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Abstract. We consider the following basic question: to what extent are
standard secret sharing schemes and protocols for secure multiparty com-
putation that build on them resilient to leakage? We focus on a simple
local leakage model, where the adversary can apply an arbitrary function
of a bounded output length to the secret state of each party, but cannot
otherwise learn joint information about the states.
We show that additive secret sharing schemes and high-threshold in-
stances of Shamir’s secret sharing scheme are secure under local leakage
attacks when the underlying field is of a large prime order and the num-
ber of parties is sufficiently large. This should be contrasted with the fact
that any linear secret sharing scheme over a small characteristic field is
clearly insecure under local leakage attacks, regardless of the number
of parties. Our results are obtained via tools from Fourier analysis and
additive combinatorics.
We present two types of applications of the above results and techniques.
As a positive application, we show that the “GMW protocol” for honest-
but-curious parties, when implemented using shared products of random
field elements (so-called “Beaver Triples”), is resilient in the local leakage
model for sufficiently many parties and over certain fields. This holds
even when the adversary has full access to a constant fraction of the
views. As a negative application, we rule out multi-party variants of the
share conversion scheme used in the 2-party homomorphic secret sharing
scheme of Boyle et al. (Crypto 2016).

1 Introduction

The recent attacks of Meltdown and Spectre [38,41] have brought back to the
forefront the question of side-channel leakage and its effects. Starting with the
early works of Kocher et al. [39,40], side-channel attacks have demonstrated
vulnerabilities in cryptographic primitives. Moreover, there are often inherent
tradeoffs between efficiency and leakage resilience, where optimizations increase
the susceptibility to side-channel attacks.

A large body of work on the theory of leakage resilient cryptography (cf.
[42,21,1]) studies the possibility of constructing cryptographic schemes that re-
main secure in the presence of partial leakage of the internal state. One promi-
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nent direction of investigation has been designing leakage resilient cryptographic
protocols for general computations [35,22,19,26,31].

The starting point for most of these works is the observation that some
standard cryptographic schemes are vulnerable to very simple types of leakage.
Moreover, analyzing the leakage resilience of others seems difficult. This mo-
tivates the design of new cryptographic schemes that deliver strong provable
leakage resilience guarantees.

In this work, we forgo designing special-purpose leakage resilient schemes
and focus on studying the properties of existing common designs. We want to
understand:

To what extent are standard cryptographic schemes leakage resilient?

We restrict our attention to linear secret sharing schemes and secure multiparty
computation (MPC) protocols that build on them. In particular, we would like to
understand the leakage resilience properties of the most commonly used secret
sharing schemes, like additive secret sharing and Shamir’s scheme, as well as
simple MPC protocols that rely on them.

Analyzing existing schemes has a big advantage, as it can potentially al-
low us to enjoy their design benefits while at the same time enjoying a strong
leakage-resilience guarantee. Indeed, classical secret sharing schemes and MPC
protocols have useful properties which the specially designed leakage-resilient
schemes are not known to achieve. For instance, linear secret sharing schemes
can be manipulated via additive (and sometimes multiplicative) homomorphism,
and standard MPC protocols can offer resilience to faults and a large number
of fully corrupted parties. Finally, classical schemes are typically more efficient
than special-purpose leakage-resilient schemes.

Local Leakage. We study leakage resilience under a simple and natural model of
local leakage attacks. The local leakage model has the following three properties:
(1) The attacker can leak information about each server’s state locally, indepen-
dently of the other servers; this is justified by physical separation. (2) Only a
few bits of information can be leaked about the internal state of each server; this
is justified by the limited precision of measurements of physical quantities such
as time or power. (3) The leakage is adversarial, in the sense that the adversary
can decide what function of the secret state to leak. This is due to the fact that
the adversary may have permission to legally execute programs on the server or
have other forms of influence that can somewhat control the environment.

The local leakage model we consider is closely related to other models that
were considered in the literature under the names “only computation leaks”
(OCL) [42,7,26,15], “intrusion resilience” [20], or “bounded communication leak-
age” [31]. These alternative models are typically more general in that they allow
the leakage to be adaptive, or computable by an interactive protocol, whereas
the leakage model we consider is non-adaptive.

Despite its apparent simplicity, our local leakage model can be quite powerful
and enable very damaging attacks. In particular, in any linear secret sharing
scheme over a field F2k of characteristic 2, an adversary can learn a bit of the
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secret by leaking just one bit from each share. Surprisingly, in the case of Shamir’s
scheme, full recovery of a multi-bit secret is possible by leaking only one bit from
each share [34]. Some of the most efficient implementations of MPC protocols
(such as the ones in [16,36,2]) are based on secret sharing schemes over F2k and
are thus susceptible to such an attack.

As mentioned earlier, most prior works on leakage-resilient cryptography (see
Section 1.2 below) design special-purpose leakage-resilient schemes. These works
have left open the question of analyzing (variants of) standard schemes and
protocols. Such an analysis is motivated by the hope to obtain better efficiency
and additional security features.

1.1 Our Results

We obtain three kinds of results. First, we analyze the local leakage resilience of
linear secret sharing schemes. Then, we apply these results to prove the leakage
resilience of some natural MPC protocols. Finally, we present a somewhat unex-
pected application of these techniques to rule out the existence of certain local
share conversion schemes. Our results are based on Fourier analytic techniques
developed in the context of additive combinatorics. See Section 1.2 for details.
We now give a more detailed overview of these results.

Leakage resilience of linear secret sharing schemes. In a linear secret
sharing scheme over a finite field F, the secret is an element s ∈ F and the share
obtained by each party consists of one or more linear combinations of s and
` random field elements. We consider a scenario where n parties hold a linear
secret sharing of either s0 or s1 specified by the adversary A. (Due to linearity,
we can assume without loss of generality that s0 = 0 and s1 = 1.) The adversary
can also specify arbitrary leakage functions τ (1), τ (2), . . . , τ (n) such that each
function τ (j) outputs m bits of leakage from the share held by the j-th party.
The adversary’s goal is to determine if the shared secret is s0 or s1. In this
setting we provide the following theorems.

Theorem 1.1 (Informally, Additive Secret Sharing). Let p be a prime.
There exists a constant cp < 1 such that, for sufficiently large n, the additive
secret sharing scheme over Fp is local leakage resilient when b(log p)/4c bits are
leaked from every share.

In more detail, for any b(log p)/4c-bit output leakage functions τ (1), . . . τ (n)

and any two secrets s0, s1, the statistical distance between the leakage distribu-
tions τ (x) and τ (y) is at most pcnp , where τ (x) = (τ (1)(x(1)), . . . τ (n)(x(n)) is

obtained by applying the leakage functions to a random share x = (x(1), . . . , x(n))
of s0 and, similarly, τ (y) is obtained by leaking from random shares of s1.

For a more precise statement see Corollaries 4.6 and 4.7.
In contrast to the theorem above, if the additive secret sharing were over F2k ,

the adversary could distinguish between the two secrets by just leaking the least
significant bit of each share and adding those up to reveal the least significant
bit of the secret. We show the following result for Shamir’s secret sharing.
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Theorem 1.2 (Informally, Shamir Secret Sharing). For large enough n,
for primes p ≈ n, the (n, t)-Shamir secret sharing4 over Fp is local leakage
resilient for t = n− o(log n) when (log p)/4 bits are leaked from every share.

Shamir’s secret sharing is typically used with threshold t = cn for some
constant c > 0, in which case the above result is not applicable. While we cannot
prove local leakage resilience, we do not know of attacks in this parameter regime.
We conjecture the following:

Conjecture 1.3 (Shamir Secret Sharing). Let c > 0 be a constant. For large
enough n, (n, t = cn)-Shamir Secret Sharing is 1-bit local leakage resilient. That
is, for any family of functions τ (1), . . . , τ (n) with 1-bit output,

SD(τ (x), τ (u)) < negl(n)

where τ (x) =
(
τ (1)(x(1)), . . . τ (n)(x(n))

)
where x← ShaShn,cn(0) and u← Fnp .

Classical MPC protocols like the BGW protocol use Shamir secret sharing
with c = 1/3 or 1/2. Observe that proving the conjecture for a specific constant
c immediately implies the conjecture for any constant c′ > c. This follows from
the fact that (n, cn)-Shamir Shares can be locally converted to random (n, c′n)-
Shamir Shares for c′ > c.5

Application to leakage-resilient MPC. We use the leakage resilience of
linear secret sharing schemes to show that the honest-but-curious variant of the
GMW [25] protocol with a “Beaver Triples” setup [3] (that we call GMW with
shared product preprocessing) is local leakage resilient.

For the MPC setting, we modify the leakage model as follows to allow for
a stronger adversary. The adversary A is allowed to corrupt a fraction of the
parties, see their shares and views of the entire protocol execution. In addition,
A specifies local leakage functions for the non-corrupted parties and receives the
corresponding leakage on their individual views.

The honest-but-curious GMW protocol with shared product preprocessing
works as follows. The parties wish to evaluate an arithmetic circuit C on an
input x. The parties receive random shares of the input x under a linear secret
sharing scheme and random shares of Beaver triples under the same scheme.6

The protocol proceeds gate by gate where the parties maintain a secret sharing
of the value at each gate. For input, addition and inverse (−1) gates, parties lo-
cally manipulate their existing shares to generate the shares for these gates. For
multiplication gate, where we multiply z1 and z2 to get z, the parties first con-
struct z1−a and z2−b by subtracting the shares of the inputs and Beaver triples

4 In the whole paper, a (n, t)-Shamir secret sharing scheme or Shamir secret sharing
scheme with thereshold t uses polynomials of degree t, so that the secret cannot be
recovered from a collusion of up to t parties. The secret can be recovered from t+ 1
parties.

