
Private Circuits: A Modular Approach

Prabhanjan Ananth1, Yuval Ishai2, and Amit Sahai3

1 CSAIL, MIT
prabhanjan@csail.mit.edu

2 Technion
yuvali@cs.technion.ac.il

3 UCLA
sahai@cs.ucla.edu

Abstract. We consider the problem of protecting general computations
against constant-rate random leakage. That is, the computation is per-
formed by a randomized boolean circuit that maps a randomly encoded
input to a randomly encoded output, such that even if the value of every
wire is independently leaked with some constant probability p > 0, the
leakage reveals essentially nothing about the input.
In this work we provide a conceptually simple, modular approach for solv-
ing the above problem, providing a simpler and self-contained alternative
to previous constructions of Ajtai (STOC 2011) and Andrychowicz et al.
(Eurocrypt 2016). We also obtain several extensions and generalizations
of this result. In particular, we show that for every leakage probability
p < 1, there is a finite basis B such that leakage-resilient computation
with leakage probability p can be realized using circuits over the basis B.
We obtain similar positive results for the stronger notion of leakage tol-
erance, where the input is not encoded, but the leakage from the entire
computation can be simulated given random p′-leakage of input values
alone, for any p < p′ < 1. Finally, we complement this by a negative
result, showing that for every basis B there is some leakage probability
p < 1 such that for any p′ < 1, leakage tolerance as above cannot be
achieved in general.
We show that our modular approach is also useful for protecting compu-
tations against worst case leakage. In this model, we require that leakage
of any t (adversarially chosen) wires reveal nothing about the input. By
combining our construction with a previous derandomization technique
of Ishai et al. (ICALP 2013), we show that security in this setting can
be achieved with O(t1+ε) random bits, for every constant ε > 0. This
(near-optimal) bound significantly improves upon previous constructions
that required more than t3 random bits.

1 Introduction

Ishai, Sahai, and Wagner [ISW03] introduced the fundamental notion of a leakage-
resilient circuit compiler, which in its simplest form is defined as follows. The
compiler consists of a triple of algorithms (Compile,Encode,Decode). Given any
circuit C, the compiled version of the circuit Ĉ = Compile(C) takes a randomly



encoded input x̂ = Encode(x) and (using additional fresh randomness) produces
an encoded output ŷ such that C(x) = Decode(ŷ). Furthermore, suppose each
wire in the compiled circuit Ĉ leaks its value4 with some probability p > 0, inde-
pendently for each wire. Then, informally speaking, we require that the leaked
wire values reveal essentially nothing about the input x to the circuit.

The above notion of resilience to random leakage can be seen as a natural
cryptographic analogue of the classical notion of fault-tolerant computation due
to von Neumann [vN56] and Pippenger [Pip85], where every gate in a circuit
can fail with some constant probability. In addition to being of theoretical in-
terest, the random leakage model is motivated by the fact that resilience to a
notion of “noisy leakage,” which captures many instances of real-life side channel
attacks, can be reduced to resilience to random leakage [DDF14]. The random
leakage model is also motivated by its application to “oblivious zero-knowledge
PCPs,” where every proof symbol is queried independently with probability p,
which in turn are useful for constructing zero-knowledge proofs that only involve
unidirectional communication over noisy channels [GIK+15].

We turn to discuss the state of the art on constructing leakage-resilient circuit
compilers with respect to leakage probability p. The original work of [ISW03]
only achieved security for values of p that vanish both with the circuit size
and the level of security. Ajtai [Ajt11] achieved the first leakage-resilient circuit
compiler that tolerated some (unspecified) constant probability of leakage p.
However, to say the least, Ajtai’s result is quite intricate and poorly understood.
A more recent work of Andrychowicz, Dziembowski, and Faust [ADF16] obtained
a simpler derivation of Ajtai’s result. However, their construction is still quite
involved and relies on heavy tools such as expander graphs (also used in Ajtai’s
construction) and algebraic geometric codes. The present work is motivated by
the following, informally stated, question:

Is there a “simple” method of building leakage-resilient circuit compilers that
can tolerate some constant probability of leakage p > 0?

1.1 Our Contribution

Our main contribution is an affirmative answer to the above question. We present
a conceptually simple, modular approach for solving the above problem, pro-
viding a simpler and self-contained alternative to the constructions from [Ajt11,
ADF16]. In particular, our construction avoids the use of explicit constant-degree
expanders or algebraic geometric codes.

Roughly speaking, our construction uses a recursive amplification technique
that starts with a constant-size gadget, which only achieves a weak level of
security, and amplifies security by a careful composition of the gadget with it-
self. The existence of the finite gadget, in turn, follows readily from results on

4 The original model of [ISW03] considers the worst-case notion of t-private circuits,
where the leakage consists of an adversarially chosen set of t wires. We will discuss
this alternative model later.

2



information-theoretic secure multiparty computation (MPC), such as the initial
feasibility results from [BOGW88, CCD88]. We refer the reader to Section 1.2
for a more detailed overview of our technique.

We then extend the above result and generalize it in several directions, and
also present some negative results. Concretely, we obtain the following results
regarding constant-rate random leakage:

– For every leakage probability p < 1, there is a finite basis B such that leakage-
resilient computation with leakage probability p can be realized using circuits
over the basis B.

– We obtain a similar positive result for the stronger5 notion of leakage toler-
ance, where the input is not encoded, but the leakage from the entire com-
putation can be simulated given random p′-leakage of input values alone, for
any p < p′ < 1.

– Finally, we complement this by a negative result, showing that for every
basis B there is some leakage probability p = pB < 1 such that for any
p′ < 1, leakage tolerance as above cannot be achieved in general, where pB
tends to 1 as B grows. The negative result is based on impossibility results
for information-theoretic MPC without an honest majority [CK91].

Our work leaves open two natural open questions. First, in the case of binary
circuits, there is a huge gap between the tiny leakage probability guaranteed
by the analysis of our construction (roughly p = 2−14) and the best one could
hope for. This is the case even in the stronger model of leakage tolerance, where
our negative result only rules out constructions that tolerate p > 0.8 leakage
probability.

A second question is the possibility of tolerating higher leakage probability
(arbitrarily close to 1) for the weaker notion of leakage-resilient circuits with
input encoder. A partial explanation for the difficulty of this question is the
possibility of using the input encoder to generate correlated randomness that
enables information-theoretic MPC with no honest majority.6

Private circuits with near-optimal randomness. As an unexpected appli-
cation of our technique, we show that the modular approach is also useful for
protecting computations in the more standard model of worst case leakage. In-
deed, we show that essentially the same construction that is secure in the random
probing model is also secure in the worst case leakage model with threshold t.

5 Note that leakage-tolerance can be easily used to achieve leakage-resilience by letting
the encoder apply to the input a secret sharing scheme that tolerates a p′-fraction
of leakage, where the compiler is applied to an augmented circuit that starts by
reconstructing the input from its shares.

6 Indeed, the technique of Beaver [Bea91] can be used to obtain resilience to an arbi-
trary leakage probability p < 1, but at the cost of allowing the output of the input
encoder to be bigger than the circuit size. In contrast, our definition of leakage-
resilient circuit compiler requires the output of the input encoder to be a fixed
polynomial in the input length, independently of the size of the circuit.

3



Using this observation and a certain “randomness locality” feature of our con-
struction, and building on robust local pseudo-random generators [IKL+13], we
obtain leakage tolerant circuit compilers with leakage parameter t that use only
O(t1+ε) random bits, for any constant ε > 0. We show that this bound is nearly
tight by observing that at least t random bits are required to protect compu-
tations against worst case leakage. Our upper bound on the randomness com-
plexity is a major improvement over the best previous upper bound of O(t3+ε)
from [IKL+13].

We present our results formally in Section 3.3.

1.2 Technical Overview

In this section, we give a high level overview of the composition-based approach
that we utilize to get our main result. We use the composition-based approach to
achieve constructions of leakage-resilient and leakage tolerant circuit compilers
in both the worst-case probing and random probing settings. For the most part
of the current discussion, we focus on achieving leakage resilient circuit compilers
in the random probing setting.

In the composition-based approach, we start with a leakage-resilient circuit
compiler CC0 secure against p-random probing attacks and has constant sim-
ulation error ε. By p-random probing attacks, we mean that every wire in the
compiled circuit is leaked with probability p. We refer to this leakage-resilient
circuit compiler as a base gadget. The goal is to recursively compose this base
gadget to obtain a leakage-resilient circuit compiler also secure against p-random
probing attacks but the failure probability is negligible (in the size of the circuit
being compiled).

