following two variants of the multi-input inner product functionality:

Multi-Input Inner Product over ZL. This is a family of functions that is defined
as FmL,n = {fy1,...,yn : (ZmL )n → ZL, for yi ∈ ZmL } where

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉 mod L.

Multi-Input Bounded-Norm Inner Product over Z. This is defined as Fm,X,Yn =
{fy1,...,yn : (Zm)n → Z} where fy1,...,yn(x1, . . . ,xn) is the same as above except
that the result is not reduced mod L, and vectors are required to satisfy the
following bounds: ‖x‖∞ < X, ‖y‖∞ < Y .

2.4 Computational assumptions

Prime-order groups. Let GGen be a probabilistic polynomial time (PPT) al-
gorithm that on input 1λ returns a description G = (G, p, g) of an cyclic group
G of order p for a 2λ-bit prime p, whose generator is g.

We use implicit representation of group elements as introduced in [10]. For
a ∈ Zp, define [a] = ga ∈ G as the implicit representation of a in G. More gener-
ally, for a matrix A = (aij) ∈ Zn×mp we define [A] as the implicit representation
of A in G:

[A] :=

ga11 ... ga1m
gan1 ... ganm

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G
be an element in G. Note that from a random [a] ∈ G it is generally hard
to compute the value a (discrete logarithm problem in G). Obviously, given
[a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute [ax] ∈ G and
[a+ b] ∈ G.

Matrix Diffie-Hellman Assumption for prime-order groups. We recall
the definition of the Matrix Decision Diffie-Hellman (MDDH) Assumption [10].

Definition 7 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-

bution if it outputs matrices in Z(k+1)×k
p of full rank k in polynomial time.

W.l.o.g. we assume the first k rows of A ←r Dk form an invertible matrix.
The Dk-Matrix Diffie-Hellman problem is to distinguish the two distributions
([A], [Aw]) and ([A], [u]) where A←r Dk, w ←r Zkp and u←r Z`p.

Definition 8 (Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption in
prime-order groups). Let Dk be a matrix distribution. The Dk-Matrix Diffie-
Hellman (Dk-MDDH) assumption holds relative to GGen if for all PPT adver-
saries A,

AdvDk-mddh
GGen,A (λ) := |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]| = negl(λ),
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where probabilities are over G ←r GGen(1λ), A←r Dk,w ←r Zkp,u←r Zk+1
p .

Pairing groups. Let PGGen be a probabilistic polynomial time (PPT) algo-
rithm that on input 1λ returns a description PG = (G1,G2, q, g1, g2) of asymmet-
ric pairing groups where G1, G2, GT are cyclic group of order p for a 2λ-bit prime
p, g1 and g2 are generators of G1 and G2, respectively, and e : G1×G2 → GT is
an efficiently computable (non-degenerate) bilinear map. Define gT := e(g1, g2),
which is a generator of GT . We again use implicit representation of group el-
ements. For s ∈ 1, 2, T and a ∈ Zp, define [a]s = gas ∈ Gs as the implicit
representation of a in Gs . Given [a]1, [a]2, one can efficiently compute [ab]T
using the pairing e. For two matrices A, B with matching dimensions define
e([A]1, [B]2) := [AB]T ∈ GT .

We define the Dk-MDDH assumption in pairing groups similarly than in
prime-order groups (see Definition 8).

Definition 9 (Dk-MDDH assumption in pairing groups). Let Dk be a
matrix distribution. The Dk-MDDH assumption holds relative to PGGen in Gs,
for s ∈ {1, 2, T}, if for all PPT adversaries A, the following is negl(λ):

AdvDk-mddh
Gs,A (λ) := |Pr[A(PG, [A]s, [Aw]s) = 1]− Pr[A(PG, [A]s, [u]s) = 1]|

where probabilities are over PG ←r PGGen(1λ), A ←r Dk,w ←r Zkp,u ←r

Zk+1
p .

Next, we recall a result on the uniform distribution over full-rank matrices:

Definition 10 (Uniform distribution). Let `, k ∈ N, with ` > k. We denote
by U`,k the uniform distribution over all full-rank `× k matrices over Zp.

Among all possible matrix distributions Dk, the uniform matrix distribution
U`,k is the hardest possible instance, so in particular k-Lin ⇒ Uk-MDDH, as
stated in Lemma 1.

Lemma 1 (Dk-MDDH ⇒ U`,k-MDDH, [10]). Let `, k ∈ N and Dk a matrix
distribution. For any PPT adversary A, there exists a PPT B such that

Adv
U`,k-mddh
Gs,A (λ) ≤ AdvDk-mddh

Gs,B (λ).

3 From Single to Multi-Input FE for Inner Product

In this section, we give a generic construction of MIFE for inner product from
any single-input FE (Setup,Enc,KeyGen,Dec) for the same functionality. More
precisely, we show two transformations: the first one addresses FE schemes that
compute the inner product functionality over a finite ring ZL for some integer
L, while the second transformation addresses FE schemes for bounded-norm
inner product. The two transformations are almost the same, and the only dif-
ference is that in the case of bounded-norm inner product, we require additional
structural properties on the single-input FE. Yet we stress that these proper-
ties are satisfied by all existing constructions. Both our constructions rely on a
simple MIFE scheme that is one-AD-IND secure unconditionally. In particular,
our constructions show how to use single-input FE in order to bootstrap the
information-theoretic MIFE from one-time to many-time security.
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Setupot(1λ,FmL,n):

For all i ∈ [n], ui ←r ZmL
Return u = {ui}i∈[n]

Encot(u, i,xi):

Return xi + ui mod L

KeyGenot(u,y1‖ · · · ‖yn):

Return z :=
∑
i∈[n]〈ui,yi〉 mod L

Decot
(
z, ct1, . . . , ctn):

Return
∑n
i=1〈cti,yi〉 − z mod L

Fig. 1. Private-key, information theoretically secure, multi-input FE scheme
MIFEot = (Setupot,Encot,KeyGenot,Decot) for the class FmL,n.

3.1 Information-Theoretic MIFE with One-Time Security

Here we present the multi-input scheme MIFEot for the class FmL,n, and we
prove its one-AD-IND security. The scheme is described in Figure 1.

Theorem 1. The MIFE described in Figure 1 is one-AD-IND secure. Namely,
for any adversary A, Advone-AD-IND

MIFE,A (λ) = 0.

Proof overview. The proof of Theorem 1 has two main steps. First, we use the
fact that any adaptive distinguisher against MIFEot with advantage ε can be
transformed into a selective distinguisher with advantage ε/|X|2 by randomly
guessing the two challenge input vectors, where |X| is the size of the input space
(|X| = Lnm in our case). Then, in a second step, we show that any selective
distinguisher againstMIFEot has advantage 0 sinceMIFEot behaves as the FE
equivalent of the one-time pad. Hence, it follows that any adaptive distinguisher
must also have advantage 0.