5 This can be done by locally adding shares of a random (n, c′n)-Shamir share of 0 to
the given (n, cn)- Shamir shares.

6 A Beaver triple consists of (a, b, ab) where a, b are randomly chosen field elements.
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(a, b, ab) and broadcasting these values. Then the parties can locally construct
a secret sharing of z = z1 · z2 by using the following relation:

z = (z1 − a)(z2 − b) + a(z2 − b) + b(z1 − a) + ab .

We show that when the underlying protocol is local leakage resilient, this protocol
can also tolerate local leakage. We can prove leakage resilience in a simulation-
based definition. See Section 5 for details. Informally, when the additive secret
sharing scheme is used, we show the following.

Theorem 1.4 (Informally, Leakage Resilience of GMW). For large enough
n, for any prime p, the GMW protocol with shared product preprocessing and ad-
ditive secret sharing over Fp is local leakage resilient where the adversary can
corrupt n/2 parties, learn their entire state and, then locally leak (log p)/4 bits
each from all the uncorrupted parties.

On the impossibility of local share conversion. In the problem of local
share conversion [14,4], n parties hold a share of a secret s under a secret sharing
scheme L. Their goal is to locally, without interaction, convert their shares to
shares of a related secret s′ under a different secret sharing scheme L′ such
that (s, s′) satisfy a pre-specified relation R. We assume R is not trivial in the
sense that it is permissible to map shares of every secret s to shares of a fixed
constant. Local share conversion has been used to design protocols for Private
Information Retrieval [4]. More recently, different kinds of local share conversion
were used to construct Homomorphic Secret Sharing (HSS) schemes [11,17,23].
Using techniques similar to the ones for leakage resilience, we rule out certain
nontrivial instances of local share conversion. We first state our results and then
discuss their relevance to constructions of HSS schemes.

Theorem 1.5 (Informally, Impossibility of Local Share Conversion).
Three-party additive secret sharing over Fp, for any prime p > 2, cannot be
converted to additive secret sharing over F2, with constant success probability
(> 5/6), for any non-trivial relation R on the secrets.

The proof of this result uses a Fourier analytic technique similar to the analysis
of the Blum-Luby-Rubinfeld linearity test [9]. We also show a similar impossi-
bility result for Shamir secret sharing. See the full version for the precise general
statement. This result relies crucially on a technique of Green and Tao [33]. We
elaborate more in Section 2.

Relevance to HSS Schemes. At the heart of the DDH-based 2-party HSS scheme
of Boyle et al. [11] and its Paillier-based variant of Fazio et al. [23] is an efficient
local share conversion algorithm of the following special form. The two parties
hold shares gx and gy respectively of b ∈ {0, 1}, such that gb = gx · gy. The
conversion algorithm enables them to locally compute additive shares of the bit
b over the integers Z, with small (inverse polynomial) failure probability. Note
that this implies similar conversion to additive sharing over Z2. One approach to
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constructing 3-party HSS schemes would be to generalize this local share conver-
sion scheme to 3 parties, i.e., servers holding random gx, gy and gz respectively,
such that gb = gx · gy · gz, can locally convert these shares to additive shares of
the bit b over integers. We rule out this approach by showing that even when
given the exponents x, y and z in the clear (i.e. x + y + z = b over Zp), locally
computing additive shares of b over Z2 (or the integers) is impossible. A similar
share conversion from (noisy) additive sharing over Zp to additive sharing over
Z2 was used by Dodis et al. [17] to obtain an LWE-based construction of 2-party
HSS and spooky encryption. However, in this case there is an alternative route
of reducing the multi-party case to the 2-party case that avoids our impossibility
result.

1.2 Related Work

Our work was inspired by the surprising result of Guruswami and Wootters [34]
mentioned above. This work turned attention to the fact that some natural linear
secret sharing schemes miserably fail to offer local leakage resilience over fields
of characteristic 2, in that leaking only one bit from each share is sufficient to
fully recover a multi-bit secret.

The traditional “leakage” model considered in multi-party cryptography al-
lows the adversary to fully corrupt up to t parties and learn their entire secret
state. This t-bounded leakage model motivated secret sharing schemes designed
to protect information [43,8] and secure multiparty computation (MPC) pro-
tocols designed to protect computation [45,25,6,13]. The same leakage model
was also considered at the hardware level, where parties are replaced by atomic
gates [35]. The t-bounded leakage considered in all these works is quite different
from the local leakage model we consider: we allow partial leakage from every
secret state, whereas the t-bounded model allows full leakage from up to t se-
cret states. While resilience to t-bounded leakage was shown to imply resilience
to certain kinds of “noisy leakage” [22,18] or “low-complexity leakage” [10], it
clearly does not imply local leakage resilience in general. Indeed, additive se-
cret sharing over F2k is highly secure in the t-bounded model and yet is totally
insecure in the local leakage model.

The literature on leakage resilient cryptography is extensive, thus we discuss
a few of the most relevant works. A closely related work by Dziembowski and
Pietrzak [21] is one of those works that design new constructions to withstand
leakage. Their secret sharing scheme uses artificially long shares that are hard
to retrieve in full, as the model bounds the amount of bits that can be leaked.
The length of the shares of course impacts the performance of the protocol. The
reconstruction of the secret is an interactive process.

Boyle et al. [12] consider the problem of leakage-resilient coin-tossing and
reduce it to a certain kind of leakage-resilient verifiable secret sharing. Here too,
a new construction of (nonlinear) secret sharing is developed in order to achieve
these results.

Goldwasser and Rothblum [26] give a general transformation that takes any
algorithm and creates a related algorithm that computes the same function and
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can tolerate leakage. This approach can be viewed as a special-purpose MPC
protocol for a constant number of parties that offers local leakage resilience (and
beyond) [7]. However, this construction is quite involved and offers poor concrete
leakage resilience and efficiency overhead.

Most relevant to our MPC-related results is the recent work of Goyal et
al. [31] on leakage resilient secure two-party computation (see also [24]). This
work analyzes the resilience of a GMW-style protocol under a similar (in fact,
more general) type of leakage to the local leakage model we consider. One key
difference is that the protocol from [31] modifies the underlying circuit (incurring
a considerable overhead) whereas we apply the GMW protocol to the original
circuit. Also, our approach applies to a large number of parties of which a large
fraction can be entirely corrupted, whereas the construction in [31] is restricted
to the two-party setting.

Our results use techniques developed in the context of additive combinatorics.
See Tao and Vu [44] for an exposition on Fourier analytic methods used in
additive combinatorics. The works most relevant to ours are works by Green
and Tao [33] and follow-ups by Gowers and Wolf [28,29,30]. The relation of
these works and their techniques to ours is discussed in Section 2.4.

2 Overview of the Techniques

2.1 Leakage Resilience of Secret Sharing Schemes

Very simple local leakage attacks exist for linear secret sharing schemes over
small characteristic fields. These attacks stem from the abundance of additive
subgroups in these fields. This gives rise to the hope that linear schemes over
fields of prime order, that lack such subgroups, are leakage resilient. We start by
considering the simpler case of additive secret sharing.

Additive secret sharing. We define AddSh(s) to be a function that outputs ran-
dom shares x(1), ..., x(n) such that

∑
x(i) = s. Let τ = τ (1), τ (2), . . . , τ (n) be

some leakage functions. We want to show that for all secrets s0, s1 ∈ F, the
leakage distributions are statistically close. That is,{

τ (x) : x← AddSh(s0)
}
≈
{
τ (x) : x← AddSh(s1)

}
where τ (x) = τ (1)(x(1)), . . . , τ (n)(x(n)) is the total leakage the adversary sees on
the shares x = x(1), x(2), . . . , x(n).

We know that there is a local leakage attack on F2k : simply leak the least
significant bit (lsb) from all the parties and add the outputs to reconstruct the
lsb of the secret. What enables the attack on F2k while Fp is unaffected?

To understand this difference, it is instructive to start with an example. Let
us consider additive secret sharing over F2k for 3 parties. We know that,

lsb(x) = lsb(x(1)) + lsb(x(2)) + lsb(x(3)).
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This attack works because F2k has many subgroups that are closed under addi-
tion. Let A0 = lsb−1(0) and A1 = lsb−1(1). The set A0 is an additive subgroup
of F2k and A1 is a coset of A0. Furthermore, the lsb function is a homomorphism
from F2k to the quotient group7 F2k�A0. The lsb leakage tells us which coset
each share x(j) is in. Then by adding these leakages, we can infer if x ∈ A0 or
x ∈ A1 (i.e., to which coset it belongs).

Let us consider the analogous situation over Fp for a prime p. The group
Fp does not have any subgroups. In fact, it has an opposite kind of expansion
property: that adding any two sets results in a larger set.

Theorem 2.1 (Cauchy-Davenport Inequality). Let A,B ⊂ Fp. Let A+B =
{a+ b : a ∈ A and b ∈ B}. Then,

|A+B| ≥ min(p, |A|+ |B| − 1).