First Attempt. A naive approach to compose is as follows: to compile a circuit
C, compute CC0.Compile(· · ·CC0.Compile(C) · · · ). In the kth step, CC0.Compile
is executed for k levels of recursion. Its easy to see that leakage on the resulting
compiled circuit cannot be simulated only if it holds that the simulation of
CC0.Compile fails for every level of recursion. That is, the failure probability of
the resulting circuit compiler is εk for k levels of recursion. If we set k to be
the size of C then we obtain negligible simulation error, as desired. However, as
the simulation error reduces with every recursion step, the size of the compiled
circuit increases with every recursion step. Even if the compiled circuit in the
base gadget had constant overhead, the size of the compiled circuit obtained after
k steps grows exponential in k. This means that we need to devise a composition
mechanism where the error probability degrades much faster than the size growth
of the compiled circuit.

Our Approach: In a Nutshell. Our idea is to cleverly compose n gadgets, each
with simulation error ε, in such a way that the composed gadget fails only if at
least t of the gadgets fail, for some parameters t, n with t < n. Our composi-
tion mechanism ensures that the size of the composed gadget incurs a constant
blowup whereas the simulation error degrades exponentially in 1

ε .

4



To realize such a composition mechanism, we employ techniques from Cohen
et al. [CDI+13]. Cohen et al. showed how to employ player emulation strat-
egy [HM00] to achieve a conceptually simpler construction of secure MPC in the
honest majority setting. While the goal of Cohen et al. is seemingly unrelated to
the problem we are trying to solve, we show that the player emulation strategy
employed by their work can be adapted to our context.

We first recall their approach. They showed how to transform a threshold
formula, composed solely of threshold gates, into a secure MPC protocol. In
more detail, they start with a T -out-N threshold formula composed of t-out-n
threshold gates. They then show how to transform a secure MPC protocol for n
parties tolerating t corruptions into a MPC protocol for N parties tolerating at
most T corruptions (also written as T -out-N secure MPC). At a high level, their
transformation proceeds as follows: they replace the topmost t-out-n threshold
gate with a T -out-N secure MPC. That is, every input wire of the topmost gate
corresponds to a party in the secure MPC protocol. Every party in this MPC is
emulated by a T -out-N secure MPC. In other words, for every gate input to the
topmost gate, the corresponding player is replaced with a t-out-n secure MPC.
For instance, if the topmost gate had exactly N gates as its children then the
resulting MPC has n2 number of parties and can tolerate at most t2 number of
corruptions. This process can be continued as long as the secure MPC protocol
still satisfies polynomial efficiency.

Armed with their methodology, we show how to construct a leakage-resilient
circuit compiler. We start with a t-out-n secure MPC protocol Π in the passive
security model. The functionality associated with this protocol takes as input
n shares of two bits (a, b) and outputs n shares of NAND(a, b)7. This secure
MPC protocol will be our base gadget for NAND with respect to some constant
probability of wire leakage and constant simulation error. We then compose
this base gadget as follows: in the kth level of recursion, we start with Π and
emulate the computation of every gate in Π with an inner gadget computed from
(k − 1)th level of recursion. Why is this secure? the hope is that the resulting
gadget can be simulated by simulating all the inner gadgets. Unfortunately, this
doesn’t work since some of the inner gadgets can fail. However, we can map the
inner gadgets that fail to corrupting the corresponding parties in Π. And thus,
as long as at most t inner gadgets fail, we can invoke the simulator of Π to
simulate the composed gadget. We can show that the probability that at most t
inner gadgets fail degrades exponentially in 1

εk−1
, where εk−1 is the simulation

error of the inner gadget. On the other hand, the size of the composed gadget
grows only by a constant factor. Expanding this out, we can conclude that after
k steps the size grows exponential in k whereas the simulation error degrades
doubly exponential in k. Substituting k to be logarithmic in the size of C, we
attain the desired result. While the current discussion focusses on the analysis
for the random probing setting, similar (and a much simpler) analysis can also
be done for the worst-case probing setting. Specifically, we can show that after

7 We consider NAND gates because they are universal gates. In fact we can substitute
NAND with any other universal basis.

5



k levels of recursion, the circuit compiler is secure against worst case probing
attacks with leakage parameter tk.

Security Issues. Recall that the simulation of the composed gadget requires sim-
ulating all the inner gadgets. Since the inner gadgets are connected to each other,
we need to ensure that these different simulations are consistent with each other.
To give an example, suppose there are two inner gadgets connected by a wire
w. The simulators for these two different inner gadgets could assign conflicting
values to w. At its core, we handle this problem by keeping a budget of wires
“in reserve,” and define a notion of composable simulation that can make use of
this flexibility to resolve conflicts between simulators for components that share
wires. For example, if two simulators S1 and S2 “want to disagree” about a wire
w, we will break the tie by allowing simulator S1 to decide the value in wire w,
and asking the other simulator S2 to use one of the reserve wires to make up
for the fact that S2 did not get its wish for the value of wire w. This is possi-
ble because of the flexibility inherent in the secret sharing schemes underlying
the MPC protocols of the base gadget. Similar notions of composable leakage-
resilient circuit compliers were considered in [BBD+16, BBP+16, BBP+17].

From NAND to arbitrary circuits. So far the above approach shows how to
design a gadget for NAND tolerating constant wire leakage probability and with
negligible simulation error. The fact that we design gadgets just for NAND gates
is crucially used to argue that the size of the composed gadget blows up only
by a constant factor in each step. We show how to use this gadget to design a
gadget for any circuit over NAND basis: to compile C, we replace every gate in
C with a gadget for NAND. We then show how to stitch these different gadgets
together to obtain a gadget for C.

Final Template. We now lay out our template. We first define a special case
of leakage-resilient circuit compilers, called composable circuit compilers. This
notion will incorporate the composition simulation mechanism mentioned earlier.

– The first step is to design a composable circuit compiler for NAND tolerating
constant wire leakage probability and has constant simulation error.

– We then apply our composition approach to obtain a composable circuit
compiler for NAND tolerating constant wire leakage probability and has
negligible simulation error.

– Finally, we show how to bootstrap a composable circuit compiler for NAND
to obtain a composable circuit compiler for any circuit. The resulting com-
piler still tolerates constant wire leakage probability and has negligible sim-
ulation error.

A leakage tolerant circuit compiler can be constructed by additionally designing
a leakage resilient input encoder.

6



Randomness Complexity. As discussed above, an unexpected feature of our con-
struction is that it allows us to obtain leakage tolerant circuit compilers in the
worst case probing setting with near-optimal randomness complexity. This ap-
plication relies on the fact that after k levels of recursion, the compiled circuit
has randomness locality of O(k). (The randomness locality of a circuit compiler
is said to be d if the value assigned to every wire during the evaluation of a
compiled circuit depends on the inputs and at most d randomness gates.) In
particular, we can construct a compiler with randomness locality O(log(t)) that
is secure against t-worst case probing attacks. This can be argued by observing
that the initial compiled circuit has constant randomness locality and in every
recursion step, the randomness locality increases by a constant. Combining this
with a result from [IKL+13], we obtain a circuit compiler secure in the worst case
probing model with threshold t and randomness complexity t1+ε. This improves
upon the bound of t3+ε in [IKL+13].

Organization. We first present the necessary preliminaries in Section 2. We then
define the notion of circuit compilers in Section 3. We define leakage resilience
and leakage tolerance in the same section. The notion of composable circuit
compilers, that will be a building block for both leakage tolerant and leakage
resilient circuit compilers, is presented in Section 4.1. We present the starting
step (base case) in the composition step in Section 4.2. The composition step
itself is presented in Section 4.3. The result of the composition step doesn’t
quite meet our efficiency requirements and so we present the exponential-to-
polynomial transformation in Section 4.4. Finally, we combine all these steps to
present the main construction of a composable circuit compiler in Section 4.5.

Armed with a construction of composable circuit compiler, we present a con-
struction of leakage tolerant circuit compilers in Section 5. We also present neg-
ative results that upper bounds the leakage rate in the random probing model in
the same section. We show that the construction of leakage tolerant circuit com-
piler can be transformed to have small randomness complexity. This is shown in
Section 7. In the same section, we show a lower bound on randomness complexity
of leakage tolerant circuit compilers.

We show implication of composable circuit compilers to leakage resilient cir-
cuit compilers in Section 6.

2 Preliminaries

We use the abbreviation PPT for probabilistic polynomial time. Some notational
conventions are presented below.