Proof. Let A be an adversary against the one-AD-IND security of the MIFE.
First, we use a complexity leveraging argument to build an adversary B such
that:

Advone-AD-IND
MIFE,A (λ) ≤ L−2nm · Advone-SEL-IND

MIFE,B (λ).

The adversary B simply guesses the challenge {xbi}i∈[n],b∈{0,1} in advance, then
simulates A’s experiment using its own selective experiment. When B receives
A’s challenge, it checks if the guess was successful (call E that event): if it
was, it continues simulating A’s experiment, otherwise, it returns 0. When the
guess is successful, B perfectly simulate A’s view. Since event E happens with
probability exactly L−2nm, and is independent of the adversary A’s view, we
obtain Advone-AD-IND

MIFE,A (λ) ≤ L−2nm · Advone-SEL-IND
MIFE,B (λ).

It remains to prove that the MIFE presented in Figure 1 satisfies perfect one-
SEL-IND security, namely, for any adversary B, Advone-SEL-IND

MIFE,B (λ) = 0. To do

so, we introduce hybrid games Hβ(1λ,B) described in Figure 2. We prove that for

all β ∈ {0, 1}, Hβ(1λ,B) is identical to the experiment one-SEL-INDMIFEβ (1λ,B).

This can be seen using the fact that for all {xβi ∈ Zm}i∈[n], the following distri-

butions are identical: {ui mod L}i∈[n] and {ui−xβi mod L}i∈[n], with ui ←r ZmL .
Recall that here i ∈ [n] is an index for input slots. Note that the independence of
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the xβi from the ui is only true in the selective security game. Finally, we show
that B’s view in Hβ(1λ,B) is independent of β. Indeed, the only information

about β that leaks in this experiment is
∑
i〈x

β
i ,yi〉, which is independent of β

by definition of the security game. ut

HYBβ(1λ,B):

{xbi}i∈[n],b∈{0,1} ← B(1λ,FmL,n)
For all i ∈ [n],

ui ←r ZmL ; cti ← ui
α← BOH (·)({cti}i∈[`])
Output α

OH(y):

For all i ∈ [n],
z :=

∑
i∈[n]〈ui,yi〉 − 〈x

β
i ,yi〉 mod L

Return z

Fig. 2. Experiments for the proof of Theorem 1.

Remark 2 (one-SEL-SIM security). As a result of independent interest, in the
full version of the paper we show that the MIFE presented in Figure 1 satisfies
perfect one-SEL-SIM security, which implies perfect one-SEL-IND (which itself
implies perfect one-AD-IND security via complexity leveraging, as shown in the
proof above).

Remark 3 (Linear homomorphism). We use the fact that Encot is linearly homo-
morphic, that is, for all input slots i ∈ [n], xi,x

′
i ∈ Zmp , u ← Setupot(1λ,FmL,n),

Encot(u, i,xi)+x′i mod L = Encot(u, i,xi+x′i). This property will be used when
using the one-time schemeMIFEot from Figure 1 as a building block to obtain
a full-fledged many-AD-IND MIFE.

3.2 Our Transformation for Inner Product over ZL

We present our multi-input scheme MIFE for the class FmL,n in Figure 3. The

construction relies on the one-time schemeMIFEot of Figure 1, and any single-
input FE for the class FmL,1.

The correctness of MIFE follows from the correctness properties of the
single-input scheme FE and the multi-input scheme MIFEot. Indeed, correct-
ness of the former implies that, for all input slots i ∈ [n], Di = 〈wi,yi〉 mod L,
while correctness ofMIFEot implies that

∑
i∈[n]Di−z = Decot(z,w1, . . . ,wn) =∑

i∈[n]〈xi,yi〉 mod L.
For the security we state the following theorem:

Theorem 2. If the single-input FE, FE is many-AD-IND-secure, and the multi-
input schemeMIFEot is one-AD-IND-secure, then the multi-input FE,MIFE,
described in Figure 3, is many-AD-IND-secure.

Since the proof of the above theorem is almost the same as the one for the case
of bounded-norm inner product, we only provide an overview here, and defer to
the proof of Theorem 3 for further details.
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Setup′(1λ,FmL,n):

u← Setupot(1λ,FmL,n), for all i ∈ [n], (mpki,mski)← Setup(1λ,FmL,1)
(mpk,msk) :=

(
{mpki}i∈[n], ({mski, }i∈[n],u)

)
Return (mpk,msk)

Enc′(msk, i,xi):

wi := Encot(u, i,xi)
Return Enc(mski,wi)

KeyGen′(msk,y1‖ · · · ‖yn):

For all i ∈ [n], ski ← KeyGen(mski,yi), z := KeyGenot(u,y1‖ · · · ‖yn)
sky1‖···‖yn :=

(
{ski}i∈[n], z

)
Return sky1‖···‖yn

Dec′
(
({ski}i∈[n], z), ct1, . . . , ctn):

For all i ∈ [n], Di ← Dec(ski, cti)
Return

∑
i∈[n]Di − z mod L

Fig. 3. Private-key multi-input FE scheme MIFE := (Setup′,Enc′,KeyGen′,Dec′) for
the class FmL,n from a public-key single-input FE FE := (Setup,Enc,KeyGen,Dec)
for the class FmL,1, and one-time multi-input FE MIFEot = (Setupot,Encot,KeyGenot,
Decot) for the class FmL,n.

Proof overview. Here, for any intput slot i ∈ [n], we denote by (xj,0i ,xj,1i ) the
j’th query to Enc(i, ·, ·), for any j ∈ [Qi], where Qi is the total number of queries
to Enc(i, ·, ·).

The proof is in two main steps. First, we switch encryptions of x1,0
1 , . . . ,x1,0

n

to those of x1,1
1 , . . . ,x1,1

n , using the one-AD-IND security of MIFEot. For the

remaining ciphertexts, we switch from an encryption of xj,0i = (xj,0i −x
1,0
i )+x1,0

i

to that of (xj,0i −x
1,0
i )+x1,1

i . In this step we use the fact that one can compute an

encryption of Encot(u, i, (xj,0i −x1,0
i )+x1,0

i ) from an encryption Encot(u, i,x1,0
i ),

because the encryption algorithm Encot ofMIFEot is linearly homomorphic (see
Remark 3). Finally, we apply a hybrid argument across the slots to switch from
encryptions of

(x2,0
i − x1,0

i ) + x1,1
i , . . . , (xQi,0i − x1,0

i ) + x1,1
i

to those of

(x2,1
i − x1,1

i ) + x1,1
i , . . . , (xQi,1i − x1,1

i ) + x1,1
i ,

using the many-AD-IND security of FE .

Instantiations. The construction in Figure 3 can be instantiated using the single-
input FE schemes of Agrawal, Libert, and Stehlé [4] that are many-AD-IND-
secure and allow for computing inner products over a finite ring. Specifically, we
obtain:
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– A MIFE for inner product over Zp for a prime p, based on the LWE assump-
tion. This is obtained by using the LWE-based scheme of Agrawal et al. [4,
Section 4.2].