So, if we secret shared a random secret over Fp and got back leakage output
indicating that x(1) ∈ B1, x(2) ∈ B2, and x(3) ∈ B3, we can infer that x ∈
B1 +B2 +B3. But because of this expansion property, the set B1 +B2 +B3 is
a lot larger than the sets Bi’s individually. This is in contrast to the F2k case
where e.g. A0 +A1 was the same size as A0.

This gives an idea of why the lsb attack does not work. Some information
is lost because of expansion. This is not sufficient for us though. What we need
to show is stronger. We want to show that even given the leakage, the secret is
almost completely hidden. This is a more “distributional” statement.

We model it as follows: Let us say that we have n parties where party j
holds the share x(j). The adversary A has specified leakage functions τ (j) : Fp →
{0, 1}m and received back the leakage ` = `1, `2, . . . , `n where `j = τ (j)(x(j)):
the leakage on the j-th share. We want to show that even conditioned on this
leakage, the probability that the secret was s0 vs s1 is close to a half. That is,
we want to show the following:

Pr
x←AddSh(s0)

[τ (x) = `] ≈ Pr
x←AddSh(s1)

[τ (x) = `] . (1)

Below, we will sketch an argument showing that leaking from the additive
shares of 0 is statistically close to leaking from a uniformly random element

Pr
x←AddSh(0)

[τ (x) = `] ≈ Pr
u←U

[τ (u) = `] . (2)

From Eq. (2), Eq. (1) follows by a simple hybrid argument as shares of any other
secret s are simply shares of 0 with the secret s added to the first party’s share.
That is, let e1 = (1, 0, 0, . . . , 0),

{x + s · e1 : x← AddSh(0)} ≡ {y : y← AddSh(s)} .
7 To recall, in the quotient group F2k�A0, the elements are the cosets A0, A1. The

sum of two cosets is the coset formed by the sum of elements of the first cosets with
elements of the second coset. Because of the structure, A0 +A0 = A0, A0 +A1 = A1

and so on.
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To understand this probability better, let us consider the following operator:

Λ(f1, f2, . . . , fn) = E
x←AddSh(0)

[
f1(x(1)) · f2(x(2)) · · · fn(x(n))

]
.

By picking the functions fj ’s appropriately, we can model the probability. Define
1`j : Fp → {0, 1} as follows: 1`j (x) = 1 if the output of the leakage function τ (j)

on input x is `j , i.e., τ (j)(x) = `j and, 0 otherwise. Notice that we can write the
probability of leakage output being ` in terms of the operator Λ as follows,

Pr
x←AddSh(0)

[τ (x) = `] = Λ(1`1 , 1`2 , . . . , 1`n) .

The probability of the leakage being ` on the uniform distribution is simply a
product of the expectations:

Pr
u←U

[τ (u) = `] = E
u←U

[1`(u)] = E
u←U

[1`1(u1) · 1`2(u2) · · · 1`n(un)]

where 1`(u) = 1`1(u(1)) · 1`2(u(2)) · · · 1`n(u(n)). So, we want to show:

Λ(1`1 , 1`2 , . . . , 1`n) = E
u←U

[1`(u)] + ε .

The tool we use to bound the difference |Λ(1`)− Eu←U [1`(u)]| is Fourier analy-
sis. At the heart of this is a nice property of the Λ operator: the Fourier spectrum
of Λ is very similar to the standard form as follows. For Λ defined over a linear
code C:

Λ(f1, f2, . . . , fn) = E
x←C

[
f1(x(1)) · f2(x(2)) · · · fn(x(n))

]
,

Λ can be equivalently represented on the dual code C⊥ (see Lemma 4.9),

=
∑
~α∈C⊥

f̂1(α1) · f̂2(α2) · · · f̂n(αn)

with the ‘Fourier coefficients’ f̂(a) = Ey←Fp [f(x) · ωαx] where ω = exp(2πi/p)

is a root of unity. Observe that as 1̂`(0) = Ex[1`(x)]. So, Eu←U [1`(u)] = 1̂`j (0) ·
1̂`j (0) · · · 1̂`n(0), the term corresponding to the all-zeros codeword in the dual
code. Hence, the error term we have to bound is the following:

Λ(1`)− E
u←U

[1`(u)] =
∑

~α∈C⊥\{0}

1̂`1(α1) · 1̂`2(α2) · · · 1̂`n(αn) .

Note that, at this point, it is interesting to observe how the presence of
subgroups (over F2k) and the lack thereof (over Fp) manifests itself. Over F2k
because of the non-trivial subgroups, these non-zero Fourier coefficients can be
large and hence the error term is not small. On the other hand, over Fp, we
can show that each non-zero Fourier coefficient is strictly smaller than the zero-
th coefficient and measurably so. This lets us bound the error term. First we
elaborate on the large Fourier coefficient over F2k and then we state results
for Fp.
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Large coefficients over F2k . Each Fourier basis function over F2k is indexed
by a vector ~a ∈ {0, 1}k and the Fourier coefficient for ~a is given by f̂(~a) =
E~x←F

2k

[
f(~x)(−1)〈~a,~x〉

]
. Over F2k , non-zero Fourier coefficients can be as large

as the zero-th coefficient, which is always the largest for binary valued functions.
To use the running example, in the case of the lsb function, let τ (j) = lsb and

consider the 1lsb=1 to be the function which returns 1 if the lsb is 1 and 0 other-
wise. So, 1lsb=1 is 1 on the set A1 and 0 on A0. The non-zero Fourier coefficient
indexed by ~ek = (0, 0, . . . 0, 1) ∈ {0, 1}k is as large as the zero-th Fourier coeffi-
cient since: 1̂lsb=1(~0) = E~x[1lsb=1(~x)] = 0.5 as half of the inputs satisfy lsb = 1,
and also, 1̂lsb=1(~ek) = E~x[1lsb=1(~x) · (−1)xk ] = E~x[1lsb=1(~x) · (−1)] = −0.5 be-
cause when 1lsb=1(x) = 1, then xk = 1 and 1lsb=1(~x) ·(−1)xk = −1. So, these two
Fourier coefficients are equally large in magnitude. Hence the error term can be
quite large.

Bounds on Fp. Bounding 1̂`j (α) for non-zero α ∈ Fp, we prove prove the follow-
ing result:

SD(τ (C), τ (U)) ≤ 1

2
·
∣∣C⊥∣∣ · (2m sin(π/2m)

p sin(π/p)

)t
,

where SD denotes the statistical distance between the two distributions, τ (C) ={
τ (x) : x← C

}
, τ (U) =

{
τ (x) : x← U

}
(with U being the uniform distribu-

tion over Fnp ), and t is the minimum distance of the dual code C⊥. We prove
this formally in Section 4.3. When applied to the code C = AddSh(0), we have
|C⊥| = p and this implies that additive secret sharing is leakage resilient, proving
Theorem 1.1. We strengthen the result in Corollary 4.7 to avoid this dependence
on |C⊥| = p.

Applying the result to Reed-Solomon Codes, the codes underlying (t, n)-
Shamir Secret Sharing, gives us Theorem 1.2. Also note that in the case of
Shamir secret sharing, |C⊥| = pn−t and hence this proof works only when n− t
is small.

2.2 Application to Leakage Resilience of MPC protocols

Given the leakage resilience of additive secret sharing over Fp, we can show that
the following honest-but-curious variant of the GMW protocol [25] (GMW with
shared product preprocessing) using Beaver Triples [3] is leakage resilient. The
protocol is described in Fig. 1. Recall that in our leakage model, the adversary
A is allowed to corrupt a fraction of the parties, see their views of the entire
protocol execution and then specify leakage functions τ (j) for the non-corrupted
parties and receive this leakage on their individual views.

We consider two settings, the first being with private outputs where the
adversary does not see the output of the non-corrupted parties and the second
with public outputs where the parties broadcast their output shares at the end
to reconstruct the final output and the adversary sees them.

In both models, we show that the adversary’s view (i.e, the views of the
corrupted parties and the leakage on all the uncorrupted parties’ views) can be
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GMW Protocol with Shared Product Preprocessing

Setup: Given an arithmetic circuit C over field F computing f . C has gates from the
basis B = {+,×,−1} where the −1 gate negates the input. For convenience, we have
input gates that read a field element from the input.

Input Encoding: On input ~x, randomly secret share ~x using additive secret sharing.

i.e., ~x(1), ~x(2), . . . , ~x(n) ← AddSh(~x). Party j gets ~x(j).

Randomness: Let G× be the set of multiplication gates in C. For each multiplication
gate g in G×, generate a Beaver triple: ag ← AddSh(ag), bg ← AddSh(bg) and
(ab)g ← AddSh(ag · bg) for ag, bg ← F.

Protocol Π: Party j receives an input ~x(j) and randomness (a
(j)
g , b

(j)
g , (ab)

(j)
g )g∈G× .

The parties traverse the gates in the circuit C in a predetermined order where every
gate is traversed only after its input gates. Let zg denote the secret sharing of the
value zg at gate g. For each gate they do the following:
1. If gate g is not a multiplication gate, the parties locally generate:

zg =


xi if g is an input gate reading xi

−zg1 if g is a −1 gate with input g1

zg1 + zg2 if g is a + gate with input g1 and g2

2. If g is a × gate, with input g1 and g2, then the parties do the following:
(a) Locally compute a′g = zg1−ag and b′g = zg2−bg and broadcast these values.
(b) Receive the corresponding values from other parties.
(c) Compute zg1 − ag and zg2 − bg by adding all the values received.
(d) Compute zg = (zg1 −ag)(zg2 − bg) ·1+ (zg1 −ag) ·bg +ag · (zg2 − bg) + (ab)g

where 1 a fixed secret sharing of the value 1.

