
GGH15 Beyond Permutation Branching
Programs: Proofs, Attacks, and Candidates

Yilei Chen1, Vinod Vaikuntanathan2, and Hoeteck Wee3

1 Boston University, Boston, USA
chenyl@bu.edu

2 MIT, Cambridge, USA
vinodv@csail.mit.edu

3 CNRS and ENS, PSL, Paris, France
wee@di.ens.fr

Abstract. We carry out a systematic study of the GGH15 graded en-
coding scheme used with general branching programs. This is motivated
by the fact that general branching programs are more efficient than per-
mutation branching programs and also substantially more expressive in
the read-once setting. Our main results are as follows:
– Proofs. We present new constructions of private constrained PRFs

and lockable obfuscation, for constraints (resp. functions to be ob-
fuscated) that are computable by general branching programs. Our
constructions are secure under LWE with subexponential approxima-
tion factors. Previous constructions of this kind crucially rely on the
permutation structure of the underlying branching programs. Using
general branching programs allows us to obtain more efficient con-
structions for certain classes of constraints (resp. functions), while
posing new challenges in the proof, which we overcome using new
proof techniques.

– Attacks. We extend the previous attacks on indistinguishability ob-
fuscation (iO) candidates that use GGH15 encodings. The new at-
tack simply uses the rank of a matrix as the distinguisher, so we
call it a “rank attack”. The rank attack breaks, among others, the
iO candidate for general read-once branching programs by Halevi,
Halevi, Shoup and Stephens-Davidowitz (CCS 2017).

– Candidate Witness Encryption and iO. Drawing upon insights
from our proofs and attacks, we present simple candidates for witness
encryption and iO that resist the existing attacks, using GGH15
encodings. Our candidate for witness encryption crucially exploits
the fact that formulas in conjunctive normal form (CNFs) can be
represented by general, read-once branching programs.

1 Introduction

Graph-induced graded encodings – henceforth called GGH15 encodings – were
put forth by Gentry, Gorbunov and Halevi [23] as a candidate instantiation of
(approximate) cryptographic multilinear maps [8, 20], with the hope that these

2 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

encodings could in turn be used to build advanced cryptographic primitives
whose security is related to the hardness of the learning with errors (LWE)
problem [36]. In addition, following [20,21], the same work presented candidate
constructions of multi-party key exchange and indistinguishability obfuscation
(iO) starting from these graded encoding schemes.

In the last few years, a very fruitful line of works has shed a great deal of
insight into the use of GGH15 encodings in two complementary settings: con-
structing security reductions from LWE (partially validating the intuition in
GGH15), and demonstrating efficient attacks. The former include constructions
of private constrained pseudorandom functions (PRFs) [13], lockable obfuscation
(aka obfuscating the “compute-then-compare” functionality) [26,38] and encryp-
tion schemes that constitute counter-examples for circular security [27,30]. The
latter include efficient attacks [15, 17] on the key exchange and iO candidates
described in [23]. One of the key distinctions between the two settings is whether
an adversary can obtain encodings of zero from honest evaluations. For all the
applications that can be based on LWE, the adversary cannot trivially obtain
encodings of zero; whereas the attacks apply only to settings where the adver-
sary can trivially obtain encodings of zero. There is much grey area in between,
where we neither know how to obtain encodings of zero nor are we able to prove
security based on LWE (e.g., in the setting of witness encryption).

This work. In this work, we explore the use of GGH15 encodings together with
general (non-permutation) matrix branching programs. In particular, we present
(i) new constructions of private constrained PRFs and lockable obfuscation from
LWE, (ii) new attacks on iO candidates, and (iii) new candidates for iO and
witness encryption that resist our new attacks as well as prior attacks. At the
core of these results are new techniques and insights into the use of GGH15
encodings for a larger class of branching programs.

Most of the prior constructions and candidates for the primitives we consider
follow the template laid out in [21]: start with the class of NC1 circuits, repre-
sented using permutation branching programs, which are specified by a collec-
tion of permutation matrices {Mi,b}i∈[h],b∈{0,1}. Computation in such a program

proceeds by taking a subset product of these matrices, where the choice of the
subset is dictated by the input but the order in which the matrices are multiplied
is oblivious to the input. To cryptographically “protect” this computation, we
will first pre-process and randomize {Mi,b} to obtain a new collection of ma-

trices {Ŝi,b}, and then encode the latter using graded encodings. Functionality
(e.g. evaluation in lockable obfuscation and iO) relies on the fact that we can
check whether some subset product of the Ŝi,b’s is zero (or the identity matrix)
using the underlying graded encodings. Any security proof or attack would of
course depend on the class of matrices Mi,b’s we start out with, and how the

Ŝi,b’s are derived.

Beyond permutation matrices. From a feasibility point of view, working with
permutation matrices is without loss of generality. We know that any NC1 circuit
(or even a logspace computation) can be represented as a permutation matrix

GGH15 Beyond Permutation Branching Programs 3

branching program [5]. Moreover, any general branching program, where the
underlying matrices are possibly low-rank, can be converted to a permutation
branching program with a polynomial blow-up in the number and dimensions of
these matrices. Nonetheless, there are advantages to working with more general,
not necessarily permutation or full-rank, branching programs:

– The first is concrete efficiency. For instance, representing equality or point
functions on `-bit string would use O(`2) constant-width matrices with per-
mutation branching programs, but just 2` width-one matrices (i.e. entries)
with general branching programs.

– The second is that in the read-once setting, general branching programs
are more expressive than permutation branching programs. The restriction
to read-once branching programs is useful in applications such as iO and
witness encryption, as they allow us to disregard “multiplicative bundling”
factors that protect against mixed-input attacks, which in turn yields much
more efficient constructions. This was shown in a recent work of Halevi,
Halevi, Shoup and Stephens-Davidowitz (HHSS) [29], which presented an
iO candidate for read-once branching programs based on GGH15 encodings.
Their candidate is designed for general read-once branching programs, as
read-once permutation branching programs only capture an extremely lim-
ited class of functions.

This raises the natural question of the security of GGH15-based constructions
when applied to general (non-permutation, possibly low-rank) matrix branching
programs, as is exactly the focus of this work. Indeed, the afore-mentioned proof
techniques and attacks break down in this setting. In particular, the HHSS iO
candidate appears to resist the existing attacks in [15,17], thanks in part to the
use of low-rank matrices (cf. [29, Section 1.2]).

We proceed to describe our results and techniques in more detail.

1.1 Our Results I: New Cryptographic Constructions from LWE

We present new constructions of private constrained PRFs and lockable obfusca-
tion that work directly with general matrix branching programs. As with prior
works, our constructions are secure under the LWE assumption with subexpo-
nential approximation factors. Our result generalizes the previous constructions
in [13, 26, 38] which only work for permutation branching programs, and yields
improved concrete efficiency for several interesting classes of functions that can
be represented more efficiently using general branching programs, as described
next.

– Lockable obfuscation [26,38] refers to the average-case secure virtual black-
box (VBB) obfuscation for a class of functionalities C[f, y] which, on input
x, output 1 if f(x) = y and 0 otherwise. The average-case refers (only)
to a uniformly random choice of y (more generally, y with sufficient min-
entropy). For lockable obfuscation, we obtain improved constructions for a
class of “compute” functions where each output bit is computed using a

4 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

general branching program applied to the input x (whereas [26, 38] require
permutation branching programs). To illustrate the efficiency gain, consider
the case where each output bit of the underlying function f computes a
disjunction or conjunction of the ` input bits. In this case, we achieve up
to a quadratic gain in efficiency due to our support for general branching
programs. This class generalizes the distributional conjunction obfuscator
studied in [10,12,38].

– Private puncturable PRFs are an important special case of constrained
PRFs, with many applications such as 2-server private information retrieval
(PIR) [6]. We obtain a very simple private puncturable PRF with a quadratic
efficiency improvement over the recent GGH15-based construction of Canetti
and Chen [13]. Nonetheless, our construction is admittedly less efficient –for
most settings of parameters– than the more complex constructions in [6,11]
that combines techniques from both fully-homomorphic and attribute-based
encryption.

Next, we provide a very brief overview of our techniques, and defer a more
detailed technical overview to Section 2.

New constructions and proof techniques. A GGH15 encoding of a low-norm
matrix Ŝ w.r.t. two matrices A0 and A1 is defined to be along the edge A0 7→ A1

and is computed as

D← A−10 (ŜA1 + E)

where for all A, Y with proper dimensions, the notation D ← A−1(Y) means
that D is a random low-norm matrix such that AD = Y mod q.

The constructions in [13, 26, 27, 38] encode any permutation matrix M ∈
{0, 1}w×w as a GGH15 encoding of Ŝ = M⊗ S, i.e.

A−10 ((M⊗ S)A1 + E)

for a random low-norm S. The crux of the analysis is to show that M is hidden
under the LWE assumption, namely: for any permutation matrix M ∈ {0, 1}w×w,

(A0,A
−1
0 ((M⊗ S)A1 + E)) ≈c (A0,V) (1)

where A0,A1 are uniformly random over Zq, S,V,E are random low-norm ma-
trices, ≈c stands for computational indistinguishable. The proof of (1) follows
quite readily from the fact that given any permutation matrix M ∈ {0, 1}w×w,
we have:

(A, (M⊗ S)A + E) ≈c (A,U)

under the LWE assumption, where U is uniformly random.
However, this statement is false for arbitrary matrices M, take for instance

M = 0w×w, the all-0 matrix. Indeed, the reader can easily come up with rank-
(w − 1) matrices M for which equation (1) fails to hold.