– Suppose A is a probabilistic algorithm. We use the notation y ← A(x) to
denote that the output of an execution of A on input x is y.

– Suppose D is a probability distribution with support V. We denote the sam-

pling algorithm associated with D to be Sampler. We denote by x
$←− Sampler

if the output of an execution of Sampler is x. For every x ∈ V, Sampler out-
puts x with probability px, as specified by D. Unless specified otherwise,

7



we only consider efficiently sampleable distributions. We also consider pa-
rameterized distributions of the form D = {Daux}. In this case, there is a
sampling algorithm Sampler defined for all these distributions. Sampler takes
as input aux and outputs an element in the support of Daux.

– Consider two probability distributions D0 and D1 with discrete support V
and let their associated sampling algorithms be Sampler1 and Sampler2. We
denote D0 ≈s,ε D1 if the distributions D0 and D1 are ε-statistically close.
That is,

∑
v∈V |Pr[v ← Sampler1]− Pr[v ← Sampler2]| ≤ 2ε.

Circuits. A deterministic boolean circuit C is a directed acyclic graph whose
vertices are boolean gates and whose edges are wires. The boolean gates belong
to a basis B. An example of a basis is B = {AND,OR,NOT}. We will assume
without loss of generality that every gate has fan-in (the number of input wires)
at most 2 and fan-out8 (the number of output wires) at most 2. A randomized
circuit is a circuit augmented with random-bit gates. A random-bit gate, denoted
by RAND, is a gate with fan-in 0 that produces a random bit and sends it along
its output wire; the bit is selected uniformly and independently of everything
else afresh for each invocation of the circuit. We also consider basis consisting of
functions (possibly randomized) on finite domains (as opposed to just boolean
gates). The size of a circuit is defined to be the number of gates in the circuit.

2.1 Information Theoretic Secure MPC

We now provide the necessary background of secure multiparty computation. In
this work, we focus on information theoretic security. We first present the syntax
and then the security definitions.

Syntax. We define a secure multiparty computation protocol Π for n parties
P1, . . . , Pn associated with an n-party functionality F : {0, 1}`1×· · ·×{0, 1}`n×
{0, 1}`r → {0, 1}`y1 × · · · × {0, 1}`yn . We denote `i to be the length of the
ith party’s input, `yi to be the length of the ith party’s output and `r is the
length of the randomness input to F . In any given execution of the protocol,
the ith party receives as input xi ∈ {0, 1}`i and all the parties jointly compute
the functionality F (x1, . . . , xn; r), where r ∈ {0, 1}`r is sampled uniformly at
random. In the end, party Pi outputs yi, where (y1, . . . , yn) = F (x1, . . . , xn; r).

We defined such n-party functionalities that additionally receive the random-
ness as input to be randomized functionalities. In this work we only consider
randomized n-party functionalities and henceforth, the input randomness will
be implicit in the description of the functionality.

Semi-honest Adversaries. We consider the adversarial model where the adver-
saries follow the instructions of the protocol. That is, they receive their inputs
from the environment, behave as prescribed by the protocol and finally output

8 If a circuit has arbitrary fan-out, then this can be transformed into another circuit
of fan-out 2 with a loss of logarithmic factor in the depth.

8



their view of the protocol. Such type of adversaries are referred to as semi-honest
adversaries.

We define semi-honest security below. Denote RealΠF,S(x1, . . . , xn) to be the
joint distribution over the outputs of all the parties along with the views of the
parties indexed by the set S.

Definition 1 (Semi-Honest Security). Consider a n-party functionality F as
defined above. Fix a set of inputs (x1, . . . , xn), where xi ∈ {0, 1}`i and let ri be
the randomness of the ith party. Let Π be a n-party protocol implementing F . We
say that Π satisfies ε-statistical security against semi-honest adversaries
if for every subset of parties S, there exists a PPT simulator Sim such that:

{ ({yi}i/∈S ,Sim ({yi}i∈S , {xi}i∈S)) } ≈s,ε
{
RealΠF,S(x1, . . . , xn)

}
,

where yi is the ith output of F (x1, . . . , xn). If the above two distributions are
identical, then we say that Π satisfies perfect security against semi-honest
adversaries.

Starting with the work of [BOGW88, CCD88], several constructions construct
semi-honest secure multi-party computation protocol in the information-theoretic
setting assuming that a majority of the parties are honest.

We consider the notion of randomness locality of a secure MPC protocol.

Definition 2 (Randomness Locality). A semi-honest secure multiparty com-
putation protocol for a functionality F is said to have randomness locality d if
every value computed in the protocol is determined by the inputs of all parties
and at most d random bits (either as input to the functionality or to the parties).

3 Circuit Compilers

We define the notion of circuit compilers. This notion allows for transforming an
input x, a circuit C (See Section 2 for a definition of circuits) into an encoded

input x̂ and a randomized circuit Ĉ such that evaluation of Ĉ on x̂ yields an

encoding Ĉ(x). The decode algorithm then decodes Ĉ(x) to yield C(x).

Definition 3 (Circuit Compilers). A circuit compiler CC defined for a class
of circuits C comprises of the following algorithms (Compile,Encode,Decode) de-
fined below:

– Circuit Compilation, Compile(C): It is a deterministic algorithm that

takes as input circuit C and outputs a randomized circuit Ĉ.
– Input Encoding, Encode(x): This is a probabilistic algorithm that takes as

input x and outputs an encoded input x̂.
– Output Decoding, Decode(ŷ): This is a deterministic algorithm that takes

as input an encoding ŷ and outputs the plain text string y.

The algorithms defined above satisfies the following properties:

9



– Correctness of Evaluation: For every circuit C ∈ C of input length `,
every x ∈ {0, 1}`, it always holds that y = C(x), where:
• Ĉ ← Compile(C).
• x̂← Encode(x).
• ŷ ← Ĉ(x̂).
• y ← Decode(ŷ).

– Efficiency: Consider a parameter k ∈ N. We require that the running
time of Compile(C) to be poly(k, |C|), the running time of Encode(x) to

be poly(k, |x|) and the running time of Decode(Ĉ(x)) to be poly(k, |C(x)|).
We emphasize that the encoding complexity only grow poly-logarithmically in
terms of the size of C. Typically, k will be set to poly(log(|C|)).

Few remarks are in order.

Remark 1. The standard basis we consider in this work is {AND,XOR}. Unless
otherwise specified, all the circuits considered in this work will be defined over
the standard basis. Also unless otherwise specified, the compiled circuit is over
the same basis as the original circuit.

Remark 2. Later, we also consider circuit compilers with relaxed efficiency guar-
antees, where we allow for the running time of the algorithms to be exponential
in the parameter k.

Additional Properties. We are interested in circuit compilers that have (i) low
randomness locality: every value in the execution of the compiled circuit depends
only on few random bits and, (ii) low randomness complexity: only a small
amount of randomness should be used in the evaluation of the compiled circuit.

We capture these two properties formally below.

Definition 4 (Randomness Locality). Consider a circuit compiler CC de-
fined for a class of circuits C comprising of the following algorithms (Compile,
Encode,Decode). CC has d-randomness locality if for every circuit C ∈ C, in-

put x, the value of every wire in the computation of Ĉ on x̂ is determined by
at most d random-bit gates in Ĉ and x̂, where (i) Ĉ ← Compile(C) and, (ii)
x̂← Encode(x).

Definition 5 (Randomness Complexity). Consider a circuit compiler CC
defined for a class of circuits C comprising of the following algorithms (Compile,
Encode,Decode). CC has randomness complexity r if the number of random-bit
gates in the compiled circuit is at most r.

Non-Boolean Basis. In this work, we also consider a setting where the compiled
circuit is defined over a basis that is different from the basis of the original circuit
(before compilation). We define this formally below.

Definition 6. Consider two collections of finite functions B′ and B. A circuit
compiler CC = (Compile,Encode,Decode) is defined over B′ (written CC over B′)
for a class of circuits C over B if it holds that for every C ∈ C over basis B, the
compiled circuit Ĉ, generated as Ĉ ← Compile(C), is defined over basis B′.
We next define the security guarantees associated with circuit compilers.

10



3.1 Leakage Resilience

We adopt the definition of leakage resilient circuit compilers from [GIM+16].

Definition 7. A circuit compiler CC = (Compile,Encode,Decode) for a class of
circuits C is said to be ε-leakage resilient against a class of randomized leakage
functions L if the following holds:

There exists a PPT simulator Sim such that for every circuit C : {0, 1}` →
{0, 1} and C ∈ C, input x ∈ {0, 1}`, leakage function Lcomp ∈ L, the distribution

Lcomp(Ĉ, x̂) is ε-statistically close to Sim (C), where Ĉ ← Compile(C) and x̂←
Encode(x).