– A MIFE for inner product over ZN where N is an RSA modulus, based
on the Composite Residuosity assumption. This is obtained by using the
Paillier-based scheme of Agrawal et al. [4, Section 5.2].

We note that since both these schemes in [4] have a stateful key generation, our
MIFE inherits this stateful property. Stateless MIFE instantiations are obtained
from the transformation in the next section.

3.3 Our Transformation for Inner Product over Z

Here we present our transformation for the case of bounded-norm inner product.
In particular, in Figure 4 we present a multi-input scheme MIFE for the class
Fm,X,Yn from the one-time scheme MIFEot of Figure 1, and a (single-input)

scheme FE for the class Fm,3X,Y1 .12 For our transformation to work, we require
FE to satisfy two properties. The first one, that we call two-step decryption,
intuitively says that the FE decryption algorithm works in two steps: the first
step uses the secret key to output an encoding of the result, while the second step
returns the actual result 〈x,y〉 provided that the bounds ‖x‖∞ < X, ‖y‖∞ < Y
hold. The second property informally says that the FE encryption algorithm is
additively homomorphic.

We note that the two-step property also says that the encryption algorithm
accepts inputs x such that ‖x‖∞ > X, yet correctness is guaranteed as long as
the encrypted inputs are within the bound at the moment of invoking the second
step of decryption.

Two-step decryption is formally defined as follows.

Property 1 (Two-step decryption). An FE scheme FE = (Setup,Enc, KeyGen,Dec)
satisfies two-step decryption if it admits PPT algorithms Setup?, Dec1,Dec2 and
an encoding function E such that:

1. For all λ,m, n,X, Y ∈ N, Setup?(1λ,Fm,X,Y1 , 1n) outputs (msk,mpk) where
mpk includes a bound B ∈ N, and the description of a group G (with group
law ◦) of order L > n · m · X · Y , which defines the encoding function
E : ZL × Z→ G.

2. For all (msk,mpk) ← Setup?(1λ,Fm,X,Y1 , 1n), x ∈ Zm, ct ← Enc(msk,x),
y ∈ Zm, and sk← KeyGen(msk,y), we have

Dec1(ct, sk) = E(〈x,y〉 mod L, noise),

for some noise ∈ N that depends on ct and sk. Furthermore, it holds that for
all x,y ∈ Zm, Pr[noise < B] = 1 − negl(λ), where the probability is taken
over the random coins of Setup?, Enc and KeyGen. Note that there is no
restriction on the norm of 〈x,y〉 here, and that we are assuming that Enc
accepts inputs x whose norm may be larger than the bound.

12The reason why we need 3X instead of X is due to maintain a correct distribution
of the inputs in the security proof.
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3. Given any γ ∈ ZL, and mpk, one can efficiently compute E(γ, 0).
4. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, , noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise + noise′).

5. For all γ < n ·m ·X · Y , and noise < n ·B, Dec2

(
E(γ, noise)

)
= γ.

The second property is as follows.

Property 2 (Linear encryption). For any FE scheme FE = (Setup,Enc,KeyGen,
Dec) satisfying the two-step property, we define the following additional property.
There exists a deterministic algorithm Add that takes as input a ciphertext and
a message, such that for all x,x′ ∈ Zm, the following are identically distributed:

Add(Enc(msk,x),x′), and Enc
(
msk, (x + x′ mod L)

)
.

Note that the value L ∈ N is defined as part of the output of the algorithm Setup∗

(see the two-step property above). We later use a single input FE with this
property as a building block for a multi-input FE (see Figure 4); this property
however is only used in the security proof of our transformation.

Instantiations. It is not hard to check that these two properties are satisfied
by known functional encryption schemes for (bounded-norm) inner product. In
particular, in the full version of the paper we show that this is satisfied by
the many-AD-IND secure FE schemes of Agrawal, Libert and Stehlé [4].13 This
allows us to obtain MIFE schemes for bounded-norm inner product based on a
variety of assumptions such as plain DDH, Decisional Composite Residuosity,
and LWE. In addition to obtaining the first schemes without the need of pairing
groups, we also obtain schemes where decryption works efficiently even for large
outputs. This stands in contrast to the previous result [3], where decryption
requires to extract discrete logarithms.

Correctness. The correctness of the scheme MIFE follows from (i) the cor-
rectness and Property 1 (two-step decryption) of the single-input scheme, and
(ii) from the correctness of MIFEot and the linear property of its decryption
algorithm Decot.

More precisely, consider any vector x := (x1‖ · · · ‖xn) ∈ (Zm)n, y ∈ Zmn,
such that ‖x‖∞ < X, ‖y‖∞ < Y , and let (mpk,msk) ← Setup′(1λ,Fm,X,Yn ),
sky ← KeyGen′(msk,y), and cti ← Enc′(msk, i,xi) for all i ∈ [n].

By (2) of Property 1, the decryption algorithm Dec′(sky, ct1, . . . , ctn) com-
putes E(〈wi,yi〉 mod L, noisei)← Dec1(ski, cti) where for all i ∈ [n], noisei < B,
with probability 1− negl(λ).

13While in [4] the FE schemes are proven only one-AD-IND secure (i.e., for adver-
saries making a single encryption query), note that these are public-key schemes and
thus many-AD-IND security can be obtained via a standard hybrid argument from
one-AD-IND security.
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Setup′(1λ,Fm,X,Yn ):

u← Setupot(1λ,FmL,n), for all i ∈ [n], (mpki,mski)← Setup?(1λ,Fm,3X,Y1 , 1n)
(mpk,msk) :=

(
{mpki}i∈[n], ({mski, }i∈[n],u)

)
Return (mpk,msk)

Enc′(msk, i,xi):

wi := Encot(u, i,xi)
Return Enc(mski,wi)

KeyGen′(msk,y1‖ · · · ‖yn):

For all i ∈ [n], ski ← KeyGen(mski,yi), z ← KeyGenot(u,y1‖ · · · ‖yn)
sky1‖···‖yn :=

(
{ski}i∈[n], z

)
Return sky1‖···‖yn

Dec′
(
({ski}i∈[n], z), ct1, . . . , ctn):

For all i ∈ [n], E(〈xi + ui,yi〉 mod L, noisei)← Dec1(ski, cti)
Return Dec2

(
E(〈x1 + u1,y1〉 mod L, noise1) ◦ · · · ◦ E(〈xn +

un,yn〉 mod L, noisen) ◦ E(−z, 0)
)

Fig. 4. Private-key multi-input FE scheme MIFE = (Setup′,Enc′,KeyGen′,Dec′) for
the class Fm,X,Yn from public-key single-input FE scheme FE = (Setup,Enc,KeyGen,
Dec) for the class Fm,X,Y1 and one-time multi-input FE MIFEot = (Setupot,Encot,
KeyGenot,Decot).