Fig. 1: GMW Protocol with Shared Product Preprocessing

simulated by a simulator which gets nothing (in the private-outputs setting) and
gets all the shares of the output (in the public-outputs setting).

To prove the result, we need two ingredients: (a) the leakage resilience of ad-
ditive secret sharing over Fp and, (b) a lemma formalizing the following intuition:
In the GMW protocol, each party learns a share of a secret sharing of the value
at each gate in the circuit and nothing more. The first ingredient we have shown
above, and we now describe the second. In Lemmas 5.8 and 5.9, we formally
state and prove this intuition in both the private-outputs and public-outputs
setting and here we provide an informal statement.

Lemma 2.2 (Informal). On an input ~x, let (zg)g∈G× denote the value at mul-

tiplication gate g. The joint view of any subset Θ of the parties, view(Θ), can be
simulated given their shares of the inputs and of the values at each multiplication
gate.

view(Θ)(x) ≡ Sim(~x(Θ), (z(Θ)
g )g∈G×).
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Given the lemma, proving local leakage resilience in the private-outputs set-
ting is a hybrid argument. Because of the lemma, the adversary can leak from

party j a function of ~x(j) and (z
(j)
g )g∈G× . The simulator LeakSim, not knowing

the input ~x, picks random values ~x′, (zg
′)g∈G× instead, secret shares them and

then leaks from these values according to the leakage functions τ (j) specified by
A.

Then via a hybrid, we show that these two distributions are close to each
other. If the local leakage can distinguish between the two distributions, then
we can use them to construct leakage functions that violate the local leakage
resilience of a single instance of the underlying secret sharing scheme.

The proof in the public-outputs setting has a subtlety that the adversary
sees not only the local leakage from the uncorrupted parties, but also their
final outputs. In this case, we first observe that the final output is a fixed linear
function of the circuit values zg of the multiplication gates and of the input values
xi. Using this observation, the simulator picks the shares of the multiplication
gates conditioned on the output values seen. And we can show a similar reduction
to the local leakage resilience of the underlying secret sharing scheme. This proves
Theorem 1.4.

2.3 On Local Share Conversion

In this section, we sketch the techniques used to show Theorem 1.5: that three-
party additive secret sharing over Fp, for any prime p > 2, cannot be converted
to additive secret sharing over Z2, even with a small error, for any non-trival
relation R on the secrets.

Our results on impossibility of local share conversion are derived by viewing
the output of the share conversion schemes as leakage on the original shares and
that the adversary instead of being able to do arbitrary computation, can only
add the leakage outputs over Z2.

Impossibility of Share Conversion of Additive Secret Sharing from Fp to Z2. We
start with the impossibility of local share conversion of additive secret sharings
from Fp to Z2 for any non-trivial relation R on the secrets.8 The analysis is
inspired by Fourier analytic reinterpretations of linearity testing [9] and group
homomorphism testing [5].

Assume that g1, g2, g3 : Fp → Z2 form a 3-party local share conversion scheme
for additive secret sharing for some relation R where shares of 0 in Fp have to
be mapped to shares of 0 in Z2 and shares of 1 in Fp have to be mapped to
shares of 1 in Z2 (with high probability, say 99%).9 That is, if x1 + x2 + x3 = b,

8 A relation is trivial if no matter what secret is shared, a constant output by the
conversion scheme would satisfy correctness. Or put another way, in a non-trivial
relation R, there exist s0 and s1 such that s0 has to be mapped to 0 and s1 has to
be mapped to 1 in the relation R.

9 We consider more general case in the full version which also tolerates a higher error
probability of 1/6.
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then g1(x1) + g2(x2) + g3(x3) = b for b ∈ {0, 1}. It is convenient for us to define
the real-valued analogues Gi(x) = (−1)gi(x). At the heart of this proof is the
following operator:

Λ(G1, G2, G3) = E
x←AddSh(0)

[G1(x1) ·G2(x2) ·G3(x3)] .

The first observation is that if shares of 0 over Fp are mapped to shares of 0 over
Z2 with high probability (say 99%), then the value of this operator is quite high
as,

Λ(G1, G2, G3) = 1− 2 · Pr
x←AddSh(0)

[g1(x1) + g2(x2) + g3(x3) 6= 0] ≥ 0.98 .

The crux of the argument is an ‘inverse theorem’ style lemma which characterizes
functions G1’s that result in a large value for Λ. This lemma shows that if
Λ(G1, G2, G3) is high, then each of the functions G1, G2 and G3 are ‘almost’
constant functions, i.e., for most x’s, Gi(x) is the same fixed value. Given this
lemma, the impossibility result follows. Because the functions Gi’s (and hence
gi’s) are almost always constant, even given secret shares of 1 as input, they
would still output shares of 0 as output.

To complete the proof, we need to argue that G1 is an almost constant
function. This proof has two parts: the first part which is generic to any field
F is to show that if Λ is large, then G1 has a large Fourier coefficient. In the
second part, we show that if G1 has a large Fourier coefficient, then G1 is an
almost constant function. This part is specific to Fp.

To show the first part, we rewrite Λ(G1, G2, G3) over the Fourier basis (using
Lemma 4.9) to get

Λ(G1, G2, G3) =
∑
a∈Fp

Ĝ1(a) · Ĝ2(a) · Ĝ3(a)

this follows from Lemma 4.9 as the dual code of additive shares of 0 is the code
generated by the all-ones vector. We can now use Cauchy-Schwarz inequality
with the fact that

∑
a |Ĝi(a)|2 = 1 to get that,

≤
∣∣∣Ĝ1

∣∣∣
∞
· (
∑
a

|Ĝ2(a)|2) · (
∑
a

|Ĝ3(a)|2) ≤
∣∣∣Ĝ1

∣∣∣
∞
.

This implies that |Ĝ1|∞ is large. Now we show the second part, which is specific
to Fp. We need to show that g1 is almost constant function. We want to show
that if some Fourier coefficient of G1 is large (larger than 2

3 ), then it has to be
the zero-th coefficient. The zero-th coefficient measures the bias of G1: if the
coefficient is small, then G1 is close to balanced, and if this coefficient is large,
then G1 is an almost constant function. Although proving this for all primes is
somewhat tedious, the intuition is easy to grasp. Let p = 3 and ω = exp(2πi/3)
be a root of unity. A non-zero Fourier coefficient of G1 takes the following form:
Ĝ1(a) = Ex∈Z3

[G1(x) · ωax] for a 6= 0. Because G1 takes values in {−1, 1} and
ωax takes all values

{
1, ω, ω2

}
, these two functions cannot be too correlated. And

hence the Fourier coefficient cannot be too large: |Ĝ1(a)| ≤ 2/3. This completes
the proof.
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The Impossibility of Share Conversion from Shamir Secret Sharing from Fp to
Additive Sharing on F2. We now briefly discuss the techniques used to prove
the result on local conversion of (n, t)-Shamir secret sharing over Fp, for n =
2t − 1. Again consider a relation R where Shamir shares of 0 over Fp have to
be mapped to additive shares of 0 over F2 and Shamir shares of 1 have to be
mapped to additive shares of 1 over F2. Let g1, g2, . . . , g5 be the local share
conversion functions used. We want to follow a similar strategy: first show that
the corresponding function Gi = (−1)gi has a large Fourier coefficient. Then,
similar to the additive secret sharing proof, show that if Gi has a large Fourier
coefficient, then Gi is ‘almost constant’ and hence derive a contradiction.

In the first part, we want to use the fact that Shamir shares of 0 over Fp are
converted to additive shares of 0 over F2 to infer that G1 (say) has a large Fourier
coefficient. The proof is a specialized case of the work of Green and Tao [33]. In
the proof, the value of an appropriately defined operator Λ:

Λ(G1, G2, . . . , Gn) = E
x←C

[G1(x1) ·G2(x2) · · ·Gn(xn)]

is bound by the “Gowers’ Uniformity Norm” (the U2 norm) of the function G1.
Then using a connection between the U2 norm and Fourier bias, we can derive
that G1 has a large Fourier coefficient. For details see the full version.

2.4 Additive Combinatorics Context

We provide some context for these techniques. Such Λ style operators have been
studied quite a bit in number theory. They can be used to represent many
fascinating questions about the distribution of prime numbers. To give some
examples, What is the density of three-term arithmetic progressions in primes?
is a question about the operator Λ = Ex,d[1P (x)1P (x+ d)1P (x+ 2d)] where 1P
is 1 if x is a prime and 0 otherwise. Also, the twin primes conjecture can be
framed in terms of the operator Λ = Ex[1P (x) · 1P (x+ 2)]. Green and Tao [33]
and subsequent works by Wolf and Gowers [28,29,30] tried to understand the
following question: let L1, L2, . . . , Lm be linear equations from Fn to F. Can we
bound the following expectation:

Λ(f1, f2, . . . fm) = E
~x←Fn

[f1(L1(~x)) · f2(L2(~x)) · · · fm(Lm(~x))] ?