GGH15 Beyond Permutation Branching Programs 5

In our construction, we encode an arbitrary matrix M as a GGH15 encoding
of

Ŝ =

(
M⊗ S

S

)
That is, we append S along the diagonal. We then establish the following ana-
logue of (1) under the LWE assumption: for any arbitrary M ∈ {0, 1}w×w,(

JA0,A
−1
0

((
M⊗ S

S

)
A1 + E

))
≈c
(
JA0,V

)
(2)

where J is any matrix of the form [? | I], and A0,A1,S,V,E are distributed
as in (1). This statement is qualitatively incomparable with (1): it is stronger
in that it works for arbitrary M, but weaker in that the distinguisher only sees
partial information about A0.

Proving the statement in (2) requires a new proof strategy where we will
treat S (instead of A0,A1) as a public matrix known to the distinguisher. In
particular, we start with taking the bottom part of A1 as the LWE secret, in
conjunction with the public S in the bottom-right diagonal; then use an extension
of the trapdoor sampling lemma by Gentry et al. [25] to produce an “oblique”
(while statistically indistinguishable) preimage sample using only the trapdoor
of the top part of A0; finally argue that the “oblique” sample is computationally
indistinguishable from random Gaussian using the top part of A0 as the LWE
secret. Walking through these steps requires new techniques on analyzing the
trapdoor sampling detailed in Section 4. We refer the readers to Sections 2.2
and 5.3 for further explanation of the proof techniques.

Next, we show that the weaker guarantee in (2) (in that the distinguisher gets
JA0 instead of A0) is sufficient for constructions of constrained PRFs and lock-
able obfuscation based on GGH15 encodings; this yields new constructions that
are directly applicable to general, non-permutation matrix branching programs.

1.2 Our Results II: New Attacks on iO Candidates

Next, we turn our attention to iO, where adversaries can obtain encodings of zero
through honest evaluations. Concretely, we focus on iO candidates that follow
the [21] template described earlier in the introduction: start with a branching
program {Mi,b}, pre-process and randomize {Mi,b} to obtain a matrices {Ŝi,b},
and encode the latter using GGH15 encodings.

We present an attack that run in time sizeO(c) for general read-c branching
programs of size size. In particular, we have a polynomial-time attack when c is
constant, as is the case for the iO candidate in [29] which corresponds to c = 1.
Our attack covers various “safeguards” in the literature, such as Kilian-style
randomization, multiplicative bundling, and diagonal padding.

Attack overview. Our attack is remarkably simple, and proceeds in two steps:

1. Compute a matrix V whose (i, j)’th entry correspond to an iO evaluation
on input x(i) | y(j) that yields an encoding of zero. The dimensions of V and
the number of evaluations is polynomial in sizec.

6 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

2. Output the rank of V (over Z). More precisely, check if rank(V) is above
some threshold.

Step 1 was used in the attack of Coron et al. [17] and Chen et al. [15], both
originated from the zeroizing attack of Cheon et al. [16] on CLT13 [19]. The
novelty of our analysis lies in showing that rank(V) leaks information about the
Ŝi,b’s and thus the plaintext branching program matrices Mi,b’s. So we call the
attack a “rank attack”.

Our attack improves upon the previous attack of Chen et al. [15] on GGH15-
based iO candidates in several ways: (i) we have a classical as opposed to a
quantum attack, and (ii) it is applicable to a larger class of branching programs,
i.e. branching programs that are not necessarily input-partitioned or using per-
mutation matrices.

Why the rank-attack works? To get a taste of the rank-attack, let’s consider an
oversimplified description of the iO candidates based on GGH15 encodings. Let
{Ŝi,b} be the randomization of plaintext matrices {Mi,b}. Then the obfuscated

code is the GGH15 encodings of the Ŝi,b matrices

A0, {Di,b}i∈[h],b∈{0,1} where Di,b ← A−1i−1

(
Ŝi,bAi + Ei,b

)
Evaluation proceeds by first computing the product of A0 with the subset prod-
uct of the Di,b matrices. As an example, for the obfuscation of a 3-step branching
program that computes all-0 functionality, the evaluation on input x = 000 gives

Eval(x) = A0 ·D1,0 ·D2,0 ·D3,0 = Ŝ1,0Ŝ2,0E3,0+Ŝ1,0E2,0D3,0+E1,0D2,0D3,0 (3)

To give a sense of why computing the rank is useful in an attack, we make a
further simplification, that suppose we manage to learn the monomial

Ŝ1,0E2,0D3,0 ∈ Zt×m.

W.h.p., the Gaussians E2,0,D3,0 and therefore its product E2,0D3,0 are full rank

(over Z), so the rank of this term is that of Ŝ1,0, which leaks some information
about the rank of M1,0. Note that learning the rank of M1,0 leaks no useful
information for permutation branching programs, but is sufficient to break iO
for general branching programs.

In actuality, a single evaluation corresponding to an encoding of zero only
provides a single value in Z, which is a sum of products of the form above,
multiplied by some left and right bookend vectors. To extract the important
information out of the summation of random-looking terms, we will first form a
matrix V of evaluations on appropriately chosen inputs. The matrix V has the
property that it factors into the product of two matrices V = X ·Y. We proceed
analogously to the toy example in two steps with X,Y playing the roles of Ŝ1,0

and E2,0 ·D3,0:

1. argue that Y is non-singular over Q so that rank(V) = rank(X), and

GGH15 Beyond Permutation Branching Programs 7

2. argue that rank(X) leaks information about the underlying branching pro-
gram.

So far we have described what the analysis looks like for the read-once branch-
ing programs (i.e. c = 1). For the case of c > 1, the analysis has the flavor of
converting the obfuscated code of a read-c branching program into the read-once
setting, using the “tensor switching lemmas” from previous attacks [4,18] on iO
candidates that use GGH13 and CLT13.

The code that demonstrates the attack as a proof-of-concept is available at
https://github.com/wildstrawberry/cryptanalysesBPobfuscators.

1.3 Our Results III: New Candidates

Given the insights from our proofs and attacks, we present simple candidates for
witness encryption and iO based on GGH15 encodings. Our witness encryption
candidate relies on the observation from [24] that to build witness encryption for
general NP relations, it suffices to build witness encryption for CNF formulas,
and that we can represent CNF formulas using general, read-once branching
programs. The ciphertext corresponding to a formula Ψ and a message µ ∈ {0, 1}
is of the form described in (2), namely

JA0,

{
A−1i−1

((
Mi,b ⊗ Si,b

µSi,b

)
Ai + Ei,b

)}
where J is a specific matrix of the form [? | I] and the Mi,b’s are the read-once
branching program representing Ψ .

Starting from the witness encryption candidate, we also present an iO can-
didate for NC1 circuits that appear to resist our rank attack as well as all prior
attacks. In order to thwart the rank attack, our iO candidate necessarily reads
each input bit ω(1) times. To then prevent mixed-input attacks, we rely on an ex-
tension of multiplicative bundling factors used in prior works that uses matrices
instead of scalars.

We stress that an important design goal in these candidates is simplicity so
as to facilitate the security analysis. We believe and anticipate that any attacks
or partial security analysis for these candidates (perhaps in some weak ideal-
ized model cf. [22]) would enhance our understanding of witness encryption and
obfuscation.

1.4 Discussion and Open problems

Perspective. The proposal of candidate multilinear maps [20] from lattice-type
assumptions in 2013 has triggered a major paradigm shift in cryptography and
enabled numerous cryptographic applications, most notably indistinguishabil-
ity obfuscation [21]. Among the three multilinear maps candidates [19, 20, 23],
GGH15 is the only one that has served as a basis for new cryptographic applica-
tions based on established lattice problems, as demonstrated in e.g. [13,26,27,38].

https://github.com/wildstrawberry/cryptanalysesBPobfuscators

8 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

We believe that extending the safe settings of GGH15 (where security can be
based on the LWE assumption), as explored in this work through the generalized
GGH15 framework as well as both proofs and attacks, will pave the way towards
new cryptographic constructions.

Open problems. We conclude with a number of open problems:

– Study the security of our candidate for witness encryption, either prove se-
curity under instance-independent assumptions, or find a direct attack on
the scheme. For the former (i.e., prove security), the only proof strategy in
the existing literature is to build and prove a so-called positional witness
encryption scheme [24], for which the security definition allows the adver-
sary to obtain encodings of zeroes. Unfortunately, the natural extensions of
our candidate witness encryption scheme to a positional variant are suscep-
tible to the rank attack in the presence of encodings of zeroes. For the latter
(i.e., directly attack the scheme), all existing attack strategies on GGH15
encodings as used in our candidate require encodings of zeroes, which are
not readily available in the witness encryption setting.

– Find a polynomial-time attack for iO candidates for branching programs
where every input repeats c = O(λ) time where λ is the security parameter.
The analysis of known attacks, including our rank attack, yields running
times that grow exponentially with c. There are possibilities that the analysis
is not tight and the rank attack or prior attacks could in fact succeed with
a smaller running time. However we have not detected such a phenomenon
with experiments for small c.

– Note that all our candidate constructions are of the form: AJ , {Di,b}i∈[h],b∈{0,1}
and evaluation/decryption proceeds by first computing AJDx′ := AJ

∏h
i=1 Di,x′i

for some x′ ∈ {0, 1}h. Consider the following restricted class of adversaries
that only gets oracle access to x′ 7→ AJDx′ instead of Aj , {Di,b}i∈[h],b∈{0,1}.
Note that our rank attack as well as various mixed-input and zeroizing at-
tacks can all be implemented using this restricted adversaries. Can we prove
(or break) security of our witness encryption or iO candidates against this
restricted class of adversaries under some reasonable instance-independent
assumptions?