By (4) of Property 1 (linearity of E), and the correctness of MIFEot we
have:

E(〈w1,y1〉 mod L, noise1) ◦ · · · ◦ E(〈wn,yn〉 mod L, noisen) ◦ E(−z, 0)

= E

Decot(z,w1, . . . ,wn),
∑
i∈[n]

noisei

 = E

〈x,y〉 mod L,
∑
i∈[n]

noisei

 .

Since 〈x,y〉 < n ·m ·X · Y < L and
∑
i∈[n] noisei < n ·B, we have

Dec2

(
E(〈x,y〉 mod L,

∑
i∈[n]

noisei)
)

= 〈x,y〉,

by (5) of Property 1.

Proof of Security. In the following theorem we show that our construction
is a many-AD-IND-secure MIFE, assuming that the underlying single-input FE
scheme is many-AD-IND-secure, and the schemeMIFEot is one-AD-IND secure.

Theorem 3. Assume that the single-input FE is many-AD-IND-secure and the
multi-input FEMIFEot is one-AD-IND-secure. Then the multi-input FEMIFE
in Figure 4 is many-AD-IND-secure. Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that

Advmany-AD-IND
MIFE,A (λ) ≤ Advone-AD-IND

MIFEot,B (λ) + n · Advmany-AD-IND
FE,B′ (λ).
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Proof of Theorem 3. The proof proceeds by a sequence of games where G0 is
the many-AD-INDMIFE0 (1λ,A) experiment. A formal description of all the
experiments used in this proof is given in Figure 6, and a high-level summary is
provided in Figure 5. For any game Gi, we denote by Advi(A) the advantage
of A in Gi, that is, Pr[Gi(1

λ,A) = 1], where the probability is taken over the
random coins of Gi and A. In what follows we adopt the same notation from [3]
for queried plaintexts, namely (xj,0i ,xj,1i ) denotes the j-th encryption query on
the i-th slot.

Game ctji justification/remark

G0 Enc′(msk′, i,xj,0i − x1,0
i + x1,0

i )

G1 Enc′(msk′, i,xj,0i − x1,0
i + x1,1

i ) one-AD-IND of MIFEot, Lemma 2

G1.`

Enc′(msk′, i, xj,1i − x1,1
i +x1,1

i ), for i ≤ `

Enc′(msk′, i,xj,0i − x1,0
i + x1,1

i ), for i > `
many-AD-IND of FE , Lemma 3

G2 Enc′(msk′, i, xj,1i ) G2 = G1.n

Fig. 5. An overview of the games used in the proof of Theorem 3.

Game G1: Here we change the way the challenge ciphertexts are created. In par-
ticular, for all slots and all queries simultaneously, we switch from Enc′(msk, i,xj,0i −
x1,0
i + x1,0

i ) to Enc′(msk, i,xj,0i − x1,0
i + x1,1

i ).
G1 can be proved indistinguishable from G0 by relying on the one-time secu-

rity of the multi-input scheme. More formally,

Lemma 2. There exists a PPT adversary B1 against the one-AD-IND security
of MIFEot scheme such that

|Adv0(A)−Adv1(A)| ≤ Advone-AD-IND
MIFEot,B1

(λ).

Proof. Here we replace encryptions of xj,0i − x1,0
i + x1,0

i with encryptions of

xj,0i − x1,0
i + x1,1

i in all slots simultaneously. Recall that here, j is the index of
the encryption query while i is the index for the slot. The argument relies on the
one-AD-IND security of the multi-input scheme MIFEot and on the fact that
ciphertexts produced by the latter can be used as plaintext for the underlying
single input FE scheme FE that we are using as additional basic building block.

More in details, we build the adversary B1 so that it simulates Gβ to A when

interacting with experiment one-AD-INDMIFEβ .
Initially B1 does not receive anything, since the one-AD-IND information-

theoretically secure MIFE does not have any public key. For all i ∈ [n] it runs

(mpki,mski) ← Setup?(1λ,Fm,3X,Y1 , 1n), and hands the public parameters to
A. Also, whenever A queries a secret key, B1 first queries its own oracle (on
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the same input) to get a corresponding key z. Next, for all i ∈ [n], it sets ski ←
KeyGen(mski,yi) and gives back to A the secret key sky1‖···‖yn :=

(
{ski}i∈[n], z

)
.

When A asks encryption queries, B1 proceeds as follows. For each slot i, when
receiving the first query (i,x1,0

i ,x1,1
i ), it computes the challenge ciphertext, for

slot i, by invoking its own encryption oracle on the same input. Calling w1
i :=

Encot(u, i,x1,β
i ) the received ciphertext, B1 computes ct1i = Enc(mski,w

1
i ) =

Enc′(msk, i,x1,β
i ).

Subsequent queries, on slot i, are answered as follows. B1 produces ctji (for j >

1) by encrypting xj,0i −x1,0
i +w1

i mod L, using mski. Note that Encot is linearly

homomorphic (see Remark 3), thus, xj,0i −x1,0
i +w1

i mod L = Encot(u, i,x1,β
i +

xj,0i − x1,0
i ).

Finally, B1 outputs 1 iff A outputs 1. One can see that B1 provides a perfect
simulation to A and thus:

|Adv0(A)−Adv1(A)| ≤ Advone-AD-IND
MIFE,B1

(λ).

ut

G0(1λ,A), G1(1λ,A) , G2(1λ,A) :

(mpk,msk)← Setup′(1λ,Fm,X,Yn )

β′ ← AKeyGen′(msk,·),EncO′(·,·,·)(mpk)
return β′

EncO′(i,xj,0i ,xj,1i )
ctji := Enc′(msk, i,xj,0i − x1,0

i + x1,0
i )

ctji := Enc′(msk, i,xj,0i − x1,0
i + x1,1

i )

ctji := Enc′(msk, i,xj,1i − x1,1
i + x1,1

i )

return ctji

KeyGen′(msk,y)
return sky

G1.`(1
λ,A):

(mpk,msk)← Setup′(1λ,Fm,X,Yn )

β′ ← AKeyGen′(msk,·),EncO′(·,·,·)(mpk)
return β′

EncO′(i,xj,0i ,xj,1i )
If i ≤ ` return

Enc′(msk, i,xj,1i − x1,1
i + x1,1

i )
If i > ` return

Enc′(msk, i,xj,0i − x1,0
i + x1,1

i )

KeyGen′(msk,y)
return sky

Fig. 6. Experiments for the proof of Theorem 3.