This is a very general question. And roughly speaking, they give the following
answer. These works define two measures of complexity (termed as Cauchy-
Shwarz Complexity and True Complexity respectively) and show that if a system
of linear equations has complexity k, then,10

Λ(f1, f2, . . . , fm) < C ·min
i
‖fi‖Uk ,

10 Both complexity measures do not assign complexity to all possible linear forms. To
give an example, the linear form (L1(x) = x, L2(x) = x + 2), which corresponds to
the twin primes conjecture, is not assigned a complexity value and the twin primes
conjecture is still open.
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where ‖fi‖Uk is the k-th order Gowers’ Uniformity Norm [27]. This method of
bounding Λ by the Gowers’ norm has been very influential in number theory. This
method is what we use to prove the results on Shamir secret sharing. We first
bound an appropriately defined operator Λ by the Gowers’ U2 norm and then
exploit a connection between the U2 and Fourier analysis. Such a technique does
not suffice to give desired results in the case of leakage resilience of (n, t = cn)-
Shamir secret sharing for two reasons (for some constant c > 0). The first reason
is that that constant C derived from this method is often extremely large and
has an exponential dependence on the number of equations m. Also the second
reason is that in our setting, the functions fi’s are chosen by the adversary. So,
showing that ‖fi‖Uk is small is either very challenging or just not true for some
adversarially chosen functions fi’s. On the other hand, we do not know how to
translate this in to an local leakage attack on Shamir secret sharing either and
hence a strong win-win result eludes us.

3 Preliminaries

We denote by C the field of complex numbers, by SD the statistical distance (or
total variation distance), and by ≡ the equality of distributions.

3.1 Linear Codes

Secret sharing schemes are closely related to linear codes, that we define next.

Definition 3.1 (Linear Code). A subset C ⊆ Fn is an [n, k, d]-linear code
over field F if C is a subspace of Fn of dimension k such that: for all ~x ∈
C \ {~0}, HammingDistance(~x) ≥ d (i.e., the minimum distance between two
elements of the code is at least d). A code is called Maximum Distance Sep-
arable (MDS) if n − k + 1 = d. The dual code of the code C is defined as
C⊥ = {~y ∈ Fn : ∀~x ∈ C, 〈~x, ~y〉 = 0}.

Proposition 3.2. The dual code C⊥ of an [n, k, d] MDS code C is itself an
MDS code with parameters [n, n− k, k + 1].

Example 3.3 (Reed-Solomon Code). The [n, k, n−k+1]-Reed-Solomon code over
F such that |F| > n interprets a message ~m ∈ Fk as p(x) = m1 + m2x + · · · +
mkx

k−1 and encodes it as (p(α1), p(α2), . . . , p(αn)) where A = {α1, α2 . . . αn} ⊆
F is a fixed set of evaluation points. Reed-Solomon code is an MDS code.

3.2 Linear Secret Sharing Schemes

We recall the definition of (threshold) secret sharing schemes.

Definition 3.4 (Secret Sharing Scheme). An (n, t)-secret sharing scheme
over field F is defined by a pair (Share,Rec) where Share is a randomized mapping
of an input s ∈ F to shares for each party s = (s(1), s(2), . . . , s(n)) and the
reconstruction algorithm Rec is a function mapping a set A and the corresponding
shares s(A) =

(
s(j)
)
j∈A to a secret s ∈ F, such that the following properties hold:
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1. Reconstruction. Rec(A, s(A)) outputs the secret s for all A where |A| > t.
2. Security. For any set A such that |A| ≤ t, the joint distribution of shares

received by the subset of parties A, s(A) =
(
s(j)
)
j∈A where s ← Share(s), is

independent of the secret s.

When we use these schemes to encode vectors, it should be interpreted as
sharing each element of the vector under the underlying scheme.

An important particular case of secret sharing scheme are linear secret shar-
ing schemes. Actually all the schemes we consider in this paper are linear.

Definition 3.5. An (n, t)-SSS (Share,Rec) over F is linear if

1. the codomain of Share is the vector space (F`)n, for some positive integer `
(i.e., each share is a vector of ` field elements),

2. for any s ∈ F, Share(s) is uniformly distributed over an affine subspace of
(F`)n,

3. for any λ0, λ1, s0, s1 ∈ F:{
λ0s0 + λ1s1 :

s0 ← Share(s0)
s1 ← Share(s1)

}
≡ Share(λ0s0 + λ1s1).

Let us now recall the two classical linear secret sharing schemes we are using.

Example 3.6 (Additive Secret Sharing (AddShn,AddRecn)). The additive secret
sharing scheme (AddShn,AddRecn) for n parties over a field F is a linear (n, n−1)-
secret sharing scheme defined as follows. Shares AddShn(s) = s of a secret s ∈ F
are generated as follows: (s(1), . . . , s(n−1)) ← Fn−1, and s(n) = s− (s(1) + · · ·+
s(n−1)). The reconstruction of s from s is done as follows: AddRecn(s) = s(1) +
· · ·+ s(n).

Example 3.7 (Shamir Secret Sharing (ShaShn,t,ShaRecn,t)). The Shamir secret
sharing scheme (ShaShn,t,ShaRecn,t) of degree t for n parties over a field F
(with |F| > n) is a linear (n, t)-secret sharing scheme defined as follows. Let
α1, . . . , αn ∈ F∗ be n distinct arbitrary non-zero field elements. Shares ShaShn,t(s) =
s of a secret s ∈ F are generated as follows: generate a uniformly random poly-
nomial P of degree at most t over F with constant coefficient s (i.e., P (0) = s),
the share s(j) is s(j) = P (αj). Given shares s(A) with A ⊆ [n] and |A| > t,
the reconstruction works as follows: it computes the Lagrange coefficients λj =∏
i∈A\{j}(αi/(αi − αj)) and output ShaRecn,t(A, s

(A)) =
∑
j∈A λjs

(j) ∈ F.

3.3 Fourier Analysis

In this section, we present the notion of Fourier coefficients of a function and
some of its properties. Most of the calculations needed about Fourier coefficients
are deferred to the corresponding sections for the ease of readability. For an
excellent survey on how Fourier Analytic methods are used in Additive Combi-
natorics, see [32].



On the Local Leakage Resilience of Linear Secret Sharing Schemes 17

Let G be any finite abelian group. A character is a homomorphism χ : G→ C
from the group G to C, i.e., χ(a + b) = χ(a) · χ(b) for all a, b ∈ G. For any

finite abelian group G, the set of characters Ĝ is a group (under the operation

point-wise product) isomorphic to G. We will use F̂ (α) to denote the Fourier
coefficient corresponding to χα. The reader should note that while we define
Fourier coefficients in generality, we would be primarily use Fourier analysis on
the groups Fp for some prime p.

Definition 3.8 (Fourier Coefficients). For functions f : G→ C, the Fourier

basis is composed of the group Ĝ of characters χ : G→ C. We define the Fourier
coefficient f̂(χ) corresponding to a character χ as

f̂(χ) = E
x←G

[f(x) · χ(x)] ∈ C.

As we would use Fourier analysis on the additive group Fp = Fp. We describe
the Fourier characters over Fp. Let ω = exp(2πi/p) be a primitive p-th root of
unity. Then, the characters for Fp are given by χα(x) = ωα·x where α ∈ Fp. We

sometimes abuse notation and write f̂(α) instead of f̂(χα).
We follow the “standard” notation in additive combinatorics. In this notation,

when working on the group G, the Haar measure is used which assigns the weight
|G|−1 to every x ∈ G and when working on Ĝ, the counting measure is used which

assigns the weight 1 to every α ∈ Ĝ. Using these measures generally eliminates
the need for normalization. So, when we talk about norms, these will always be
taken with respect to the underlying measure. That is,

‖f‖1 = E
x

[|f(x)|] whereas ‖f̂‖2 =
(∑

α

|f̂(α)|2
)1/2

.

We note that the Fourier Transform has the following properties. These follow
easily from the orthogonality relation on the characters:

∑
x∈Fp

ωa·x is p when
a = 0 and 0 otherwise.

Theorem 3.9. Let f, g : G → C be two functions. Let Ĝ denote the group of
characters of G. The following hold:

(a) (Parseval’s identity) We have,

E
x←G

[
f(x) · g(x)

]
=
∑
χ∈Ĝ

f̂(χ) · ĝ(χ)

In particular, ‖f‖2 = ‖f̂‖2 where ‖f‖2 = Ex←G
[
f(x)2

]
and ‖f̂‖2 =

∑
χ∈Ĝ f̂(χ)

2
.

(b) (Fourier Inversion Formula) For any x ∈ G, f(x) =
∑
χ∈Ĝ f̂(χ) · χ(x).

Finally, we introduce the notion of bias. A function is biased if it is highly
correlated with some Fourier character.
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Definition 3.10 (Bias). For a function f : G→ C, the bias of f is defined as,

bias(f) = ‖f̂ ‖∞ = max
χ∈Ĝ

f̂(χ).

We need a calculation on certain sums of roots of unity. Let A be a subset
of Zk. And let γ = ei·2π/k. We want to bound sums of the form γA =

∑
x∈A γ

x.
We state and prove the Lemma below. We will use the lemma to show that
non-trivial Fourier coefficients of certain functions have to be smaller than the
trivial one.

Lemma 3.11. Let k be a positive integer. Let ζk : [0, k] → R≥0 be defined as

ζk(x) = sin(xπ/k)
sin(π/k) with ζ(0) = 0. Let A ⊂ Zk of size t. Let A? = {0, 1, . . . t− 1}.

Then ∣∣γA∣∣ ≤ ∣∣∣γA?
∣∣∣ =

sin(πt/k)

sin(π/k)
= ζk(t).