Independent work. Variants of our new lemmas related to lattice preimage sam-
pling in Section 4 were presented in an independent work of Goyal, Koppula and
Waters [28], for different purposes from ours. In [28], the lemmas were used as
intermediate building blocks en route a collusion resistant traitor tracing scheme
based on the LWE assumption.

1.5 Reader’s guide

The rest of the article is organized as follows. Section 2 provides a more detailed
overview of our techniques. Section 4 provides new lemmas related to lattice

GGH15 Beyond Permutation Branching Programs 9

preimage sampling. Section 5 gives a formal construction of the generalized-
GGH15 encoding, the security notions, and the main technical proof that suffices
for the applications. Due to the page limitation we leave the applications, the
attacks, and the witness encryption and iO candidates in the full version available
at https://eprint.iacr.org/2018/360.

2 Technical Overview

In this section, we present a more detailed overview of our techniques. We briefly
describe the notation used in this overview and the paper, and refer the reader
to Section 3 for more details. We use boldface upper-case and lower-case letters
for matrices and vectors respectively. Given a bit-string x ∈ {0, 1}h, we use

Mx to denote matrix subset product
∏h
i=1 Mi,xi . Given matrices A,B, we use

A−1(B) to denote a random low-norm Gaussian D satisfying AD = B mod q.
Two probability distributions are connected by ≈s or ≈c if they are statistically
close or computationally indistinguishable.

2.1 Generalized GGH15 Encodings

In this work, we think of GGH15 as encoding two collections of matrices, one
collection is arbitrary and the other one is random, and computing some function
γ of a subset product of these matrices; we refer to this as (generalized) γ-GGH15
encodings.4 That is, the γ-GGH15 encoding takes as input two collections of
matrices {Mi,b}i∈[`],b∈{0,1} , {Si,b}i∈[`],b∈{0,1}, an additional matrix A`, and the

output is a collection of matrices

A0, {Di,b}i∈[`],b∈{0,1}

such that for all x ∈ {0, 1}`, we have

A0 ·Dx ≈ γ(Mx,Sx) ·A`

where Mx,Dx,Sx denotes subset-product of matrices as defined earlier. Here,

Mi,b ∈ {0, 1}w×w,Si,b ∈ Zn×n,A0,A` ∈ Zγ(w,n)×mq ,Di,b ∈ Zm×m.

Intuitively, we also want to hide the Mi,b’s, which we will come back to after
describing the choices for γ and the construction.

Choices for γ. There are several instantiations for γ in the literature [12,13,21,
23,26,29,38]:

γ×(M,S) = MS, γ⊗(M,S) := M⊗ S, γdiag(M,S) :=

(
M

S

)
4 See Remark 5.2 for a comparison with the original GGH15 encodings.

https://eprint.iacr.org/2018/360

10 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

where the first γ× requires working with rings so that multiplication commutes.
More generally, for the construction, we require that γ be multiplicatively ho-
momorphic, so that

γ(M,S)γ(M′,S′) = γ(MM′,SS′)

as is clearly satisfied by the three instantiations above.

The γ-GGH15 construction. We briefly describe the construction of γ-GGH15
encodings implicit in [23], from the view-point of “cascaded cancellations” [2,
27,30]. The starting point of the construction is to expand γ(Mx,Sx) ·A` using
multiplicative homomorphism as a matrix product

γ(Mx,Sx) ·A` =
∏̀
i=1

γ(Mi,xi ,Si,xi) ·A`

Next, it randomizes the product by sampling random (wide, rectangular) matri-
ces A0, . . . ,A`−1 over Zq along with their trapdoors, and rewrites the product
as a series of “cascaded cancellations”:

γ(Mx,Sx) ·A` = A0 ·
∏̀
i=1

A−1i−1(γ(Mi,xi ,Si,xi)Ai)

where A−1i−1(·) denotes random low-norm Gaussian pre-images as defined earlier.
5

For functionality, it suffices to define Di,b to be A−1i−1(γ(Mi,b,Si,b)Ai), but
that would not be sufficient to hide the underlying Mi,b’s. Instead, the construc-
tion introduces additional error terms {Ei,b}i∈[`],b∈{0,1}, and defines6

Di,b ← A−1i−1(γ(Mi,b,Si,b)Ai + Ei,b)

Observe that for all x ∈ {0, 1}`, we have

A0 ·Dx ≈ γ(Mx,Sx) ·A`

where ≈ refers to an additive error term that depends on | Di,b |, | Ei,b |, |
γ(Mi,b,Si,b) |, which we require to be small.

5 A reader who is familiar with Kilian’s randomization for branching programs should
notice the similarity. In Kilian’s randomization, we randomize the product

Mx =
∏̀
i=1

R−1
i−1Mi,xiRi

by picking random invertible matrices R1, . . . ,R`−1 along with R0 = R` = I. Here,
we replace the square matrices Ri’s with wide rectangular matrices Ai’s, and change
from left-multiplying R−1

i−1 to sampling a random Gaussian preimage of Ai−1.
6 In the GGH15 terminology, Di,b would be an encoding of γ(Mi,b,Si,b) relative to

the path i− 1 7→ i.

GGH15 Beyond Permutation Branching Programs 11

Semantic security. Following [13, 26, 27, 38], we consider the following notion of
semantic security for γ-GGH15 encodings, namely that

(semantic security.) The output (A0, {Di,b}i∈[`],b∈{0,1}) computation-

ally hides {Mi,b}i∈[`],b∈{0,1}. We only require that security holds “on

average” over random {Si,b}i∈[`],b∈{0,1} ,A`.

Prior works [13,26,38] showed that the γ⊗-GGH15 encodings achieve seman-
tic security if we restrict the Mi,b’s to be permutation matrices. That is,

Informal Lemma. Under the LWE assumption, we have that for all
permutation matrices {Mi,b}i∈[`],b∈{0,1},

(A0, {Di,0,Di,1}i∈[`]) ≈c (A0, {Vi,0,Vi,1}i∈[`]) (4)

where Di,b ← A−1i−1((Mi,b ⊗ Si,b)Ai + Ei,b), and Vi,0,Vi,1 are random
low-norm Gaussians.

As mentioned earlier in the introduction, the proof of security crucially relies on
the fact that any permutation matrix M, LWE tells us that (A, (M⊗S)A+E) ≈c
(A,U), where U is uniformly random. We sketch the proof of the semantic
security of γ⊗-GGH15 for ` = 1, which extends readily to larger ` (here the
major changes in the hybrid arguments are highlighted with boxes):(

A0, {A−10 ((M1,b ⊗ S1,b)A1 + E1,b)}b∈{0,1}
)

≈c
(
A0, {A−10 (U1,b) }b∈{0,1}

)
// LWE

≈s
(
A0, { V1,b }b∈{0,1}

)
// GPV

2.2 This work: semantic security for arbitrary matrices

Without further modifications, γ-GGH15 encoding does not achieve semantic
security for arbitrary matrices. Concretely, given A0,D1,0, we can compute

A0 ·D1,0 = γ(M1,0,S1,0)A1 + E1,0

which might leak information about the structure of M1,0. In particular, we can
distinguish between M1,0 being Iw×w versus 0w×w for all of γ×, γ⊗, γdiag.

The key to our new cryptographic constructions for general branching pro-
grams is a new technical lemma asserting semantic security for γdiag-GGH15
encodings with arbitrary matrices where we replace A0 with JA0 for some wide
bookend matrix J that statistically “loses” information about A0:

New Lemma, Informal. Under the LWE assumption, we have that
for all matrices {Mi,b}i∈[`],b∈{0,1} over Z,

(JA0, (Di,0,Di,1)i∈`) ≈c (JA0, (Vi,0,Vi,1)i∈`) (5)

where J is any matrix of the form [? | I], Di,b ← A−1i−1(

(
Mi,b

Si,b

)
Ai+

Ei,b), and Vi,0,Vi,1 are random low-norm Gaussians.

12 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

New proof technique We prove a stronger statement for the semantic security
of γdiag-GGH15, namely the semantic security holds even given S1,0,S1,1, . . . ,S`,0,S`,1
(but not A1, . . . ,A`). Our proof departs significantly from the prior analysis –
in particular, we will treat A1, . . . ,A` as LWE secrets. Let Ai,Ai denote the
top and bottom parts of A, and define Ei,b,Ei,b analogously. This means that

A−1i−1(γdiag(Mi,b,Si,b)Ai + Ei,b) = A−1i−1

(
Mi,bAi + Ei,b

Si,bAi + Ei,b

)
We will use A1, . . . ,A` as LWE secrets in the following order: A`, . . . ,A1,A0, . . . ,A`−1.