Informally, the above definition states that the leakage Lcomp on the computation

of the compiled circuit Ĉ on encoded input x̂ reveals no information about the
input x.

Remark 3. While the above notion considers leakage only on a single computa-
tion, this notion already implies the stronger multi-leakage setting where there
are multiple encoded inputs and a leakage function is computed on every com-
putation of Ĉ. This follows from a standard hybrid argument9.

p-Random Probing Attacks [ISW03, Ajt11, ADF16]. In this work, we are inter-
ested in the following probabilistic leakage function: every wire in the computa-
tion of the compiled circuit Ĉ on the encoded input x̂ is leaked independently
with probability p.

More formally, denote the leakage function Lp = {Lcomp}, where the proba-
bilistic function Lcomp is defined below.

Lcomp

(
Ĉ, x̂

)
: construct the set of leaked values SCleak as follows. For every wire w

(input wires included) in Ĉ and value vw assigned to w during the computation

of Ĉ on x̂, include (w, vw) with probability p in SCleak. Also, include (w′, vw) in
SCleak, if w′ and w are two output wires of the same gate. Output SCleak.

We define leakage resilient circuit compilers with respect to the leakage function
defined above.

Definition 8 (Leakage Resilience Against Random Probing Attacks).
A circuit compiler CC = (Compile,Encode,Decode) for a family of circuits C
is said to be (p, ε)-leakage resilient against random probing attacks if CC is ε-
leakage resilient against Lp. Moreover, we define the leakage rate of CC to be
p.

9 Here we use the fact that the circuit compilation algorithm is deterministic.

11



t-Probing (Worst Case Probing) Attacks. We also consider t-probing attacks,
where the adversary is allowed to observe any t wires in the computation of the
compiled circuit. We define the class of leakage functions Lt = {LScomp}|S|≤t,
where LScomp is defined below.

LScomp

(
Ĉ, x̂

)
: construct the set of leaked values SCleak as follows. For every wire

w ∈ S and vw assigned to w during the computation of Ĉ on x̂, include (w, vw)
in SCleak. Also, include (w′, vw) in SCleak, if w′ and w are two output wires of the
same gate. Output SCleak.

Definition 9 (Leakage Resilience Against Worst Case Probing Attacks).
A circuit compiler CC = (Compile,Encode,Decode) for a family of circuits C is
said to be leakage resilient against t-probing attacks if CC is leakage resilient
against Lt. Moreover, we define the leakage parameter of CC to be t.

3.2 Leakage Tolerance

Another notion we study is leakage tolerant circuit compilers. In this notion,
unlike leakage resilient circuit compilers, Encode is an identity function. Conse-
quently, we need to formalize the security definition so that the leakage on the
computation of Ĉ on x can be simulated with bounded leakage on the input x.

Definition 10. A circuit compiler CC = (Compile,Encode,Decode) for a class
of circuits C is said to be ε-leakage tolerant against a class of leakage functions
L if the following two conditions hold:

– Encode is an identity function.
– There exists a simulator Sim such that for every circuit C : {0, 1}` → {0, 1}

and C ∈ C, input x ∈ {0, 1}`, leakage function L = (Lcomp, Linp) ∈ L, the

distribution Lcomp(Ĉ, x̂) is ε-statistically close to Sim (C,Linp(x)), where

Ĉ ← Compile(C) and x̂← Encode(x).

Henceforth, we omit Encode algorithm and denote a leakage tolerant circuit com-
piler to consist of (Compile,Decode).

(p,p′)-Random Probing Attacks. As before, we are interested in the following
probabilistic leakage function: every wire in the computation of the compiled
circuit Ĉ on the encoded input x̂ is leaked independently with probability p.

More formally, denote the leakage function Lp,p′ = {(Lcomp, Linp)}, where
the probabilistic functions Lcomp is as defined in Section 3.1 and Linp is defined
below.

Linp(x): construct the set of leaked values SIleak as follows. For every input wire w
carrying the ith bit of x, include (w, xi) in SIleak with probability p′. If (w, xi) is
included, also include (w′, xi) in SIleak, where w′ is the other input wire carrying
xi. Output SIleak.

We define leakage tolerance against random probing attacks below.

12



Definition 11 (Leakage Tolerance Against Random Probing Attacks).
A circuit compiler CC = (Compile,Decode) for a family of circuits C is said to
be (p,p′, ε)-leakage tolerant against random probing attacks if CC is ε-leakage
tolerant against Lp,p′ . Moreover, we define the leakage rate of CC to be p.

t-Probing (Worst Case Probing) Attacks. As before, we are interested in the
class of leakage functions where the adversary is allowed to query a t-sized
subset of wire values in the circuit. We consider the class of leakage functions
Lt = {(LScomp, LS

′

inp)}|S′|≤t, where LScomp is as defined in Section 3.1 and LS
′

inp is
defined below.

LS
′

inp

(
Ĉ, x̂

)
: construct the set of leaked values SIleak as follows. include (w, xi) in

SIleak if and only if w ∈ S′ and wire w carries the ith bit of x. If w′ also carries
the ith bit of x, include (w′, xi) in SIleak. Output the set SIleak.
Definition 12 (Leakage Tolerance Against Worst Case Probing At-
tacks). A circuit compiler CC = (Compile,Encode,Decode) for a family of cir-
cuits C is said to be leakage tolerant against t-probing attacks if CC is leakage
tolerant against Lt. Moreover, we define the leakage parameter of CC to be t.

3.3 Our Results

We state our results below.

Worst Case Probing:

Randomness Complexity. We prove positive and negative results on the ran-
domness complexity of leakage tolerant circuit compilers. We prove this is in the
worst case probing regime. The proofs for both the theorems can be found in
Section 7.

Theorem 1 (Randomness Complexity: Positive Result). There is a leak-
age tolerant circuit compiler such that given a circuit of size s and worst-case
leakage bound t, the compiler outputs a circuit of size s·poly(t) which is perfectly
secure against t (worst-case) probing attacks and uses only t1+ε random bits.

Theorem 2 (Randomness Complexity: Negative Result). The number of
random bits used in any leakage tolerant circuit compiler secure against t-probing
attacks is at least t.

En route to proving the above positive result, we prove that there is a construc-
tion of leakage tolerant circuit compiler that has randomness locality log(t). This
is shown in Section 5.2.

Lemma 1 (Randomness Locality). There is a leakage tolerant circuit com-
piler secure against t-probing attacks satisfying O(log(t))-randomness locality.

Random Probing:

13



Leakage Tolerance: Positive Results. We show the following results in Section 3.2.

Theorem 3 (Boolean Basis). There exist constants 0 < p < p′ < 1 such that
there is a (p,p′, ε)-leakage tolerant circuit compiler, where ε is negligible in the
circuit size.

Theorem 4 (Finite Basis). For any 0 < p′ < p < 1 there is a basis B over
which there is a (p,p′, ε)-leakage tolerant circuit compiler, where ε is negligible
in the circuit size.

Leakage Tolerance: Negative Result. The following theorem upper bounds the
rate of a leakage tolerant circuit compiler in the random probing model. We
prove this theorem in the full version.

Theorem 5. For any basis B there is 0 < p < 1, such that for any 0 < p′ < 1,
there is no (p,p′, 0.1)-leakage tolerant circuit compiler over B.

Leakage Resilience: Positive Results. We demonstrate a construction of leakage
resilient circuit compiler over boolean basis. Both the theorems below are shown
in Section 6.

Theorem 6 (Boolean Basis). There is a constant 0 < p < 1 such that there
is a (p, ε)-leakage resilient circuit compiler and ε is negligible in the circuit size.

We prove a result about finite basis in the full version.

Theorem 7 (Finite Basis). For any 0 < p < 1 there is a basis B over which
there is a (p, ε)-leakage resilient circuit compiler, where ε is negligible in the
circuit size.

4 Composition Theorem: Intermediate Step

We present a composition theorem, a key step in our constructions of leakage
tolerant and leakage resilient circuit compilers. We identify a type of circuit
compilers satisfying some properties, that we call composable circuit compilers.
This notion will be associated with ‘composition-friendly’ properties.

Before we formally define the properties, we motivate the use of composable
circuit compilers.