We will show that the sum is maximized when A is an interval. The proof of the
claim is an extremal argument. If an element does not lie in the direction of the
sum, we can remove it and add something in the direction to increase the norm.

Proof. Pick the A that maximizes this sum. If possible, let A not be an interval.
Let ζ =

∑
a∈A ω

a. If |ζ| = 0, then the lemma holds as the sum over an interval
of the same size would be higher. Hence, let |ζ| > 0, consider the subset A′ of
size t consisting of all the roots of unity most ‘aligned’ with ζ. That is, for all
a ∈ A′ and b ∈ {0, 1 . . . k − 1} \ A′, ωa ◦ ζ ≥ ωb ◦ ζ where ◦ is the complex dot
product.11 If A = A′, then we are done.

Otherwise, pick a ∈ A′\A and b ∈ A\A′. Consider the set A′′ = (A\{b})∪{a}.
We claim that it has a bigger sum. That is, |γA′′ | ≥ |γA| = |ζ|. Observe that
γA
′′

= ζ − b+ a. And as ζ ◦ a ≥ ζ ◦ b, ζ ◦ (a− b) ≥ 0. Hence, cos θ ≥ 0 where θ
is the angle between ζ and (a− b). This implies that θ ∈ [−π/2, π/2] and hence
|ζ− b+a| = |ζ+(a− b)| ≥ |ζ|. This yields a contradiction if A is not an interval.

The fact that γA
?

= ζk(t) is derived using a basic trigonometry calculation:∣∣∣γA?
∣∣∣ =

∣∣∣∣∣
t−1∑
i=0

γi

∣∣∣∣∣ =
|γt − 1|
|γ − 1|

=
2 sin(πt/k)

2 sinπ/k

where the last equality follows from the fact that the angle between γt and −1
is (π− 2tπ/k) and hence, |γt − 1| = 2 cos((π− 2tπ/k)/2) = 2 sin(πt/k). And the
result follows. ut

4 On Leakage Resilience of Secret Sharing Schemes

4.1 Definitions and Basic Properties

We consider a model of leakage where the adversary can first choose a subset of
Θ ⊆ [n] parties and get their full shares and then leak m bits each from all the

11 z1◦z2 = x1x2+y1y2 where zb = xb+i·yb is the dot product of z1 and z2. Equivalently,
z1 ◦ z2 = |z1||z2| cos θ where θ is the angle between z1 and z2.
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shares of all the (other) parties. Formally, what is learned by the adversary on
a sharing s is the following:

LeakΘ,τ = (s(Θ), (τ (i)(s(Θ), s(i)))i∈[n]) (3)

where τ = (τ (1), τ (2) . . . τ (n)) is a family of n leakage functions that output m
bits and s(Θ) =

(
s(j)
)
j∈Θ are the complete shares of the parties corrupted. The

adversary can choose the functions ~τ arbitrarily.

Definition 4.1 (Local Leakage Resilient). Let Θ be a subset of [n]. A se-
cret sharing scheme (Share,Rec) is said to be (Θ,m, ε)-local leakage resilient
(or (Θ,m, ε)-LL resilient for short) if for every leakage function family τ =
(τ (1), τ (2) . . . τ (n)) where τ (j) has an m-bit output, and for every pair of secrets
s0, s1,

SD
({

LeakΘ,τ (s) : s← Share(s0)
}
,
{

LeakΘ,τ (s) : s← Share(s1)
})
≤ ε.

A secret sharing scheme (Share,Rec) is said to be (θ,m, ε)-LL resilient if it is
(Θ,m, ε)-LL resilient for any subset Θ ⊆ [n] of size at most θ.

Remark 4.2. We remark that we can consider an equivalent definition where for
each distribution D of leakage function family τ = (τ (1), τ (2) . . . τ (n)):

SD

({
LeakΘ,τ (s) :

s← Share(s0)
τ ← D

}
,

{
LeakΘ,τ (s) :

s← Share(s1)
τ ← D

})
≤ ε.

Observe that an standard notion of (n, t)-secret sharing scheme corresponds
to (t, 0, 0)-Local Leakage resilient: that is, complete access to the shares of t
parties and no information about the others.

Note that in the leakage model, the adversary is not allowed to adaptively
choose the leakage functions. As discussed in the introduction, this is a very
meaningful and well-motivated leakage model. Next, demonstrate some attacks
in this model. We formalize the observation that linear secret sharing schemes
over small characteristic fields are not local leakage resilient.

Example 4.3 (Attack on Schemes Over Small Characteristic Fields). Over fields
of small characteristic like F2k that have many additive subgroups, secret sharing
schemes with linear reconstruction are not local leakage resilient. We give some
examples of such attacks. They are not hard to generalize. Let x ∈ F2k be the
secret that is shared among n-parties as shares (x(1), x(2) . . . x(n)). Consider the
following attacks:
– Additive Secret Sharing. The adversary can locally leak the least significant

bit of each share x(j). Adding them up, the adversary can reconstruct the
least significant bit of x.

– Shamir Secret Sharing. For a similar attack, observe that x = λ1x
(1) +

λ2x
(2) + · · ·+λnx

(n) where λj ’s are fixed Lagrange coefficients. So to attack
the scheme, the adversary locally multiplies the share x(j) with λj and leaks
the least significant bit. This again reveals the least significant bit of x. The
recent work of Guruswami and Wootters [34] shows how such leakage can be
used to even completely reconstruct x.
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Example 4.4 (Attack on Few Parties). If the number of parties n is a constant,
then the additive secret sharing over Fp is not LL-resilient. The adversary can
distinguish between secrets < p/2 and > p/2 by local leakage. The adversary
locally leaks τ (j)(x(j)) = 1 if the share x(j) < p/(2n) (seeing the share as integer
in {0, . . . , p− 1}). If all the leakages output 1, the adversary can conclude that
the secret x = x(1) + · · ·+ x(n) < p/2. On the other hand, if the secret is larger
than p/2, then all the leakage outputs will never be 1 simultaneously. In the
< p/2 case, the probability of all the secrets being < p/2n is about (1/2n)n, a
constant. Similar attacks can also be performed on Shamir secret sharing. We
stress that this is not the most effective attack, but it is an attack nonetheless.
This attack is similar to the one in [37, Footnote 8].

4.2 Leakage Resilience of Additive and Shamir Secret Sharings

We are now in a position to state the main technical result of this section. That,
if no family of local leakage functions can distinguish between shares picked
uniformly at random and shares picked from a ‘good’ linear code. We will then
prove a slightly better parameters in the case of additive-secret sharing.

Theorem 4.5. Let C ⊂ Fnp be any linear [n, t, n−t] code. Let τ = (τ (1), τ (2), . . . ,

τ (n)) be any family of leakage functions where τ (j) : Fp → {0, 1}m. Let cm =
2m sin(π/2m)
p sin(π/p) < 1 (when 2m < p). Then,

SD(τ (C), τ (Un)) ≤ 1
2 · p

n−t · ctm
where Un is the uniform distribution on Fnp and:

τ (C) =
{(
τ (i)(xi)

)
i∈[n] : ~x← C

}
, τ (Un) =

{(
τ (i)(xi)

)
i∈[n] : ~x← Un

}
.

We observe that Theorem 4.5 yields the following two corollaries for additive
secret sharing and Shamir secret sharing. We can strengthen the result slightly
for additive secret sharing. We state it in Corollary 4.7. We first prove the corol-
laries assuming Theorem 4.5 and then prove Theorem 4.5.

Corollary 4.6 (Leakage Resilience of Additive Secret Sharing). The
additive secret sharing AddShn for n parties is (θ,m, ε)-LL resilient where:

ε = p · cn−1−θm and cm =
2m sin(π/2m)

p sin(π/p)
< 1 (when 2m < p).

Proof. This corollary follows from the following claim after remarking that, when
θ parties reveal their share, an additive secret sharing with n parties becomes
an additive secret sharing with n− θ parties.

Claim 4.6.1. Let τ = (τ (1), τ (2), . . . , τ (n)) be any family of m-bit output leak-

age functions. Let cm = 2m sin(π/2m)
p sin(π/p) < 1 (when 2m < p). Then for all secrets

s0, s1 ∈ Fp,
SD(τ (AddShn(s0)), τ (AddShn(s1))) ≤ p · cn−1m
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Proof. Let C be the support of AddSh(0). Note that C is an [n, n − 1, 1] linear
code and AddSh(0) is uniformly distributed on C. Also note that the distribution
AddSh(s) is a coset of AddSh(0), i.e., AddSh(s) can be obtained by first sampling
x ← AddSh(0) and then adding a fixed vector s · e = (s, 0, 0, . . . 0) to x. So, for
any secret s,

SD(τ (AddSh(s)), τ (Un)) = SD(τ (AddSh(0) + se), τ (Un))

= SD(τ ′(AddSh(0)), τ ′(Un − se))

where τ ′(1)(x) = τ (1)(x+ s) and τ ′(j) = τ (j) for j > 1.

= SD(τ ′(AddSh(0)), τ ′(Un))

≤ 1
2 · p · c

n−1
m .

Using triangle inequality, we can complete the proof:

SD(τ (AddSh(s0)), τ (AddSh(s1)))

≤ SD(τ (AddSh(s0)), τ (Un)) + SD(τ (Un), τ (AddSh(s1)))

≤ p · cn−1m

ut
ut

In the case of additive secret sharing, we can strength the result slightly to
show the following:

Corollary 4.7 (Leakage Resilience of Additive Secret Sharing). The
additive secret sharing AddShn for n parties is (θ,m, ε)-LL resilient where:

ε = 2m · cn−2−θm and cm =
2m sin(π/2m)

p sin(π/p)
< 1 (when 2m < p).