We sketch the proof for ` = 1 (and it extends readily to larger `):

(
JA0, {A−1

0

(
M1,bA1 + E1,b

S1,bA1 + E1,b

)
}b∈{0,1}

)
≈c

(
JA0, { A

−1
0

(
M1,bA1 + E1,b

)
}b∈{0,1}

)
≈s

(
U0 , {A

−1
0

(
M1,bA1 + E1,b

)
}b∈{0,1}

)
≈c

(
U0, { V1,b }b∈{0,1}

)
where the notations and analysis of hybrid arguments are as follows

– The first ≈c follow from a more general statement, namely for all i and for
any Zi,b, we have

{
A−1i−1

(
Zi,b

Si,bAi + Ei,b

)}
b∈{0,1}

≈c
{

A
−1
i−1
(
Zi,b

)}
b∈{0,1}

even if the distinguisher gets Ai−1,Si,b,Zi,b. The proof of this statement
follows by first applying LWE with Ai as the secret7 to deduce that

{Si,b,Si,bAi + Ei,b}b∈{0,1} ≈c {Si,b,Ui,b}b∈{0,1}

where the Ui,b matrices are uniformly random over Zq, followed by a new
statistical lemma about trapdoor sampling which tells us that for all but
negligibly many Ai−1, we have that for all Zi,b,

A−1i−1

(
Zi,b
Ui,b

)
≈s A

−1
i−1
(
Zi,b

)
– The≈s follows from the structure of J, which implies (A0,JA0) ≈s (A0,U0),

where U0 is a uniformly random matrix.

7 Here, we could have used Si,0,Si,1 as the LWE secrets and Ai as the public matrix;
however, this strategy would break down when Mi,b depends on Si,b, which is needed
in the applications.

GGH15 Beyond Permutation Branching Programs 13

– The final ≈c follows from a more general statement, which says that under
the LWE assumption, we have that for any Z,

A−1(Z + E) ≈c A−1(U)

where the distributions are over random choices of A,E,U, provided A is
hidden from the distinguisher. The proof uses the Bonsai technique [14].
Suppose A is of the form [A1 | A2] where A1 is uniformly random, A2

sampled with a trapdoor. Then, we have via the Bonsai technique [14]:

A−1(Z + E) ≈s
(

−V

A−12 (A1V + E + Z))

)
where V is a random low-norm Gaussian. We then apply the LWE assump-
tion to (V,A1V+E) with A1 as the LWE secret. Once we replace A1V+E
with a uniformly random matrix, the rest of the proof follows readily from
the standard GPV lemma.

Extension: combining γ⊗, γdiag. For the applications to private constrained PRFs
and lockable obfuscation, we will rely on γ⊗diag-GGH15 encodings, where

γ⊗diag(M,S) :=

(
M⊗ S

S

)
We observe that our proof of semantic security for γdiag also implies semantic
security for γ⊗diag, where we give out JA0 instead of A0. This follows from the
fact that our proof for γdiag goes through even if the Mi,b’s depend on the Si,b’s,
since we treat the latter as public matrices when we invoke the LWE assumption.

2.3 New Cryptographic Constructions from LWE

Using γ⊗diag-GGH15 encodings and the proof that semantic security of γ⊗diag
holds for arbitrary M matrices, we are ready to construct private constrained
PRFs and lockable obfuscation where the constraint/function can be recognized
by arbitrary matrix branching programs. Here we briefly explain the private
constrained PRF construction as an example.

Before that we recall some terminologies for matrix branching programs. In
the overview, we focus on read-once matrix branching programs for notational
simplicity, although our scheme works for general matrix branching programs
with any input pattern and matrix pattern (possibly low-rank matrices). A (read-
once) matrix branching program for a function fΓ : {0, 1}` → {0, 1} is specified

by Γ :=
{
{Mi,b}i∈[`],b∈{0,1} ,P0,P1

}
such that for all x ∈ {0, 1}`,

Mx =
∏̀
i=1

Mi,xi = PfΓ (x)

We will work with families of branching programs {Γ}, which share the same
P0,P1.

14 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

Private constrained PRFs We proceed to provide an overview of our con-
struction of private constrained PRFs using γ⊗diag-GGH15 encodings. As a quick
overview of a private constrained PRF, a private constrained PRF allows the
PRF master secret key holder to derive a constrained key given a constraint
predicate C. The constrained key is required to randomize the output on every
input x s.t. C(x) = 0, preserve the output on every input x s.t. C(x) = 1. In
addition, the constraint C is required to be hidden given the description of the
constrained key.

Let ei ∈ {0, 1}1×w denotes the unit vector with the ith coordinate being
1, the rest being 0. Consider a class of constraints recognizable by branching
programs

ΓC :=
{{

Mi,b ∈ {0, 1}w×w
}
i∈[`],b∈{0,1} ,P0,P1

}
,

where the target matrices P0,P1 satisfy e1P0 = e1, e1P1 = 01×w.
We use γ⊗diag to encode {Mi,b}i∈[`],b∈{0,1}, which means for i = 0, ..., `,

Ai ∈ Z(nw+n)×m
q . Denote A0 as the bottom n rows of Ai, Ai as the top nw

rows of Ai. Inside Ai let A
(j)

i denote the (j − 1)nth to jnth rows of Ai, for
j ∈ [w].

Define the output of the normal PRF evaluation as

x 7→ bSxA`ep

where b · ep denotes the rounding-to-Zp operation used in previous LWE-based
PRFs, which we suppress in the rest of this overview for notational simplicity.

We set J := (e1 ⊗ I | I) so that J ·A0 = A
(1)

0 + A0, then

J · γ⊗diag(Mx,Sx) ·A` = ((e1 ·Mx)⊗ Sx) ·A` + SxA` =

{
SxA` if fΓ (x) = 1

SxA
(1)

` + SxA` if fΓ (x) = 0

Given Γ , the constrained key is constructed as

A
(1)

0 + A0, (Di,0,Di,0)i∈[`]

where (A0, {Di,b}i∈[`],b∈{0,1})← GGHEnc⊗diag({Mi,b}i∈[`],b∈{0,1} , {Si,b}i∈[`],b∈{0,1} ,A`).

The constrained evaluation on an input x gives

(A
(1)

0 + A0) ·Dx ≈ J · γ⊗diag(Mx,Sx) ·A`

which equals to SxA` if fΓ (x) = 1, SxA
(1)

` + SxA` if fΓ (x) = 0.

A special case: private puncturable PRFs. A private puncturable PRF can be
obtained by simply using branching program with 1×1 matrices (i.e. let w = 1).
The punctured key at x∗ is given by

A0 + A0, {Di,b}i∈[`],b∈{0,1}

GGH15 Beyond Permutation Branching Programs 15

where

Di,x∗i
← A−1i−1

((
Si,x∗i

Si,x∗i

)
Ai + Ei,x∗i

)
,Di,1−x∗i ← A−1i−1

((
0

Si,1−x∗

)
Ai + Ei,1−x∗i

)
.

The construction extends naturally to allow us to puncture at sets of points
specified by a wildcard pattern {0, 1, ?}`.

Security. In the security proof, we will use the fact that whenever fΓ (x) = 0,

constrained evaluation outputs SxA
(1)

` +SxA`, so that the normal PRF output

is masked by the boxed term. More formally, in the security game, the adversary
gets a constrained key for ΓC , and oracle access to a PRF evaluation oracle Eval.
We consider the following sequence of games:

– Replace the output of the Eval oracle by

(A
(1)

0 + A0) ·Dx − Sx ·A
(1)

`

This is statistically indistinguishable from the real game, since (A
(1)

0 + A0) ·
Dx ≈ Sx · A

(1)

` + Sx · A`, and the approximation disappears w.h.p. after
rounding.

– Apply semantic security to replace (Di,0,Di,0)i∈[`] with random. Here, we re-

quire that semantic security holds even if the distinguisher gets {Si,b}i∈[`],b∈{0,1} ,A`,

where the latter are needed in order to compute Sx · A
(1)

` . This implies
constraint-hiding.

– Now, we can apply the BLMR analysis to deduce pseudorandomness of Sx ·
A

(1)

` , where we treat A
(1)

` as the seed of the BLMR PRF [7]. This implies
pseudorandomness of the output of the Eval oracle.

3 Preliminaries

Notations and terminology. In cryptography, the security parameter (denoted as
λ) is a variable that is used to parameterize the computational complexity of the
cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over λ.

When a variable v is drawn randomly from the set S we denote as v
$←

S or v ← U(S), sometimes abbreviated as v when the context is clear. We
use ≈s and ≈c as the abbreviation for statistically close and computationally
indistinguishable.

Let R,Z,N be the set of real numbers, integers and positive integers. Denote
Z/(qZ) by Zq. The rounding operation baep : Zq → Zp is defined as multiplying
a by p/q and rounding the result to the nearest integer.

For n ∈ N, [n] := {1, ..., n}. A vector in Rn (represented in column form
by default) is written as a bold lower-case letter, e.g. v. For a vector v, the ith

16 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

component of v will be denoted by vi. A matrix is written as a bold capital letter,
e.g. A. The ith column vector of A is denoted ai. In this article we frequently
meet the situation where a matrix A is partitioned into two pieces, one stacking

over the other. We denote it as A =
(
A
A

)
. The partition is not necessarily even.

We will explicitly mention the dimension when needed.
The length of a vector is the `p-norm ‖v‖p = (

∑
vpi)1/p. The length of a

matrix is the norm of its longest column: ‖A‖p = maxi ‖ai‖p. By default we use
`2-norm unless explicitly mentioned. When a vector or matrix is called “small”,
we refer to its norm.

Subset products (of matrices) appear frequently in this article. For a given
h ∈ N, a bit-string v ∈ {0, 1}h, we use Xv to denote

∏
i∈[h] Xi,vi (it is implicit

that {Xi,b}i∈[h],b∈{0,1} are well-defined).