– In our composition theorem, we need to ‘attach’ different composable circuit
compiler gadgets. For instance, the output wires of composable compiler
CC1 will be the input wires of another compiler CC2. In order to ensure
correctness, we need to make sure that the output encoding of CC1 is the
same as the input encoding of CC2. We guarantee this by introducing XOR
encoding property that states that the input encoding and output encoding
are additive secret shares.

14



– While the above bullet resolves the issue of correctness, this raises some
security concerns. In particular, when we simulate CC1 and CC2 separately,
conflicting values could be assigned to the wires that join CC1 and CC2.
These issues have been studied in the prior works, mainly in the context of
worst case leakage [BBD+16, BBP+16, BBP+17]. And largely, this was not
formally studied for the random probing setting. We formulate the following
simulation definition to handle this issue in the probabilistic setting: the
simulator Sim = (Sim1,Sim2) (termed as partial simulator) will work in two
main steps:
• In the first step, the simulator first determines the wires to be leaked.

Then, Sim1 determines a ‘shadow’ of input and output wires that addi-
tionally need to be simulated.

• In the second step, the values for the input and output wires selected in
the above step is assigned values. Then Sim2 is executed to assign the
internal wire values.

At a high level Sim works as follows: first CC1.Sim1 and CC2.Sim1 is executed
to obtain the shadow of input and output wires that need to be simulated.
At this point, we take the union of the output wires of CC1 and input wires
of CC1 that need to be simulated. Then, we assign the values to all the
wires. Once this is done, we independently execute CC1.Sim2 and CC2.Sim2

to obtain the simulated wire values in both CC1 and CC2, as desired.

4.1 Composable Circuit Compilers

The syntax of composable circuit compilers is the same as that of circuit com-
pilers (Definition 3). In addition, it is required to satisfy the properties stated
next.

XOR Encoding Property. We start with XOR encoding property. This property
states that the input encoding (resp., output encoding) is an additive secret
sharing of the inputs (resp., outputs).

Definition 13 (N-XOR Encoding). A circuit compiler (Compile,Encode,Decode)
for a family of circuits C is said to have N-XOR encoding property if the
following always holds: for every circuit C ∈ C, x ∈ {0, 1}`,

– Encode(x) computes XOR secret sharing of xi for every i ∈ [`], where xi is
the ith input bit of x. It then outputs the concatenation of the XOR secret
shares of all the bits of x.
It outputs x̂ = (x̂1, . . . , x̂`) ∈ {0, 1}`N , where xi = ⊕Nj=1x̂

i
j. That is, xi is a

XOR secret sharing of {x̂ij}j∈[N ].

– Let x̂ ← Encode(x) and Ĉ ← Compile(C). Upon evaluation, denote the

output encoding to be ŷ ← Ĉ(x̂). Suppose C(x) = y ∈ {0, 1}`′ and ŷ =
(ŷ1, . . . , ŷ`

′
) ∈ {0, 1}`′N . We require that {ŷij} is a XOR secret sharing of yi,

i.e., yi = ⊕Nj=1ŷ
j
i .

When N is clear from the context, we drop it from the notation.

15



Composable Security (Random Probing Setting). Next, we define the composable
security property. We first deal with the random probing setting. There are two
parts associated with this security property.

– Partial simulation: This states that, conditioned on the simulator not
aborting, the leakage of all the wires in the compiled circuit can be perfectly
simulated by the leakage of a fraction of values assigned to the input and
output wires alone.

– Simulation with Abort: We require that the simulator aborts with small
probability.

Before stating the formal definition of composable security, we first set up some
notation. We formalize the leakage function Lcomp defined in the previous sec-
tion in terms of the following sampler algorithm, RPDistrwp (·, ·)10.

Sampler RPDistrwp (Ĉ, x̂): Denote the set of wires in Ĉ as W. Consider the

computation of Ĉ on input encoding x̂. For every wire w ∈ W, denote val(w) to

be the value assigned to w during the evaluation of Ĉ on x̂.
We construct the set Sleak as follows: initially Sleak is assigned to be {}. For

every w ∈ W, with probability p, include (w,val(w)) in Sleak (i.e., with proba-
bility (1− p), the pair (w,val(w)) is not included). Output Sleak.

We define the notion of partial simulator below.

Definition 14 (Partial Simulator: Random Probing). A partial simulator
Sim defined by a deterministic polynomial time algorithm Sim1 and probabilistic
polynomial time algorithm Sim2 executes as follows: On input a circuit Ĉ,

– DenoteW to be the set of wires in Ĉ. Construct a setWlk as follows: include
every wire w ∈ W in the set Wlk with probability p.

– Sim1(Ĉ,Wlk) outputs (Winp,Wout, I).Winp is a subset of input wires,Wout

is a subset of output wires and I denotes a set of indices.
– For every wire w ∈ Winp, include (w, vw) ∈ Sinp such that vw is a bit

sampled uniformly at random. Similarly, construct the set Sout.

– Sim2

(
Ĉ,Wlk,Winp, Sinp,Wout, Sout, I

)
outputs Slk.

Finally, Sim outputs Slk.

We now define the notion of composable security in the random probing model.

Definition 15 (Composable Security: Random Probing). A circuit com-
piler CC = (Compile,Encode,Decode) for C, consisting of circuits of input length
`, is said to be (p, ε)-composable secure against random probing attacks if
there exists a probabilistic polynomial time partial simulator Sim = (Sim1,Sim2)
such that the following holds:

10 The superscript w is used to signify leakage of wire values.

16



– p-Partial Simulation: for every circuit C ∈ C, input x ∈ {0, 1}`,{
RPDistrwp

(
Ĉ, x̂

)}
≡
{
Sim(Ĉ)

∣∣L←Sim(Ĉ)∧L 6=⊥
}
,

where, Ĉ ← Compile(C) and x̂ ← Encode(x). That is, conditioned on the

simulator not aborting, its output distribution is identical to RPDistrwp (Ĉ, x̂).

– ε-Simulation with Abort: For every C ∈ C, Sim(Ĉ) aborts with probability
ε.

Composable Security (Worst Case Probing). We define the composable security
in the worst case probing setting. This will be defined along the same lines as in
the random probing setting.

Intuitively, we want to capture the following guarantee: simulation of a subset
of wires in the circuit can be carried out given a subset of input wire values and
a subset of output wire values. We formalize this in terms of partial simulator
below.

Definition 16 (Partial Simulator: Worst Case Probing). A partial simu-
lator Sim, associated with a parameter t, defined by a deterministic polynomial
time algorithm Sim1 and probabilistic polynomial time algorithm Sim2 executes
as follows: On input a circuit Ĉ and a set of wires Wlk of size at most t,

– Sim1(Ĉ,Wlk) outputs (Winp,Wout). The sets Winp and Wout (of size at
most t) respectively denote the subset of input and output wires whose values
are necessary to simulate the values of the wires in Wlk.

– For every wire w ∈ Winp, include (w, vw) ∈ Sinp such that vw is a bit
sampled uniformly at random. Similarly, construct the set Sout.

– Sim2

(
Ĉ,Wlk,Winp, Sinp,Wout, Sout

)
outputs Slk.

Finally, Sim outputs Slk.

We now define the notion of composable security in the context of worst case
probing. Before that, we formalize the leakage function Lcomp defined in the pre-
vious section in terms of the following algorithm WCDistrwS , parameterized by a
t-sized set S.

Sampler WCDistrwS(Ĉ, x̂): On input circuit Ĉ, input encoding x̂, construct the

set Sleak as follows: For every wire w ∈ Ĉ, let vw be the value assigned to the
wire w during the execution of Ĉ on x̂. Include (w, vw) in Sleak for every w ∈ S.
Output Sleak.

Definition 17 (Composable Security: Worst Case Probing). A circuit
compiler CC = (Compile,Encode,Decode) for a class of circuits C is said to be
t-composable secure against t-probing attacks if there exists a probabilistic
polynomial time partial simulator Sim = (Sim1,Sim2), associated with a param-
eter t, such that the following holds:

17



– t-Partial Simulation: for every circuit C ∈ C, input x ∈ {0, 1}`,{
WCDistrwWlk

(
Ĉ, x̂

)}
≡
{
Sim(Ĉ,Wlk)

}
,

where Ĉ ← Compile(C), x̂ ← Encode(x) and Wlk is any subset of wires in

Ĉ of size at most t.

Main Definition We now give definitions of composable circuit compilers for
the random probing and the worst case probing models.

Definition 18 (Composable Circuit Compilers: Random Probing). A
circuit compiler CC = (Compile,Encode,Decode) is said to be a (p, ε)-secure
composable circuit compiler in the random probing model if CC satisfies:

– XOR encoding property.
– (p, ε)-composable security.