Game G2: Here we change again the way the challenge ciphertexts are created. In
particular, for all slots i and all queries j, we switch ctji from Enc′(msk, i,xj,0i −
x1,0
i + x1,1

i ) to Enc′(msk, i,xj,1i − x1,1
i + x1,1

i ).
G2 can be proved indistinguishable from G1 via an hybrid argument over the

n slots, relying on the security of the underlying single-input scheme.
By looking at the games defined in Figure 6, one can see that

|Adv1(A)−Adv2(A)| =
n∑
`=1

|Adv1,`−1(A)−Adv1,`(A)|
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since G1 corresponds to game G1.0 and whereas G2 is identical to game G1.n.
Therefore, for every ` we bound the difference between each consecutive pair

of games in the following lemma:

Lemma 3. For every ` ∈ [n], there exists a PPT adversary B1.` against the
many-AD-IND security of the single-input scheme FE such that

|Adv1,`−1(A)−Adv1,`(A)| ≤ Advmany-AD-IND
FE,B1.`

(λ).

Proof. Here, we replace encryptions of xj,0i −x
1,0
i +x1,1

i with encryptions of xj,1i −
x1,1
i + x1,1

i in all slots. Let us recall that j is the index of the encryption query
while i is the index for the slot. The argument relies on (1) the many-AD-IND
security of the underlying single input scheme FE := (Setup,KeyGen,Enc,Dec),
(2) the fact that Enc satisfies Property 2 (linear encryption), and (3) the restric-
tions imposed by the security game (see [3]). As for this latter point we notice
that, indeed, the security experiment restriction in the case of the inner product
functionality imposes that 〈xj,0i −x1,0

i ,yi〉 = 〈xj,1i −x1,1
i ,yi〉, for all slots i ∈ [n].

In our scheme this becomes 〈xj,0i − x1,0
i ,yi〉 mod L = 〈xj,1i − x1,1

i ,yi〉 mod L,
which in turn is equivalent to

〈xj,0i − x1,0
i + x1,1

i + ui,yi〉 mod L = 〈xj,1i − x1,1
i + x1,1

i + ui,yi〉 mod L.

More formally, we build an adversary B1.` that simulates G1.`−1+β to A when

interacting with the experiment many-AD-INDFEβ .
B1.` starts by receiving a public key for the scheme FE , which is set to be

the key mpk` for the `-th instance of FE . Next, it runs u← Setupot, and for all
i 6= `, it runs Setup? to get (mpki,mski). It gives (mpk1, . . . ,mpkn) to A.
B1.` answers secret key queries y = y1|| . . . ||yn by first running ski ←

KeyGen(mski, yi) for i 6= `. Also it invokes its own key generation oracle on
y`, to get sk`. Finally, it computes z ← KeyGenot(u,y1|| . . . ||yn) (recall that
B1.` knows u). This key material is then sent to A.
B1.` answers encryption queries (i,xj,0i ,xj,1i ) to Enc′ as follows.

If i < `, it computes Enc(mski,Enc
ot(u, i,xj,1i )).

If i > `, it computes Enc(mski,Enc
ot(u, i,xj,0i − x1,0

i + x1,1
i )).

If i = `, at the j-th encryption query on slot `, B1.` queries its own oracle on
input (xj,0` − x1,0

` + x1,1
` ,xj,1` − x1,1

` + x1,1
` ) (note that these vectors have norm

less than 3X, and as such, are valid input to the encryption oracle), to get back

ctj∗ := Enc
(
msk`,x

j,β
` − x1,β

` + x1,1
`

)
from the experiment many-AD-INDFEβ .

Then, B1.` computes ctj` := Add(ctj∗,u`), and sends it to A.

Note that by Property 2 ctj` is identically distributed to Enc
(
msk`,x

j,β
` −

x1,β
` +x1,1

` +u` mod L
)
, the latter being equal to Enc

(
msk`,Enc

ot(xj,β` −x1,β
` +

x1,1
` )
)
. Also, we remark that because B1.` plays in the many-AD-IND security

game, it can make several queries to its encryption oracle, which means that
every ctj∗ obtained from the oracle is encrypted under fresh randomness rj , i.e.,

ctj∗ := Enc
(
msk`,x

j,β
` − x1,β

` + x1,1
` ; rj

)
. Therefore, the simulated ciphertext ctj`
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uses randomness rj which is independent of the randomness rj′ used in ctj
′

` , for

all j 6= j′. This means ctj` is distributed as in game G1.`−1+β .
Finally, B1.` outputs the same bit β′ returned by A. Thus:

|Adv1.`−1(A)−Adv1.`(A)| ≤ Advmany-AD-IND
FE,B1.`

(λ).

ut

The proof of Theorem 3 follows by combining the bounds obtained in the
previous lemmas. ut

4 Function-Hiding Multi-Input FE for Inner Product

In this section, we give a function-hiding MIFE. We transform the MIFE for inner
product proposed by Abdalla et al. in [3] into a function-hiding scheme, using a
double layered encryption approach, similar to the one of Lin [12]. Namely, in
Section 4.1, we give a generic construction that use any single-input FE on top
of the MIFE from [3], which can prove selectively secure. Unlike the results in
Section 3 that can be instantiated without pairings, for function-hiding we rely
on pairing groups. Finally, in Section 4.2, we prove adaptive security, considering
a specific instantiation of our construction.

Our construction. We present our function-hiding schemeMIFE in Figure 8.
The construction relies on the multi-input scheme MIFE ′ of Abdalla et al. [3]
(recalled in Figure 7), used together with any one-SEL-SIM secure, single-input
FE for the functionality

F`G1,G2,GT = {f[y]1 : G`2 → GT for [y]1 ∈ G`1},

where
f[y]1([x]2) := [〈x,y〉]T ,

PG := (G1,G2, p, g1, g2) is a pairing group, and ` is the size of the ciphertext
and secret keys in MIFE ′.

Concretely, we use the single-input FE from [4], generalized to the MDDH
assumption, whose one-SEL-SIM security is proven in [3,16], and whose descrip-
tion is recalled in the full version of the paper. Note that this single-input FE
happens to be public-key, but this is not a property that we need for our overall
MIFE.

Outline of the construction. Our starting point is the MIFE scheme for
inner-products from [3], denoted byMIFE ′ := (Setup′,Enc′,KeyGen′,Dec′) and
recalled in Figure 7. This scheme is clearly not function-hiding, as the vector y
is given in the clear as part of functional secret key, in order to make decryption
possible. In order to avoid the leakage of y, we employ an approach similar to the
one proposed in [12], which intuitively consists into adding a layer of encryption
on top of the MIFE keys and ciphertexts; this is done by using a single-input
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inner product encryption scheme FE . Slightly more in detail, using the FE and
MIFE ′ schemes, we design our new function-hiding multi-input schemeMIFE
as follows.