The tensor product (Kronecker product) for matrices A ∈ R`×m, B ∈ Rn×p
is defined as

A⊗B =

a1,1B, . . . , a1,mB
. . . , . . . , . . .
a`,1B, . . . , a`,mB

 ∈ R`n×mp. (6)

The rank of the resultant matrix satisfies rank(A⊗B) = rank(A) · rank(B).
For matrices A ∈ R`×m, B ∈ Rn×p, C ∈ Rm×u, D ∈ Rp×v,

(AC)⊗ (BD) = (A⊗B) · (C⊗D). (7)

Lemma 3.1 (Leftover hash lemma). Let H = {h : X → Y} be a 2-universal
hash function family. Then for any random variable X ∈ X , for ε > 0 s.t.
log(|Y|) ≤ H∞(X)− 2 log(1/ε), the distributions

(h, h(X)) and (h, U(Y))

are ε-statistically close.

3.1 Lattices background

Smoothing parameter. We recall the definition of smoothing parameter and
some useful facts.

Definition 3.2 (Smoothing parameter [32]). For any n-dimensional lattice
Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest real
σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε.

Lemma 3.3 (Smoothing parameter bound from [25]). For any n-dimensional
lattice Λ(B) and for any ω(

√
log n) function, there is a negligible ε(n) for which

ηε(Λ) ≤ ‖B̃‖ · ω(
√

log n)

Lemma 3.4 (Smooth over the cosets [25]). Let Λ, Λ′ be n-dimensional
lattices s.t. Λ′ ⊆ Λ. Then for any ε > 0, σ > ηε(Λ

′), and c ∈ Rn, we have

∆(DΛ,σ,c mod Λ′, U(Λ mod Λ′)) < 2ε

GGH15 Beyond Permutation Branching Programs 17

Lemma 3.5 ([32,35]). Let B be a basis of an n-dimensional lattice Λ, and let
σ ≥ ‖B̃‖ · ω(log n), then Prx←DΛ,σ [‖x‖ ≥ σ ·

√
n ∨ x = 0] ≤ negl(n).

Lemma 3.6 ([9, 25]). There is a p.p.t. algorithm that, given a basis B of an
n-dimensional lattice Λ(B), c ∈ Rn, σ ≥ ‖B̃‖ ·

√
ln(2n+ 4)/π, outputs a sample

from DΛ,σ,c.

Learning with errors. We recall the learning with errors problem.

Definition 3.7 (Decisional learning with errors (LWE) [37]). For n,m ∈
N and modulus q ≥ 2, distributions for secret vectors, public matrices, and error
vectors θ, π, χ ⊆ Zq. An LWE sample is obtained from sampling s ← θn, A ←
πn×m, e← χm, and outputting (A, sTA + eT mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Z1×m

q) with probability
bigger than 1/2 plus non-negligible.

Lemma 3.8 (Regularity of Ajtai function [37]). Fix a constant c > 1, let

m ≥ cn log q. Then for all but q
−(c−1)n

4 fraction of A ∈ Zn×mq , the statistical
distance between a random subset-sum of the columns of A and uniform over

Znq is less than q
−(c−1)n

4 .

Lemma 3.9 (Standard form [9, 33, 34, 37]). Given n ∈ N, for any m =
poly(n), q ≤ 2poly(n). Let θ = π = U(Zq), χ = DZ,σ where σ ≥ 2

√
n. If there

exists an efficient (possibly quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then
there exists an efficient (possibly quantum) algorithm for approximating SIVP
and GapSVP in the `2 norm, in the worst case, to within Õ(nq/σ) factors.

We drop the subscripts of LWE when referring to standard form of LWE
with the parameters specified in Lemma 3.9. In this article we frequently use the
following variant of LWE that is implied by the standard form.

Lemma 3.10 (LWE with small public matrices [7]). For n,m, q, σ chosen
as was in Lemma 3.9, LWEn′,m,q,U(Zq),DZ,σ,DZ,σ is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,σ

for n′ ≥ 2 · n log q.

Trapdoor and preimage sampling. Given A ∈ Zn×mq , denote the kernel lattice of
A as

Λ⊥(A) := {c ∈ Zm : A · c = 0n (mod q)} .

Given any y ∈ Znq , σ > 0, we use A−1(y, σ) to denote the distribution of a
vector d sampled from DZm,σ conditioned on Ad = y (mod q). We sometimes
suppress σ when the context is clear.

Lemma 3.11 ([1, 3, 31]). There is a p.p.t. algorithm TrapSam(1n, 1m, q) that,
given the modulus q ≥ 2, dimensions n, m such that m ≥ 2n log q, outputs
A ≈s U(Zn×mq) with a trapdoor τ .

Following Lemmas 3.6 and 3.11,

18 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

Lemma 3.12. There is a p.p.t. algorithm that for σ ≥ 2
√
n log q, given (A, τ)←

TrapSam(1n, 1m, q), y ∈ Znq , outputs a sample from A−1(y, σ).

Lemma 3.13 ([25]). For all but negligible probability over (A, τ)← TrapSam(1n, 1m, q),
for sufficiently large σ ≥ 2

√
n log q, the following distributions are efficiently

samplable and statistically close:{
A,x,y : y← U(Znq),x← A−1(y, σ)

}
≈s {A,x,y : x← DZm,σ,y = Ax} .

Lemma 3.14 (Bonsai technique [14]). Let n,m,m1,m2, q ∈ N, σ ∈ R satisfy
m = m1 +m2, m2 ≥ 2n log q, σ > 2

√
n log q. For any y ∈ Znq , the following two

distributions are efficiently samplable and statistically close.

1. Let (A, τ)← TrapSam(1n, 1m, q), d← A−1(y, σ). Output (A,d).
2. Let A1 ← U(Zn×m1

q), (A2, τ2)← TrapSam(1n, 1m2 , q); d1 ← DZm1 ,σ, d2 ←
A−12 (y −A1 · d1, σ). Let A = [A1,A2], d = [dT1 ,d

T
2]T . Output (A,d).

4 New Lemmas on Preimage Sampling

In this section, we present new lemmas related to lattice preimage sampling.
These lemmas are essential to the proof of semantic security for non-permutation
branching programs, as outlined in Section 2.2.

The first is a statistical lemma which states that for all but negligibly many
matrix A (with proper dimensions), for any matrix Z, the following two distri-
butions are statistically indistinguishable:

(
A,A−1

(
Z

U

))
≈s
(
A,A

−1
(Z)
)

where the distributions are over random choices of a matrix U and probability

distributions A−1(·) and A
−1

(·). This is in essence an extension of the trapdoor
sampling lemma from Gentry, Peikert and Vaikuntanathan [25].

The second is a computational lemma which states that for any matrix Z,
the following two distributions are computationally indistinguishable:

A−1(Z + E) ≈c A−1(U)

where the distributions are over random private choices of A,E and U and the
coins of A−1(·). The computational indistinguishability relies on the hardness
of the decisional learning with errors (LWE) problem.

4.1 The Statistical Lemma

We prove the above statistical lemma for vectors; the setting for matrices follow
readily via a hybrid argument.

GGH15 Beyond Permutation Branching Programs 19

Lemma 4.1. Let ε > 0. Given σ ∈ R+, n′, n,m, q ∈ N. For all but a q−2n
′

fraction of A ∈ Zn′×mq , all but a q−2n fraction of A ∈ Zn×mq , let A :=
(
A
A

)
. For

σ > ηε(Λ
⊥(A)), m ≥ 9(n′ + n) log q. For a fixed z ∈ Zn′q , for u ← U(Znq), we

have

A−1(

(
z

u

)
, σ) and A

−1
(z, σ)

are 2ε-statistically close.

Proof. We need two lemmas to assist the proof of Lemma 4.1.

Lemma 4.2. Let c > 9. For n′, n,m, q ∈ N such that m ≥ c(n′ + n) log q. For
all but q−2n

′
fraction of A ∈ Zn′×mq , all but q−2n fraction of A ∈ Zn×mq , we have{

A · x | x ∈ {0, 1}m ∩ Λ⊥(A)
}

= Znq .

Proof. From Lemma 3.8, we have for all but q−2n
′

fraction of A ∈ Zn′×mq∣∣∣∣ Pr
x∈{0,1}m

[A · x = 0n
′
]− q−n

′
∣∣∣∣ < 2q−2n

′
⇒ Pr

x∈{0,1}m
[A·x = 0n

′
] > 0.99·q−n

′
(8)

Let x ← U({0, 1}m ∩ Λ⊥(A)), we have H∞(x) > m − 2n′ log q. For δ > 0, by
setting m ≥ n log q + 2n′ log q + 2 log(1/δ), we have that for A← U(Zn×mq),

(A,A · x) and (A, U(Znq))

are δ-statistically close following leftover hash lemma (cf. Lemma 3.1).

Then Lemma 4.2 follows by setting δ = q−4n and take a union bound for A.

Lemma 4.3. For n′, n,m, q ∈ N, σ > 0. A ∈ Zn′×mq , A ∈ Zn×mq . Assuming

the columns of A :=
(
A
A

)
generate Zn′+nq . For any vectors u ∈ Znq , z ∈ Zn′q ,

and c ∈ Zm where A · c =
(
z
u

)
mod q. The conditional distribution D of x ←

c +DΛ⊥(A),σ,−c given Ax = u mod q is exactly c +DΛ⊥(A),σ,−c.

Proof. Observe that the support of D is c+Λ⊥(A). We compute the distribution
D: for all x ∈ c + Λ⊥(A),

D(x) =
ρσ(x)

ρσ(c + Λ⊥(A))
=

ρσ,−c(x− c)

ρσ,−c(Λ⊥(A))
= DΛ⊥(A),σ,−c(x− c). (9)

Finally from Lemma 3.4, let Λ = Λ⊥(A), Λ′ = Λ⊥(A), we have Λ′ ⊆ Λ. Since
σ > ηε(Λ

′), DΛ⊥(A),σ,−c is 2ε-statistically close to uniform over the cosets of the

quotient group (Λ⊥(A)/Λ⊥(A)). The rest of the proof of Lemma 4.1 follows
Lemma 4.3 and Lemma 4.2.