Note that the difference between Corollary 4.6 and Corollary 4.7 is that in the
stronger claim, the bound on the adversary’s advantage does not degrade as the
prime increases. Corollary 4.7 is proved in Section 4.3. In the case of Shamir
secret sharing, we can prove the following result.

Corollary 4.8 (Leakage Resilience of Shamir Secret Sharing). The Shamir
secret sharing ShaShn for n parties is (θ,m, ε)-LL resilient where:

ε = pn−t · ct−θm and cm =
2m sin(π/2m)

p sin(π/p)
< 1 (when 2m < p).

We defer the proofs of both corollaries to the full version.

4.3 Proof of Theorem 4.5

In this section, we prove Theorem 4.5. The proof is divided into three parts.
In Lemma 4.9, we show that the operator Λ has a good representation in the
Fourier Basis. In Lemma 4.10, we show bounds on the Fourier coefficients and
then prove Theorem 4.5 using these two lemmas. Due to the lack of space, we
prove Lemmas 4.9 and 4.10 in the full version.
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On Fourier Expansion of Λ. First, we show that expectation of product of func-
tions over a code can be represented as a sum of products over the dual code.

Lemma 4.9 (Poisson Summation Formula). Let p > 2 be a prime and
ω = exp( 2πi

p ). Let C ⊂ Fnp be a linear code with dual code is C⊥. Let f1, f2 . . . fn :
Fp → C be functions. Let Λ be defined as follows:

Λ(f1, f2, . . . , fn) = E
~x←C

[f1(x1) · f2(x2) · · · fn(xn)] ,

where ~x = (x1, x2, . . . , xn). Then, the following holds:

Λ(f1, f2, . . . , fn) =
∑
~α∈C⊥

f̂1(α1) · f̂2(α2) · · · f̂n(αn)

where ~α = (α1, α2, . . . , αn) ∈ Fnp .

Bounds on Fourier Coefficients. We want to bound terms of the form 1̂A(α)
for sets A. We now show bounds on such terms over Fp. We state the lemma
required in the proof of Theorem 4.5 for such bounds.

Lemma 4.10. Let ω = ei·2π/p. For any set A, let ωA =
∑
x∈A ω

x. For any

partition A1, A2 . . . A2m of Fp, let cm = 2m sin(π/2m)
p sin(π/p) . Then,

2m∑
i=1

∣∣ωAi
∣∣ ≤ p · cm.

Completing the Proof. At this point, given Lemmas 4.9 and 4.10 we can complete
the proof of Theorem 4.5.

Proof (Proof of Theorem 4.5). For the sake of simplicity, we abuse notation and
define 1`j (x) = 1 if τ (j)(x) = `j and 0 otherwise. We can express the statistical
distance as follows:

SD(τ (C), τ (Un)) =
1

2

∑
~̀

∣∣∣∣∣∣ E~x←C
∏

j

1`j (xj)

− E
~x←Un

∏
j

1`j (xj)

∣∣∣∣∣∣
=

1

2

∑
~̀

∣∣∣∣∣∣
∑
~α∈C⊥

∏
j

1̂`j (αj)− E
~x←Un

∏
j

1`j (xj)

∣∣∣∣∣∣
=

1

2

∑
~̀

∣∣∣∣∣∣
∑

~α∈C⊥\{0}

∏
j

1̂`j (αj)

∣∣∣∣∣∣
≤ 1

2

∑
~̀

∑
~α∈C⊥\{0}

∏
j

∣∣∣1̂`j (αj)
∣∣∣ =

1

2

∑
~α∈C⊥\{0}

∏
j

∑
`j

∣∣∣1̂`j (αj)
∣∣∣




On the Local Leakage Resilience of Linear Secret Sharing Schemes 23

where the second equality follows from Lemma 4.9, the third equality follows

from the fact that E~x←Un

[∏
j 1`j (xj)

]
=
∏
j

(
|
(
τ (j)

)−1
(`j)|/p

)
=
∏
j 1̂`j (0).

The first inequality follows from triangle inequality. To complete the proof, we
bound each individual term. Before that, we need the following claim:

Claim 4.10.1. For any α 6= 0 and a leakage function τ : Fp → {0, 1}m, let

1`(x) = 1 if and only if τ(x) = `. Then,
∑
`∈{0,1}m

∣∣∣1̂`(α)
∣∣∣ < cm.

Proof. Observe that 1̂`(α) = Ex[1`(x) · ωαx] = p−1 · ωατ−1(`). As α 6= 0, as
the sets (τ−1(`))` partition Fp, so do the sets (A` = ατ−1(`))` . Thus, using
Lemma 4.10, we get that,∑

`j∈{0,1}m

∣∣∣1̂`j (αj)
∣∣∣ =

∑
`j∈{0,1}m

∣∣ωA`
∣∣/p ≤ cm

This completes the proof. ut

∑
~̀∈({0,1}m)n

∏
j

∣∣∣1̂`j (αj)
∣∣∣ =

∏
j∈[n]

 ∑
`j∈{0,1}m

∣∣∣1̂`j (αj)
∣∣∣


We observe that 1̂`j (αj) = Ex
[
1`j (x) · ωαjx

]
= p−1 · ωαjτ

−1
j (`j). If αi = 0, then

the sum
∑
`j∈{0,1}m

∣∣∣1̂`j (αj)
∣∣∣ = 1. On the other hand, if αj 6= 0, as the sets

(τ−1j (`j))`j
partition Fp, so do the sets (A`j = αjτ

−1
j (`j))`j

. Thus, if αj 6= 0,

using Lemma 4.10, we get that,
∑
`j∈{0,1}m

∣∣∣1̂`j (αj)
∣∣∣ =

∑
`j∈{0,1}m

∣∣∣ωA`j

∣∣∣/p ≤
cm. Hence, we get that,

≤ cHW(~α)
m ≤ ctm

where HW(·) denotes the Hamming weight. The last inequality follows from the
fact that the dual code C⊥ has minimum distance t, as C is a [n, t, n− t] MDS
linear code. ut

Now we add up the contributions from each ~α ∈ C⊥ to complete the proof.

5 Leakage Resilience of GMW with preprocessing.

In this section, we describe an application of the results on leakage resilience of
secret sharing to MPC protocols. We show that a variant of the GMW protocol
with preprocessing is leakage resilient.

We consider arithmetic circuits over a field F over a basis B = {+,×,−1}
where the −1 gate negates the input. For convenience, we have input gates that
read a field element from the input. The following definition of an MPC protocol
is adapted from [31] (Definition 3).



24 Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin

Definition 5.1 (n-party protocol with encoded input and output). An
n-party protocol for f : Fnin → Fnout is defined by Π = (I,R,M, O), where:

– Input Encoder. I : Fnin → (Fn̂in)n is a randomized input encoder circuit,
which maps an input ~x for f to a tuple of protocol inputs ~x = (~x(1), ~x(2), . . . ,
~x(n)) one for each party.

– Randomness. R = (R(1), R(2), . . . , R(n)) are distributions over Fnr that cap-
ture the random inputs of the parties. They are assumed to be correlated due
to preprocessing.

– M = (M (1),M (2), . . . ,M (n)) are deterministic next message functions where
M (j) determines the next message sent by party j as a function of its input
~x(j), random input r(j), and the sequence of messages received in the previ-
ous rounds. Messages are sent in rounds where each party sends a message
to possibly every other party. After a predetermined number of rounds, the
function M (j) returns a local output ~y(j) ∈ Fn̂out for party j.

– O : (Fn̂out)n → Fnout is a deterministic output decoder circuit, which maps
a tuple of protocol outputs ~y = (~y(1), . . . , ~y(n)) to an output ~y of f .

For ~x ∈ Fn̂in , we denote by Π(~x) the output of Π on input ~x, namely the
result of applying the input encoder I to ~x, interacting as specified by R,M,
and applying the output decoder O to the vector of protocol outputs. We say that
Π is correctly computes f : Fnin → Fnout if for every input ~x ∈ Fnin , we have
Pr[Π(~x) = f(~x)] = 1.

We denote by view(~x) the joint distribution (view(1)(~x), . . . , view(n)(~x)) ob-

tained by running Π on input ~x, where view(j) includes the encoded input ~x(j),
the random input r(j) (sampled from R(j)), and the sequence of messages re-
ceived by party j. (The messages sent by party j as well as its output ~y(j) are

uniquely determined by view(j).)

We denote by out(~x) the joint distribution of the outputs ~y.

5.1 Security Definitions

The definition we consider uses the simulation paradigm. We only consider an
honest-but-curious definition, albeit one where the adversary can leak informa-
tion from the views of the uncorrupted parties. We consider two security notions:
private-output local leakage resilience and public-outputs local leakage resilience.

In the private-output case, the adversary does not learn the local outputs
~y(j) of non-corrupted parties nor the output ~y = Π(~x). This would model the
setting where a client wants to delegate some computation f(~x) to some leaky
servers: the client secret shares ~x into ~x, sends each share ~x(i) to the server i,
the servers run the protocol Π, and each server i sends back its output share
~y(i) to the client.