We refer to CC as a secure composable circuit compiler and in particular, omit
(p, ε) if this is clear from the context.

Definition 19 (Composable Circuit Compilers: Worst Case Probing).
A circuit compiler CC = (Compile,Encode,Decode) is said to be a t-secure com-
posable circuit compiler in the worst case probing model if CC satisfies:

– XOR encoding property.
– t-composable security.

We refer to CC as a secure composable circuit compiler and in particular, omit
t if this is clear from the context.

L-efficient Composable CC. En route to constructing composable circuit com-
piler, we construct an intermediate composable circuit compiler that produces
exponentially sized compiled circuits. We define the following notion to capture
this step.

Definition 20 (L-efficient Composable CC). A circuit compiler CC = (Compile,
Encode,Decode) is an L-efficient composable circuit compiler for a class of cir-

cuits C if for every C ∈ C, we have |Ĉ| ≤ L(|C|), where Ĉ ← Compile(C).
In particular, CC is a composable circuit compiler if L is a polynomial.

4.2 Base Case: Constant Simulation Error

We construct a composable circuit compiler CC = (Compile,Encode,Decode) for
a class of circuits C. Let Π be a perfectly semi-honest secure n-party computa-
tion protocol for an n-party randomized11 functionality F = F [C] (defined in
Figure 1) tolerating t number of corruptions.

11 Recall that a randomized n-party functionality is one that in addition to taking n
inputs, also takes as input randomness.

18



n-party functionality, F [C]

Input: (x̂11|| · · · ||x̂`1 ; · · · ; x̂1n|| · · · ||x̂`n), where ` is the input length of C.

– It then computes xi = ⊕n
j=1x̂

i
j for every i ∈ [`]. Denote x to be a bit string, where

the ith bit of x is xi.
– It then computes C(x) to obtain y. Let yi be the ith output bit of y. Let the

length of y be `y.
– Sample bits ŷij uniformly at random such that yi = ⊕n

j=1ŷ
i
j for every i ∈ [`y]. Set

ŷi = (ŷi1, . . . , ŷ
i
n), for every i ∈ [n]. Output (ŷ1, . . . , ŷ`y ).

Fig. 1. Functionality F [C], parameterized by a circuit C.

We describe the scheme below.

Circuit Compilation, Compile(C): This algorithm takes as input circuit C ∈
C. We associate a boolean circuit CktΠ with Π such that the following holds:

– Protocol Π on input (x̂1; . . . ; x̂n), where x̂i is ith party’s input, outputs
(ŷ1; . . . ; ŷn) if and only if CktΠ on input x̂1|| · · · ||x̂n outputs (ŷ1; . . . ; ŷn).

– Furthermore, the gates of CktΠ can be partitioned into n sub-circuits such
that the ith sub-circuit implements the ith party in Π. Denote the ith sub-
circuit to be Ckti. Also, denote the number of gates in CktΠ to be Ng.

– The wires between the sub-circuits are analogous to the communication chan-
nels between the corresponding parties.

Output Ĉ = CktΠ .

Input encoding, Encode(x): On input x ∈ {0, 1}`, it outputs the encoding

x̂ = ((x11, . . . , x
1
`), . . . , (x

n
1 , . . . , x

n
` )), where xi = ⊕nj=1x

j
i .

Output decoding, Decode(ŷ): It takes as input encoding ŷ = ((y11 , . . . , y
1
`′), . . . ,

(yn1 , . . . , y
n
`′)). It then outputs y, where the ith bit of y is yi = ⊕nj=1y

j
i .

We prove the following two propositions in the full version.

Proposition 1 (Worst Case Probing). Let Π be a perfectly semi-honest se-
cure n-party computation protocol for n-party functionality F (defined in Fig-
ure 1) tolerating t corruptions and having randomness locality d. Then, CC is a
t-secure composable circuit compiler secure against t-probing attacks. Moreover,
the randomness locality of CC is d.

Proposition 2 (Random Probing). Let Π be a perfectly semi-honest secure
n-party computation protocol for n-party functionality F (defined in Figure 1)

19



tolerating t corruptions and having randomness locality d. Then there is a con-
stant p > 0 such that CC is a (p, ε0)-secure composable circuit compiler, where

ε0 = e
− (1+t)2

12Ng
· 1p . Moreover, the randomness locality of CC is d.

4.3 Composition Step

We present the main composition step in this section. It allows for transforming
a composable circuit compiler CCK satisfying (p, εK)-composable security in
the random probing setting (resp., tK-composable security in the worst case)
into CCK+1 satisfying (p, εK+1)-composable security (resp., t · tK-composable
security in the worst case), where εK+1 is (exponentially) smaller than εK . In
terms of efficiency, the efficiency of CCK+1 degrades by a constant factor. The
main tool we use to prove the composition theorem is a perfectly secure MPC
protocol that tolerates at most t corruptions.

We first present the transformation of CCK into CCK+1. Let CCK = (CompileK ,
EncodeK ,DecodeK) be a composable circuit compiler. We now build CCK+1 as
follows:

Circuit Compilation, CCK+1.Compile(C): It takes as input a circuit C and

outputs a compiled circuit Ĉ. There are two steps involved in the construction
of Ĉ. In Step I, we first consider a MPC protocol Π12 for a randomized func-
tionality F and using this we construct a circuit CktΠ . In Step II, we convert
CktΠ into another circuit Ckt∗Π . In this step, we make use of the compiler CCK .

The output of this algorithm is Ĉ = Ckt∗Π .

Step I: Constructing CktΠ . Consider a n-party functionality F = F [C]; see
Figure 1.

Let Π denote a n-party information theoretically secure computation proto-
col for F . Construct CktΠ as done in Section 4.2.

Step II: Transforming CktΠ into Ckt∗Π . Replace every gate in CktΠ with
the CCK gadgets and then show how to “stitch” all these gadgets together.

- Replacing Gate by CCK gadget: For every gate G in the circuit CktΠ , we exe-
cute the compiler CCK .Compile(G) to obtain Ĝ.

- “Stitching” Gadgets: We created CCK gadgets for every gate in the circuit.
Now we show how to connect these gadgets with each other.

Let Gk be a gate in CktΠ . Let G′k and G′′k be two gates such that the output

wires from these two gates are inputs to Gk. Let Ĝk ← CCK .Compile(Gk), Ĝ′k ←
CCK .Compile(G′k) and Ĝ′′k ← CCK .Compile(G′′k). We connect the output of Ĝ′k
and Ĝ′′k with the input of Ĝk. That is, the output encodings of Ĝ′k and Ĝ′′k form

12 The parties in this protocol are equipped with randomness gates.

20



the input encoding to Ĝk. Here, we use the fact that the output encoding and
the input encoding are computed using the same secret sharing scheme, and in
particular we use the XOR secret sharing scheme.

We perform the above operation for every gate in CktΠ .

We denote the result of applying Step I and II to CktΠ to be the circuit Ckt∗Π .
Furthermore, we denote Ckt∗i to be the circuit obtained by applying Steps I and
II to sub-circuits Ckti. Note that Ckt∗i is a sub-circuit of CktΠ . Moreover, Ckt∗i
takes as input XOR secret sharing of the ith party’s input and outputs XOR
secret sharing of the ith party’s output.

Output Ĉ = Ckt∗Π .

Input Encoding, CCK+1.Encode(x): On input x, compute (x1,1, . . . , x`,1), . . . , (
x1,n, . . . , x`,n)), where xi = ⊕nj=1xi,j . Compute x̂i,j ← CCK .Encode(xi,j), for ev-

ery i ∈ [`] and j ∈ [n]. Output
(
{x̂i,j}i∈[`],j∈[n]

)
.

Output Encoding, CCK+1.Decode(ŷ): On input
(
{ŷi,j}i∈[`′],j∈[n]

)
, first com-

pute CCK .Decode(ŷi,j) to obtain yi,j , for every i ∈ [`′], j ∈ [n]. It computes
y, where the the ith bit of the output is computed as yi = ⊕nj=1ŷ

i
j . Output

y = y1|| · · · ||yn.

We prove the following two propositions in the full version.

Proposition 3 (Worst Case Probing). Suppose CCK is tK-composable se-
cure against tK-probing attacks and Π is perfectly secure tolerating t number of
corruptions. Then, CCK+1 is t · tK-composable secure against t-probing attacks.
If CCK has randomness locality dK and Π has randomness locality d then CCK+1

has randomness locality 2d+ dK .