20 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

4.2 The Computational Lemma

Lemma 4.4. Given n,m, k, q ∈ N, σ ∈ R such that n,m, k ∈ poly(λ), m ≥
4n log q, σ ≥ 2

√
n log q. For arbitrary matrix Z ∈ Zn×kq , the following two distri-

butions are computationally indistinguishable assuming LWEm,k,q,U(Zq),DZ,σ,DZ,σ .

Dist. 1 Let A, τ ← TrapSam(1n, 1m, q), E ← Dn×k
Z,σ . Sample D ← A−1(Z +

E, σ) using τ . Output D.

Dist. 2 Sample D = Dm×k
Z,σ . Output D.

Proof. We prove a stronger statement where the computational indistinguisha-
bility holds even when Z is given to the adversary. The proof uses the Bonsai
technique [14]. Let m = m1 + m2 such that m1,m2 ≥ 2n log q. We introduce 2
intermediate distributions,

Dist. 1.1 Let A1 ← U(Zn×m1
q), (A2, τ2)← TrapSam(1n, 1m2 , q). Sample D1 ←

Dm1×k
Z,σ . Let E ← Dn×k

Z,σ , sample D2 ← A−12 ((−A1 ·D1 + E + Z), σ) using

τ2. Let D :=

(
D1

D2

)
. Output D.

Dist. 1.2 Let A1 ← U(Zn×m1
q), (A2, τ2)← TrapSam(1n, 1m2 , q). Sample D1 ←

Dm1×k
Z,σ . Let U ← U(Zn×kq), sample D2 ← A−12 ((U + Z), σ) using τ2. Let

D :=

(
D1

D2

)
. Output D.

Then Distributions 1 and 1.1 are statistically close following Lemma 3.14. Dis-
tributions 2 and 1.2 are statistically close following Lemma 3.13.

It remains to prove that Dist. 1.1 ≈c Dist. 1.2 assuming LWEm1,k,q,U(Zq),DZ,σ,DZ,σ .
This follows by taking (D1,−A1 ·D1 + E) as the LWE sample, where A1 is the
concatenation of n independent uniform secret vectors, D1 is the low-norm pub-
lic matrix and E is the error matrix.

Formally, suppose there exists a p.p.t. distinguisher A for Dist. 1.1 and
Dist. 1.2, we build a distinguisher A′ for LWEm1,k,q,U(Zq),DZ,σ,DZ,σ . Given the
challenge sample (D1,Y1), A′ runs (A2, τ2) ← TrapSam(1n, 1m2 , q), samples

D2 ← A−12 ((Y1 + Z), σ) using τ2, send D :=

(
D1

D2

)
to the adversary A. If A

says it is from Dist. 1.1, then A′ chooses “LWE”; if A says Dist. 1.2, then A′

chooses “random”. The success probability of A′ is same to the success proba-
bility of A.

5 Generalized GGH15 Encodings

We present the abstraction of generalized GGH15 encodings. The abstraction
includes a construction framework and definitions of security notions.

GGH15 Beyond Permutation Branching Programs 21

5.1 The construction framework

We begin with a description of the construction:

Construction 5.1 (γ-GGH15 Encodings) The randomized algorithm ggh.encode
takes the following inputs

– Parameters8 1λ, h, n,m, q, t, w ∈ N, σ ∈ R∗ and the description of a distri-
bution χ over Z.

– A function γ : Zw×w × Zn×n → Zt×t.
– Matrices

{
Mi,b ∈ Zw×wi,b

}
i∈[h],b∈{0,1}

,
{

Si,b ∈ Zn×ni,b

}
i∈[h],b∈{0,1}

.

– A matrix Ah ∈ Zt×mq .

It generates the output as follows

– Samples {Ai, τi ← TrapSam(1t, 1m, q)}i∈{0,1,...,h−1}.
– Samples {Ei,b ← χt×m}i∈[h],b∈{0,1}.
– For i ∈ [h], b ∈ {0, 1}, let Ŝi,b := γ(Mi,b,Si,b), then samples

Di,b ← A−1i−1(Ŝi,b ·Ai + Ei,b, σ)

using τi−1.
– Outputs A0, {Di,b}i∈[h],b∈{0,1}.

We require γ to be multiplicatively homomorphic:

γ(M,S) · γ(M′,S′) = γ(M ·M′,S · S′)

Remark 5.2 (Comparison with GGH15). The goal of the original GGH15 graded
encodings in [23] was to emulate the functionality provided by multi-linear maps
with respect to some underlying directed acyclic graph. The basic unit of the
construction is an encoding of a low-norm matrix Ŝ along A0 7→ A1 given by
A−10 (ŜA1 + E), where Ŝ must be drawn from some high-entropy distribution to
achieve any meaningful notion of security.

Following [13, 26, 27, 38], we think of Ŝ as being deterministically derived
from an arbitrary low-norm matrix M and a random low-norm matrix S via
some fixed function γ given by γ : (M,S) 7→ M ⊗ S in the afore-mentioned
constructions. Here, we make γ an explicit parameter to the construction, so
that we obtain a family of constructions parameterized by γ, which we refer to
as the “γ-GGH15 encodings”.

Looking ahead to Section 5.2, another advantage of decoupling Ŝ into M
and S is that we can now require semantic security for arbitrary inputs M and
random choices of S (more precisely, arbitrary {Mi,b}i∈[h],b∈{0,1} and random

{Si,b}i∈[h],b∈{0,1}), as considered in [38]. Moreover, this notion of semantic secu-

rity can be achieved under the LWE assumption for some specific γ and classes
of matrices M. Here, we make explicit the idea that semantic security should
be defined with respect to some fixed auxiliary function aux of the matrices
{Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.
8 In the rest of the presentation, these parameters are omitted in the input of
ggh.encode.

22 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

Functionality. The next lemma captures the functionality provided by the con-
struction, namely that for all x ∈ {0, 1}h,

A0 ·Dx ≈ γ(Mx,Sx) ·Ah

Lemma 5.3 (Functionality of γ-GGH15 encodings). Suppose γ is multi-
plicatively homomorphic. For all inputs to the Construction 5.1 s.t. σ > Ω(

√
t log q),

m > Ω(t log q), ‖χ‖ ≤ σ; we have for all x ∈ {0, 1}h, with all but negligible prob-
ability over the randomness in Construction 5.1,

‖A0 ·Dx − γ(Mx,Sx) ·Ah‖∞ ≤ h ·
(
mσ ·max

i,b
‖γ(Mi,b,Si,b)‖

)h
.

Proof. Recall Ŝi,b = γ(Mi,b,Si,b). It is straight-forward to prove by induction
that for all h′ = 0, 1, . . . , h:

A0 ·
h′∏

k=1

Dk,xk =

 h′∏
i=1

Ŝi,xi

Ah′ +

h′∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk

 (10)

The base case h′ = 0 holds trivially. The inductive step uses the fact that for all
h′ = 1, . . . , h:

Ah′−1 ·Dh′,xh′ = Ŝh′,xh′ ·Ah′ + Eh′,xh′

From the homomorphic property of γ we can deduce that

h∏
i=1

Ŝi,xi =

h∏
i=1

γ(Mi,xi ,Si,xi) = γ(Mx,Sx)

Finally, we bound the error term as follows:

‖A0 ·Dx − γ(Mx,Sx) ·Ah‖∞ =

∥∥∥∥∥∥
h∑

j=1

j−1∏
i=1

(Ŝi,xi) ·Ej,xj ·
h∏

k=j+1

Dk,xk

∥∥∥∥∥∥
∞

≤ h ·
√
t · σ ·

(√
t ·max

i,b
‖γ(Mi,b,Si,b)‖ · σ ·

√
m

)h−1

≤ h ·
(

max
i,b
‖γ(Mi,b,Si,b)‖ · σ ·m

)h

Looking ahead, in the applications we will set the parameters to ensure that
the threshold B := h · (mσ ·maxi,b ‖γ(Mi,b,Si,b)‖)h is relatively small compared
to the modulus q.

Remark 5.4 (Dimensions of Ah). The construction and many analyses in this
article can be obviously generalized to the cases where the dimensions of matrices
are more flexible. As an example, the matrix Ah can be chosen from Ztq instead
of Zt×mq (as a result, Dh,0, Dh,1 are from Zm instead of Zm×m). This change
maintains necessary functionalities, reduce the size of the construction, and is
(more importantly) necessary for one of the proofs in the paper. For the ease
of presentation we keep all the A matrices with the same dimension, all the D
matrices with the same dimension, and mention the exceptions as they arise.

GGH15 Beyond Permutation Branching Programs 23

Interesting γ functions. We are interested in the following 3 γ functions:

– γ⊗ : {0, 1}w×w × Zn×n → Z(wn)×(wn), M,S 7→M⊗ S.
γ⊗ with permutation matrices M was introduced and studied in [13, 26, 27,
38].

– γdiag : Zw×w × Zn×n → Z(w+n)×(w+n), M,S 7→
(

M
S

)
.

γdiag is implicit in the constructions in [21,29] and is central to the security
analysis in this work.

– γ⊗diag : {0, 1}w×w × Zn×n → Z(wn+n)×(wn+n), M,S 7→
(

M⊗ S
S

)
.

We introduce γ⊗diag in this work, which would be central to the applications
in this paper.