In the public-outputs case, the adversary learns all the local outputs ~y of all
the parties (and in particular learns the output ~y = O(~y) = Π(~x)). This models
a setting where at the end of the computation, the parties would broadcast their
local outputs ~y(j) to jointly reconstruct the output ~y.
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Definition 5.2 (Private-Output Local Leakage Resilient Protocol). We
say that Π is (Θ,m, ε)-private-output local leakage resilient for f (or (Θ,m, ε)-
priv-LL-resilient for short) if Π correctly computes f , and the following security
requirement holds. For any family of local leakage functions τ = (τ (1), τ (2), . . . ,
τ (n)) where τ (j) is a function that outputs m bits, there exists a simulator
LeakSimΘ,~τ such that, and for any input ~x ∈ Fnin , we have

SD(LeakΘ,~τ (view(~x)), LeakSimΘ,~τ ()) ≤ ε.

We say that Π is (θ,m, ε)-priv-LL-resilient if Π is (Θ,m, ε)-LL-resilient for all
subsets Θ ⊆ [n] of at most size θ.

Definition 5.3 (Public-Outputs Local Leakage Resilient Protocol). We
say that Π is (Θ,m, ε)-public-outputs local leakage resilient for f (or (Θ,m, ε)-
pub-LL-resilient for short) if Π correctly computes f , and the following security
requirement holds. For any family of local leakage functions τ = (τ (1), τ (2), . . . ,
τ (n)) where τ (j) is a function that outputs m bits, there exists a simulator
LeakSimΘ,~τ such that, and for any input ~x ∈ Fnin , we have

SD((out(~x), LeakΘ,~τ (view(~x))), LeakSimΘ,~τ (f(~x))) ≤ ε.

We say that Π is (θ,m, ε)-pub-LL-resilient if Π is (Θ,m, ε)-pub-LL-resilient for
all subsets Θ ⊆ [n] of at most size θ.

Both definitions model a protocol executed in the presence of a real-world
adversary A that may corrupt a subset Θ of the parties. The adversary learns
the entire view of corrupted parties (and in the second case, also the output of
all parties). The adversary also leaks independently m bits from each party. As
we consider semi-honest corruptions, the adversary can only observe their views
but does not modify the messages they send.

Note that the classical notion of security against semi-honest adversaries
corrupting θ parties is equivalent to (θ, 0, ε)-priv-LL-resilient.

5.2 GMW with Shared Product Preprocessing

Notation. Let f be a function computed by a given circuit C. Let G be the set
of all gates in C and G× be the set of multiplication gates in C. For any input
~x, let zg denote the value at gate g ∈ G in the circuit C when the input is ~x.

In Fig. 2, we describe a variant of the GMW [25] protocol based on the ideas
of Beaver triples [3] that we call GMW with shared product preprocessing. The
protocol works with any linear secret sharing. We show that if the underlying lin-
ear secret sharing is local leakage resilient, then the protocol is pub-LL-resilient
and priv-LL-resilient.

Let us first prove correctness.

Proposition 5.4 (Correctness). The protocol Π in Fig. 2 on any input ~x
correctly computes f(~x).
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GMW with Shared Product Preprocessing for computing f with circuit C on field F
Parameters: n the number of parties. (Share,Rec) a secret sharing scheme for n
parties. 1 an arbitary sharing of 1.

Input Encoder I(~x):
1. Sample ~x← Share(~x).
2. Output ~x.

Output Decoder I(~y):
1. Output ~y = Rec(~y)

Randomness R(C):
1. For each multiplication gate g in C,

(a) Generate ag, bg ← F.
(b) Generate ag ← Share(ag), bg ← Share(bg), and (ab)g ← Share(ag · bg).

(c) Append to r(j) the tuple (a
(j)
g , b

(j)
g , (ab)(j)g ).

2. Output r = (r(1), r(2), . . . , r(n)).

Protocol run by Party j (defining M (j))

1. Set state(j) = (n,C, ~x(j)).
2. Iterate over gates in C fixed order such that for every gate, its input gates are

visited before the gate. And run the subprotocol “Process Gate” below.
3. Output z

(j)
gout : the share of the output gate gout

Process Gate g:
1. If gate g is (a) an input gate with input xi, or, (b) a (−1) gate with input from

gate g′, or, (c) a + gate with inputs g1, g2, then, set z
(j)
g as follows:

z(j)g =


x
(j)
i if g is an input gate

−z(j)g′ if g is a −1 gate

z
(j)
g1 + z

(j)
g2 if g is a + gate

and append z
(j)
g to the list state(j).

2. If g is a × gate, with input gates g1 and g2, then do the following:
(a) Compute a

′(j)
g = z

(j)
g1 −a

(j)
g and b

′(j)
g = z

(j)
g2 − b

(j)
g and broadcast these values.

(b) Receive the corresponding values from other parties.
(c) Compute zg1 − ag and zg2 − bg by adding all the values received.

(d) Compute z
(j)
g = (zg1−ag)(zg2−bg)·1(j)+(zg1−ag)·b(j)g +a

(j)
g ·(zg2−bg)+(ab)

(j)
g

(e) Append z
(j)
g and (a

(j)
g , b

(j)
g , (ab)

(j)
g ) to state(j).

Fig. 2: GMW Protocol with Shared Product Preprocessing

Proof. To prove correctness, we show that at every gate g, the parties maintain
a linear secret sharing of the value zg. This is easy to verify for the addition, −1
and input gates. We will only do the verification for the multiplication case.

Consider any multiplication gate g with input gates g1, g2. Assume that the
parties have a valid secret sharing zg1 and zg2 of values zg1 and zg2 respectively.
Pick any valid Beaver triple (ag,bg, (ab)g). We need to show that zg as computed
is a valid secret sharing of zg = zg1zg2 . We remark that:

zg = (zg1 − ag)(zg2 − bg)1 + (zg1 − ag) · bg + ag · (zg2 − bg) + (ab)g.
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By linearity zg is a secret sharing of:

(zg1 − ag)(zg2 − bg) · 1 + (zg1 − ag) · bg + ag · (zg2 − bg) + agbg = zg1zg2 . (4)

This concludes the proof.
ut

We have the following security theorems.

Theorem 5.5. If the linear secret sharing scheme (Share,Rec) is (Θ,m, ε)-LL-
resilient then the protocol Π in Fig. 2 is (Θ,m, ε)-priv-LL-resilient.

Theorem 5.6. If the linear secret sharing scheme (Share,Rec) is (Θ,m, ε)-LL-
resilient then the protocol Π in Fig. 2 is (Θ,m, ε)-pub-LL-resilient.

Since an (n, t)-secret sharing scheme is (t, 0, 0)-LL-resilient, when instantiated
with an (n, t)-secret sharing scheme, the protocol is (t, 0, 0)-priv-LL resilient and
thus secure against a semi-honest adversaries corrupting up to t parties.

Before we prove Theorems 5.5 and 5.6, let us state the following lemma that
is proven in the full version.

Lemma 5.7 (Parallel Composition of LL-Resilience). If (Share,Rec) is a
(Θ,m, ε)-LL-resilient linear secret sharing scheme, then for any leakage function
family τ = (τ (1), τ (2) . . . τ (n)) where τ (j) has an m-bit output, and for any ~y, ~y′ ∈
Fk:

SD
({

LeakΘ,τ (~y) : ~y← Share(~y)
}
,
{

LeakΘ,τ (~y′) : ~y′ ← Share(~y′)
})
≤ ε.

Note that the bound on statistical distance does not degrade with the size of the
vectors.

5.3 Proof of Private-Output Local Leakage Resilience (Theorem 5.5)

To prove the private-output local leakage resilience (Theorem 5.5), we first start
with a lemma that characterizes what information the parties see, both indi-
vidually and jointly. Informally, we show that, when the protocol evaluates the
circuit C on input ~x, the view of each party (or any subset of parties) can be
simulated given a set of common random values and additive shares given to
the party (or parties) of the value in each gate. Then, the leakage resilience of
the secret sharing scheme allows us to replace the secret sharings used by the
simulator by secret sharings of any arbitrary value.

Lemma 5.8. There exists simulator S such that for every input ~x, the following
two distributions are identical.

view(~x) ≡


(

S(j, ~x(j), (z
(j)
g ,a′g,b

′
g)g∈G×

)
)
j∈[n]

:

~x← Share(~x)
(zg ← Share(zg))g∈G×

(a′g, b
′
g ← F)

g∈G×
(a′g ← Share(a′g))g∈G×
(b′g ← Share(b′g))g∈G×


.

Assuming Lemma 5.8, the proof of Theorem 5.5 (private-output-LL-resilience
of Π) is immediate. Formal proofs are provided in the full version.
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5.4 Proof of Public-Outputs Local Leakage Resilience (Theorem 5.6)

To prove the public-outputs local leakage resilience (Theorem 5.6), we extend
Lemma 5.8 to take into account the output shares.

Lemma 5.9. There exists a simulator S′ such that for every input ~x, the fol-
lowing two distributions are identical.

(out(~x),view(~x))

≡


(
~y, S′(j, ~y, ~x(j), (z

(j)
g ,a′g,b

′
g)g∈G×

)
)
j∈[n]

:

~x← Share(~x)
(zg ← Share(zg))g∈G×

(a′g, b
′
g ← F)

g∈G×
(a′g ← Share(a′g))g∈G×
(b′g ← Share(b′g))g∈G×


.

Assuming Lemma 5.9, the proof of Theorem 5.5 (pub-LL-resilience of Π) is
immediate. Formal proofs are provided in the full version.
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