Proposition 4 (Random Probing). Let CCK satisfy (p, εK)-composable se-
curity property. Then, CCK+1 satisfies (p, εK+1)-composable security property,

where εK+1 = e
− (1+t)2

12Ng
· 1
εK . If CCK has randomness locality dK and Π has ran-

domness locality d then CCK+1 has randomness locality 2d+ dK .

4.4 Stitching Transformation: Exp to Poly Efficiency

Consider a Lexp-efficient composable circuit compiler CCexp for a basis of gates B,
where Lexp is a exponential function. We construct a Lpoly-efficient composable
circuit compiler CCpoly for a class of all circuits C over the basis B, where Lpoly

is a polynomial.
We describe the construction below.

Circuit compilation, CCpoly.Compile(C): It takes as input circuit C ∈ C. For

every gate G in C, it computes Ĝ← CCexp.Compile(G) to obtain the gadget Ĝ.

21



Once it computes all the gadgets, it then ‘stitches’ all the gadgets together. The
stitching operation is performed as follows: let Gk be a gate in C. Let G′k and G′′k
be two gates such that the output wires from these two gates are inputs to Gk.

We connect the output of Ĝ′k and Ĝ′′k with the input of Ĝk. That is, the output

encodings of Ĝ′k and Ĝ′′k form the input encoding to Ĝk. Here, we use the fact
that the output encoding and the input encoding are computed using the same
secret sharing scheme, i.e., the XOR secret sharing scheme. Denote the resulting
circuit obtained after stitching all the gadgets together to be Ĉ. Output Ĉ.

Input Encoding, CCpoly.Encode(x): It takes as input x and then computes the
XOR secret sharing of every bit of x. Output the concatenation of the XOR
secret shares of all the bits of x, denoted by x̂.

Output Decoding, CCpoly.Decode(ŷ): On input ŷ, parse it as ((ŷ11 , . . . , ŷ
1
n), . . . , (ŷ`

′

1 ,

. . . , ŷ`
′

n )). Reconstruct the ith bit of the output as yi = ⊕nj=1ŷ
i
j . Output y =

y1|| · · · ||yn.

We prove the following two propositions in the full version.

Proposition 5 (Worst Case Probing). Suppose CCexp satisfies t-composable
security. Then CCpoly satisfies t-composable security. If CCexp has randomness
locality d then CCpoly has randomness locality d.

Proposition 6 (Random Probing). Let CCexp satisfies (p, εexp)-composable
security. CCpoly, associated with circuits of size s, satisfies (p, s·εexp)-composable
security. If CCexp has randomness locality d then CCpoly has randomness locality
d.

4.5 Main Construction: Formal Description

We now combine all the components we developed in the previous sections to
obtain a construction of composable circuit compiler. In particular, the main
construction consists of the following main steps:

– Start with a secure MPC protocol Π for a constant number of parties.
– Apply the base case compiler to obtain a composable circuit compiler, which

has constant simulation error in the case of random probing model and
tolerates constant threshold in the case of worst case probing model.

– Recursively apply the composition step on the base compiler obtain from
the above bullet. The resulting compiler, after sufficiently many iterations,
satisfies negligible error in the random probing setting and satisfies a large
threshold in the case of worst case probing model.

– The disadvantage with the compiler resulting from the previous step is that
the size of the compiled circuit could be exponentially larger than the original
circuit. To improve the efficiency from exponential to polynomial, we apply
the exponential-to-polynomial transformation.

22



Proof: Worst Case Probing
We sketch the construction in Figure 2.

Construction of CCmain

– Circuit compilation, CCmain.Compile(C): On input a circuit C, it executes the
following steps:
• It transforms Π into a composable circuit compiler CCbase satisfying t-

composable security, where t = t and L1-efficiency.

• Set CC1 = CCbase with t0 = t. Repeat the following process for i =
1, . . . ,K: Using the composition theorem, satisfying ti-composable security,
it transforms CCi into a composable circuit compiler CCi+1 satisfying ti+1-
composable security. Moreover, tK = tK .

• It transforms CCK into a composable circuit compiler CC∗ satisfying f ·
LK

1 (k)-efficiency and tK-composable security property, where f is a linear
function.

• It finally executes CC∗(C) to obtain the compiled circuit Ĉ.

• Output Ĉ.

– Input encoding, CCmain.Encode(x): It computes the XOR secret sharing of ev-
ery bit of x. Output the concatenation of the XOR secret shares of all the bits of
x, denoted by x̂.

– Output encoding, CCmain.Decode(ŷ): It reconstructs the XOR secret sharing
of every bit of y. Output y.

Fig. 2. Construction of CCmain

Proposition 7. Let K ∈ N. Consider a MPC protocol Π for a n-party function-
ality F (Figure 1) and tolerating at most t with randomness locality d. Then,
CCmain is a tK-composable secure composable circuit compiler secure against
worst case probing attacks for all circuits satisfying (L1(k))K ·f -efficiency, where:

– L1(k) is a constant and f is a linear function,
– c is a constant,
– Moreover, the randomness locality of CCmain is O(K).

Instantiation. By instantiating the tools in the above proposition, we get the
following proposition.

23



Proposition 8. Consider a parameter t > 0. There is a composable circuit
compiler satisfying t-composable security against worst case probing attacks sat-
isfying randomness locality O(log(t)).

Proof. Suppose we have a MPC protocol Π for the n-party functionality F (Fig-
ure 1) tolerating at most t corruptions, for some constant n (for instance, [BOGW88,
CCD88]). We then obtain a circuit compiler CCmain, which is tK-composable se-
cure and satisfy cK ·f -efficiency, where c is a constant and f is a linear function.

Setting K = d log(t)log(t) e, we have that CCmain is t-composable secure and satisfying

polynomial efficiency, as desired. Moreover, the randomness locality of CCmain
is O(K) = O(log(t)). This completes the proof.

We present the constructions in the worst case and random probing models
below. The proofs are deferred to the full version.

Proof: Random Probing We now present a construction (Figure 3) of com-
posable circuit compiler for a class of circuits C over basis B starting from a
MPC protocol Π for the n-party functionality F that can tolerate t semi-honest
adversaries. We denote this construction by CCmain.

Proposition 9. Let K ∈ N. Consider a MPC protocol Π for a n-party func-
tionality F and tolerating at most t corruptions with randomness locality d sat-

isfying the property that e
12Ng

(1+t)2 ≥
(

12Ng

(1+t)2

)4
, where Ng is the number of gates in

the implementation of Π.

Then, CCmain is a (p, cc
K

)-secure composable circuit compiler for all circuits
satisfying (L1(k))K · f -efficiency, where:

– p = (1+t)2

48Ngln(
12Ng

(1+t)2
)

– L1(k) is a constant and f is a linear function,
– c is a constant,
– Ng is the number of gates in the circuit CktΠ

Moreover, the randomness complexity of CCmain is O(K).

Instantiation. We use a specific instantiation of the MPC protocol in the above
proposition to get the following result.

Proposition 10. There is a construction of a composable circuit compiler for
C satisfying (p, negl)-composable security, where p = 6.5× 10−5.

5 Leakage Tolerant Circuit Compilers

In this section, we present a construction of leakage tolerant circuit compiler
with constant leakage rate. Later, we present a negative result on the leakage
rate of a leakage tolerant circuit compiler.

24



Construction of CCmain

– Circuit compilation, CCmain.Compile(C): On input a circuit C, it executes the
following steps:
• It transforms Π into a composable circuit compiler CCbase satisfying (p, ε1)-

composable security, where ε1 = e
− (1+t)2

12Ng
· 1
p and L1-efficiency.

• Set CC1 = CCbase. Repeat the following process for i = 1, . . . ,K: Using the
composition step, it transforms CCi into a composable circuit compiler CCi+1

satisfying (p, εi+1)-security.

• Using the exponential-to-polynomial transformation, it transforms CCK into
a composable circuit compiler CC∗ satisfying f · LK

1 (k)-efficiency and (p, s ·
εK)-composable security property, where f is a linear function.

• It finally executes CC∗(C) to obtain the compiled circuit Ĉ.

• Output Ĉ.

– Input encoding, CCmain.Encode(x): It computes the XOR secret sharing of ev-
ery bit of x. Output the concatenation of the XOR secret shares of all the bits of
x, denoted by x̂.

– Output encoding, CCmain.Decode(ŷ): It reconstructs the XOR secret sharing
of every bit of y. Output y.

Fig. 3. Construction of CCmain

5.1 Construction: Random Probing

We prove the following proposition.