We generate master keys (mpki,mski) ← FE .Setup(1λ,F`G1,G2,GT ) for com-
puting inner products on vectors of dimension `, where ` is the size of the
ciphertexts and secret keys of MIFE ′. To encrypt xi ∈ Zmp for each slot

i ∈ [n], we first compute [ctini ]1 using MIFE ′, and then we compute ctouti :=
FE .KeyGen(mski, [ct

in
i ]1). To generate a key for y := (y1‖ · · · ‖yn) ∈ Znmp , we first

compute the keys skin fromMIFE ′, and then we would like to encrypt these keys
using FE in order to hide information about y. A generic way to do it would be
to set our secret key to be Enc(mski, sk

in), for all possible i ∈ [n], so that we can
compute the inner product of [ctini ]1 with skin for all i ∈ [n]. But that would yield
keys of size O(n2m), since the key skin itself is of size O(nm). We can do better,
however. If we consider the specific MIFE ′ scheme from [3], a secret key skin

for y consists of the components ([skin1 ‖ . . . ‖sk
in
n ]2, [z]T ), where each [skini ]2 only

depends on yi and is of size O(m), while [z]T ∈ GT does not depend on y at all.
Hence, we encrypt each vectors [skini ]2 to obtain skouti := FE .Enc(mpki, [sk

in
i ]2),

which gives us a secret key skout :=
(
{skouti }i∈[n], [z]T

)
of total size O(nm).

This way, decrypting the outer layer as FE .Dec(skouti , ctouti ) yields [〈skini , ctini 〉]T ,
which is what needs to be computed in the MIFE ′ decryption algorithm Dec′.
More precisely, correctness of MIFE follows from the correctness of MIFE ′,
and the structural requirement of FE .Dec that is used in theMIFE ′ decryption
algorithm, namely:

MIFE .Dec({skouti }i∈[n], [z]T , {ctouti }i∈[n])

=

n∏
i=1

FE .Dec(ctouti , skouti )/[z]T =

n∏
i=1

[〈skini , ctini 〉]T /[z]T

=MIFE ′.Dec({[skini ]2}i∈[n], [z]T , {[ctini ]1}i∈[n]).

Definition 11 (one-SEL-SIM-secure FE). A single-input functional encryp-
tion FE for the functionality F`G1,G2,GT is one-SEL-SIM-secure if there exist PPT

simulator algorithms (S̃etup, Ẽnc, K̃eyGen) such that for every PPT (stateful) ad-
versary A and every λ ∈ N, the following two distributions are computationally
indistinguishable:

Experiment REALMIFESEL (1λ,A):

x← A(1λ,F`G1,G2,GT )

(mpk,msk)← Setup(1λ,F`G1,G2,GT )
ct← Enc(msk,x)
α← AKeyGen(msk,·)(mpk, ct)
Output: α

Experiment IDEALMIFESEL (1λ,A):

x← A(1λ,F`G1,G2,GT )

(m̃pk, m̃sk)← S̃etup(1λ,F`G1,G2,GT )

ct← Ẽnc(m̃sk)

α← AO(·)(m̃pk, ct)
Output: α
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The oracle O(·) in the ideal experiment above is given access to another oracle
that, given [y]1 ∈ F`G1,G2,GT , returns [〈x,y〉]1, and then O(·) returns

K̃eyGen
(
m̃sk, [y]1, [〈x,y〉]1

)
.

For every stateful adversary A, we define its advantage as

Advone-SEL-SIM
FE,A (λ)

=
∣∣Pr
[
REALFESEL(1λ,A) = 1

]
− Pr

[
IDEALFESEL(1λ,A) = 1

]∣∣ ,
and we require that for every PPT A, there exists a negligible function negl such
that for all λ ∈ N, Advone-SEL-SIM

FE,A (λ) = negl(λ).

Multi-input scheme MIFE ′[3]
Setup′(1λ,Fm,X,Yn ):

∀i ∈ [n]:
(mpk′i,msk′i)← FE ′.Setup(1λ,Fm+k,X,Y

1 )
∀i ∈ [n] : zi ←r Zkq
mpk′ :=

(
{mpk′i}i∈[n]

)
msk′ :=

(
{msk′i,zi}i∈[n]

)
return (mpk′,msk′)

Dec′
((
{[skini ]2}i∈[n], [z]T

)
, {[ctini ]1}i∈[n]

)
:

∀i ∈ [n] : [ai]T ← FE ′.Dec([skini ]2, [ct
in
i ]1)

return the discrete log of
(∏n

i=1[ai]T
)
/[z]T

Enc′(msk, i,xi):

[ctini ]1 := FE ′.Enc(mpk′i,xi‖zi)
return [ctini ]1

KeyGen′(msk,y1‖ · · · ‖yn):

r ←r Zkq
∀i ∈ [n] :

skini ← FE ′.KeyGen(msk′i,yi‖r)
z := 〈z1 + · · ·+ zn, r〉
skin :=

(
{[skini ]2}i∈[n], [z]T

)
return skin

Fig. 7. Multi-input, FE for Fm,X,Yn from [3], whose many-SEL-IND relies on the Dk-
MDDH assumption. Here FE ′ := (FE ′.Setup,FE ′.Enc,FE ′.KeyGen,FE ′.Dec) is a one-
SEL-SIM secure, public-key, single-input FE for Fm+k,X,Y

1 , where k is the parameter
used by the Dk-MDDH assumption (concretely, k = 1 for SXDH, k = 2 for DLIN).

4.1 Proof of Selective Security

In the following theorem we state the selective security of our scheme MIFE .
Precisely, the theorem proves that our scheme is weakly function-hiding. We
stress that this does not entail any limitation in the final result, as full-fledged
function-hiding can be achieved in a generic way via a simple transformation,
proposed in [13] (for single-input FE). The main idea is to work with slightly
larger vectors where both input vectors x and secret-key vectors y are padded
with zeros. In the full version of the paper we show how to do this transformation
in the multi-input setting.

Theorem 4 (many-SEL-wFH-IND security). Let MIFE ′ be the many-
SEL-IND secure multi-input FE from Figure 7. Suppose the single-input FE :=
(FE .Setup,FE .Enc,FE .KeyGen,FE .Dec) is one-SEL-SIM-secure. Then the multi-
input scheme MIFE := (Setup,Enc,KeyGen,Dec) in Figure 8 is many-SEL-
wFH-IND-secure.
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New function-hiding scheme MIFE

Setup(1λ,Fm,X,Yn ):

(mpk′,msk′)← Setup′(1λ,Fm,X,Yn )
∀i ∈ [n] : (mpki,mski)← FE .Setup(1λ,F`,X,Y1 )
mpk :=

(
{mpki}i∈[n],mpk′

)
, msk :=

(
{mski}i∈[n],msk′

)
return (mpk,msk)

Enc(msk, i,xi):

[ctini ]1 := Enc′(msk′, i,xi)
ctouti := FE .KeyGen(mski, [ct

in
i ]1)

return ctouti

KeyGen(msk,y1‖ · · · ‖yn):

({[skini ]2}i∈[n], [z]T )← KeyGen′
(
msk′,y1‖ · · · ‖yn

)
∀i ∈ [n] : skouti ← FE .Enc(mski, [sk

in
i ]2)

sky1‖···‖yn :=
(
{skouti }i∈[n], [z]T

)
return sky1‖···‖yn

Dec
((
{skouti }i∈[n], [z]T

)
, {ctouti }i∈[n]

)
:

∀i ∈ [n] : [ai]T ← FE .Dec(ctouti , skouti )
return the discrete log of

(∏n
i=1[ai]T

)
/[z]T

Fig. 8. Many-SEL-wFH-IND secure, private-key, multi-input, FE for the class Fm,X,Yn .
Here FE := (FE .Setup,FE .Enc,FE .KeyGen,FE .Dec) is a one-SEL-SIM secure, single-
input FE for F`,X,Y1 , where by ` we denote the output size of Enc′ and KeyGen′, and
MIFE ′ := (Setup′,Enc′,KeyGen′,Dec′) is the many-AD-IND secure, multi-input FE
from Figure 7.