Note that all of the three γ functions are multiplicatively homomorphic and
norm-preserving.

5.2 Security notions

Intuitively, semantic security says that for all M, the output of the γ-GGH15
encodings

A0, {Di,b}i∈[h],b∈{0,1}
hides {Mi,b}i∈[h],b∈{0,1}, for random choices of {Si,b}i∈[h],b∈{0,1} and A0, . . . ,Ah.

We consider a more general notion parameterized by some fixed function aux of
{Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah, and we require that aux, {Di,b}i∈[h],b∈{0,1} hides

{Mi,b}i∈[h],b∈{0,1}.

Definition 5.5 (Semantic security with auxiliary input). We say that
the γ-GGH15 encodings satisfies semantic security with auxiliary input aux for
a family of matrices M⊆ Zw×w if for all {Mi,b ∈M}i∈[h],b∈{0,1}, we have

aux, {Di,b}i∈[h],b∈{0,1} ≈c aux,
{

(Dm×m
Z,σ)

i,b

}
i∈[h],b∈{0,1}

where

Si,b ← Dn×n
Z,σ ,Ah ← U(Zt×mq), {Di,b} ← ggh.encode(γ, {Mi,b}i∈[h],b∈{0,1} , {Si,b}i∈[h],b∈{0,1} ,Ah)

and aux is a fixed function of {Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.

Remark 5.6 (γ⊗-GGH encodings with permutation matrices). Canetti and Chen
[13] (also, [26,38]) showed that the γ⊗-GGH15 encoding satisfies semantic secu-
rity with auxiliary input (A0,A1, . . . ,Ah) for the family of permutation matrices
in {0, 1}w×w.

We can prove that the γ⊗-GGH15 encoding satisfies semantic security with
auxiliary input (A0, {Si,b}i∈[`],b∈{0,1}) for the family of permutation matrices in

{0, 1}w×w, by using the LWE assumption with the Si,b as the public matrices.

24 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

Such a proof requires a multiplicative blow-up (of roughly O(log q)) in the di-
mensions of the Si,b matrices. One of the advantages of using the S matrices as
the public matrices is that we can use the same S0,S1 across all the h levels,
similar to the PRF construction in [7].

5.3 Semantic security for γdiag-GGH15 and γ⊗diag-GGH15
encodings

In this section, we prove semantic security of the γdiag-GGH15 and γ⊗diag-
GGH15 encodings in Construction 5.1 under the LWE assumption, where

γdiag(M,S) =

(
M

S

)
, γ⊗diag(M,S) =

(
M⊗ S

S

)
.

In fact, we show that this holds given auxiliary input about A0 and {Si,b}i∈[h],b∈{0,1}.

S-dependent security. Concretely, we will derive semantic security of γ⊗diag from
that of γdiag by showing that the construction γdiag satisfies a stronger notion
of S-dependent security where the matrices {Mi,b}i∈[h],b∈{0,1} may depend on

{Si,b}i∈[h],b∈{0,1}:

Definition 5.7 (S-dependent semantic security with auxiliary input).
We say that the γ-GGH15 encodings satisfies S-dependent semantic security with
auxiliary input aux for a family of matrices M⊆ Zw×w if for every polynomial-
size circuit f : (Zn×n)2h →M2h, we have

aux, {Di,b}i∈[h],b∈{0,1} ≈c aux,
{

(Dm×m
Z,σ)

i,b

}
i∈[h],b∈{0,1}

where

Si,b ← Dn×n
Z,σ ,Ah ← U(Zt×mq), {Mi,b}i∈[h],b∈{0,1} = f({Si,b}i∈[h],b∈{0,1}),
{Di,b} ← ggh.encode(γ, {Si,b}i∈[h],b∈{0,1} , {Mi,b}i∈[h],b∈{0,1} ,Ah)

and aux is a fixed function of {Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.

Theorem 5.8 (S-dependent semantic security of γdiag). Assuming LWEn,2m,q,U(Zq),DZ,σ,DZ,σ ,
the γdiag-GGH15 encodings in Construction 5.1 satisfies S-dependent semantic
security for M = Zw×w with auxiliary input

aux = {Si,b}i∈[h],b∈{0,1} ,J ·A0,Ah

where Ah ∈ Zw×mq is the top w rows of Ah and J ∈ {0, 1}n×(t−n) | In×n.

Remark 5.9 (Necessity of JA0). Ideally, we would liked to have shown that se-
mantic security holds with auxiliary input A0 (as opposed to JA0). However,
such a statement is false for general M∈ Zw×w. Concretely, given A0,D1,0, we
can compute A0 ·D1,0 which leaks information about the structure of M1,0. In

particular, we can distinguish between

(
1 0
0 1

)
and

(
0 1
0 1

)
.

GGH15 Beyond Permutation Branching Programs 25

As an immediate corollary, we then have:

Corollary 5.10 (semantic security of γ⊗diag). Assuming LWEn,2m,q,U(Zq),DZ,σ,DZ,σ ,
the γ⊗diag-GGH15 encodings in Construction 5.1 satisfies semantic security for
M = Zw×w with auxiliary input

aux = {Si,b}i∈[h],b∈{0,1} ,J ·A0,Ah

where Ah ∈ Zwn×mq is the top wn rows of Ah and J ∈ {0, 1}n×(t−n) | In×n.

5.4 Proof of the main theorem

Proof (Proof of Theorem 5.8). For t, n, w ∈ N such that t = w + n. For any

matrix X ∈ Zt×∗, let X =

(
X
X

)
, where X ∈ Zw×∗, X ∈ Zn×∗. For the sake

of completeness we spell out the details of the real and simulated distributions
which will be proven indistinguishable.

The real and simulated distributions. In the real distribution the adversary is
given

J ·A0,
{

Di,b ,Si,b,Mi,b

}
i∈[h],b∈{0,1}

,Ah

where

– {Ai, τi ← TrapSam(1t, 1m, q)}i∈{0,1,...,h−1} ,Ah ← U(Zt×mq)

– Si,b ← Dn×n
Z,σ , {Mi,b}i∈[h],b∈{0,1} ← f({Si,b}i∈[h],b∈{0,1})

– Di,b ← A−1i−1

(
Mi,bAi + Ei,b

Si,bAi + Ei,b

)
,Ei,b ← χt×m

The simulated distribution is generated in the same way except that the
adversary is given

J ·A0,
{

Vi,b ,Si,b,Mi,b

}
i∈[h],b∈{0,1}

,Ah

where Vi,b ← Dm×m
Z,σ .

To show that the real distribution is computationally indistinguishable from
the simulated one, we introduce the following intermediate distributions.

Distributions 1.i, for i ∈ {h+ 1, h, ..., 1}. Let Distribution 1.(h + 1) be iden-
tical to the real distribution. For i = h down to 1, let Distributions 1.i be
the same to Distributions 1.(i + 1), except that Ai−1, Di,0, Di,1 are sampled
differently. Let (Ai−1, τi−1) ← TrapSam(1w, 1m, q), Ai−1 ← U(Zn×mq). Sample

Di,b ← A
−1
i−1((Mi,bAi + Ei,b), σ) using τi−1, b ∈ {0, 1}.

Distributions 2.0. Distribution 2.0 is sampled identically to Distribution 1.1,

except that J · A0 is replaced with a uniformly random matrix U
$← Zn×m.

Since J ∈ {0, 1}n×(t−n) | In×n, U ≈s J ·A0 for A0, τ0 ← TrapSam(1t, 1m, q) due
to Lemma 3.11.

26 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

Distributions 2.j, for j ∈ {1, ..., h}. For j = 1, 2, ..., h, let Distributions 2.j be
the same to Distributions 2.(j − 1), except that Dj,0, Dj,1 are sampled simply
from Dm×m

Z,σ . Note that Dist. 2.h is identical to the simulated distribution, except

that in Dist. 2.h, U
$← Zn×m is in the place where J · A0 is in the simulated

distribution, so they are statistically close again due to Lemma 3.11.

The sequence. We will show that:

Real = 1.(h+ 1) ≈c 1.h ≈c · · · ≈c 1.1 ≈s 2.0 ≈c 2.1 ≈c · · · ≈c 2.h ≈s Simulated

In particular, the ≈c’s will rely on the LWE assumption, using A1, . . . ,A` as
LWE secrets in the following order: A`, . . . ,A1,A0, . . . ,A`−1.

Lemma 5.11. For i ∈ [h], Distribution 1.(i + 1) ≈c Distribution 1.i assuming
LWEn,2n,q,U(Zq),DZ,σ,DZ,σ .

Roughly speaking, we will show that for all i ∈ [h],{
A−1i−1

(
Mi,bAi + Ei,b

Si,bAi + Ei,b

)}
b∈{0,1}

≈c
{

A
−1
i−1(Mi,bAi + Ei,b)

}
b∈{0,1}

where the distinguisher is also given Ai−1, τi−1,Si,0,Si,1,Mi,0,Mi,1,Ai, but not
Ai, so that we can treat Ai as a LWE secret, cf. Lemma 4.4.

Proof. We introduce an intermediate distribution 1.i∗, which is generated in the
same way as Distributions 1.(i+ 1), except that Di,0, Di,1 are sampled as:

Di,b ← A−1i−1

((
Mi,bAi + Ei,b

Ui,b

)
, σ

)
, b ∈ {0, 1}.

where (Ui,0,Ui,1)← U(Zn×mq × Zn×mq).
The intermediate distribution 1.i∗ is statistically close to Distribution 1.i due

to Lemma 4.1. It remains to prove that 1.i∗ is computationally indistinguishable
from Distribution 1.(i+1). This follows Lemma 3.10, by treating Ai as the LWE
secret, and Si,0,Si,1 as the public matrices.