Proposition 11. Let CCcomp be a composable compiler for a class of circuits C
satisfying (p, ε)-composable security. Then, CCLT is a (p,p′, ε′)-leakage tolerant
circuit compiler for C secure against random probing attacks, where p′ = (1 +
η)2
(
1− (1− p)6

)
and ε′ = ε+ 1

ec·n , for arbitrarily small constant η > 0.

To prove the above theorem, we start with a composable secure circuit compiler
and then attach a leakage tolerant circuit that computes the additive shares of
input. In particular, we need to prove that the leakage of values in the sharing
circuit can be simulated with leakage on the input bits.
Combining with Proposition 10 obtain the following proposition.

Proposition 12. Consider a basis B. There is a construction of (p,p′, negl)-
leakage tolerant circuit compiler against random probing attacks for all circuits
over B of size s, where p = 6.5× 10−5 and p′ = 3.9× 10−4.

25



Non-Boolean Basis. We show how to achieve a leakage tolerant compiler with
leakage rate arbitrarily close to 1 with the compiled circuit defined over a non-
boolean basis. The starting point is a composable circuit compiler where the
compiled circuit with leakage rate arbitrarily close to 1 and over a large basis.

Proposition 13. Let δ > 0. Consider a basis B′ consisting of all randomized
functions mapping n bits to n bits. Suppose there is a construction of a com-
posable circuit compiler CCNB over B′ for C over B satisfying (p, ε)-composable
security. Then there is a construction of (p,p′, ε′)-secure leakage tolerant cir-
cuit compiler over B′ for C over B, where p′ = 1 − ((1 − p)2) · (1 − pn)2) and
ε′ = ε+ 1

ec·n , for some constant c.

5.2 Construction: Worst Case Probing

We present the construction of a leakage tolerant circuit compiler in the worst
case probing model.

Proposition 14. For any basis B and any t > 0, there is a construction of
leakage tolerant circuit compiler secure against t-probing attacks. Moreover, this
compiler has randomness locality O(log(t)).

Proof. From Proposition 8, there is a construction of t-secure composable cir-
cuit compiler CCcomp. We construct a leakage tolerant circuit compiler CCLT as
follows:

– Compile(C): On input C, it does the following:

• Compute CCcomp.Compile(C) to obtain the compiled circuit CCcomp.Ĉ.

• Constructs a circuit Ĉ that takes as input x,
∗ Computes N shares of every bit of x, where N is determined the

input length of CCcomp.Ĉ. In particular, for every i, it computes
shares of xi as follows: (xi ⊕ r1, r1 ⊕ r2, . . . , rN−2 ⊕ rN−1, rN−1),
where ri is sampled freshly at random. For every ith bit, since there
are two input wires carrying xi, we perform the sharing process twice.

∗ Compute CCcomp.Ĉ on the shares of x as computed in the bullet
above.

– Decode(ŷ): It parses ŷ as (ŷ1, . . . , ŷ`) and reconstructs the shares in ŷi to
obtain the value yi.

We claim that CCcomp is a t-secure leakage tolerant circuit compiler. The correct-
ness and efficiency properties of CCcomp follow from the respective properties of
CCLT . To argue security, we first note that any t wires of leakage in the sharing
circuit can be simulated with t input and output wires of leakage of the sharing
circuit (this follows from the fact that every wire in the sharing circuit is either
an input or an output wire). The t-composable security of CCcomp then implies
the security of CCLT .

Next, we show that CCcomp has randomness locality O(log(t)). We first note
that the sharing circuit has constant randomness locality. This combined with
the fact that CC has O(log(t)) randomness locality proves the result.

26



6 Leakage Resilient Circuit Compilers

In this section, we give upper bounds for leakage resilient circuit compilers. Note
that any structural circuit compiler for circuit class C is also a leakage resilient
circuit compiler for C. Using this fact, we state the following theorem.

Theorem 8. There is a construction of (p, exp(−s))-leakage resilient circuit
compiler for all circuits over B of size s, secure against random probing attacks,
where p = 6.5× 10−5.

The proof of the above theorem follows from Proposition 10.

7 Randomness Complexity

We present a construction of leakage tolerant circuit compiler with near optimal
randomness complexity. To show this, we use two lemmas from [IKL+13]. We
first state a lemma about the existence of explicit robust r-wise PRGs. We refer
the reader to [IKL+13] for the definition of strong (t, q) robust r-wise PRGs.

Lemma 2 ( [IKL+13]). For any η > 0, there exists δ, c > 0, such that for any
m ≤ expnδ, there is an explicit d-strong (n1−η, 21)-robust r-wise independent
PRG G : {0, 1}n → {0, 1}m for r = n1−η and d ≤ logc(m).

The following theorem13 states that any t-leakage tolerant circuit compiler estab-
lishes the connection between randomness locality and randomness complexity.

Lemma 3 ([IKL+13]). Consider a q · t-leakage tolerant circuit compiler. Sup-
pose the compiled circuit uses m random bits and makes an d-local use of its
randomness. Let G : {0, 1}n → {0, 1}m be a strong (t, q)-robust r-wise PRG
with r ≥ t · max (d, q). Then there is a leakage tolerant circuit compiler secure
against t-probing attacks which uses n random bits.

Recall that the leakage tolerant compiler in Theorem 14 has randomness local-
ity O(log(t)). This fact along with the above two lemmas yields the following
theorem.

Theorem 9. For any t > 0, there is a construction of leakage tolerant circuit
compiler secure against t-probing attacks using t1+ε · polylog(|C|) random bits.

Acknowledgements. We thank Jean-Sébastien Coron, Stefan Dziembowski,
and Sebastian Faust for helpful discussions. The second author was supported
in part by ERC grant 742754, ISF grant 1709/14, NSF-BSF grant 2015782, and
a grant from the Ministry of Science and Technology, Israel and Department
of Science and Technology, Government of India. The third author’s research
is supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier

13 They phrase this in the language of private circuits and so we rephrase their theorem
in our language.

27



Award 1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty
Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon
work supported by the Defense Advanced Research Projects Agency through
the ARL under Contract W911NF-15-C- 0205. The views expressed are those of
the authors and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

References

ADF16. Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit
compilers with O(1/\log (n)) leakage rate. In Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques II, Vienna, Austria, May 8-
12, 2016, pages 586–615, 2016.

Ajt11. Miklós Ajtai. Secure computation with information leaking to an adversary.
In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 715–724. ACM, 2011.

BBD+16. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 116–129. ACM, 2016.

BBP+16. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of pri-
vate circuits for multiplication. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 616–648.
Springer, 2016.

BBP+17. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Private multiplication over fi-
nite fields. In Annual International Cryptology Conference, pages 397–426.
Springer, 2017.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Annual International Cryptology Conference, pages 420–432. Springer,
1991.

BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation. In
Proceedings of the twentieth annual ACM symposium on Theory of com-
puting, pages 1–10. ACM, 1988.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncon-
ditionally secure protocols. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 11–19. ACM, 1988.

CDI+13. Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro
Miltersen, Ran Raz, and Ron D Rothblum. Efficient multiparty protocols
via log-depth threshold formulae. In Advances in Cryptology–CRYPTO
2013, pages 185–202. Springer, 2013.

CK91. Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy.
SIAM Journal on Discrete Mathematics, 4(1):36–47, 1991.

28



DDF14. Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, pages 423–440, 2014.

GIK+15. Sanjam Garg, Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Cryptography with one-way communication. In Advances in Cryp-
tology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages 191–208,
2015.

GIM+16. Vipul Goyal, Yuval Ishai, Hemanta K Maji, Amit Sahai, and Alexander A
Sherstov. Bounded-communication leakage resilience via parity-resilient
circuits. In Foundations of Computer Science (FOCS), 2016 IEEE 57th
Annual Symposium on, pages 1–10. IEEE, 2016.

HM00. Martin Hirt and Ueli Maurer. Player simulation and general adver-
sary structures in perfect multiparty computation. Journal of cryptology,
13(1):31–60, 2000.

IKL+13. Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prab-
hakaran, Amit Sahai, and David Zuckerman. Robust pseudorandom gen-
erators. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 576–588. Springer, 2013.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Annual International Cryptology Con-
ference, pages 463–481. Springer, 2003.

Pip85. Nicholas Pippenger. On networks of noisy gates. In FOCS, pages 30–38,
1985.

vN56. J. von Neumann. Probabilistic logics and synthesis of reliable organisms
from unreliable components. Automata Studies, 34:43–98, 1956.

29


	Private Circuits: A Modular Approach