Proof Overview. The proof is done via a hybrid argument that consists of two
main phases: we first switch the ciphertexts from encryptions of xji,0i to encryp-

tions of xji,1i for all slots i ∈ [n], and ciphertext queries ji ∈ [Qi], where Qi
denotes the number of ciphertext query on the i’th slot. This change is justified
by the many-SEL-IND security of the underlying MIFE ′ in a black box man-
ner. In addition, this change relies on the weak-function-hiding property that

imposes the constraints
∑n
i=1〈x

ji,0
i ,y

jf ,0
i 〉 =

∑n
i=1〈x

ji,1
i ,y

jf ,0
i 〉, for all secret

key queries jf ∈ [Qf ], where Qf denotes the number of secret key queries, which
thus disallow the adversary from trivially distinguishing the two games.

The second main change in the proof is to switch the decryption keys from
keys corresponding to yj,01 ‖ . . . ‖yj,0n to keys corresponding to yj,11 ‖ . . . ‖yj,1n for
every j ∈ [Qf ]. This in turn requires a hybrid argument over all decryption keys,
changing one key at a time. To switch the ρ’th key, we use the selective simula-
tion security of the underlying FE to embed the value 〈xj,1i ,yρ,βi 〉+〈rρ, zi〉 in the

ciphertexts ctji , for all slots i ∈ [n] and all j ∈ [Qi]. Next, we use the Dk-MDDH
assumption to argue that [〈rρ, zi〉]T is indistinguishable from a uniform random

value and thus perfectly hides 〈x1,1
i ,yρ,βi 〉 for the first ciphertext of each slot:
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ct1i . For all the other remaining 〈xj,1i ,yρ,βi 〉, for j ∈ [Qi], j > 1, we use the fact

that 〈xj,1i −x1,1
i ,yρ.0i 〉 = 〈xj,1i −x1,1

i ,yρ.1i 〉, as implied by the game’s restrictions.

Game [ctin,ki ]1 [skin,ji ]2 justification/remark

G0 Enc′(msk′, i,xk,0i ) KeyGen′(msk′,yj,01 ‖ . . . ‖y
j,0
n )

many-SEL-wFH-IND0

security game

G1 Enc′(msk′, i, xk,1i ) KeyGen′(msk′,yj,01 ‖ . . . ‖y
j,0
n ) many-SEL-IND of MIFE′

G1.ρ Enc′(msk′, i,xk,1i )
KeyGen′(msk′, yj,11 ‖ . . . ‖y

j,1
n ), for j < ρ

KeyGen′(msk′,yj,01 ‖ . . . ‖y
j,0
n ), for j ≥ ρ

Lemma 5

Fig. 9. An overview of the games used in the proof of Theorem 4. By [ctin,ki ]1 and
[skin,ji ]2 we denote the kth ciphertext and the jth decryption key of the inner scheme
MIFE ′.

Proof of Theorem 4. We proceed via a series of Games G0,G1,G1.ρ, for ρ ∈
[Qf + 1], described in Figure 10. An overview is provided in Figure 9. Let A be
a PPT adversary, and λ ∈ N be the security parameter. We denote by AdvGi(A)
the advantage of A in game Gi.

G0: is the experiment many-SEL-wFH-INDMIFE0 (see Definition 6).

G1: we replace the inner encryption of xj,0i by encryptions of xj,1i , for all
i ∈ [n], j ∈ [Qi], using the many-SEL-IND security of MIFE ′. This is pos-
sible due to the weak function-hiding constraint, which states in particular that∑n
i=1〈x

ji,0
i ,y

jf ,0
i 〉 =

∑n
i=1〈x

ji,1
i ,y

jf ,0
i 〉, for all indices ji ∈ [Qi], jf ∈ [Qf ].

G1.ρ: for the first ρ−1 queries to KeyGen, we replace inner secret key KeyGen′
(
msk′,

y0
1‖ · · · ‖y0

n

)
, by KeyGen′

(
msk′,y1

1‖ · · · ‖y1
n

)
. Note that G1 is the same as G1.1,

and G1.Qf+1 is the same as many-SEL-wFH-INDMIFE1 .

We prove G0 ≈c G1 in Lemma 4, and G1.ρ ≈c G1.ρ+1 for all ρ ∈ [Qf ] in Lemma 5.
ut

Lemma 4 (G0 to G1). There exists a PPT adversary B1 such that

AdvG0
(A)− AdvG1

(A) ≤ Advmany-SEL-IND
MIFE′,B1

(λ).

Proof. In order to show that we can switch xj,0i to xj,1i , we rely on the security
of the underlying MIFE ′ scheme. Intuitively, adding an additional layer of
encryption on the decryption keys skini cannot invalidate the security of the
underlying MIFE ′.

More formally, we design an adversary B1 against the many-SEL-IND security
of MIFE ′. Adversary B1 draws public and secret keys for the outer encryption
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G0, G1, G1.ρ , for ρ ∈ [Qf + 1]:

{xj,βi }i∈[n],j∈[Qi],β∈{0,1}, {y
j,β
i }i∈[n],j∈[Qf ],β∈{0,1} ← A(1λ,Fm,X,Yn )

(mpk′,msk′)← Setup′(1λ,Fm,X,Yn )
∀i ∈ [n] : (mpki,mski)← FE .Setup(1λ,F`,X,Y1 )
mpk :=

(
{mpki}i∈[n],mpk′

)
, msk :=

(
{mski}i∈[n],msk′

)
∀i ∈ [n], j ∈ [Qi]:

[ctin,ji ]1 := Enc′(msk′, i,xj,0i ), [ctin,ji ]1 := Enc′(msk′, i,xj,1i )

ctout,ji := FE .KeyGen(mski, [ct
in,j
i ]1)

α← AKeyGen(msk,·) (mpk, {ctout,ji }i∈[n],j∈[Qi]
)

Output: α.