Formally, if there’s an adversary A that distinguishes Distributions 1.(i+ 1)
and 1.i∗, we build a distinguisher A′ for LWEn,2n,q,U(Zq),DZ,σ,DZ,σ as follows. Once
given the LWE challenge

Si,0,Si,1,Yi,0,Yi,1

where Si,0,Si,1 are the low-norm public matrices, Yi,0,Yi,1 are either the LWEn,2n,q,U(Zq),DZ,σ,DZ,σ

samples with the common secret Ai ← U(Zn×mq), or independent uniform sam-
ples from Zn×mq × Zn×mq . The LWE distinguisher A′ proceeds as follows:

1. Sample
{

Sk,b ← Dn×n
Z,σ

}
k∈[h],k 6=i,b∈{0,1}

.

2. For k ∈ [h], b ∈ {0, 1}, compute Mk,b ∈ Zw×w using f({Sk,b}k∈[h],b∈{0,1}).

GGH15 Beyond Permutation Branching Programs 27

3. For k ∈ {0, 1, ..., i− 1}, sample Ak, τk ← TrapSam(1t, 1m, q). For k ∈ {i, i+ 1, ..., h− 1},
sample Ak, τ̄k ← TrapSam(1w, 1m, q). Sample Ah ← U(Zt×mq).

4. For k ∈ [h], b ∈ {0, 1}, samples

Dk,b ←

A−1k−1

(
Mk,bAk+Ek,b
Sk,bAk+Ek,b

)
using τk−1 if k ≤ i− 1

A−1i−1
(
Mi,bAi+Ei,b

Yi,b

)
using τi−1 if k = i

A
−1
k−1(Mk,bAk + Ek,b)) using τ̄k−1 if k ≥ i+ 1

with standard deviation σ.

The LWE distinguisher A′ then sends

J ·A0,
{

Dk,b ,Sk,b,Mk,b

}
k∈[h],b∈{0,1}

,Ah.

to the adversary A. If A says it is Dist. 1.(i + 1), it corresponds to the LWE
samples with low-norm public matrices; if A says Dist. 1.i∗, it corresponds to
the uniform distribution.

Lemma 5.12. For j ∈ [h], Distribution 2.(j−1) ≈c Distributions 2.j assuming
LWEm,2m,q,U(Zq),DZ,σ,DZ,σ .

Roughly speaking, we will show that for all j ∈ [h],{
A
−1
j−1(Mj,bAj + Ej,b)

}
b∈{0,1}

≈c
{
Dm×m

Z,σ

}
b∈{0,1}

where the distinguisher is also given Mj,0,Mj,1,Aj , but not Aj−1, so as to
trigger Lemma 4.4.

Proof. For j ∈ [h], suppose there exists an adversary A that distinguishes Dis-
tributions 2.(j − 1) and 2.j, we build a distinguisher A′ for Distributions 1 and
2 in Lemma 4.4 as follows. Given challenging samples

Dj,0 | Dj,1 ∈ Zm×2m

either obtained from A
−1
j−1(

[
Mj,0Aj + Ej,0 |Mj,1Aj + Ej,1

]
) which corresponds

to Dist. 1 in Lemma 4.4 (by treating
[
Mj,0Aj |Mj,1Aj

]
as the arbitrary matrix

Z); or fromDm×2m
Z,σ which corresponds to Dist. 2 in Lemma 4.4. The distinguisher

A′ proceeds as follows:

1. For k ∈ [h], b ∈ {0, 1}, sample Sk,b ← Dn×n
Z,σ .

2. For k ∈ [h], b ∈ {0, 1}, compute Mk,b ∈ Zw×w using f({Sk,b}k∈[h],b∈{0,1}).
3. For k ∈ {j, j + 1, ..., h− 1}, sample Ak, τ̄k ← TrapSam(1w, 1m, q). Sample

Ah ← U(Zt×mq).
4. For k ∈ {1, 2, ..., j − 1, j + 1, ..., h} , b ∈ {0, 1}, samples

Dk,b ←

{
Dm×m

Z,σ if k ≤ j − 1

A
−1
k−1(Mk,bAk + Ek,b, σ) using τ̄k−1 if k ≥ j + 1

.

28 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

5. Sample U← U(Zn×mq).

A′ then sends

U,
{

Dk,b ,Sk,b,Mk,b

}
k∈[h],b∈{0,1}

,Ah.

to the adversary A. Note that A′ correctly produce the output without Aj−1.
So if A determines that the samples are from Distribution 2.(j − 1), A′ chooses
Dist. 1 in Lemma 4.4; if A determines that the samples are from Distribution 2.j,
A′ chooses Dist. 2 in Lemma 4.4.

Theorem 5.8 follows from Lemmas 5.11 and 5.12.

Acknowledgments

Y.C. is supported by the NSF MACS project. Part of this work was done while
visiting ENS. V.V. is supported in part by NSF Grants CNS-1350619 and CNS-
1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the
NEC Corporation and a Steven and Renee Finn Career Development Chair
from MIT. This work was also sponsored in part by the Defense Advanced Re-
search Projects Agency (DARPA) and the U.S. Army Research Office under
contracts W911NF-15-C-0226 and W911NF-15-C-0236. H.W. is supported by
ERC Project aSCEND (H2020 639554). Part of this work was done while visit-
ing CQT.

References

1. Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı Wieder-
mann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata, Languages
and Programming, 26th International Colloquium, ICALP’99, Prague, Czech Re-
public, July 11-15, 1999, Proceedings, volume 1644 of LNCS, pages 1–9. Springer,
1999.

2. Navid Alamati and Chris Peikert. Three’s compromised too: Circular insecurity
for any cycle length from (ring-)LWE. In CRYPTO, Part II, pages 659–680, 2016.

3. Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
Theory of Computing Systems, 48(3):535–553, 2011.

4. Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis
of indistinguishability obfuscations of circuits over GGH13. In ICALP, volume 80
of LIPIcs, pages 38:1–38:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.

5. David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. In Juris Hartmanis, editor, STOC, pages
1–5. ACM, 1986.

6. Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable prfs
from standard lattice assumptions. In EUROCRYPT (1), volume 10210 of Lecture
Notes in Computer Science, pages 415–445, 2017.

GGH15 Beyond Permutation Branching Programs 29

7. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
Key homomorphic prfs and their applications. In Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 410–428, 2013.

8. Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1):71–90, 2003.

9. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 575–584. ACM, 2013.

10. Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In CRYPTO,
Part II, pages 416–434, 2013.

11. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Pri-
vate constrained prfs (and more) from LWE. In Theory of Cryptography - 15th In-
ternational Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part I, pages 264–302, 2017.

12. Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Ob-
fuscating conjunctions under entropic ring LWE. In ITCS, pages 147–156. ACM,
2016.

13. Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from
LWE. In EUROCRYPT 2017, Part I, pages 446–476, 2017.

14. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. Journal of cryptology, 25(4):601–639, 2012.

15. Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. In EUROCRYPT (3), volume 10212 of Lecture Notes in
Computer Science, pages 278–307, 2017.

16. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT (1),
volume 9056 of LNCS, pages 3–12. Springer, 2015.

17. Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Cryptanalysis of GGH15 multilinear maps. In CRYPTO (2), volume 9815 of LNCS,
pages 607–628. Springer, 2016.

18. Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Zeroizing attacks on indistinguishability obfuscation over CLT13. In Public Key
Cryptography (1), volume 10174 of Lecture Notes in Computer Science, pages 41–
58. Springer, 2017.

19. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilin-
ear maps over the integers. In CRYPTO (1), pages 476–493, 2013.

20. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In EUROCRYPT, pages 1–17, 2013.

21. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, pages 40–49, 2013.

22. Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In TCC
(B2), volume 9986 of Lecture Notes in Computer Science, pages 241–268, 2016.

23. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In TCC 2015, Part II, pages 498–527, 2015.

24. Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from
instance independent assumptions. In CRYPTO (1), volume 8616 of Lecture Notes
in Computer Science, pages 426–443. Springer, 2014.

30 Yilei Chen, Vinod Vaikuntanathan and Hoeteck Wee

25. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In STOC, pages 197–206, 2008.

26. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In
FOCS, pages 612–621, 2017.

27. Rishab Goyal, Venkata Koppula, and Brent Waters. Separating semantic and
circular security for symmetric-key bit encryption from the learning with errors
assumption. In EUROCRYPT (2), pages 528–557, 2017.

28. Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor
tracing from learning with errors. In STOC, 2018.

29. Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz. Im-
plementing BP-obfuscation using graph-induced encoding. In ACM CCS, pages
783–798, 2017.

30. Venkata Koppula and Brent Waters. Circular security separations for arbitrary
length cycles from LWE. In CRYPTO (2), pages 681–700, 2016.

31. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In Advances in Cryptology–EUROCRYPT 2012, pages 700–718.
Springer, 2012.

32. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measure. SIAM Journal on Computing, 37(1):267–302, 2007.

33. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In STOC, pages 333–342, 2009.

34. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-lwe for any ring and modulus. In STOC, pages 461–473. ACM, 2017.

35. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In Theory of Cryptography, pages 145–166. Springer,
2006.

36. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May
22-24, 2005, pages 84–93. ACM, 2005.

37. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. J. ACM, 56(6), 2009.

38. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In FOCS, pages 600–611, 2017.

	GGH15 Beyond Permutation Branching Programs: Proofs, Attacks, and Candidates