KeyGen
(
msk, (yj,β1 ‖ · · · ‖yj,βn )β∈{0,1}

)
:(

{[skini ]2}i∈[n], [z]T
)
← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
If j < ρ:

(
{[skini ]2}i∈[n], [z]T

)
← KeyGen′

(
msk′,y1

1‖ · · · ‖y1
n

)
skouti ← FE .Enc(mski, [sk

in
i ]2)

sky1‖···‖yn :=
(
{skouti }i∈[n], [z]T

)
return sky1‖···‖yn

Fig. 10. Games for the proof of Theorem 4. In each procedure, the components inside
a solid (dotted) frame are only present in the games marked by a solid (dotted) frame.

layer and then uses its own experiment to simulate either G0 or G1. We describe
adversary B1 in the full version of the paper and give a textual description here.

Simulation of master public key mpk. Since the game is selective, the
adversary B1 first gets the challenges {xj,bi }i∈[n],j∈[Qi],b∈{0,1} from A, and it

sends them to its experiment many-SEL-INDMIFE
′

β . Then, B1 receives the pub-

lic key mpk′ of the MIFE ′ scheme. To construct the full public key, it draws
(mpki,mski)← FE .Setup(1κ,F`,X,Y1 ), for all slots i ∈ [n], independently. It then
sets mpk := {mpki}i∈[n] ∪ {mpk′} and returns mpk to adversary A.

Simulation of the challenge ciphertexts. The adversary B1 receives [ctin,ji ]1
from the encryption oracle of the experiment many-SEL-INDMIFE

′

β , for all i ∈
[n]. This corresponds to encryptions of either xj,βi , for β = 0 or 1. Since it knows

mski, it computes ctout,ji := FE .KeyGen(mski, [ct
in,j
i ]1) for all i ∈ [n] and returns

{ctout,ji }i∈[n] to A.

Simulation of KeyGen(msk, ·). On every secret key query (yb1‖ . . . ‖ybn)b∈{0,1},

adversary B1 queries the KeyGen′ oracle of the experiment many-SEL-INDMIFE
′

β

on y0
1‖ . . . ‖y0

n. It obtains {[skini ]2}i∈[n], [z]T . Finally, it computes

skouti := FE .Enc(mpki, [sk
in
i ]2) and returns ({skouti }i∈[n], [z]T ) to A.

ut
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Lemma 5 (G1.ρ to G1.ρ+1). For all ρ ∈ [Qf ], there exist PPT adversaries Bρ
and B′ρ such that

AdvG1.ρ
(A)−AdvG1.ρ+1

(A) ≤ 2n ·Advone-SEL-SIM
FE,Bρ (λ, ) + 2 ·AdvDk-mddh

G1,B′
ρ

(λ) + 2k
p .

For lack of space the proof of Lemma 5 appears the full version of the paper.

4.2 Adaptively-secure Multi-input Function-Hiding FE for Inner
Product

In this section, we prove that if we instantiate the construction described in
Figure 8 (Section 4), with the many-AD-IND-secure, single-input FE from [4],
we obtain an adaptively secure function-hiding MIFE. Specifically, we consider
the generalized version of single-input FE, as described in [3] (recalled in the full
version of the paper). For completeness, we present this new MIFE instantiation
in Figure 11. Proving adaptive security for our construction in a generic way
would require the underlying FE to achieve strong security notions, such as one-
AD-SIM (which is not achieved by any known scheme). We overcome this issue,
managing to prove adaptive security of our concrete MIFE in Figure 8, using
non-generic techniques inspired by [3].

Theorem 5 (many-AD-IND-wFH security). If the Dk-MDDH assumption
holds in G1 and G2, then the multi-input FE for Fm,X,Yn described in Figure 11
is many-AD-IND-wFH-secure.

Proof overview. Similarly to the selective-security proof presented in Section 4.1,
we prove weakly-function-hiding. This is sufficient, since it can be transformed
generically into a fully function-hiding MIFE by using techniques from [13] (see
the full version of the paper for more details).

To prove weak function-hiding we proceed in two stages. First, we switch from
Enc(msk, i,xj,0i ) to Enc(msk, i,xj,1i ) for all slots i ∈ [n] and all queries j ∈ [Qi]
simultaneously, using the many-AD-IND security of MIFE ′ (the underlying
MIFE from [3]). For completeness, we also give a concrete description ofMIFE ′
in the full version of the paper.

Secondly, we use a hybrid argument over all Qf queried keys, switching them
one by one from KeyGen(msk,y0

1‖ · · · ‖y0
n) to KeyGen(msk,y1

1‖ · · · ‖y1
n). To switch

the ρ’th key, we use the security of FE in a non-generic way. Structurally, we
do a proof similar to the selective one of the previous section. In order to apply
complexity leveraging, we first do all the computational steps. Afterwards, only
at some particular transition in the proof (transition from H′′ρ.0 to H′′ρ.1 the full
version of the paper), we use complexity leveraging, and we simulate the selective
proof arguments. This multiplies the security loss by an exponential factor. We
can do so here because this particular transition is perfect: the exponential term
is multiplied by a zero advantage.

Although this proof strategy shares similarities with the adaptive security
proof the MIFE in [3], our proof has some crucial differences: mainly, the role of
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Setup(1λ,Fm,X,Yn ):

PG ←r GGen(1λ),A1,B1, . . . ,An,Bn ←r Dk, U1, . . . ,Un ←r Z(k+m)×(k+1)
p

V1, . . . ,Vn ←r Z(2k+m+1)×(k+1)
p , z1, . . . , zn ←r Zkp

mpk := PG, msk := {Ai,Bi,Ui,Vi,zi}i∈[n]
return (mpk,msk)

Enc(msk, i,xi ∈ Zmp ):

si ←r Zkp, ci := Aisi, c
′
i :=

(
xi
zi

)
+ UiAisi, c

′′
i :=

(
ci
c′i

)>
Vi

return ([ci]1, [c
′
i]1, [c

′′
i ]1)

KeyGen(msk,y1‖ · · · ‖yn ∈ (Zmp )n):

r ←r Zkp, z := 〈z1 + · · ·+ zn, r〉

∀i ∈ [n] : ti ←r Zkp, di := Biti, d′i :=

−U
>
i

(
yi
r

)
(
yi
r

)
+ ViBiti

return
(
{[di]2, [d′i]2}i∈[n], [z]T

)
Dec

((
{[di]2, [d′i]2}i∈[n], [z]T

)
, {[ci]1, [c′i]1, [c′′i ]1}i∈[n]

)
:

out←

(∏
i

(
e

([
ci
c′i

]>
1

, [d′i]2

)
/e ([c′′i]1, [di]2)

))
/[z]T

return discrete log of out

Fig. 11. Many-AD-IND-wFH secure, multi-input FE scheme for the class Fm,X,Yn (self-
contained description).

the keys and ciphertexts in our proof is switched. Since the multi-input model is
asymmetric with respect to the ciphertexts and decryption keys (only ciphertexts
can be mixed-and-matched), this results in a different proof strategy.

For lack of space, the full proof appears in the full version of the paper.
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